
Vol.:(0123456789)1 3

Engineering with Computers (2019) 35:1059–1079
https://doi.org/10.1007/s00366-018-0651-1

ORIGINAL ARTICLE

Multi‑physics bi‑directional evolutionary topology optimization
on GPU‑architecture

David J. Munk1  · Timoleon Kipouros2 · Gareth A. Vio1

Received: 12 June 2018 / Accepted: 9 October 2018 / Published online: 16 October 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Topology optimization has proven to be viable for use in the preliminary phases of real world design problems. Ultimately,
the restricting factor is the computational expense since a multitude of designs need to be considered. This is especially
imperative in such fields as aerospace, automotive and biomedical, where the problems involve multiple physical models,
typically fluids and structures, requiring excessive computational calculations. One possible solution to this is to implement
codes on massively parallel computer architectures, such as graphics processing units (GPUs). The present work investi-
gates the feasibility of a GPU-implemented lattice Boltzmann method for multi-physics topology optimization for the first
time. Noticeable differences between the GPU implementation and a central processing unit (CPU) version of the code are
observed and the challenges associated with finding feasible solutions in a computational efficient manner are discussed
and solved here, for the first time on a multi-physics topology optimization problem. The main goal of this paper is to speed
up the topology optimization process for multi-physics problems without restricting the design domain, or sacrificing con-
siderable performance in the objectives. Examples are compared with both standard CPU and various levels of numerical
precision GPU codes to better illustrate the advantages and disadvantages of this implementation. A structural and fluid
objective topology optimization problem is solved to vary the dependence of the algorithm on the GPU, extending on the
previous literature that has only considered structural objectives of non-design dependent load problems. The results of this
work indicate some discrepancies between GPU and CPU implementations that have not been seen before in the literature
and are imperative to the speed-up of multi-physics topology optimization algorithms using GPUs.

Keywords  Lattice Boltzmann method · Graphics processing units · Real world applications

1  Introduction

Over the past two decades topology optimization has rap-
idly matured to a point where it can be used in real world
design applications with minimal limitations [34]. However,
one such limitation is the computational resources required
for large scale problems [11]. For engineering problems,
the design space being considered is large and the objective
function typically involves multiple, complicated, physi-
cal phenomena. Therefore, this leads to computationally
intensive problems. The aim of this paper is to determine
the feasibility of using GPUs with multi-physics topology

optimization algorithms for real world design problems. The
increase in computational efficiency due to the GPU archi-
tecture and quality of the final solutions are compared with
the same problem implemented on a CPU.

Recently, reductions in computational expense are
achieved by increasing the level of parallelism, i.e. increas-
ing the number of computational cores while maintaining
the same clock frequency, in the code [67]. This has meant
the development and use of many-core processors, which
are processors that have evolved to a high-level of paral-
lelism, for such tasks. GPUs are a class of many-core pro-
cessors. GPUs have a different design approach compared
with CPUs. CPUs are a general purpose multi-core proces-
sor containing many high level instructions, whereas GPUs
are many-core processors that have a faster and smaller set
of instructions, but are capable of handling a large num-
ber of concurrent threads. Therefore, GPUs can be used to

 *	 David J. Munk
	 david.munk@sydney.edu.au

1	 The University of Sydney, Sydney, Australia
2	 Cranfield University, Cranfield, Bedfordshire, UK

http://orcid.org/0000-0002-0449-1519
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0651-1&domain=pdf

1060	 Engineering with Computers (2019) 35:1059–1079

1 3

drastically speed up computationally intensive problems and
reduce the overall computational expense.

Topology optimization, generally speaking, aims to
evolve an initial design towards an optimum one with
regards to minimizing a given objective under several con-
straints [6]. Several approaches have been developed to
guide the evolution of the topology towards the optimum
[11, 34, 49]. These approaches can be divided into two main
fields: continuous and discrete. Continuous methods, such
as the solid isotropic material with penalization (SIMP) [4,
45], apply a relaxation on the design variables so that their
values can be inside the entire range defined by [0, 1]. Dis-
crete methods, such as evolutionary structural optimization
(ESO) [63] and level-set (LS) [41], do not relax the problem
and hence restrict the design variables to the boundaries
of the range {0, 1} . While some effort using SIMP and LS
methods have been solved with GPU architectures [3], only
one recent study exists with ESO methods [30] and only
with structural optimization.

Application of the SIMP method to large-scale problems,
with millions of design variables, has proven to be compu-
tationally demanding and, therefore, requires a high level of
parallelism [3]. As an example, the work of Mahdavi et al.
[28] demonstrates a SIMP method for topology optimization
with parallelization on a CPU. Further Vemaganti and Law-
rence [58], look at three different parallel linear solvers for
SIMP topology optimization showing speed-up and reduced
effects of ill-conditioning in the finite element problems.
However, GPUs as an alternative low-cost-high-performance
system have also been tested for solving topology optimiza-
tion problems with SIMP methods. Schmidt and Schulz [47]
use SIMP on structured meshes with a matrix-free conjugate
gradient solver, showing that it is faster than when a CPU
with 48 cores shared memory is used. Such a strategy was
also employed by Suresh [53] for solving of the system of
equations of elasticity, achieving speedups of one order of
magnitude. A GPU-implemented SIMP method with a pre-
conditioned conjugate gradient solver applied to a 2D plate
with a heat source yielded a speed up of 20 times compared
with a single CPU and 3 times against a multi-threaded CPU
[59]. This study was limited to single-precision format, due
to the lack of a native double-precision support for early
GPUs, which meant that convergence of the solver was not
ensured due to round-off errors. Recently, a SIMP approach
for unstructured meshes was implemented on a GPU by
Zegard and Paulino [67], focusing on assembly of the stiff-
ness matrix. Furthermore Wu et al. [62], used the geometric
multi-grid preconditioning for the GPU instance of precon-
ditioned conjugate gradient solvers to perform a reduced
number of finite element analyses (FEA), and iterations per
FEA, in the SIMP algorithm. This is achieved by reducing
the tolerance of the iterative method to increase the GPU
performance. However, using this configuration the solution

is likely to arrive at a local optimum, meaning a more sound
solution might exist [62]. This loss in accuracy was assumed
by the authors for the sake of efficiency.

In topology optimization the LS method evolves the
boundaries of the structure by minimizing a given objective.
The boundary evolution is solved using a finite difference
method, which acts on a reduced group of elements, making
it suitable for efficient GPU processing [32]. The LS method
was implemented on a GPU architecture by Herrero et al.
[17]. Later, an inverse homogenization problem was solved
with a GPU implementation of a LS method by Challis et al.
[8], targeting high resolution topology optimization. They
recorded an increasing speed-up with problem size, reaching
13 times speed-up for 3D problems containing over 4 million
design variables.

Meta-heuristic optimization methods, where no gradients
are taken, can also be used to solve real world problems of
high-dimensionality [31]. These methods often use nature
inspired algorithms, which are ideal for intelligently harness-
ing the capacity of GPUs. One such method, which uses a
Tabu Search algorithm, has been implemented on a GPU
architecture [56]. They showed that for problems of high
dimensionality, defined as 270 variables or more, the GPU-
implemented version of the code outperforms the CPU ver-
sion. Up to a 12% speed up was recorded. Later, the same
authors developed a GPU-implemented lattice Boltzmann
method (LBM) and applied the TS algorithm to a micro flu-
idic device [57]. They noted that the most computationally
intensive part of the process was the simulation of the flow
via LBM. Therefore, the TS algorithm was employed on a
CPU, since relatively small speed-ups were achieved [56],
and the LBM was employed on a GPU. The TS combined
with the GPU-LBM delivered results approximately 20
times faster compared to an earlier system that employed a
CPU-based LBM code [10]. Recently Laniewski-Wollk and
Rokicki [24], developed a discrete adjoint formulation for a
wide class of LBMs. They implement their LBM on a GPU
architecture for channel flow to design a free-topology mixer
and heat exchanger using the method of moving asymptotes
(MMA) and a simple descent algorithm, separately. While
the method was not compared to a CPU implementation of
the code, it was shown to be efficient by demonstrating that
the code had nearly linear weak scaling.

The limited literature on GPU-implemented topology
optimization shows that the solver is the most time consum-
ing part of the optimization and hence should be the focus
during the adaptation to GPU architecture [3]. Furthermore,
the other procedures, such as the optimizer, are not compu-
tationally expensive and therefore not directly relevant for
good acceleration through GPU. Hence, studies have focused
on implementing the solver on GPU architectures without
topology optimization. For purely structural topology opti-
mization a finite element solver is used to determine the

1061Engineering with Computers (2019) 35:1059–1079	

1 3

displacements of the structure under a given load. Cecka
et al. [7] presented a GPU accelerated FEA code using an
unstructured mesh, achieving a speed-up of 30 or more
compared to an optimized double-precision single core
implementation. For a review of the literature on the use of
GPUs in FEA the reader is advised to seek the manuscript
by Georgescu et al. [16]. Topology optimization of multi-
physics problems is a much less researched topic, especially
compared to structural topology optimization. This may be
because computational fluid dynamics (CFD) is a much
more computationally intensive task compared with FEA.
Recent studies have shown the potential of LBM methods
in multi-physics topology optimization [24, 29, 35, 36, 42,
43]. Further, since the LBM operates on a finite difference
grid, is explicit in nature and requires only next neighbor
interaction, it is very suitable for implementation on GPUs
[55]. Tölke and Krafczyk [55] demonstrate a very efficient
implementation of a LBM in 3D on a GPU. They obtain an
efficiency gain of up to two orders of magnitude with respect
to the performance on a CPU. Kuznik et al. [23] implement
a general purpose LBM code, with all steps of the algo-
rithm running on the GPU, achieving up to one billion lattice
updates per second using single-precision floating points.
Further, they show that single-precision floating point arith-
metic is sufficient having a 3.8 times speed-up compared to
double-precision. GPU implementation of LBMs have been
used for real-time visualization of fluid–structure interac-
tions (FSI) for two-dimensional problems [15]. The authors
achieved a speed increase when using their GPU-LBM of
222 times compared with a one core and 78 times compared
with a two core CPU. Schönherr et al. [48] compare two
multi-thread based parallel implementations of the LBM
on different hardware platforms: a multi-core CPU imple-
mentation and a GPU implementation. They show that the
limiting factor for the speed of the lattice Boltzmann simula-
tion is the memory bandwidth. More recently Obrecht et al.
[40], present a multi-GPU LBM solver managing to run the
solver on six GPUs in parallel. With this architecture, they
observed up to 2.15 × 109 node updates per second for the
2D lid-driven cavity test case. Such a performance is compa-
rable to large high performance clusters or massively parallel
super computers, showing the potential of GPU implemen-
tation in LBMs. Delbosc et al. [12] showed that real-time
compute capability and satisfactory physical accuracy are
achievable by combing a lattice Boltzmann model with the
parallel computing power of a GPU. Along these lines Khan
et al. [22], performed real-time simulations of indoor envi-
ronments, demonstrating significant speed up when imple-
menting a lattice Boltzmann method on a GPU compared
with traditional CFD based large eddy simulations.

