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Abstract
Multi-axis sweeping is an important tool to generate hexahedral meshes for solid models which are composed of swept 
volumes with different sweep directions. However, traditional multi-axis sweeping algorithms either fail to handle complex 
grafting relationships between swept volumes or are easy to produce hexahedral elements with bad quality around the graft 
surfaces. To achieve a high-quality multi-axis swept mesh, this paper proposes a global approach to multi-axis swept mesh 
generation, which can robustly generate hexahedral meshes for solid models composed by swept volumes with different 
sweep directions. We first generate all surface meshes globally by applying an optimized structured quadrilateral mesh 
generation algorithm. After that, we generate a swept mesh for each swept volume. Finally, we determine an appropriate 
way to optimize the topology of the generated mesh so as to improve the mesh quality. The experimental results show the 
effectiveness and efficiency of the proposed method.

Keywords Hexahedral mesh · Mesh generation · Swept mesh · Structured quadrilateral mesh

1 Introduction

1.1  Background

Finite element analysis (FEA) is a numerical method used 
to solve problems in the domains of structure analysis, 
dynamics, and solid mechanics. The 3D volume mesh is an 
important input for FEA. Two common categories of 3D vol-
ume meshes are tetrahedral meshes and hexahedral meshes. 
Compared with tetrahedral meshes, hexahedral meshes have 
the advantages of smaller number of elements, higher com-
putational precision and faster convergence when applied 
to FEA.

There are many mature methods for high-quality tet-
rahedral mesh generation. However, the automated and 
high-quality hexahedral meshing of complex solid models 
is still very challenging. At present, the main hexahedral 

mesh generation methods are submapping [1], sweeping 
[2–6], whisker weaving [7], plastering [8, 9], grid-based 
[10], H-morph [11], dual cycle elimination based [12, 13], 
frame field based [14], sheet operation based [15], etc. A 
comprehensive review of all these methods can be found in 
the survey by Sarrate et al. [16]. Among all the hexahedral 
mesh generation methods, sweeping is the most widely used, 
accounting for more than 50% of meshing applications [17].

One of the most popular ways to generate hexahedral 
meshes for complex solid models is to first decompose them 
into swept volumes, and then use sweeping algorithms to 
generate hexahedral meshes for each swept volume. In this 
way, the quality of the resulting hexahedral mesh is generally 
very high, however, it is difficult to achieve mesh conformity 
at the common surfaces between swept volumes with differ-
ent sweep directions. To solve this problem, some multi-axis 
sweeping algorithms [18–20] have been proposed, but these 
algorithms are either easy to produce mesh elements with 
bad quality or unable to handle complex grafting relation-
ships between swept volumes. Therefore, this paper aims to 
propose a multi-axis swept mesh generation method, which 
can generate high-quality hexahedral meshes for solid mod-
els that are composed of swept volumes with complex graft-
ing relationships.
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1.2  Related work

1.2.1  Sweeping methods

Sweeping methods can generate high-quality hexahedral 
meshes for swept volumes. The procedure used in most 
sweeping methods first classifies the surfaces of the input 
swept volume as source surfaces, target surfaces and link-
ing surfaces, where the source and target surfaces are 
called cap surfaces. Then, the source surface is meshed 
with a quadrilateral mesh and the linking surfaces are 
meshed with structured quadrilateral meshes. Next, the 
source surface mesh is projected onto the target surface 
to keep the mesh topology the same between the two cap 
surfaces. Finally, the swept mesh is generated in a layer-
by-layer fashion along the sweep direction. According to 
the number of source surfaces and target surfaces, swept 
volumes can be classified into one-to-one, many-to-one, 
and many-to-many swept volumes, all of which are suit-
able for generating single-axis swept meshes, and many 
mature methods [2–6] have been proposed by now.

1.2.2  Multi-axis sweeping methods

To expand the application scope of sweeping methods, 
Miyoshi et al. [18] proposed the multi-axis cooper algo-
rithm, which can generate a hexahedral mesh through 
multi-axis sweeps. However, the types of applicable 
solid models of this approach are limited. The biggest 
challenge in multi-axis swept mesh generation is how to 
guarantee the mesh conformity at the common surfaces 
between swept volumes with different sweep directions. 
To this end, Jankovich et al. [19] proposed the grafting 
algorithm, and Earp [20] further improved this algorithm. 
This method determines the order of the mesh generation 
by establishing a grafting relationship among the swept 
volumes with different sweep directions. A branch-swept 
volume is grafted on the linking surface of a trunk-swept 
volume, and the common surface between them is referred 
to as the graft surface, as shown in Fig. 1. The swept 
mesh of trunk-swept volume is generated first. Then this 
method locally modifies the position and connectivity of 
the nodes on the linking surfaces to align with the graft 
surfaces. Once the surface mesh is formed on the graft sur-
face, it is swept along the branch to create a swept mesh. 
The grafting algorithm greatly expands the range of mod-
els that can be meshed by sweeping methods. However, it 
still suffers from the following drawbacks: (1) this method 
cannot deal with complex grafting relationships between 
swept volumes, such as when a branch is grafted onto two 
trunks at the same time, or when the grafting relationship 

forms a loop. (2) The quality of the mesh near the graft 
surface is often not satisfactory although some measures 
have been taken to locally improve the mesh quality. Fig-
ure 2a shows an example in which a branch-swept volume 
is grafted onto two trunk-swept volumes at the same time. 
The swept volume B is grafted simultaneously on the link-
ing surfaces of the swept volumes A and C. The grafting 
algorithm is not able to deal with this case as it cannot 
guarantee the mesh conformity at both of the graft sur-
faces. Figure 2b shows an example where the grafting rela-
tionship forms a loop. The swept volume D is grafted onto 
the linking surface of the swept volume E, and this in turn 
is grafted onto the linking surface of the swept volume F, 
the swept volume F is grafted onto the linking surface of 
the swept volume G, and this is grafted back to the linking 
surface of the swept volume D. For this kind of grafting 
relationship, this algorithm cannot find a reasonable swept 
mesh generation order, hence making this model unsuit-
able for being meshed by the grafting algorithm.

