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Abstract
Topology optimization has proven to be viable for use in the preliminary phases of real world design problems. Ultimately, 
the restricting factor is the computational expense since a multitude of designs need to be considered. This is especially 
imperative in such fields as aerospace, automotive and biomedical, where the problems involve multiple physical models, 
typically fluids and structures, requiring excessive computational calculations. One possible solution to this is to implement 
codes on massively parallel computer architectures, such as graphics processing units (GPUs). The present work investi-
gates the feasibility of a GPU-implemented lattice Boltzmann method for multi-physics topology optimization for the first 
time. Noticeable differences between the GPU implementation and a central processing unit (CPU) version of the code are 
observed and the challenges associated with finding feasible solutions in a computational efficient manner are discussed 
and solved here, for the first time on a multi-physics topology optimization problem. The main goal of this paper is to speed 
up the topology optimization process for multi-physics problems without restricting the design domain, or sacrificing con-
siderable performance in the objectives. Examples are compared with both standard CPU and various levels of numerical 
precision GPU codes to better illustrate the advantages and disadvantages of this implementation. A structural and fluid 
objective topology optimization problem is solved to vary the dependence of the algorithm on the GPU, extending on the 
previous literature that has only considered structural objectives of non-design dependent load problems. The results of this 
work indicate some discrepancies between GPU and CPU implementations that have not been seen before in the literature 
and are imperative to the speed-up of multi-physics topology optimization algorithms using GPUs.

Keywords  Lattice Boltzmann method · Graphics processing units · Real world applications

1  Introduction

Over the past two decades topology optimization has rap-
idly matured to a point where it can be used in real world 
design applications with minimal limitations [34]. However, 
one such limitation is the computational resources required 
for large scale problems [11]. For engineering problems, 
the design space being considered is large and the objective 
function typically involves multiple, complicated, physi-
cal phenomena. Therefore, this leads to computationally 
intensive problems. The aim of this paper is to determine 
the feasibility of using GPUs with multi-physics topology 

optimization algorithms for real world design problems. The 
increase in computational efficiency due to the GPU archi-
tecture and quality of the final solutions are compared with 
the same problem implemented on a CPU.

Recently, reductions in computational expense are 
achieved by increasing the level of parallelism, i.e. increas-
ing the number of computational cores while maintaining 
the same clock frequency, in the code [67]. This has meant 
the development and use of many-core processors, which 
are processors that have evolved to a high-level of paral-
lelism, for such tasks. GPUs are a class of many-core pro-
cessors. GPUs have a different design approach compared 
with CPUs. CPUs are a general purpose multi-core proces-
sor containing many high level instructions, whereas GPUs 
are many-core processors that have a faster and smaller set 
of instructions, but are capable of handling a large num-
ber of concurrent threads. Therefore, GPUs can be used to 
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drastically speed up computationally intensive problems and 
reduce the overall computational expense.

Topology optimization, generally speaking, aims to 
evolve an initial design towards an optimum one with 
regards to minimizing a given objective under several con-
straints [6]. Several approaches have been developed to 
guide the evolution of the topology towards the optimum 
[11, 34, 49]. These approaches can be divided into two main 
fields: continuous and discrete. Continuous methods, such 
as the solid isotropic material with penalization (SIMP) [4, 
45], apply a relaxation on the design variables so that their 
values can be inside the entire range defined by [0, 1]. Dis-
crete methods, such as evolutionary structural optimization 
(ESO) [63] and level-set (LS) [41], do not relax the problem 
and hence restrict the design variables to the boundaries 
of the range {0, 1} . While some effort using SIMP and LS 
methods have been solved with GPU architectures [3], only 
one recent study exists with ESO methods [30] and only 
with structural optimization.

Application of the SIMP method to large-scale problems, 
with millions of design variables, has proven to be compu-
tationally demanding and, therefore, requires a high level of 
parallelism [3]. As an example, the work of Mahdavi et al. 
[28] demonstrates a SIMP method for topology optimization 
with parallelization on a CPU. Further Vemaganti and Law-
rence [58], look at three different parallel linear solvers for 
SIMP topology optimization showing speed-up and reduced 
effects of ill-conditioning in the finite element problems. 
However, GPUs as an alternative low-cost-high-performance 
system have also been tested for solving topology optimiza-
tion problems with SIMP methods. Schmidt and Schulz [47] 
use SIMP on structured meshes with a matrix-free conjugate 
gradient solver, showing that it is faster than when a CPU 
with 48 cores shared memory is used. Such a strategy was 
also employed by Suresh [53] for solving of the system of 
equations of elasticity, achieving speedups of one order of 
magnitude. A GPU-implemented SIMP method with a pre-
conditioned conjugate gradient solver applied to a 2D plate 
with a heat source yielded a speed up of 20 times compared 
with a single CPU and 3 times against a multi-threaded CPU 
[59]. This study was limited to single-precision format, due 
to the lack of a native double-precision support for early 
GPUs, which meant that convergence of the solver was not 
ensured due to round-off errors. Recently, a SIMP approach 
for unstructured meshes was implemented on a GPU by 
Zegard and Paulino [67], focusing on assembly of the stiff-
ness matrix. Furthermore Wu et al. [62], used the geometric 
multi-grid preconditioning for the GPU instance of precon-
ditioned conjugate gradient solvers to perform a reduced 
number of finite element analyses (FEA), and iterations per 
FEA, in the SIMP algorithm. This is achieved by reducing 
the tolerance of the iterative method to increase the GPU 
performance. However, using this configuration the solution 