The aim of this article is to determine the feasibility of
using a GPU-LBM code with a bi-directional evolutionary
structural optimization (BESO) algorithm for real world

multi-physics design problems. So far BESO algorithms
have not been employed with GPU architectures [3]. Fur-
thermore, GPU implementation in topology optimization
is a very recent field of research and therefore more stud-
ies must be made to increase the application of topology
optimization in real world design problems. To the best of
the authors’ knowledge this is the first time a multi-physics
topology optimization problem with an LBM-FEA code is
implemented in a GPU architecture and compared with a
CPU version of the code. The speed-up and optimization
results are compared and discussed giving new insights into
the difficulties involved with GPU-implemented topology
optimization.

2 � Methodology

In this section, the LBM for modeling the fluid dynamics
is briefly introduced. This is followed by the mathemati-
cal definition of the topology optimization problem and the
BESO method is then described. For further details on GPU
computing, the LBM and BESO methods the reader should
seek out the textbooks by Sanders and Kandrot [46], Succi
[52] and Huang and Xie [20], respectively.

2.1 � Lattice Boltzmann modelling

The ability to simulate flows through the use of CFD has
progressed considerably, reducing test requirements at a
lower cost and risk. Furthermore, CFD has been used to
simulate real-world phenomena [25]. In the case when
engineering applications require resolving fluid interac-
tions with high accuracy, or involve low Mach number flow,
mesoscopic flows and complex geometrical arrangements,
LBM offers an alternative CFD method rather than using
the Navier–Stokes (NS) equations [52]. Moreover, LBM has
been applied to a wide range of applications from theoretical
physics to real-world problems, and is expected to provide
one of the next evolutions in the computational sciences [2,
60], notably for multi-scale simulation and optimization
[26, 27]. The LBM is a memory-bound algorithm, which
makes it suitable for the GPU architectures. GPU offers a
computational environment with many processors. GPU-
implemented LBM codes have been used on a variety of
applications in the aerospace field [60], being competitive
in both accuracy and execution speed. However, the LBM
has not been used extensively in topology optimization algo-
rithms [35]. Furthermore, to the best of the authors’ knowl-
edge, a GPU-implemented LBM has not been coupled with
and compared against CPU topology optimization codes.
Therefore, this work couples a GPU-implemented LBM to
a BESO algorithm and compares both the final design, in

1062	 Engineering with Computers (2019) 35:1059–1079

1 3

terms of objective, and the computational time to a CPU-
implemented version of the code.

The LBM constructs kinetic models, based on Newton’s
laws, incorporating the essential physics of microscopic pro-
cesses, such that one can correctly model the macroscopic
processes. A finite number of molecules, whose motion is
governed by Newton’s laws of dynamics, are used to model
the fluid. A discretized Boltzmann equation is solved by the
LBM, which uses velocity distribution functions to repre-
sent macroscopic properties. Both collision, the interaction
of two particles, and streaming, the movement of particles
from one node to the nearest neighbor, are modeled by the
discrete Boltzmann equation. The fundamental concept
behind the LBM is to calculate the macroscopic quantities
from the moments of the finite number of velocity distribu-
tion functions, which are obtained by solving the discrete
Boltzmann equation. A D3Q19 lattice is used in this work,
i.e. 3 dimensions and 18 moving particles per rest node. The
total number of iterations used for the LBM simulations is
4000, since stability has been demonstrated and validated
against NS simulations using a commercial code, ANSYS
CFX [14], and experimental analysis [33]. For a more in-
depth overview of the LBM, interested readers should seek
out the textbook by Succi [52]. For details on how the LBM
and FEA are coupled, the reader is advised to seek out the
previous works by the authors on this topic [35–37].

2.2 � Topology optimisation

The first optimization problem studied in this article is the
compliance minimization, or stiffness maximization, of a
micro fluidic mixer under fluid pressure loads with a struc-
tural volume constraint. Therefore, the objective is to find
the distribution of a pre-defined amount of material such
that a design with maximum stiffness is obtained. Hence,
the topology optimization problem can be mathematically
stated as:

where � is the vector of design variables, xi , n is the total
number of elements in the model and V is a predefined struc-
tural volume. Since the algorithm is discrete (Sect. 1) the
design variables can only be equal to xi = 1 , representing
solid material, or xi = 0 , representing fluid/void material.

The second optimization problem this article is concerned
with is the vorticity maximization of micro fluidic mixers for
a given Reynolds number and structural volume. Therefore,
the objective is to find the topology of the mixer that gives

(1)

Minimize:
1

2
�T[�]�

subject to: [�]� = �
n∑
i=1

xiVei
≤ V

� = {0, 1},

the highest vorticity in the region of interest. Hence, the
topology optimization problem for this case is mathemati-
cally formulated as follows:

where ��⃗𝜔 is the vorticity of the flow in the region of interest,
Re is the Reynolds number of the flow, and Re0 represents
a predefined Reynolds number. For this problem, a design
variable of xi = 1 represents fluid elements, whereas xi = 0
represents solid elements.

2.2.1 � Evolutionary structural optimisation

The original ESO algorithm is monotonic, i.e. elements can
only be removed from the design domain [63]. These early
methods are based on the successive elimination of inef-
ficient material, gradually evolving the design towards the
optimum [65]. Although the ESO method has been applied
to a wide range of problems [51, 64], it is limited in two
main ways. First, as already mentioned, structure can only
be removed from the design domain, consequently the ini-
tial model must be significantly over designed. Second, if
structure is prematurely removed it cannot be recovered
[34]. Subsequent ESO methods, referred to as BESO, allow
material to be re-admitted to the design domain [44]. Mod-
ern BESO algorithms are convergent and mesh independ-
ent [18], simultaneously removing and adding material
from and to the design domain until all constraints and a
convergence criterion are satisfied. More recently, a fur-
ther improvement to BESO methods introduced the use of
soft material to model the void elements in the FEA [19],
known as soft-kill BESO with the former being hard-kill
BESO. This article uses a soft-kill BESO method coupled
to a GPU-implemented LBM. This work builds on a recent
study by the authors [35], which implemented a CPU version
of the code, aiming to drastically improve computational
efficiency, bring high-fidelity methods forward to the pre-
liminary design stage.

2.2.2 � Sensitivity analysis

In this study, two different objectives are considered
(Sect. 2.2). The first is minimum compliance or maxi-
mum stiffness, used for structural optimization. In FEA the
removal of an element results in a reduction in the stiffness
of the structure which is equal to the element strain energy

(2)

Minimize: − ��⃗𝜔

subject to: Re = Re0
n∑

i=1

xiVei
≤ V

� = {0, 1},

1063Engineering with Computers (2019) 35:1059–1079	

1 3

[9]. This change is defined as the element sensitivity for the
compliance minimization problem:

where c is the compliance, p = 3 is the penalization fac-
tor, the subscript e represents elemental values and super-
script cmp and 0 represents a compliance objective and
solid values, respectively. The element sensitivity (Eq. 3)
takes advantage of the SIMP material model [5], where the
Young’s modulus, E, is modeled using a power law penaliza-
tion method, as follows:

In design-dependent load problems, as is the case here,
changes in the structure lead to variations in the load vector.
Therefore, this variation in the load vector must be consid-
ered in the sensitivity analysis [35]. Thus, from the definition
of the optimization problem (Eq. 1) the sensitivity analysis
for compliance minimization (Eq. 3) can be updated such
that the variation in the load vector is considered, as follows
[35, 37, 66]

where ��e is the change in the element load vector between
optimization iterations. Taking the isoparametric bilinear
elements used in this work, the change in the load vector of
one element for a fluid pressure load is found by [35]

where Pi and Ai are the pressure load and elemental area,
respectively. Equation 6 is applicable for cases where the
flow travels in the x-direction and the structure is aligned
perpendicular to the flow, as is the case in this study. If this is
not the case then the vector defined in Eq. 6 must be updated
to match the loading conditions. This study takes advan-
tage of a two-domain approach, i.e. the structural and fluid
dynamics are solved separately, during every optimization
iteration. This method is more flexible than a monolithic
approach, which solves an adjoint problem to update the
structure and fluid solutions together. Furthermore, a mon-
olithic approach is problem specific unlike a two-domain
approach, which can be applied to all FSI problems. In a pre-
vious study by the authors [37], this approach was demon-
strated to work well as both the structural and fluid dynamics
were shown to converge, even allowing a relaxation of the
coupling conditions.

The second objective considered in the paper is vorticity
maximization (Sect. 2.2). Thus, the goal of this problem is,
for a given Reynolds number, to increase the mixing of two

(3)�cmp
e

=
�c

�xi
=

1

2
px

p−1

i
�T
e
[�]0

e
�e,

(4)E(xi) = E0x
p

i
.

(5)�cmp
e

=
�c

�xi
=

1

2
px

p−1

i
�T
e
[�]0

e
�e + px

p−1

i
�T
e
��e,

(6)��e =
1

4
PiAi{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,… , 0}T

24×1
,

fluid species. This is imperative for the operation of micro
fluidic mixers, as their purpose is to efficiently mix two, or
more, fluid species. Hence, since the flows have low Reynolds
numbers, normally lower than 1000, vorticity is an accurate
measure of the degree of mixing as shown in the works of
Woodfield et al. [61] and Moghtaderi et al. [33]. The authors
of this work recently developed a soft-kill BESO method for
the vorticity maximization of fluids using the LBM [35]. The
circulation method for vorticity [1] and the shape derivative
given in Kasumba and Kunisch [21] are used to derive the
sensitivity number to solve this optimization problem. There-
fore, the sensitivity number for the vorticity maximization is
determined by:

where ��⃗𝜔 is the vorticity of the flow, the superscript vrt rep-
resents the vorticity objective and ��e is the change of, � ,
the element velocity vector defined as:

where �x , �y , �z are the spatial components and Wx , Wy and Wz
are the circulation components. For more information on the
derivation of the sensitivity numbers (Eqs. 5 and 8) and for
a validation against meta-heuristic algorithms the reader is
advised to seek out the previous study by the authors [35],
which outlines the method in more detail.