1.2.3  Structured quadrilateral mesh generation methods

To generate a swept mesh, structured quadrilateral meshes 
must be generated on the linking surfaces. The direction of 
this structured mesh should be consistent with the sweep 
direction. In multi-axis swept mesh generation, to ensure 
the mesh conformity between the trunk-swept volume and 
the branch-swept volume, the structured quadrilateral mesh 
on the linking surface of the trunk-swept volume should 
also be aligned with the bounding loops of the graft sur-
faces. In other words, the mesh on the graft surface should 
be structured and its direction should be consistent with the 
sweep direction of trunk-swept volume. The construction of 
structured quadrilateral meshes has been extensively studied 
and extended. Ruiz-Gironés et al. [21] and Cai et al. [22] 
improved the submapping algorithm [1] to mesh complex 
surfaces with structured quadrilateral meshes. However, in 

Fig. 1  Definition of graft surface



1123Engineering with Computers (2019) 35:1121–1139 

1 3

these algorithms, the direction of the structured quadrilat-
eral mesh is automatically determined and cannot be speci-
fied by users. In the grafting algorithm [19], the structured 
quadrilateral meshes inside the graft surfaces are obtained 
by locally modifying the location of the mesh nodes on the 
linking surfaces. This often leads to the problem that the 
elements near the bounding loops of the graft surfaces are 
usually of poor quality.

1.3  Our approach

In this paper, we propose a robust multi-axis swept mesh 
generation approach which can greatly expand the applica-
tion scope of multi-axis sweeping. Specifically, our approach 
has the following characteristics:

• To effectively deal with the complex grafting relation-
ships among swept volumes, we globally generate the 
surface meshes and swept meshes for all the swept vol-
umes. This eliminates the dependency on the mesh gen-
eration order of the swept volumes.

• To achieve better mesh quality on graft surfaces, we 
put forward an algorithm which can generate optimized 
structured quadrilateral meshes for graft surfaces.

• To eliminate the bad mesh elements which are generated 
as a compromise to achieving mesh conformity on graft 
surfaces, we adopt topological operations to effectively 
improve the quality of the hexahedral mesh generated by 
multi-axis sweeping.

2  Approach overview

In order to meet the requirement of high-quality hexahe-
dral mesh generation, this paper presents a novel multi-axis 
swept mesh generation approach. The current approaches 
to the generation of multi-axis swept meshes suffer from 
two main problems: first, it is challenging to mesh models 

with complex grafting relationships as shown in Fig. 2a, b; 
second, it is difficult to match the quality of the generated 
hexahedral mesh with the application requirements. To solve 
the first problem, our approach works in two steps. First, it 
globally generates the surface meshes of all the swept vol-
umes while ensuring the mesh conformity on the common 
surfaces. Then it generates the swept mesh of each swept 
volume. To address the second problem, we propose an 
algorithm which can generate optimized structured quadri-
lateral meshes on graft surfaces. Subsequently, we further 
improve the quality of the generated hexahedral mesh by 
modifying the mesh topology using a set of local topologi-
cal operations.

The input to this approach is the result of swept volume 
decomposition obtained by the method of Wu et al. [23, 
24]. All of the many-to-one and many-to-many swept vol-
umes are first decomposed into one-to-one swept volumes. 
The output is the hexahedral mesh whose quality can meet 
application requirements. As shown in Fig. 3, this approach 
mainly includes the following three steps:

Step 1 Boundary surface meshing Discretize all the 
curves of the input swept volumes and globally generate the 
quadrilateral meshes of all surfaces.

Step 2 Swept mesh generation Using the sweeping algo-
rithm, generate and merge the swept meshes of all swept 
volumes into a global mesh.

Step 3 Topological optimization Determine a set of local 
topological modification operations to improve the mesh 
quality.

In our approach, to deal with complex grafting relation-
ships among input swept volumes, all of the many-to-many 
and many-to-one swept volumes are first decomposed into 
one-to-one swept volumes. The main reasons are as follows: 
on the one hand, in order to achieve many-to-many sweep-
ing, certain constraints on the source and target surface 
mesh topologies must be satisfied. On the other hand, in 
order to achieve multi-axis sweeping with mesh conform-
ity guaranteed, certain constraints must be satisfied on the 

Fig. 2  Two examples with 
complex grafting relationships 
which cannot be handled by the 
existing grafting algorithm
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interfaces between swept volumes. These constraints must 
spread all over the solid model by decomposing the input 
swept volumes into one-to-one swept volumes before mesh 
generation. The geometric decomposition may encounter 
some difficulties when dealing with extreme cases, which is 
currently a limitation of our approach.

As the swept mesh generation process of Step 2 can be 
directly accomplished by applying sweeping methods, we 
will mainly focus on Step 1 and Step 3 in the following 
sections.