2.2.3 � Mesh dependency and convergence

To guarantee that a solution to the topology optimization prob-
lem (Eqs. 1 and 2) exists, some restrictions on the design must
be introduced [50]. The sensitivity numbers can become dis-
continuous across the element boundaries, resulting in mesh
dependency or checkerboarding (the repetition of solid and
void material). A filter scheme is used, to smooth the element
sensitivity numbers across the entire domain, alleviating the
problem of mesh dependency and checkerboarding. The filter
scheme is similar to that presented by Sigmund and Petersson
[50]; however, nodal sensitivity numbers are used when cal-
culating the updated element sensitivity numbers based on the
surrounding structure. The nodal sensitivity numbers are found
by taking the average of all the element sensitivity numbers
that are connected to the node, thus:

where M is the number of elements connected to the jth node
and �ei is the ith element sensitivity number (Eqs. 5 and 7).
The weighting factor of the ith element, wi , is a function of

(7)𝛼vrt
e

= max(��⃗𝜔) − 𝛥𝛾T
e
x
p−1

i
𝛥𝛾e,

(8)�e =
{
��x,��y,��z,�Wx,�Wy,�Wz

}T
,

(9)�nj =

M∑

i=1

wi�ei ,

1064	 Engineering with Computers (2019) 35:1059–1079

1 3

the distance between the center of the ith element and the
jth node, rij , thus:

The nodal sensitivity numbers (Eq. 9) are then used in the
mesh independency filter to find the smooth element sensi-
tivities. A filter radius, rmin , is defined to identify the nodes
that will have an effect on the element sensitivity. The value
of rmin must be large enough such that the associated sub-
domain, � , covers at least one element. Furthermore, this
value must remain constant for all mesh sizes. Nodes that are
located inside � contribute to the smoothing of the element
sensitivity, by:

where N is the total number of nodes in the sub-domain, � ,
and w(rij) is the linear weighting factor, defined as:

The filter scheme effectively addresses the mesh-dependency
and checkerboard problems. However, the objective func-
tion and corresponding topology may not be convergent. To
overcome this problem, Huang and Xie [18] showed that
when the sensitivity numbers (Eq. 11) are averaged with
their previous values the solution becomes steadier, thus:

where itr is the current iteration number. Therefore, the
updated sensitivity number includes the history of the sen-
sitivity information from previous iterations.

2.2.4 � Convergence criteria

For every iteration the BESO algorithm defines a target vol-
ume, found by:

where ER, the evolutionary ratio, is a percentage of the
current structural volume, and increases or decreases Vitr+1
towards the desired volume constraint, V, defined in Eq. 1.
This, in turn, sets the threshold, �th , of the sensitivity num-
bers. Thus, solid elements are removed from the design
domain when:

and elements are added back to the design domain when:

(10)wi =
1

M − 1

�
1 −

rij
∑M

i=1
rij

�
.

(11)�ei =

∑N

j=1
w(rij)�nj

∑N

j=1
w(rij)

,

(12)w(rij) = rmin − rij j = 1, 2,… ,N.

(13)�ei =
�itr
ei
+ �itr−1

ei

2
,

(14)Vitr+1 = Vitr(1 ± ER),

(15)�ei ≤ �th,

(16)𝛼ei > 𝛼th.

A maximum addition ratio, ARmax , is set to restrict the
amount by which the volume of the structure can increase
between iterations. Once AR > ARmax , the elements with
the highest sensitivity numbers only are added, such that
AR = ARmax . Then, to satisfy the target volume Vitr+1 , the
elements with the lowest sensitivity numbers are removed.

The iteration target volume remains constant at V once the
volume constraint is satisfied. The topology evolves until a
convergence criterion is satisfied. This is defined as:

where � is a predefined tolerance, O is the objective function
and itr is the current iteration of the optimization algorithm.
Equation 17 evaluates the change in the objective for the
last ten solutions. Therefore, if the change in the objective
is minimal the solution is said to be converged. For a more
in-depth discussion on evolutionary structural optimization
algorithms, one should consult the latest textbook [20] and
review paper [34] on the subject.

3 � Case study

A baffled micro-reactor is used in this study as depicted in
Fig. 1. The model is made up of a main pipe which is fitted
with a fuel inlet tube, running along the axis of the main
pipe, and a multi-holed baffle, which is where the secondary
flow is introduced to the main flow. The lay-out and initial
topology of the baffle are shown in Fig. 1.

The fluid domain (Fig. 1c) is defined in LBM nodes, here
the lattice used has dimensions 680 × 73 × 73 lattice units,
with additional nodes used for the wall, in the x, y and z
directions, respectively. The location of the baffle in the main
pipe is 60 lattice units downstream of the flow inlet (Fig. 1c).
The inlet boundary condition imposed is the velocity of the
flow in the inlet tube and annulus area. The outlet boundary
condition has a convective boundary condition, based on
the velocity, applied. A no-slip condition is implemented
along the walls by modeling them as full-way bounce-back.
To mimic the experiments performed by Moghtaderi et al.
[33], the difference in the mass flow rate between the inner
tube and annulus area is set to 5%.

In the FEA a clamped boundary condition is applied
along the perimeter of the baffle. Non-designable material is
designated for the central hole boundary, since this is deter-
mined by the fuel line and inlet conditions, which have been
fixed in the flow domain (Fig. 1a) to be consistent with the
previous studies [14, 33].

The CPU simulations are performed on an Intel(R)
Core(TM) i7-2720QM CPU 2.20 GHz using 4 cores in

(17)�O =

∑4

k=0
Oitr−k −

∑9

k=5
Oitr−k

∑4

k=0
Oitr−4

≤ �,

1065Engineering with Computers (2019) 35:1059–1079	

1 3

parallel. The GPU simulations are performed on a Tesla
M2070 with 5375 MB of total global memory, 448 available
cores, 1150 MHz of stream processor rate and 1566 MHz
of memory clock rate. However, the speed of a simulation
on the GPU is affected by the number of threads, which
are created in the GPUs. Therefore, the specification of the
hardware automatically calculates the number of threads by
using the interfacing features of CUDA to query the pro-
vided GPU. Here, the solver is instructed to use 512 threads
per block/kernel for a single simulation, which is one of the
fastest settings provided by the current GPU.

4 � Compliance minimization

In this section, topology optimization (Sect. 2.2) is applied
to the multi-holed baffle plate (Fig. 1b) to maximize its stiff-
ness for a given volume fraction. First, the CPU results are
presented. These results are used as the benchmark for the
GPU-implemented solutions. This is followed by the results
of the single-precision GPU implantation of the code. In
the literature of GPU-implemented FEA codes, it has been
shown that using single-precision can cause numerical
issues which result in convergence issues [67]. Therefore,
a double-precision version of the code is implemented and
compared with the CPU and single-precision GPU results
as well. However, it must be noted that while double-
precision improves the numerical accuracy compared to

single-precision, it only partially corrects these numerical
issues as has been shown in [13, 54].

4.1 � CPU implementation

The CPU-LBM code is coupled with the BESO algorithm
(Sect. 2.2). The optimization parameters: evolutionary ratio,
ER = 0.02 , volume fraction, V = 0.58V0 , maximum addition
ratio, ARmax = 0.02 , and tolerance, � = 0.001 ; are defined
before the BESO algorithm is applied. The CFD mesh has
21,742,320 degrees of freedom. The initial and final struc-
ture is shown in Fig. 2.

The final design obtained using the CPU code has been
validated in previous numerical studies [35, 36]. The com-
pliance of the initial structure is 5.13 × 109 Nm , whereas the

Fig. 1   Baffled micro-reactor
used in this study [57]

(a) Fluid domain (b) Multi-holed baffle plate

(c) Lay-out of micro-reactor model

(a) Initial structure (b) Final structure

Fig. 2   Initial and final topology found using the CPU-LBM BESO
algorithm

1066	 Engineering with Computers (2019) 35:1059–1079

1 3

final structure has a compliance of 2.281 × 109 Nm . There-
fore, the CPU-implementation of the code is able to reduce
the compliance by approximately 56% . The convergence his-
tory for the CPU algorithm is shown in Fig. 3.

The algorithm takes 179 iterations to converge to the final
solution (Fig. 3) when performed on a CPU. The computa-
tion time is approximately 7 days and 11 h to complete the
optimization. This is mainly due to the computational bur-
den of the LBM, which has to be run 179 times. Typically, at
the preliminary design stage, hundreds of design variations
are being considered. Thus, at this computational expense
it would take the CPU-implementation years to run all the
cases. Hence, this is not a viable option and could only be
used for the last iterations later in the design process.

4.2 � Single‑precision GPU implementation

The most computational efficient version of the multi-phys-
ics topology optimization algorithm studied in this work
makes use of the single-precision GPU-LBM. However, one
finds in the literature, on GPU-implemented topology opti-
mization algorithms, cases where single-precision results in
a lack of convergence, due to the inherent round-off errors
[30]. Thus far, GPU-implemented topology optimization
has been confined to structural optimization, hence GPU-
FEA codes are producing these errors (Sect. 1). Therefore,
it is expected in this study to observe similar errors when a
single-precision code is used, since this study extends the
GPU implementation to multi-physics problems. Namely,
GPU fluids and CPU structures.

The single-precision GPU-LBM code is coupled with
the BESO algorithm (Sect. 2.2). The optimization param-
eters are identical to the previous case (Sect. 4.1). The final

structure determined by CPU and single-precision GPU is
shown in Fig. 4.

The final structure obtained using the single-precision
GPU code is clearly not optimal (Fig. 4). First, the initial
structure (Fig. 2a) has a symmetry about the x- and y-axis,
which is lost with the use of the single-precision GPU code.
Further, it is known that the optimal structure for this par-
ticular problem should be symmetric, since the physics of
the problem does not contain any unsymmetrical behav-
ior [35, 36]. Second, there is clear evidence of numerical
errors in the topology (Fig. 4b), shown by the small holes
that have formed, which are not present in the final topol-
ogy of the CPU code (Fig. 4a). The compliance of the
final structure found using the single-precision GPU code
is 3.912 × 109 Nm , which is 71.5% increase from the final
compliance of the structure found by the CPU code. The
convergence history of the single-precision GPU algorithm
is shown in Fig. 5.

Clearly convergence is never achieved by the single-
precision GPU algorithm, which stops after 336 iterations

Fig. 3   Convergence history for the compliance minimization problem
using the CPU-LBM BESO algorithm

(a) CPU (b) Single-precision GPU

Fig. 4   Final topology found using the single-precision GPU-LBM
BESO algorithm and comparison with the CPU optimum

Fig. 5   Convergence history for the compliance minimization problem
using the single-precision GPU-LBM BESO algorithm

1067Engineering with Computers (2019) 35:1059–1079	

1 3

(Fig. 5). This equates to a computational time of approxi-
mately 13 h, 31 min and 48 s. However, while this is a sig-
nificant improvement over the computational expense of the
CPU algorithm, over 13 times faster, the final result is not
a feasible optimum. One could take the best solution found
by the algorithm, in this case at iteration 47 a solution was
found having a compliance of around 2.6 × 109 Nm , but
convergence is never achieved and thus it is unlikely this
solution is an optimum. Alternatively the best solution found
could be used as an initial structure for an algorithm that is
known to converge, possibly speeding up the overall process.
Therefore, the single-precision GPU-driven topology opti-
mization code, of this work, cannot guarantee convergence
for the multi-physics compliance minimization problem.
This confirms the conclusions of previous studies, which
have observed the same phenomena for GPU-implemented
SIMP algorithms on structural optimization problems [30,
67]. Thus, double-precision must be used.

4.3 � Double‑precision GPU implementation

Double-precision GPU codes are not as computationally
efficient as single-precision GPU codes; however, they have
a lower round-off error due to a higher floating point capac-
ity. This is also the cause of the reduction in computational
efficiency, since more memory is needed to store a higher
amount of floating points. The GPU used in this work has
a 2.0 compute capability, meaning that the floating point
computation abides by the IEEE 754 standard for floating
point arithmetic. Hence, round-off errors should be kept to
a minimum.

The double-precision GPU-LBM code is coupled with
the BESO algorithm (Sect. 2.2). The optimization param-
eters are again identical to the benchmark case (Sect. 4.1).
The final structure determined by the single-precision and
double-precision GPU codes is shown in Fig. 6.

The final structure obtained using the double-preci-
sion GPU code shows a significant improvement over the

single-precision GPU (Fig. 6). The structure is symmet-
ric about both the x- and y-axis (Fig. 6b). Furthermore,
no numerical errors are present in the structure, unlike the
single-precision GPU code (Fig. 6a). Moreover, clear simi-
larities between the final structure found using the CPU code
(Fig. 2b) and the structure found using the double-precision
GPU code are observed. The compliance of the final struc-
ture found using the double-precision GPU algorithm is
2.577 × 109 Nm , which is a 34% reduction compared with
the single-precision GPU code and only a 12% increase com-
pared with the CPU code. This increase in compliance is
significant; however, by observing the convergence history
of the CPU algorithm (Fig. 3) it is clear that the double-
precision GPU algorithm is converging to a local optimum.
This is evident by comparing the final compliance found
by the double-precision GPU algorithm with the multiple
convergence cycles of the CPU algorithm (Fig. 3). Moreo-
ver, in a recent study by the authors [37], it was shown that
several local optima for this problem exist. Therefore, it is
well known that one cannot criticize a gradient based opti-
mization method for finding a locally optimal solution. The
convergence history of the double-precision GPU algorithm
is shown in Fig. 7.

Unlike the single-precision GPU code, convergence
is achieved for the double-precision GPU code (Fig. 7).
Furthermore, the double-precision topology optimization
algorithm only takes 129 iterations to converge, which is
less than the 179 iterations required by the CPU algorithm
(Sect. 4.1). Hence, the computational time required to
achieve convergence is approximately 10 h, 1 min and 48 s.
Hence, 1 optimization iteration takes approximately 280 s,
which is about double the time the single-precision topol-
ogy optimization code takes (145 s). Therefore, the double-
precision GPU code is implemented efficiently. Moreover,

(a) Single-precision GPU (b) Double-precision GPU

Fig. 6   Final topology found using the double-precision GPU-LBM
BESO algorithm and comparison with the single-precision GPU opti-
mum

Fig. 7   Convergence history for the compliance minimization problem
using the double-precision GPU-LBM BESO algorithm

1068	 Engineering with Computers (2019) 35:1059–1079

1 3

the double-precision GPU code is about 18 times faster than
the CPU code, with a 12% reduction in objective. Hence,
Pareto’s principle of design is applicable here—80% of the
design comes from 20% of the time. Thus, this computa-
tional efficiency is more than beneficial at the preliminary
design stages. Therefore, the double-precision GPU code
could feasibly be used at the preliminary stages, whereas
the CPU code could only be employed at the last stages in
the design.

4.4 � Difference between CPU and GPU
implementation

The final analysis of this section is to quantify the differ-
ence between the CPU and GPU algorithms. Clearly, the
CPU algorithm is able to find an optimal solution (Sect. 4.1),
while the single-precision GPU is not (Sect. 4.2). The rea-
son for this must lie in a discrepancy between the two algo-
rithms calculated sensitivity functions, which drive the
design updates. Therefore, to quantify this discrepancy, the
percentage difference of the sensitivity functions for the ini-
tial baffle topology using the CPU and GPU algorithms, i.e.
|�CPU − �GPU|∕�CPU , is illustrated in Fig. 8.

Clearly the discrepancies are kept to a minimum, having
a maximum difference of 0.48% and an average difference
of 0.038% (Fig. 8). However, one observation is that the
distribution of the difference between the two sensitivity
functions is not uniform and, more importantly, not sym-
metric. This explains why the GPU implemented algorithm
becomes asymmetric, driving the solution to a non-optimal
final design (Sect. 4.2). Therefore, even small variations,
due to differences in computational architecture are able to
perturb a system away from the optimum design. This is an

important consideration when performing topology optimi-
zation on GPU-architectures.

5 � Vorticity maximization

The second problem solved in this article applies the topol-
ogy optimization algorithm (Sect. 2.2) to the multi-holed
baffle plate (Fig. 2b) to maximize the amount of mixing
between the two fluid species in the micro fluidic mixer.
This problem is first solved using a CPU implementation
of the code, to get a benchmark, which the GPU implemen-
tation can be compared against. A single-precision GPU-
implemented code is then applied to the same problem. The
previous section demonstrated how the lower floating point
accuracy of single-precision GPU can lead to convergence
errors in the topology optimization algorithm. Therefore,
a double-precision GPU implementation is applied to the
problem and compared against the CPU and single-precision
GPU results.

5.1 � CPU implementation

The CPU-LBM code is coupled with the BESO algorithm
(Sect. 2.2). The optimization parameters are identical to that
of the compliance minimization problem (Sect. 4). Further-
more, the CFD mesh is the same as for the compliance mini-
mization problem, having 21,742,320 degrees of freedom.
The initial and final structure is shown in Fig. 9.

The final design obtained using the CPU algorithm has
been validated in previous numerical studies [35, 36]. The
vorticity of the initial topology is 4856 s−1 , whereas the final
topology has a vorticity of 6060 s−1 . Therefore, the CPU
implementation of the code increases the vorticity of the
fluid by 25% . The convergence history for the CPU algo-
rithm is given in Fig. 10.

The algorithm takes 76 iterations to converge to the final
solution (Fig. 10) when performed on a CPU. Therefore,
the computation time is approximately 3 days and 4 h to

Fig. 8   Difference of the sensitivity functions determined by the CPU
and GPU implementations

(a) Initial topology (b) Final topology

Fig. 9   Initial and final topology found using the CPU-LBM BESO
algorithm for the vorticity maximization problem

1069Engineering with Computers (2019) 35:1059–1079	

1 3

complete the optimization. Hence, similarly to the first
topology optimization problem (Sect. 3), at the preliminary
design stages this computation time is not viable, making
the method only feasible for use later in the design cycle.

5.2 � Single‑precision GPU implementation

The single-precision GPU implementation has the fastest
speed-up compared to the other methods, but has already
been shown to produce numerical issues in the topology
optimization algorithm (Sect. 4.2). This can only be attrib-
uted to the round-off errors inherent in single-precision
GPU, since double-precision implementations have been
able to achieve convergence (Sect. 4.3). Thus far, GPU-
implemented BESO topology optimization algorithms have
only been applied to structural objectives, namely compli-
ance minimization. This section deals with a fluid objec-
tive, i.e. vorticity. Therefore, it is expected that the single-
precision GPU implementation will not be able to solve this
topology optimization problem, since the round-off errors
are present in the formulation of the objective, i.e. the fluid
properties, rather than the load application.

The single-precision GPU-LBM code is coupled with the
BESO algorithm (Sect. 2.2). The optimization parameters
are the same as is defined in the compliance minimization
problem (Sect. 4). The final structure determined by CPU
and single-precision GPU is shown in Fig. 11.

As was expected, the final topology obtained by the sin-
gle-precision GPU code is clearly not optimal (Fig. 11). Fur-
thermore, the topology is not physically feasible, since there
is structure which is suspended inside void material with
no connection to the constraints. Moreover, in [35] it was
demonstrated that the final topology had a symmetry about
the ±45◦ diagonals. This symmetry is observed in the CPU

result (Fig. 11a), whereas the single-precision GPU produces
a final topology that is almost symmetric about the x- and
y-axis. The final vorticity found using the single-precision
GPU code is 5541 s−1 , which is a 9% decrease compared to
the final vorticity found by the CPU code. The convergence
history of the single-precision GPU algorithm is shown in
Fig. 12.

Unlike the compliance optimization problem (Sect. 4.2),
convergence does seem to be achieved (Fig. 12). Further-
more, the algorithm only requires 25 iterations to achieve
convergence, compared to 76 for the CPU implementation.
This equates to a computational time of approximately 1
h, which is 76 times faster than when a CPU algorithm is
used. However, this notable improvement in computational
expense is fruitless, since the final result is not a feasible
optimum; although, it expressed convergence. Therefore,
alike the compliance minimization problem, the single-
precision GPU-implemented topology optimization code,
of this work, cannot guarantee convergence to a feasible
design for the vorticity maximization problem. Therefore,

Fig. 10   Convergence history for the vorticity maximization problem
using the CPU-LBM BESO algorithm

(a) CPU (b) Single-precision GPU

Fig. 11   Final topology found using the single-precision GPU-LBM
BESO algorithm for the vorticity maximization problem

Fig. 12   Convergence history for the vorticity maximization problem
using the single-precision GPU-LBM BESO algorithm

1070	 Engineering with Computers (2019) 35:1059–1079

1 3

in the next section a double-precision GPU implementation
is applied to the same problem to determine if the increase
in numerical accuracy can produce a feasible optimum for a
minimal increase in computational expense.