3  Boundary surface meshing

To ensure that a swept mesh can be generated by the sweep-
ing algorithm, the surface mesh must ensure that the link-
ing surface mesh is structured, and the topologies of the 
target and source surface meshes are the same. In multi-
axis sweeping, the surface mesh should also ensure that the 
meshes on the common surfaces between the different the 
swept volumes are identical. As shown in Fig. 4, since sur-
faces: f1 and f2 are the common surfaces of two swept vol-
umes, the surface meshes on them must be exactly the same. 
In a similar way, the surface meshes on f3 and f4 should also 

be exactly the same. In addition, since f2 and f3 are the two 
cap surfaces of a swept volume, their surface meshes must 
have the same topology. So, all four surfaces f1, f2, f3, and f4 
must have the same mesh topology. This makes it difficult to 
generate surface meshes separately for each swept volume. 
In order to effectively generate the surface meshes that both 
satisfy the conformity requirements of the common surfaces 
and meet the conditions that a swept mesh can be gener-
ated for each swept volume, this paper proposes to globally 
generate the surface meshes for all swept volumes. We first 
discretize all the geometric curves globally, then group the 

Fig. 3  An illustration of the proposed multi-axis sweeping algorithm. 
a Input solid model which has been decomposed into one-to-one 
swept volumes. b Curve discretization. c Generated surface meshes. 

d Generated swept mesh. e Dual sheets are inserted to improve the 
topological quality of the generated mesh. f Final hexahedral mesh 
generated

Fig. 4  A group of surfaces whose meshes cannot be generated sepa-
rately
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surfaces that have constraints with each other. Finally, we 
globally generate the surface meshes, and use an optimized 
structured mesh generation algorithm for the graft surfaces.

3.1  Curve discretization

To effectively support the global surface mesh generation, 
we first discretize all geometric curves of the swept vol-
umes. The curve discretization must satisfy the following 
three conditions: first, to ensure the conformity of the mesh 
at the common surfaces between different swept volumes, 
the discretization of the common curves should be the same. 
Second, in order to ensure the generation of structured quad-
rilateral meshes on the linking surfaces of each swept vol-
ume, the number of intervals on the opposing curves of a 
linking surface should be equal (i.e., the number of intervals 
in the I+ direction in the submapping algorithm [1] should 
be equal to the number of intervals in the I− direction, and 
the number of intervals in the J+ direction should be equal 
to that in the J− direction). Third, to generate a quadrilateral 
mesh on each cap surface, it is necessary to ensure that the 
sum of the number of intervals of all geometric curves on 
each cap surface is even. (For a surface, the necessary condi-
tion for generating a quadrilateral mesh is that the number of 
intervals is even.) In order to make the curve discretization 
satisfy the above three constraints, and at the same time meet 
the user specified mesh size d, we propose to minimize the 
following objective function to globally calculate the num-
ber of intervals nc for each geometric curve.

Minimize:

subject to the following constraints:
nci = ncj for all common curve pair ci and cj,
∑
c∈I+

nc =
∑
c∈I−

nc for all linking surface fl,
∑
c∈J+

nc =
∑
c∈J−

nc for all linking surface fl,
∑
c∈fs

nc = 2nfs for all cap surface fs,

where lc is the length of each curve, and 2nfs is the sum of the 
intervals of cap surface fs . To solve the above problem using 
linear programming, we introduce the auxiliary variable �c 
and change the objective function to the minimization of:

and add the following constraints:

∑

c

||||
nc

lc
−

1

d

||||
,

nc, nfs ∈ ℕ+,

∑

c

�c

�c ≥
nc

lc
−

1

d
,

In our implementation, we use the lpsolve library [25] to 
solve the above linear problem. For the input solid model in 
Fig. 3a, the number of intervals calculated for each curve is 
shown in Fig. 5. We uniformly discretize each curve accord-
ingly, and the result is shown in Fig. 3b.

3.2  Surface grouping

As mentioned earlier in this section, the meshes of some 
surfaces need to be either exactly or topologically identi-
cal. These surfaces have constraints on each other, and 
their meshes cannot be generated separately, so we group 
these surfaces, and mesh the surfaces in the same group 
all at once. First, to meet the conformity requirement, the 
common surfaces between the swept volumes are grouped. 
As shown in Fig. 6a, eight groups are formed for the solid 
model in Fig. 4. Secondly, to meet the requirement for topo-
logical identicalness of the source and target surfaces, the 
cap surfaces of each swept volume are grouped. As shown 
in Fig. 6b, another six groups are formed. Finally, we join 
the groups with common elements. Hence Group-7, Group-8 
and Group-14 are joined together to form the surface group 
shown in Fig. 6c, and finally twelve surface groups are 
formed in total. The surfaces in Group-1 to Group-6 are all 
linking surfaces, and they are all suitable to be meshed by 
existing structured quadrilateral mesh generation algorithms 
[21, 22]. The surfaces in Group-9 to Group-13 are all cap 
surfaces. For each of these groups, we apply the paving algo-
rithm [26] to one of the surfaces to generate a quadrilateral 
mesh, and then project the mesh onto the other surfaces of 
that group. The surface group in Fig. 6c is composed of 
four surfaces, and they are all graft surfaces. These surfaces 
should be meshed with structured quadrilateral meshes, 
however, existing quadrilateral meshing algorithms cannot 
be applied to mesh these surfaces. For the meshing of graft 

�c ≥ −

(
nc

lc
−

1

d

)
.

Fig. 5  The number of intervals calculated for each curve
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surfaces, we present an optimized structured quadrilateral 
mesh generation method in Sect. 3.3.

It should be noted that there are also some surfaces that 
do not belong to any group, and they can be easily meshed, 
hence we do not discuss about them here.

3.3  Optimized structured quadrilateral meshing 
of graft surfaces

The graft surfaces in Fig. 6c are generally not suitable for 
structured quadrilateral meshing. However, due to the struc-
tural requirement of the linking mesh, it is necessary to gen-
erate structured quadrilateral meshes that conform to the 
sweep direction and the given curve discretization. There-
fore, this paper presents an optimized structured quadrilat-
eral mesh generation method. The input to the algorithm is 
the surface whose curve discretization is given, as shown in 
Fig. 7a, and the direction of the structured mesh, as shown 
in Fig. 7b. The output is a structured quadrilateral mesh that 
conforms to the given curve discretization and has a direc-
tion that is consistent with the given direction.