5.3 � Double‑precision GPU implementation

For the compliance minimization problem, it was found that
the convergence issues occurring in the single-precision
GPU implementation are avoided when double-precision is
used. However, for the problem of this section, the single-
precision GPU implementation does not seem to have con-
vergence issues, but does not converge to a similar design
found by the CPU implementation, or even a feasible one.
Therefore, the double-precision GPU code may not be able
to improve on the result found by the single-precision code.
Nevertheless, the double-precision GPU implementation is
applied to determine if round-off errors are the cause of the
infeasible final design.

The double-precision GPU-LBM code is coupled with
the BESO algorithm (Sect. 2.2). The optimization param-
eters are defined as in the compliance minimization problem
(Sect. 4). The final structure determined by the single-preci-
sion and double-precision GPU codes is shown in Fig. 13.

The final topology obtained using the double-precision
GPU code (Fig. 13b) is very similar to that found using
the single-precision code (Fig. 13a). Again, the topology
is almost symmetric about the x- and y-axis. Further, the
final design is still not physically feasible since structure is
suspended in void material. Unlike the compliance mini-
mization problem, implementing double-precision in the
GPU does not produce a feasible optimum. The vorticity of
the final topology found using the double-precision code is
5553 s−1 , which is a 0.2% increase compared to the single-
precision code and still a 8% decrease compared to the CPU
code. The convergence history of the double-precision GPU
algorithm is given in Fig. 14.

As would be expected, since the final designs are similar
(Fig. 13), so too are the convergence histories of the single- and

double-precision GPU-implemented topology optimization
algorithms (Figs. 12, 14). Again, the double-precision GPU
code requires 25 iterations to achieve convergence. There-
fore, the computational time required to achieve convergence
is approximately 1 h, 56 min and 24 s, almost the double of
what is required by the single-precision code. Hence, the
double-precision code is about 39 times faster than the CPU
implemented code. However, alike the single-precision GPU
implementation the double-precision implementation fails to
produce a feasible final design. Hence, unlike the compliance
minimization problem (Sect. 4), this computational efficiency
is not beneficial at the preliminary design stages, since infea-
sible designs are produced.

The results of this section indicate that there is an inher-
ent difference between CPU and GPU architectures, which
results in the optimizer converging to a different solution. This
is troubling, since both CPU and GPU topology optimization
codes started at the same initial design, had the same opti-
mization parameters and both achieved convergence accord-
ing to the same convergence criteria; however, they did not
produce complementary results. This was not observed in the
compliance minimization problem (Sect. 4), where the single-
precision GPU code could not achieve convergence, but the
double-precision code was able to converge to a design con-
sistent with the CPU algorithm. One possibility is the differ-
ence in the reliance of the objectives, compliance and vorticity,
on the GPU implementation. The objective, J, for compliance
and vorticity is formulated as follows:

(18)J(u) =
1

2
�T[�]�,

(19)J(�) =
1

2 ∫�

|curl�|2d�,

(a) Single-precision GPU (b) Double-precision GPU

Fig. 13   Final topology found using the double-precision GPU-LBM
BESO algorithm for the vorticity maximization problem

Fig. 14   Convergence history for the vorticity maximization problem
using the double-precision GPU-LBM BESO algorithm

1071Engineering with Computers (2019) 35:1059–1079	

1 3

where � is the fluid domain, � is the velocity field, � is the
displacement field and [�] is the stiffness matrix of the struc-
ture. Therefore, since it is assumed that the structure stays
within the elastic limit, i.e. does not undergo any plastic
deformation, the following must hold:

where � is the force field applied to the structure. Hence, the
compliance objective can be re-written as:

Therefore, by comparing Eqs. 19–21 it is noted that the
reliance of the objectives on the GPU-LBM are different.
For the compliance minimization problem the reliance
is linear, since the applied force ( � ) is determined by the
LBM; whereas, for the vorticity objective it is more com-
plicated, since the velocity field ( � ) is determined by the
LBM. The vorticity objective takes the square of the curl of
this velocity field. Where the curl of a vector describes the
infinitesimal rotation of the vector field. Therefore, it takes
the difference of the partial differential in the three-spacial
dimensions at every point in the vector field, mathematically
this is described as:

where � , � and � are unit vectors for the x-, y- and z-axes.
As pointed out in the CUDA programming guide [38, 39]
CUDA implements division and square root operations that
are not IEEE-compliant, i.e. their error in units in last place
is non-zero. However, addition and multiplication are IEEE-
compliant. Therefore, any discrepancies between the CPU
and GPU are greater in the vorticity objective than in the
compliance objective since division and square root opera-
tions are involved in the calculation of the objective and
sensitivity functions.

6 � Constrained topology optimization

It is sometimes possible, by looking at the physics of the
topology optimization problem, to determine certain
required conditions, which can be directly enforced as con-
straints on the optimizer. This reduces the design space of
the optimization problem and can often assist the algorithm
in finding an optimum solution, or reduce its computational
expense. Therefore, in this section two different constraints
are applied, separately, to both the single-precision and
double-precision GPU implementations to try and improve
the designs obtained. First, it was shown that for the compli-
ance minimization problem (Sect. 5.2) a symmetry about the

(20)� = [�]�,

(21)J(u) =
1

2
�T�.

(22)
curl� =

(
��z

�y
−

��y

�z

)
� +

(
��x

�z
−

��z

�x

)
� +

(
��y

�x
−

��x

�y

)
�,

x- and y-axis is an inherent feature of any feasible optimum
to this problem [35]. This is due to the lack of any unsym-
metrical physical drivers in the system. Therefore, a sym-
metry constraint is implemented. Similarly, for the vorticity
maximization problem, it was found that the CPU result has
a symmetry about the ± 45◦ diagonals (Sect. 5.1); however,
is not symmetric about the x- and y-axis. Therefore, a sym-
metry constraint is applied to this problem, ensuring that this
symmetry is enforced. Finally, it was demonstrated that for
the vorticity maximization problem, physically infeasible
final designs are produced by the single- and double-preci-
sion GPU implementations. Therefore, the last analysis of
this section derives a novel feasibility constraint and applies
it to the vorticity maximization problem only, since the GPU
implementations of the compliance minimization problem
do not produce infeasible designs.

6.1 � Symmetry constraint

6.1.1 � Compliance minimization

First, a symmetry constraint is applied to the compliance
minimization problem for the single-precision GPU imple-
mentation. This constraint simply takes advantage of the
symmetry of the problem, by taking only the top left quarter
of the structure, at the end of every optimization loop, and
then reflecting it about the z and then y-axis (Fig. 1c) to cre-
ate the bottom half and right side of the structure for the next
optimization loop. The final structure determined by CPU
without a symmetry constraint and single-precision GPU
with a symmetry constraint is shown in Fig. 15.

The final structure obtained using the single-precision
GPU code with a symmetry constraint is comparable to the
CPU final design (Fig. 15). The symmetry constraint has
forced the optimizer to only consider designs which are sym-
metric about the x- and y-axes. This restriction on the design
domain is completely valid, since it is known before the
optimizer is run that symmetry is a requirement of the final

(a) CPU no symmetry constraint (b) Single-precision GPU
symmetry constraint

Fig. 15   Final topology found using the CPU and the single-precision
GPU-LBM BESO algorithm without and with a symmetry constraint,
respectively for the compliance minimization problem

1072	 Engineering with Computers (2019) 35:1059–1079

1 3

design [35]. Therefore, by adding the symmetry constraint
we are not restricting the optimizer, rather ensuring that it
only considers physically feasible designs. The compliance
of the final design found using the single-precision GPU
code with a symmetry constraint is 2.416 × 109 Nm , which
is only a 6% increase from the final compliance of the struc-
ture found using the CPU implementation ( 2.281 × 109 Nm ).
Furthermore, the compliance is 6% less than the compli-
ance of the final structure found using the double-precision
GPU implementation. Hence, simply adding a symmetry
constraint has produced a more optimum design than using
a double-precision GPU code instead of a single-precision.
The convergence history of the single-precision GPU algo-
rithm with a symmetry constraint is shown in Fig. 16.

As is expected, since the final design is consistent with the
CPU result, convergence is achieved for the single-precision
GPU implementation with a symmetry constraint (Fig. 16).
However, the single-precision GPU algorithm with a sym-
metry constraint takes 287 iterations to converge. Hence,
the computational time required for convergence is approxi-
mately 11 h, 33 min and 36 s, which is over an hour and half
longer than the double-precision code without the symmetry
constraint, due to the significant increase in required itera-
tions. Nevertheless, this is still over 15 times faster than the
CPU implementation, with only a 6% reduction in objective.
The double-precision had a speed-up of 18 times, but with
a 12% forfeit in objective. Therefore, the double-precision
implementation is still the most computationally efficient.
A further observation is the large number of convergence
cycles present in the convergence history (Fig. 16). This
clearly indicates the presence of several local optima in the
design space, the impact of this was discussed in the analysis
of the results of the double-precision algorithm (Sect. 4.3).

Therefore, it is no surprise that the different algorithms
find different local optima. The symmetry constraint is not
applied to the double-precision implementation for the com-
pliance minimization problem since it produces a symmet-
ric final design. Hence, symmetry is never broken and the
constraint would never be violated. Therefore, applying the
symmetry constraint will simply yield the same results as
without the constraint.

6.1.2 � Vorticity maximization

Next, the symmetry constraint is applied to the vorticity
maximization problem for the single-precision GPU imple-
mentation. In this case, the initial structure of the problem
is asymmetric about the x- and y-axis as this was found to
be the case in the final design produced by the CPU imple-
mentation. Further, the symmetry constraint ensures that the
structure is always symmetric about the ± 45◦ diagonals.
This is done by taking only the structure on one side of
the 45◦ diagonal, at the end of each optimization loop, and
reflecting it over this axis to create the structure on the other-
side of the 45◦ diagonal for the next optimization loop. The
final structure determined by CPU without a symmetry con-
straint and single-precision GPU with a symmetry constraint
is shown in Fig. 17.

The final structure obtained using the single-precision
GPU code with a symmetry constraint is comparable to the
CPU design (Fig. 17). The symmetry constraint has forced
the optimizer to only consider designs that are symmetric
about both the ± 45◦ diagonals and asymmetric about the
x- and y-axis. Unlike the symmetry constraint on the compli-
ance minimization problem, this restriction on the design is
not physically valid as there is no physical reason to enforce
it. Instead, we are using our knowledge of the CPU solu-
tion to assist the optimizer in finding a feasible design. The
difference is, one would not have any reason to enforce this
symmetry constraint without any prior knowledge of the

Fig. 16   Convergence history for the compliance minimization prob-
lem using the single-precision GPU-LBM BESO algorithm with a
symmetry constraint

(a) CPU no symmetry constraint (b) Single-precision GPU
symmetry constraint

Fig. 17   Final topology found using the CPU and the single-precision
GPU-LBM BESO algorithm without and with a symmetry constraint,
respectively for the vorticity maximization problem

1073Engineering with Computers (2019) 35:1059–1079	

1 3

solution. The final vorticity of the design found using the
single-precision GPU code with a symmetry constraint is
6077 s−1 , which is an increase of 0.3% from the vorticity of
the final design obtained using the CPU code ( 6060 s−1 ).
This small increase in objective is due to the algorithm being
guided to the right solution, therefore, it is already in the
neighborhood of the solution before the optimization begins.
The convergence history of the single-precision GPU algo-
rithm with a symmetry constraint is given in Fig. 18.

The solution only takes 18 iterations to converge to the
final design (Fig. 18). This further emphasizes that the solu-
tion is put on the right track by the symmetry constraint.
This equates to a computational time of approximately 43
min and 30 s. Therefore, while this method would not be
possible if no prior knowledge of the solution is known, it
could be used after the CPU implementation has revealed
certain features of the design, from earlier solutions, to
speed up the solution of other design alternatives.

Finally, since the double-precision GPU implementation
could not produce feasible design for the vorticity maximiza-
tion problem, the symmetry constraint is applied. The final
structure determined by the single-precision and double-
precision GPU code with a symmetry constraint is shown
in Fig. 19.

As is expected the double-precision algorithm with
a symmetry constraint produces an almost identical final
topology to the single-precision algorithm with a symmetry
constraint (Fig. 19). The final vorticity of the design found
using the double-precision GPU algorithm with a symmetry
constraint is 6084 s−1 , which is an increase of 0.1% from the
vorticity of the final design using a single-precision algo-
rithm with a symmetry constraint. The convergence history

of the double-precision GPU algorithm with a symmetry
constraint is shown in Fig. 20.

The solution takes 19 iterations to converge to the final
design (Fig. 20). This equates to a computational time of
approximately 1 h, 28 min and 48 s. This is just over double
the time required by the single-precision GPU code with
a symmetry constraint, with only a 0.1% improvement in
objective. Therefore, in the case of a symmetry constraint
the computational efficiency of the single-precision GPU
code is superior to the increase in numerical accuracy of the
double-precision GPU code.

6.2 � Feasibility constraint

As mentioned earlier, the designs produced by the single-
and double-precision GPU codes for the unconstrained vor-
ticity maximization problem are not feasible. This is because

Fig. 18   Convergence history for the vorticity maximization problem
using the single-precision GPU-LBM BESO algorithm with a sym-
metry constraint

(a) Single-precision GPU
symmetry constraint

(b) Double-precision GPU
symmetry constraint

Fig. 19   Final topology found using the single-precision and double-
precision GPU-LBM BESO algorithm with a symmetry constraint for
the vorticity maximization problem

Fig. 20   Convergence history for the vorticity maximization problem
using the double-precision GPU-LBM BESO algorithm with a sym-
metry constraint

1074	 Engineering with Computers (2019) 35:1059–1079

1 3

the final topology contains structure suspended in void mate-
rial. Therefore, in this section a feasibility constraint, which
checks for structural islands is implemented to ensure fea-
sible designs are produced. The feasibility constraint works
by creating, what is termed here as, a connectivity matrix,
[�]m×n , where each entry, (m, n), in the matrix corresponds
to an element on the baffle structure. Therefore, each entry
contains a 1 if the corresponding element is solid and a 0 if
the corresponding element is void. Hence, for each struc-
ture produced at the end of each optimization loop an [�] is
calculated. The closed structural boundaries, inside the baf-
fle, for each structure are determined. Finally, the feasibility
constraint sums the number of closed boundaries, ncb inside
the structure. If the number of closed boundaries is less than
or equal to two, ncb ≤ 2 , the volume constraint for that itera-
tion is reduced and a new design is found. This process is
repeated until a feasible design is produced for that iteration.

The feasibility constraint is applied to the single-precision
GPU algorithm for the vorticity maximization problem with
the same initial topology and optimization parameters as
outlined in Sect. 5. The final design for the single-precision
GPU algorithm with and without the feasibility constraint
is shown in Fig. 21.

The final structure produced by the single-precision GPU
is only feasible when the feasibility constraint is preformed
(Fig. 21). There are no longer any structural islands present
in the final design. Furthermore, unlike the symmetry con-
straint applied to the vorticity maximization problem, the
restriction on the design domain is physically valid, since
a feasible structure is a requirement of the final design.
However, the final design is still noticeably different from
the design found by the CPU algorithm (Fig. 13). This is
because the design found using the single-precision GPU
code with a feasibility constraint is still symmetric about
the x- and y-axis, similar to that found without a feasibility
constraint. The final vorticity of the design found by the sin-
gle-precision GPU algorithm with a feasibility constraint is

5881 s−1 . This is a 3% reduction compared to the vorticity of
the topology determined by the CPU algorithm ( 6060 s−1 ).
The convergence history of the single-precision GPU algo-
rithm with a feasibility constraint is given in Fig. 22.

The solution takes 28 iterations to converge to the final
design (Fig. 22). This equates to a computational time of
approximately 1 h, 7 min and 41 s, which is a speed-up of
about 67 times compared with the CPU code. Therefore,
for such a large increase in computational efficiency and
only a 3% reduction in the objective, this is beneficial in the
preliminary design stages where the CPU code is not viable
due to its large computation time (over 3 days). Therefore,
adding the feasibility constraint to the single-precision GPU
algorithm has made the topology optimization method a via-
ble option for use in the preliminary design stages, bringing
these tools forwards in the design process.

Finally, the feasibility constraint is applied to the double-
precision GPU algorithm to determine if the increase in the
numerical accuracy can reduce the drop in the objective
from the CPU code. The vorticity maximization problem
with the same initial topology and optimization parameters
as outlined in Sect. 5 is solved. The final design for the sin-
gle- and double-precision GPU algorithm with the feasibility
constraint is shown in Fig. 23.

The final design produced, with a feasibility con-
straint, by the double-precision GPU algorithm is almost
identical to the design produced by the single-precision
algorithm (Fig. 23). Hence, the design is still symmetric
about the x- and y-axis when a double-precision GPU
algorithm with a feasibility constraint is used, as was the
case without the feasibility constraint. The vorticity of
the final design found by the double-precision algorithm

(a) Without a feasibility
constraint

(b) With a feasibility constraint

Fig. 21   Final topology found using the single-precision GPU-LBM
BESO algorithm without and with a feasibility constraint, respec-
tively for the vorticity maximization problem

Fig. 22   Convergence history for the vorticity maximization problem
using the single-precision GPU-LBM BESO algorithm with a feasi-
bility constraint

1075Engineering with Computers (2019) 35:1059–1079	

1 3

with a feasibility constraint is 5903 s−1 , which is only a
0.4% increase compared to the single-precision algorithm
with a symmetry constraint ( 5881 s−1 ). The convergence
history of the double-precision GPU algorithm with a
feasibility constraint is given in Fig. 24.

The solution takes 27 iterations to converge to the final
design (Fig. 24). This equates to a computational time of
approximately 2 h and 6 min, which is just under double
the time required by the single-precision GPU code with
a feasibility constraint. Thus in the case of the feasibility
constraint, having only a 0.4% improvement in objective
with twice the computation cost, the benefit of the com-
putational efficiency inherent in the single-precision GPU
code is superior to the increase in numerical accuracy of
the double-precision GPU algorithm.

7 � Summary

In this section, a brief summary of the results of this work
is given. The first problem solved was the compliance
minimization problem (Sect. 4). It is demonstrated that
the single-precision GPU implementation is unable to pro-
duce a feasible solution, having convergence issues. There-
fore, a converged solution is never reached. The cause of
this is the inherent round-off errors, which have also been
observed in the literature for structural problems only [30].
However, it was shown that by implementing a double-
precision GPU algorithm convergence could be achieved
and a feasible optimum is found. Furthermore, the speed-
up of the double-precision GPU algorithm is about 18
times compared with the CPU algorithm, having only a
12% reduction in objective. Therefore, it was concluded
that the double-precision GPU implementation represent a
feasible method that can be used at the preliminary design
stages, whereas the CPU algorithm could not. Thus, for the
compliance minimization problem, the implementation on
a GPU has enabled these methods to be brought forward
in the design cycle.

The next problem analyzed in this work was the vorti-
city maximization problem (Sect. 5). It is shown that nei-
ther the single- or double-precision GPU implementation
could produce feasible solutions to this problem. However,
unlike the compliance minimization problem, both imple-
mentations appear to converge. Thus, why implementing
double-precision did not solve the problem. Moreover, it
is demonstrated that the reliance of the topology optimi-
zation algorithm on the GPU numerics is greater in the
vorticity maximization problem than in the compliance
minimization problem, due to the different formulations
of the objective functions.

In an effort to assist the GPU implementations addi-
tional constraints were formulated and added to the topol-
ogy optimization problems. First, a symmetry constraint,
which takes advantage of the symmetry of the physics of
the compliance minimization problem, is implemented on
the single-precision GPU algorithm. Since there are no
physical asymmetric drivers, it is evident that the design
of the baffle should be symmetric about the x- and y-axes
[35]. Therefore, by enforcing this symmetry, through the
symmetry constraint, the single-precision GPU implemen-
tation is able to achieve convergence and produce opti-
mum designs. Furthermore, the speed-up when compared
with the CPU algorithm is about 15 times, with only a 6%
reduction in objective.