One of the most critical problems in constructing a 
structured quadrilateral mesh is the parameterization of the 
boundary curves. As shown in Fig. 7c, each curve segment 
is parameterized as I+, J+, I−, or J−. For the problem of 
this paper, as long as the parameters of each curve segment 
can be determined, the topology of the resulting structured 

quadrilateral mesh can be directly determined, as shown in 
Fig. 7d. Thus, the problem of structured quadrilateral mesh 
generation can be transformed into the problem of solv-
ing for the parameters of each curve segment. To make the 
direction of the generated mesh consistent with the given 
direction, our goal is to minimize the difference between the 
actual direction of each curve segment and its ideal direction 
in the computational domain. To achieve this, we propose to 
minimize the following objective function:

constrained to

n∑

k=1

(
pkI+ × xkI+ + pkJ+ × xkJ+ + pkI− × xkI− + pkJ− × xkJ−

)
,

pkI+ = sin
�vI+ ,vk

2
,

pkJ+ = sin
�vJ+ ,vk

2
,

pkI− = sin
�vI− ,vk

2
,

pkJ− = sin
�vJ− ,vk

2
,

Fig. 6  Surface grouping. a Common surfaces are grouped. b Cap surfaces are grouped. c A group which contains graft surfaces

Fig. 7  Optimized structured quadrilateral meshing. a Curve dis-
cretization of input surface. b Specified direction of final structured 
quadrilateral mesh. c Curve parameterization in the computational 

domain. d Interior node interpolation in the computational domain. e 
Curve parameterization of input surface. f Generated structured quad-
rilateral mesh
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Among them, xkI+ , xkJ+ , xkI− and xkJ− denote whether the 
kth segment belongs to the parameters I+, J+, I− or J−. When 
xkI+ = 1, the kth segment belongs to I+; when xkJ+ = 1, the kth 
segment belongs to J+, and so on. pkI+ , pkJ+ , pkI− and pkJ− 
refer to the penalty coefficient of the kth segment belonging 
to I+, J+, I− and J−, respectively. vk refers to the direction 
of the kth segment, �vI+ ,vk

, �vJ+ ,vk
, �vI− ,vk

 and �vJ− ,vk
 denote the 

angles between vk and vI+ , vJ+ , vI− and vJ− , respectively.
In order to ensure the formation of structured quadrilat-

eral meshes, we must ensure that the number of segments 
belonging to I+ and I− are equal, and the number of seg-
ments belonging to J+ and J− are also equal. So we add the 
following constraints:

Besides, the parameters of two successive segments can-
not be I+ and I− , respectively, or J+ and J− , respectively. 
Therefore, we add the following constraints:

where tk denotes the type of the kth segment. When the value 
of tk is 1, 2, 3 and 4, the type of the kth segment is I+, J+, I− 
and J− , respectively. In order to remove the absolute value 
in Eq. (1), we rewrite Eq. (1) as

where ak also refers to the type of the common node between 
the kth segment and the (k + 1)th segment. When the value 
of ak is − 1, 0 and 1, the type of the common node is COR-
NER, SIDE and END respectively. To ensure the generation 
of a structured quadrilateral mesh, the sum of the types of 
nodes must be equal to 4 [1, 21], so we add the following 
constraint:

At last, we further add the following constraint:

xkI+ + xkJ+ + xkI− + xkJ− = 1,

xkI+ , xkJ+ , xkI− , xkJ− ∈ {0, 1}.

n∑

k=1

xkI+ =

n∑

k=1

xkI− ,

n∑

k=1

xkJ+ =

n∑

k=1

xkJ− .

(1)||tk − tk+1
|| ≠ 2,

tk = 1 × xkI+ + 2 × xkJ+ + 3 × xkI− + 4 × xkJ− ,

−1 ≤ ak ≤ 1,

ak = tk − tk+1 + 4 × mk mk ∈ ℤ,

n∑

k=1

ak = 4.

(2)||ak − āk
|| ≤ 1,

where the āk refers to the ideal type of the common node 
between the kth segment and the (k + 1)th segment accord-
ing to the angle between them. For example, when the angle 
between the segments is �∕2, the ideal type of their common 
node should be END, and the value of āk is 1. This constraint 
is used to avoid that the type of some node deviate too much 
from its ideal type, so as to guarantee the mesh quality.

We use the lpsolve library [25] to solve the above linear 
problem. Figure 7e shows the result of the parameterization 
of this surface. The segments with the parameter of I+, J+, I− 
and J− are colored yellow, gray, red and green, respectively. 
According to the result of the parameterization, it is easy to 
generate a structured quadrilateral mesh as shown in Fig. 7f. 
As the surface itself is not suitable for structured quadrilat-
eral meshing, its mesh quality is not particularly desirable. 
In the next section, we will continue to optimize it.

After meshing all the surfaces, the surface mesh shown in 
Fig. 3c is obtained for the solid model in Fig. 3a.

4  Topological optimization of graft surface 
mesh

After the surface meshes are generated, we apply the sweep-
ing algorithm to generate a swept mesh for each swept vol-
ume. Figure 3d shows the generated swept mesh, and the 
quality measurement of the generated mesh is shown in 
Fig. 8a. As mentioned in the previous section, to ensure the 
mesh conformity between swept volumes, we have to gener-
ate structured quadrilateral meshes for graft surfaces which 
are generally not suitable for structured quadrilateral mesh-
ing. Therefore, some mesh elements with poor quality are 
generated in the hexahedral mesh. As shown in Fig. 8b, the 
hexahedral elements with the scaled Jacobian values below 
0.3 are distributed either in the vicinity of the bounding 
loops of the graft surfaces, or in the swept mesh produced 
by the graft surface mesh. To further improve the quality of 
the generated mesh, we optimize the topology of graft sur-
face mesh by inserting a set of dual chords [27] first, being 
described in this section, and then optimize the topology of 
the hexahedral mesh by inserting a set of dual sheets [27], 
which will be presented in the next section.

To optimize the graft surface mesh by dual chords inser-
tion, the most important thing is to determine the insertion 
paths which are the input of dual chords insertion. An inser-
tion path is composed of a set of continuous mesh edges on 
the surfaces. Figure 9c shows an example of an insertion 
path, and by inflating each mesh edge of the path, a dual 
chord can be generated, as shown in Fig. 9d. The insertion 
of this new chord can effectively improve the surface mesh 
quality.

To determine the insertion paths that can be used to gen-
erate the dual chords which can effectively improve the mesh 
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quality on the linking surfaces which contains graft surfaces, 
we first determine a set of local topological modification 
templates, then globally connect these local templates to 
form insertion paths.

4.1  Local topological modification templates

As the quadrilateral meshes on the linking surfaces are struc-
tured, the number of quadrilaterals adjacent to each internal 
node of the mesh is four, which is ideal for quadrilateral 
meshes. Therefore, the mesh quality problems are mainly 
concentrated on the bounding loops of the graft surface, and 
the local topological modification templates are only defined 
for the nodes which lies on the bounding loops of the graft 
surface. In our previous work [28], we have enumerated 

all the possible local topological modification templates as 
shown in Table 1. For each boundary node, the ideal number 
of quadrilaterals adjacent to it can be determined based on 
the angle between its two adjacent mesh edges, as shown in 
the first, fourth and seventh columns of Table 1. Besides, all 
the possible undesirable configurations on each boundary 
node can also be enumerated, since the mesh is structured 
and the number of possible quadrilaterals on each mesh node 
is limited, as shown in the second, fifth and eighth columns 
of Table 1. Finally, in order to convert each undesirable con-
figuration to the ideal configuration, the local topological 
modification templates are defined as shown in the third, 
sixth and ninth columns of Table 1, where the red dotted 
lines refer to the dual edges locally inserted to optimize the 
local configuration.

Fig. 8  Quality measurement of the generated swept mesh before 
topological optimization. a Visualization of the scaled Jacobian value 
distribution. The red-blue color coding is used with red indicating 

smaller Jacobian values. b The hexahedral elements whose scaled 
Jacobian value is below 0.3

Fig. 9  Flowchart of graft surface mesh optimization. a The mesh on 
the linking surface which contains a graft surface. b The local topo-
logical modification templates applied to improve the mesh quality. 

c The insertion path formed by connecting the local modification 
templates. b The chord generated based on the insertion path. e The 
improved graft surface mesh
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Although Table 1 have listed all the possible modifica-
tion templates, some of the templates cannot be directly 
achieved through chord insertion. For example, the first 
template in the ninth column cannot be generated by deter-
mining insertion paths to be inflated as there are too few 
edges around the node in the original configuration. Besides, 
as the original node type is CORNER which is so different 
from its ideal type REVERSAL, it is difficult to guarantee 
the mesh quality after the topological modification, even if 
these templates are applicable. Fortunately, these extreme 
templates are not necessarily used in this work, as we have 
avoided these extreme cases during the structured quadrilat-
eral mesh generation process of the graft surface by adding 
the constraints in Eq. (2) to the optimization function. The 
difference between the value of original type and ideal type 
of each node is at most 1, so only a subset of the templates 
in Table 1 are needed, and Fig. 10 shows all the templates 
used in this paper.

In Fig. 10, by inflating the blue edge segments with 
arrows along the direction denoted by the red arrows, the 
new quadrilaterals colored by blue are generated, and the 
local mesh quality around each node is improved. We define 
these blue edges as ports, and each port is composed of 
two mesh edges. As shown in Fig. 9b, by applying these 

templates to mesh on the linking surface which contains a 
graft surface, eight ports are determined.

4.2  Insertion paths formation

The determined ports only show the way to improve the 
mesh quality locally. To optimize the surface mesh, these 
ports should be properly connected to form insertion paths 
so as to conduct dual chords insertion. The formed inser-
tion paths should meet four requirements: (1) to effectively 
improve the mesh quality, they should pass through all 
the important ports. (2) To be a valid input to dual chords 
insertion, they should either be closed loops or start and 
end at the surface boundary. (3) To avoid diminishing the 
mesh quality, they should not introduce unnecessary singu-
larities to the mesh. (4) To avoid the excessive impact on 
mesh density after chord insertion, they should be as short 
as possible. To form the insertion paths which satisfy these 
requirements, we first determine the connection between 
every pair of ports which can be connected through mesh 
edges with no turns on the mesh, then extend each port to 
the surface boundary to generate virtual ports and build 
the connections with virtual ports, finally we select a sub-
set from all the port connections to form insertion paths by 

Table 1  Local topological modification templates of graft surface meshes
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using an optimization function. The main steps of the opti-
mized insertion paths formation algorithm are as follows:

(1) Determination of port connections A port connection 
Cij is formed between every two ports which can be 
connected through mesh edges with no turns on the 
structured quadrilateral mesh, as shown in Fig. 11. This 
is because unnecessary singularities which are bad for 
the mesh quality will be introduced by the turns on the 
insertion paths.