Similarly, a symmetry about the ± 45◦ diagonals and an
asymmetry about the x- and y-axes was observed for the
optimum solution to the vorticity maximization problem.
Therefore, a symmetry constraint was employed, which

(a) Single-precision (b) Double-precision

Fig. 23   Final topology found using the single- and double-precision
GPU-LBM BESO algorithm with a feasibility constraint

Fig. 24   Convergence history for the vorticity maximization problem
using the double-precision GPU-LBM BESO algorithm with a feasi-
bility constraint

1076	 Engineering with Computers (2019) 35:1059–1079

1 3

enforced these conditions, in the single- and double-preci-
sion GPU implementations. This resulted in optimum final
structures, similar to that found using the CPU algorithm,
being produced. Furthermore, the computational efficiency
is increased by 105 and 51 times compared with the CPU
when using the single- and double-precision GPU algo-
rithm, respectively. However, it was noted that this sym-
metry constraint was not valid, since the characteristics
of the symmetry enforced were only known due to a prior
knowledge of the solution. Thus, the symmetry constraint
pushed the algorithm in the right direction. Nevertheless,
this demonstrates how certain characteristics of the solu-
tion can be determined by running the slow CPU and then
can be enforced in the fast GPU for quick optimization of
other preliminary structures.

Finally, it was noted that the GPU implementations
seemed to achieve convergence for the vorticity maximi-
zation problem; however, to infeasible designs. Therefore,
a feasibility constraint was employed to ensure that the
algorithms only considered feasible designs. By adding a
feasibility constraint to the single- and double-precision
GPU implementations for a vorticity objective, reasonable
designs are produced without pushing the optimizer in the
correct direction. Therefore, no pre-knowledge of the solu-
tion is required, making this a much more realizable solu-
tion compared to the symmetry constraint. Furthermore, the
final design produces a similar final objective compared to
the CPU result, having a reduction of 3% and 2% in objec-
tive for the single- and double-precision GPU implemen-
tation, respectively. However, this comes at a speed-up of
67 and 36 times for the single- and double-precision code,
respectively. Thus, the small reduction in objective is worth
the huge increase in computational efficiency. Again the
double-precision code outperforms the single-precision.
However, due to the increase in computational efficiency
achieved by the single-precision code (about 46% ) and the

small improvement in objective by the double-precision
code (about 0.4% ) the single-precision code is more suited.

A quantitative comparison for all cases studied in this
article is given in Table 1.

8 � Conclusion

A multi-physics topology optimization algorithm has been
presented here for use in the preliminary design phases. The
aim of this study is to use HPC methods to reduce the com-
putational time required, such that these methods are viable
for use at the preliminary design stages. A BESO algorithm
is coupled to a GPU-enabled LBM flow solver to optimize
the structural and flow characteristics of a micro-reactor.
Hence, the process takes advantage of the high computa-
tional efficiency of GPU, which carried out the most com-
putationally intensive part of the process, namely, the simu-
lation of the flow via LBM. The implementation on both
CPU and single- and double-precision GPU are performed
and compared, determining the speed-up gained and loss in
objective when different architectures are used. It was found
that, for both topology optimization problems, implementa-
tion on a GPU resulted in a significant gain in computational
efficiency, with only a small reduction in objective. There-
fore, bringing these methods forward in the design cycle,
where implementation on a CPU is not viable.

First, a multi-physics compliance minimization problem
with design-dependent pressure loads was solved. It was
found that the single-precision GPU implementation had
convergence issues, and thus, was unable to find a suitable
optimum. This phenomena has been noted in the literature
for GPU-enabled FEA topology optimization [30], but is
a first here for multi-physics topology optimization. How-
ever, it is demonstrated that using a double-precision GPU
implementation avoids these convergence issues, resulting

Table 1   Numerical summary
of results

aConvergence not achieved

Implementation Iterations Computational time Objective

CPU (compliance) 179 7 days 11 h 2.281 (109) Nm

CPU (vorticity) 76 3 days 4 h 6060 Nm
−1

GPU SP (compliance)a 336 13 h 31 months 3.912 (109) Nm

GPU SP (vorticity) 25 1 h 5541 s−1

GPU DP (compliance) 129 10 h 1 month 2.577 (109) Nm

GPU DP (vorticity) 25 1 h 56 months 5553 s−1

GPU SP sym (compliance) 287 11 h 34 months 2.416 (109) Nm

GPU SP sym (vorticity) 18 43 months 30 s 6077 s−1

GPU DP sym (vorticity) 19 1 h 29 months 6084 s−1

GPU SP feasb (vorticity) 28 1 h 8 months 5881 s−1

GPU DP feasb (vorticity) 27 2 h 6 months 5903 s−1

1077Engineering with Computers (2019) 35:1059–1079	

1 3

in a speed-up of approximately 18 times, with only a 12%
reduction in objective, compared to CPU.

Next, a vorticity maximization problem was solved on
both single- and double-precision GPU. For this case, con-
vergence is achieved; however, to infeasible designs, since
structural islands are present for both single- and double-
precision GPU. It was concluded that this discrepancy was
due to the different reliance on the GPU numerics for the
two different objectives.

Finally, a symmetry constraint and a feasibility constraint
were added, separately, to the topology optimization prob-
lems to improve their convergence by eliminating infeasible
designs from consideration. For the compliance minimiza-
tion problem, adding a symmetry constraint, which takes
advantage of the symmetrical physics, enabled the single-
precision GPU implementation to converge to an optimum
design. Similarly, for the vorticity maximization problem,
adding a feasibility constraint forced only structurally fea-
sible design to be considered by the optimizer, resulting in
optimum designs being produced. Therefore, a speed-up of
about 67 times was achieved for the vorticity maximization
problem, with only a 3% reduction in objective. Hence, the
main findings of this article can be summarized by the fol-
lowing points:

•	 Single-precision GPU cannot be used without a symme-
try constraint for the compliance minimization problem.

•	 Double-precision GPU produces better, in terms of
objective, designs compared with single-precision for
all cases.

•	 Single-precision is more computationally efficient for all
cases, except compliance minimization problem.

•	 For all cases, computational time is drastically reduced
with GPU implementation compared to CPU results.

•	 Adding a feasibility constraint to the vorticity maximiza-
tion problem produces comparable designs for both the
single- and double-precision GPU codes.

This study adds to the limited literature on GPU-accelerated
topology optimization. New insights into the discrepancies
between CPU and GPU numerics have been found, with rea-
sonable methods developed to overcome these discrepancies.
The work presented here brings high fidelity methods, such
as lattice Boltzmann flow simulations, coupled with reward-
ing optimization algorithms, such as topology optimization,
forward to the preliminary design stages. This type of analy-
sis is key to the continued application of topology optimiza-
tion to real world aerospace design problems.

Acknowledgements  D. J. Munk thanks the Australian government for
their financial support through the Endeavour Fellowship scheme. The
authors would like to acknowledge the UK Consortium on Mesoscale
Engineering Sciences (UKCOMES) EPSRC Grant no. EP/L00030X/1
for providing the HPC capabilities used in this article.

References

	 1.	 Abrahamson S, Lonnes S (1995) Uncertainty in calculating vor-
ticity from 2D velocity fields using circulation and least-squares
approach. Exp Fluids 20:10–20

	 2.	 Aidun C, Clausen J (2010) Lattice-Boltzmann method for com-
plex flows. Annu Rev Fluid Mech 42:439–472

	 3.	 Aissa M, Verstraete T, Vuik C (2014) Use of modern GPUs in
design optimization. In: 10th ASMO-UK/ISSMO conference
on engineering design optimization. Association for Structural
and Multidisciplinary Optimization in the UK

	 4.	 Bendsøe M (1989) Optimal shape design as a material dis-
tribution problem. Struct Optim 1(4):193–202. https​://doi.
org/10.1007/BF016​50949​

	 5.	 Bendsøe M, Sigmund O (1999) Material interpolation schemes
in topology optimization. Arch Appl Mech 69:635–654

	 6.	 Bendsøe M, Sigmund O (2003) Topology optimization—theory,
methods and applications, 2nd edn. Springer, Berlin

	 7.	 Cecka C, Lew A, Darve E (2011) Assembly of finite element
methods on graphics processors. Int J Numer Methods Eng
85:640–669

	 8.	 Challis V, Roberts A, Grotowski J (2014) High resolution topol-
ogy optimization using graphics processing units (GPUs). Struct
Multidiscip Optim 49(2):315–325

	 9.	 Chu D, Xie Y, Hira A, Steven G (1996) Evolutionary structural
optimization for problems with stiffness constraints. Finite Elem
Anal Des 21:239–251

	10.	 D’Ammaro A, Kipouros T, Saddawi S, Savill A, Djenidi L
(2010) Computational design for micro fluidic devices using
Lattice Boltzmann and heuristic optimisation algorithms. In:
Joint OCCAM/ICFD lattice Boltzmann workshop, OCCAM/
ICFD

	11.	 Deaton J, Grandhi R (2014) A survey of structural and multidis-
ciplinary continuum topology optimization. Struct Multidiscip
Optim 49:1–38. https​://doi.org/10.1007/s0015​8-013-0956-z

	12.	 Delbosc N, Khan J, Kapur N, Noakes C (2014) Optimized
implementation of the lattice Boltzmann method on a graph-
ics processing unit towards real-time fluid simulation. Comput
Math Appl 67:462–475

	13.	 Demmel J, Nguyen H (2015) Parallel reproducible summation.
IEEE Trans Comput 64(7):2060–2070

	14.	 Djenidi L, Moghtaderi B (2006) Numerical investigations
of laminar mixing in a coaxial microreactor. J Fluid Mech
568:223–243

	15.	 Garcia M, Gutierrez J, Rueda N (2011) Fluid-structure coupling
using lattice-Boltzmann and fixed-grid FEM. Finite Elem Anal
Des 47:906–912

	16.	 Georgescu S, Chow P, Okuda H (2013) GPU acceleration for
FEM-based structural analysis. Arch Comput Methods Eng
20(2):111–121

	17.	 Herrero D, Martinez J, Marti P (2013) An implementation of
level set based topology optimization using GPU. In: Proceed-
ings of 10th World congress on structural and multidisciplinary
optimization, WCSMO/ISSMO

	18.	 Huang X, Xie Y (2007) Convergent and mesh-independent solu-
tions for the bi-directional evolutionary structural optimization
method. Finite Elem Anal Des 43:1039–1049