(2) Generation of virtual ports By extending each port to 
the surface boundary, virtual ports are formed on the 
boundary, and new port connections are formed with 
these virtual ports, as shown in Fig. 12. This is because 
a valid insertion path should either be a closed loop or 
start and end at the surface boundary.

(3) Selection of port connections To select a subset of all 
the port connections to form the optimized insertion 
paths, we propose to minimize the following objective 
function: 

where xij ∈ {0, 1} refers to whether port connection Cij is 
used in the final insertion paths; when xij = 1, Cij is a part 
of the final insertion paths. lij refers to the length (number 
of mesh edges) of Cij. The above optimization function 
can effectively minimize the length of the insertion paths. 
Besides, to ensure the validity of the insertion paths, the 
following constraint is added:

min
∑

lijxij,

Fig. 10  Refined templates of local topological modification. The 
thick black lines refer to the geometric curves on the graft surface 
loop. The gray shading represents the area within the graft surface 

loop. a END->SIDE template. b SIDE->END templates. c COR-
NER->SIDE template. d SIDE->CORNER templates. e CORNER-
>REVERSAL templates

Fig. 11  The port connection between two ports Fig. 12  The virtual port generated by extending a port and the port 
connection between the original port and the virtual port
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where 
∑

xpl refers to the number of selected port connec-
tions which connect port p with its left mesh edge, and 

∑
xpr 

refers to the number of selected port connections which con-
nect port p with its right mesh edge. Equation (3) is used to 
make sure that insertion paths are either closed or end at the 
surface boundary. Finally, we add the following constraint 
to the optimization function:

During ports determination, we have determined all the 
ports that can be used to improve the mesh quality. However, 
if all these ports are used in the final insertion paths, too 
many new mesh elements will be generated. Generally, the 
more ports are used, the better the mesh quality, at the cost 
of mesh density. In our approach, we only make sure that all 
the important ports are used in the final insertion paths by 
Eq. (4). A port is considered important if the original mesh 
quality around the node is greater than a threshold value �. 
The mesh quality q of a node is |�∕n − �∕2|, where � refers 
to the corner angle at the node, and n refers to the number of 
quadrilateral elements at the node. The smaller the value of 
q, the better the mesh quality. The value of � can be specified 
by users according to their requirements of mesh quality and 
mesh density.

Figure 9c shows the final optimized insertion path formed 
to connect the ports in Fig. 9b with � = �∕3.

5  Topological optimization of hexahedral 
mesh

In the previous section, we have discussed how to improve 
the surface mesh quality through dual chords insertion. 
However, it should be pointed out that dual chords insertion 

(3)
∑

xpl =
∑

xpr,

(4)
∑

xpl ≥ 1 for each important port p.

operation cannot be applied directly to the surface mesh 
of a hexahedral mesh, otherwise the surface mesh will be 
incompatible with the inner hexahedral mesh. To simultane-
ously optimize the surface mesh and the hexahedral mesh, 
we insert a set of dual sheets whose boundaries are the dual 
chords we need.

As sheet inflation [29] is a general operator used for 
inserting hexahedral sheets, we apply sheet inflation opera-
tions to insert the sheets which can improve the mesh qual-
ity. Sheet inflation takes a continuous quadrilateral set as 
input and generates a new sheet by inflating the quadrilateral 
set. Figure 13a shows a continuous quadrilateral set inside 
the hexahedral mesh, and Fig. 13c shows the sheet generated 
by inflating this quadrilateral set. In our approach, to opti-
mize the topological structure of the generated hexahedral 
mesh by sheet inflation, the main problem is to determine the 
quadrilateral sets. The determined quadrilateral sets should 
meet five requirements: (1) to effectively improve the sur-
face mesh quality, the quadrilateral sets should pass though 
the insertion paths we have determined in Sect. 2. To effec-
tively improve the hexahedral mesh quality, the quadrilateral 
sets should be able to improve the local topological quality 
around the region where the mesh quality is not satisfactory. 
(3) To be a valid input to sheet inflation, the quadrilateral 
sets should be inflatable. An inflatable quadrilateral set is a 
set of connected quadrilaterals that terminates at the bound-
ary or closes upon itself into a ball. (4) To avoid diminishing 
the mesh quality, the quadrilateral sets should introduce as 
few singularities as possible to the hexahedral mesh by sheet 
inflation. (5) To avoid the excessive impact on mesh density 
after sheet inflation, the quadrilateral sets should be as small 
as possible. To form the quadrilateral sets which satisfy the 
above requirements, we propose an algorithm to optimized 
quadrilateral sets formation. Regarding the first requirement, 
we form a quadrilateral set for each insertion path by extend-
ing them into the trunk mesh and branch mesh, respectively. 
Regarding the second requirement, the quadrilateral sets are 

Fig. 13  Topological optimization of the hexahedral mesh by sheet 
inflation (the inner edges of the hexahedral mesh are not rendered). 
a A quadrilateral set inside the hexahedral mesh. b A zoom-in view 

near the graft location of a. c A sheet generated by sheet inflation. d 
A zoom-in view near the graft location of c 
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properly extended inside the branch mesh which is gener-
ated by sweeping the graft surface mesh with quality issues. 
Regarding the third requirement, for each insertion path, 
the corresponding quadrilateral set inside the trunk mesh is 
formed by first determining a shrink set which is a continu-
ous set of hexahedra inside the mesh, and the outer boundary 
of the shrink set is an inflatable quadrilateral set. Regarding 
the fourth requirement, our approach makes full use of the 
structure of the generated swept mesh to form the quadrilat-
eral sets with good quality. Regarding the fifth requirement, 
a shortest path search algorithm is used during the quadri-
lateral sets formation to reduce the number of quadrilaterals 
contained by each quadrilateral set.