	19.	 Huang X, Xie Y (2009) Bi-directional evolutionary topology
optimization of continuum structures with one or multiple mate-
rials. Comput Mech 43:393–401

	20.	 Huang X, Xie Y (2010) Topology optimization of continuum
structures: methods and applications, 1st edn. Wiley, New York

	21.	 Kasumba H, Kunisch K (2012) Vortex control in channel flows
using translation invariant cost functionals. Comput Optim Appl
52:691–717

https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/s00158-013-0956-z

1078	 Engineering with Computers (2019) 35:1059–1079

1 3

	22.	 Khan M, Delbosc N, Noakes C, Summers J (2015) Real-time
flow simulation of indoor environments using lattice Boltzmann
method. Build Simul 8:405–414

	23.	 Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based
flow simulations using GPU computing processor. Comput
Math Appl 59:2380–2392

	24.	 Laniewski-Wollk L, Rokicki J (2016) Adjoint lattice Boltzmann
for topology optimization on multi-GPU architecture. Comput
Math Appl 71:833–848

	25.	 Li Q, Luo K (2014) Thermodynamic consistency of the pseudo-
potential lattice Boltzmann model for simulating liquid–vapor
flows. Appl Therm Eng 72(1):56–61

	26.	 Li Q, Luo K, Kang Q, He Y, Chen Q, Liu Q (2016) Lattice
Boltzmann methods for multiphase flow and phase-change heat
transfer. Prog Energy Combust Sci 52:62–105

	27.	 Liu H, Kang Q, Leonardi C, Schmieschek S, Narváez A, Jones
B, Williams J, Valocchi A, Harting J (2016) Multiphase lattice
Boltzmann simulations for porous media applications. Comput
Geosci 20:777–805

	28.	 Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topol-
ogy optimization of 2D continua for minimum compliance using
parallel computing. Struct Multidiscio Optim 32(2):121–132

	29.	 Makhija D, Pingen G, Yang R, Maute K (2012) Topology opti-
mization of multi-component flows using a multi-relaxation
time lattice Boltzmann method. Comput Fluids 67:104–114

	30.	 Martinez-Frutos J, Herrero-Perez D (2017) GPU acceleration
for evolutionary topology optimization of continuum structures
using isosurfaces. Comput Struct 182:119–136

	31.	 Martins J, Lambe A (2013) Multidisciplinary design optimiza-
tion: a survey of architectures. AIAA J 59:2049–2075

	32.	 Micikevicius P (2009) 3D finite difference computation on
GPUs using CUDA. In: Proceedings of 2nd workshop on gen-
eral purpose processing on graphics processing units. ACM

	33.	 Moghtaderi B, Shames I, Djenidi L (2006) Microfluidic char-
acteristics of a multi-holed baffle plate micro-reactor. Int J Heat
Fluid Flow 27:1069–1077

	34.	 Munk D, Vio G, Steven G (2015) Topology and shape optimi-
zation methods using evolutionary algorithms: a review. Struct
Multidiscip Optim 52(3):613–631. https​://doi.org/10.1007/
s0015​8-015-1261-9

	35.	 Munk D, Kipouros T, Vio G, Steven G, Parks G (2017) Topol-
ogy optimization of micro fluidic mixers considering fluid–
structure interactions with a coupled lattice Boltzmann algo-
rithm. J Comput Phys 349:11–32

	36.	 Munk D, Kipouros T, Vio G, Parks G, Steven G (2018a) Mul-
tiobjective and multi-physics topology optimization using an
updated smart normal constraint bi-directional evolutionary
structural optimization algorithm. Struct Multidiscip Optim
57:665–688

	37.	 Munk D, Kipouros T, Vio G, Parks G, Steven G (2018b) On the
effect of fluid–structure interactions and choice of algorithm
in multi-physics topology optimisation. Finite Elem Anal Des
145:32–54

	38.	 Nguyen H (2007) GPU Gems 3. Addison-Wesley Professional,
Boston

	39.	 NVIDIA Corporation (2008) NVIDIA CUDA—programming
language. NVIDIA, Santa Clara

	40.	 Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Multi-GPU
implementation of the lattice Boltzmann method. Comput Math
Appl 65:252–261

	41.	 Osher S, Sethian J (1988) Front propagating with curvature
dependent speed: algorithms based on Hamilton–Jacobi forma-
tions. J Comput Phys 78(1):12–49

	42.	 Pingen G, Evgrafov A, Maute K (2007) Topology optimization of
flow domains using the lattice Boltzmann method. Struct Multi-
discip Optim 36:507–524

	43.	 Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter
sensitivity analysis for the hydrodynamic lattice Boltzmann
method with applications to design optimization. Comput Flu-
ids 38:910–923

	44.	 Querin O, Steven G, Xie Y (1998) Evolutionary structural opti-
mization (ESO) using a bi-directional algorithm. Eng Comput
15:1034–1048

	45.	 Rozvany G, Zhou M, Birker T (1992) Generalized shape opti-
mization without homogenization. Struct Optim 4(3):250–252.
https​://doi.org/10.1007/BF017​42754​

	46.	 Sanders J, Kandrot E (2010) CUDA by example: an introduc-
tion to general-purpose GPU programming. Addison-Wesley
Professional, Santa Clara

	47.	 Schmidt S, Schulz V (2011) A 2589 line topology optimi-
zation code written for the graphics card. Comput Vis Sci
14(6):249–256

	48.	 Schönherr M, Kucher K, Geier M, Stiebler M, Freudiger S,
Krafczyk M (2011) Multi-thread implementations of the lattice-
Boltzmann method on non-uniform grids for CPUs and GPUs.
Comput Math Appl 61:3730–3743

	49.	 Sigmund O, Maute K (2013) Topology optimization
approaches. Struct Multidiscip Optim 48:1031–1055. https​://
doi.org/10.1007/s0015​8-013-0978-6

	50.	 Sigmund O, Petersson J (1998) Numerical instabilities in topol-
ogy optimization: a survey on procedures dealing with check-
erboards, mesh-dependencies and local minima. Struct Optim
16:68–75

	51.	 Steven G, Li Q, Xie Y (2000) Evolutionary topology and shape
design for general physical field problems. Comput Mech
26:129–139

	52.	 Succi S (2001) The lattice Boltzmann equation for fluid dynamics
and beyond, 1st edn. Oxford University Press, Oxford

	53.	 Suresh K (2013) Efficient generation of large-scale pareto-optimal
topologies. Struct Multidiscip Optim 47:49–61

	54.	 Taufer M, Padron O, Saponaro P, Patel S (2010) Improving
numerical reproducibility and stability in large-scale numerical
simulations on GPUs. In: 24th IEEE international symposium on
parallel and distributed processing (IPDPS). IEEE, pp 1–9

	55.	 Tölke J, Krafczyk M (2008) TeraFLOP computing on a desktop
PC with GPUs for 3D CFD. Int J Comput Fluid Dyn 22:443–456

	56.	 Tsotskas C, Kipouros T, Savill A (2014) The design and imple-
mentation of a GPU-enabled multi-objective Tabu-search intended
for real world and high-dimensional applications. Procedia Com-
put Sci 29:2152–2161

	57.	 Tsotskas C, Kipouros T, Savill A (2015) Fast multi-objective opti-
misation of a micro-fluidic device by using graphics accelerators.
Procedia Comput Sci 51:2237–2246

	58.	 Vemaganti K, Lawrence WE (2005) Parallel methods for optimal-
ity criteria-based topology optimization. Comput Methods Appl
Mech Eng 194:3637–3667

	59.	 Wadbro E, Berggren M (2009) Megapixel topology optimization
on a graphics processing unit. SIAM Rev 51(4):707–721

	60.	 Wang H, Menon S (2001) Fuel–air mixing enhancement by syn-
thetic microjets. AIAA J 39:2308–2319

	61.	 Woodfield P, Kazuyoshi N, Suzuki K (2003) Numerical study for
enhancement of laminar flow mixing using multiple confined jets
in a micro-can combustor. Int J Heat Mass Transf 46:2655–2663

	62.	 Wu J, Dick C, Westermann R (2016) A system for high resolution
topology optimization. IEEE Trans Vis Comput Gr 22:1195–1208

	63.	 Xie Y, Steven G (1993) A simple evolutionary procedure for
structural optimization. Comput Struct 49(5):885–896. https​://
doi.org/10.1016/0045-7949(93)90035​-C

	64.	 Xie Y, Steven G (1996) Evolutionary structural optimization for
dynamical problems. Comput Struct 58:1067–1073

	65.	 Xie Y, Steven G (1997) Evolutionary structural optimization, 1st
edn. Springer, Berlin

https://doi.org/10.1007/s00158-015-1261-9
https://doi.org/10.1007/s00158-015-1261-9
https://doi.org/10.1007/BF01742754
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1016/0045-7949(93)90035-C
https://doi.org/10.1016/0045-7949(93)90035-C

1079Engineering with Computers (2019) 35:1059–1079	

1 3

	66.	 Yang X, Xie Y, Steven G (2005) Evolutionary methods for topol-
ogy optimization of continuous structures with design dependent
loads. Comput Struct 83:956–963

	67.	 Zegard T, Paulino G (2013) Toward GPU accelerated topology
optimization on unstructured meshes. Struct Multidiscip Optim
48:473–485. https​://doi.org/10.1007/s0015​8-013-0920-y

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00158-013-0920-y

	Multi-physics bi-directional evolutionary topology optimization on GPU-architecture
	Abstract
	1 Introduction
	2 Methodology
	2.1 Lattice Boltzmann modelling
	2.2 Topology optimisation
	2.2.1 Evolutionary structural optimisation
	2.2.2 Sensitivity analysis
	2.2.3 Mesh dependency and convergence
	2.2.4 Convergence criteria

	3 Case study
	4 Compliance minimization
	4.1 CPU implementation
	4.2 Single-precision GPU implementation
	4.3 Double-precision GPU implementation
	4.4 Difference between CPU and GPU implementation

	5 Vorticity maximization
	5.1 CPU implementation
	5.2 Single-precision GPU implementation
	5.3 Double-precision GPU implementation

	6 Constrained topology optimization
	6.1 Symmetry constraint
	6.1.1 Compliance minimization
	6.1.2 Vorticity maximization

	6.2 Feasibility constraint

	7 Summary
	8 Conclusion
	Acknowledgements
	References