Figure 14 shows the main process of our algorithm to 
form an optimized quadrilateral set for an insertion path. 
The main steps are as follows:

(1) Linking surface mesh subdivision Figure 14a shows a 
multi-axis swept mesh which is composed of a trunk 
mesh and a branch mesh, and an insertion path is 
formed on the linking surface mesh of the trunk-swept 
volume. The insertion path subdivides the linking sur-
face mesh into two parts, as shown in Fig. 14b.

(2) Quadrilateral patches subdivision We choose the part 
with smaller number of quadrilaterals in Fig. 14b and 
further subdivide it into patches vertically, as shown 
in Fig. 14c. The smaller part is chosen to reduce the 
size of the final quadrilateral set. Each quadrilateral 
patch can be represented by a set of starting edges and 

a number of layers below the starting edges on the sur-
face mesh. In Fig. 14c, the starting edges of the green 
patch are colored by red, and this patch is composed 
of six layers of quadrilaterals below the starting edges. 
The starting edges of the orange and blue patches are 
colored by blue and green, respectively, and they are 
composed of eight and six layers of quadrilaterals 
below the starting edges, respectively.

(3) Starting quadrilaterals determination For each quad-
rilateral patch, we search for a shortest path within the 
layer mesh of its starting edges to form a closed loop, 
and the quadrilaterals inside the loop are obtained. As 
shown in Fig. 14d, the determined starting quadrilater-
als are shown in the same color with the corresponding 
quadrilateral patch. The shortest path search algorithm 
used in this step is similar to the algorithm in [30], so 
we omit the details.

(4) Sub-shrink set determination For each quadrilateral 
patch, a set of hexahedra which is called sub-shrink set 
can be obtained according to the determined starting 
quadrilaterals and the number of layers, as shown in 
Fig. 14e.

(5) Shrink set determination We join all the sub-shrink sets 
to form a shrink set, as shown in Fig. 14f.

(6) Trunk quadrilateral set formation The inner boundary 
of the shrink set forms the quadrilateral set inside the 
trunk mesh, as shown in Fig. 14g.

(7) Branch quadrilateral set formation Finally, we extend 
the trunk quadrilateral set inside the branch mesh along 

Fig. 14  Main process of optimized quadrilateral set formation for one 
insertion path. a A multi-axis swept mesh with an insertion path on 
the linking surface mesh of the trunk-swept volume. b Linking sur-
face mesh subdivision. c Quadrilateral patches subdivision of the blue 

part in b. d Starting quadrilaterals determination (the inner edges of 
the hexahedral mesh are not rendered except for the particular layer). 
e Sub-shrink set determination. f Shrink set determination. g Trunk 
quadrilateral set formation. h Branch quadrilateral set formation
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the sweep direction of the branch-swept volume to form 
the entire quadrilateral set, as shown in Fig. 14h. It 
is very easy to extend the quadrilateral set inside the 
branch mesh, since the branch mesh is generated by 
sweeping the graft surface mesh, and the mesh on each 
layer has the same topology as the graft mesh.

Figure 15 shows the quadrilateral sets formed to opti-
mize the hexahedral mesh in Fig. 3d. Figure 3e shows the 
dual sheets generated based on these quadrilateral sets. After 
the topology of the hexahedral mesh is changed, we use the 
mesh smoothing algorithm [31, 32] to further optimize the 
hexahedral mesh geometrically.

6  Results and discussion

The algorithm presented in this paper was implemented 
using C++ as the programming language and ACIS [33] as 
the geometry engine. A collection of solid models was used 
to test our automatic multi-axis sweeping approach. Several 
representative examples are presented in this section.

The example in Fig. 3a is a model whose grafting rela-
tionship forms a loop. Existing multi-axis sweeping algo-
rithms cannot generate hexahedral meshes for this kind 
of models. Our global strategy can successfully generate 
the swept mesh for this model, as shown in Fig. 16a. After 
inserting the four sheets as shown in Fig. 3e, the mini-
mum scaled Jacobian value of the final hexahedral mesh 
is 0.5508.

The example in Fig. 17a shows a case where a swept 
volume is grafted simultaneously onto two swept volumes. 
Existing multi-axis sweeping algorithms cannot generate 
hexahedral meshes for it. The final hexahedral mesh gen-
erated for this example is shown in Fig. 17e. The mini-
mum scaled Jacobian value of the final mesh is 0.4203.

The solid models in Figs. 18, 19 and 20 are used to test 
our ability to deal with complex graft surfaces. It is generally 
very difficult to generate structured quadrilateral meshes for 
these graft surfaces. Besides, it is hard to achieve high mesh 
quality around the graft areas. Our approach successfully 
generates the optimized structured quadrilateral meshes for 

these graft surfaces, and the generated hexahedral meshes 
are of high quality after the insertion of some dual sheets. 
Compared with the grafting algorithm [19], our algorithm 
generally can generate hexahedral meshes with higher qual-
ity at similar mesh density.

The solid model in Fig. 21 is used to test our ability 
to deal with concave graft surfaces. The graft surface is 
composed of one outer loop with concave vertices and an 

Fig. 15  The quadrilateral sets formed for sheet inflation to optimize 
the hexahedral mesh in Fig. 3d

Fig. 16  Example-1. a Visualization of the scaled Jacobian value dis-
tribution of the final hexahedral mesh generated for the input solid 
model in Fig. 3a. b The hexahedral elements whose scaled Jacobian 
value is below 0.6

Fig. 17  Example-2. a The input solid model which is composed of 
six swept volumes. b The generated surface meshes. c Visualiza-
tion of the scaled Jacobian value distribution of the generated multi-
axis swept mesh. d The quadrilateral set determined for sheet infla-
tion to improve mesh quality. e Visualization of the scaled Jacobian 
value distribution of the final mesh. f The hexahedral elements whose 
scaled Jacobian value is below 0.6
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inner loop. Our optimized structured quadrilateral mesh-
ing algorithm successfully generates a structured quad-
rilateral mesh for the graft surface, as shown in Fig. 21b, 
and the generated swept mesh is shown in Fig. 21c. After 
inserting two dual sheets to the generated mesh based 
on the quadrilateral sets shown in Fig. 21d, the mini-
mum scaled Jacobian value of the final hexahedral mesh 
is 0.5257.

Figure 22a shows a complex solid model which is com-
posed of 25 swept volumes. It is difficult to determine 
a valid mesh generation order for these swept volumes 
using previous multi-axis sweeping methods. Our global 
strategy successfully generated the surface mesh and 
hexahedral mesh for this model, as shown in Fig. 22b, c. 
After inserting eight dual sheets to the generated mesh 
based on the quadrilateral sets shown in Fig. 22d, the 
minimum scaled Jacobian value of the final hexahedral 
mesh is 0.4496.

7  Conclusions and future work

In this paper, a novel approach to multi-axis swept mesh 
generation is proposed to meet the requirement of high-
quality hexahedral mesh generation. First, the surface 
meshes of all swept volumes are generated globally. Next, 
the swept meshes are generated for each swept volume. 
Finally, the quality of the generated mesh is improved by 
inserting a set of dual sheets. Compared with other exist-
ing methods, this approach has the following advantages:

• It can effectively deal with the complex grafting rela-
tionships among swept volumes. This is achieved by 
first globally generating the surface meshes of all swept 
volumes, and then generating the swept meshes.

• It can generate hexahedral meshes with higher quality 
for solid models which are composed of swept volumes 

Fig. 18  Example-3. a The input 
solid model which is composed 
of three swept volumes. b The 
generated surface meshes. c 
Visualization of the scaled 
Jacobian value distribution of 
the generated multi-axis swept 
mesh. d Three insertion paths 
formed to optimize the surface 
mesh quality. e Three quadri-
lateral sets formed to optimize 
the hexahedral mesh quality. f 
Visualization of the scaled Jaco-
bian value distribution of the 
final mesh. g The hexahedral 
elements whose scaled Jacobian 
value is below 0.6 in the final 
mesh. h Visualization of the 
scaled Jacobian value distribu-
tion of the hexahedral mesh 
generated using the existing 
grafting algorithm [19]



1135Engineering with Computers (2019) 35:1121–1139 

1 3

with different sweep directions. This is achieved by 
applying an algorithm which can generate optimized 
structured quadrilateral meshes for graft surfaces and 
locally inserting a set of dual sheets to optimize the 
topological structure of the generated hexahedral mesh.

The future work of this paper will mainly focus on the 
following three aspects: first, currently our method does 
not support the insertion of self-intersecting dual sheets. 
However, self-intersecting sheets are needed if the formed 
insertion paths are self-intersecting, although we have not 
encountered this situation yet. Therefore, the algorithm to 

insertion paths formation should be improved to theoreti-
cally guarantee that the formed insertion paths are not self-
intersecting. Secondly, we plan to parallelize the swept mesh 
generation process, this is because after the surface meshes 
are generated, the generation of swept mesh for each swept 
volume is independent of each other. Thirdly, in the final 
step of topological mesh optimization, we use sheet infla-
tion operation to improve the quality of the mesh, which 
will locally increase the mesh density. Therefore, we plan to 
combine the sheet extraction operation to reduce the impact 
on the mesh size.

Fig. 19  Example-4. a The input 
solid model which is composed 
of three swept volumes. b The 
generated surface meshes. c 
Visualization of the scaled 
Jacobian value distribution of 
the generated multi-axis swept 
mesh. d Nine insertion paths 
formed to optimize the surface 
mesh quality. e Nine quadri-
lateral sets formed to optimize 
the hexahedral mesh quality. f 
Visualization of the scaled Jaco-
bian value distribution of the 
final mesh. g The hexahedral 
elements whose scaled Jacobian 
value is below 0.6 in the final 
mesh. h Visualization of the 
scaled Jacobian value distribu-
tion of the hexahedral mesh 
generated using the existing 
grafting algorithm [19]
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Fig. 20  Example-5. a The input 
solid model which is composed 
of three swept volumes. b The 
generated surface meshes. c 
Visualization of the scaled 
Jacobian value distribution of 
the generated multi-axis swept 
mesh. d Six insertion paths 
formed to optimize the surface 
mesh quality. e Six quadrilat-
eral sets formed to optimize 
the hexahedral mesh quality. f 
Visualization of the scaled Jaco-
bian value distribution of the 
final mesh. g The hexahedral 
elements whose scaled Jacobian 
value is below 0.6 in the final 
mesh. h Visualization of the 
scaled Jacobian value distribu-
tion of the hexahedral mesh 
generated using the existing 
grafting algorithm [19]
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Fig. 21  Example-6. a The input 
solid model which is composed 
of two swept volumes. b The 
generated surface meshes. c 
Visualization of the scaled 
Jacobian value distribution of 
the generated multi-axis swept 
mesh. d Two quadrilateral sets 
determined for sheet inflation to 
improve mesh quality (the inner 
edges of the hexahedral mesh 
are not rendered). e Visualiza-
tion of the scaled Jacobian value 
distribution of the final mesh. f 
The hexahedral elements whose 
scaled Jacobian value is below 
0.6
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