is likely to arrive at a local optimum, meaning a more sound 
solution might exist [62]. This loss in accuracy was assumed 
by the authors for the sake of efficiency.

In topology optimization the LS method evolves the 
boundaries of the structure by minimizing a given objective. 
The boundary evolution is solved using a finite difference 
method, which acts on a reduced group of elements, making 
it suitable for efficient GPU processing [32]. The LS method 
was implemented on a GPU architecture by Herrero et al. 
[17]. Later, an inverse homogenization problem was solved 
with a GPU implementation of a LS method by Challis et al. 
[8], targeting high resolution topology optimization. They 
recorded an increasing speed-up with problem size, reaching 
13 times speed-up for 3D problems containing over 4 million 
design variables.

Meta-heuristic optimization methods, where no gradients 
are taken, can also be used to solve real world problems of 
high-dimensionality [31]. These methods often use nature 
inspired algorithms, which are ideal for intelligently harness-
ing the capacity of GPUs. One such method, which uses a 
Tabu Search algorithm, has been implemented on a GPU 
architecture [56]. They showed that for problems of high 
dimensionality, defined as 270 variables or more, the GPU-
implemented version of the code outperforms the CPU ver-
sion. Up to a 12% speed up was recorded. Later, the same 
authors developed a GPU-implemented lattice Boltzmann 
method (LBM) and applied the TS algorithm to a micro flu-
idic device [57]. They noted that the most computationally 
intensive part of the process was the simulation of the flow 
via LBM. Therefore, the TS algorithm was employed on a 
CPU, since relatively small speed-ups were achieved [56], 
and the LBM was employed on a GPU. The TS combined 
with the GPU-LBM delivered results approximately 20 
times faster compared to an earlier system that employed a 
CPU-based LBM code [10]. Recently Laniewski-Wollk and 
Rokicki [24], developed a discrete adjoint formulation for a 
wide class of LBMs. They implement their LBM on a GPU 
architecture for channel flow to design a free-topology mixer 
and heat exchanger using the method of moving asymptotes 
(MMA) and a simple descent algorithm, separately. While 
the method was not compared to a CPU implementation of 
the code, it was shown to be efficient by demonstrating that 
the code had nearly linear weak scaling.

The limited literature on GPU-implemented topology 
optimization shows that the solver is the most time consum-
ing part of the optimization and hence should be the focus 
during the adaptation to GPU architecture [3]. Furthermore, 
the other procedures, such as the optimizer, are not compu-
tationally expensive and therefore not directly relevant for 
good acceleration through GPU. Hence, studies have focused 
on implementing the solver on GPU architectures without 
topology optimization. For purely structural topology opti-
mization a finite element solver is used to determine the 
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displacements of the structure under a given load. Cecka 
et al. [7] presented a GPU accelerated FEA code using an 
unstructured mesh, achieving a speed-up of 30 or more 
compared to an optimized double-precision single core 
implementation. For a review of the literature on the use of 
GPUs in FEA the reader is advised to seek the manuscript 
by Georgescu et al. [16]. Topology optimization of multi-
physics problems is a much less researched topic, especially 
compared to structural topology optimization. This may be 
because computational fluid dynamics (CFD) is a much 
more computationally intensive task compared with FEA. 
Recent studies have shown the potential of LBM methods 
in multi-physics topology optimization [24, 29, 35, 36, 42, 
43]. Further, since the LBM operates on a finite difference 
grid, is explicit in nature and requires only next neighbor 
interaction, it is very suitable for implementation on GPUs 
[55]. Tölke and Krafczyk [55] demonstrate a very efficient 
implementation of a LBM in 3D on a GPU. They obtain an 
efficiency gain of up to two orders of magnitude with respect 
to the performance on a CPU. Kuznik et al. [23] implement 
a general purpose LBM code, with all steps of the algo-
rithm running on the GPU, achieving up to one billion lattice 
updates per second using single-precision floating points. 
Further, they show that single-precision floating point arith-
metic is sufficient having a 3.8 times speed-up compared to 
double-precision. GPU implementation of LBMs have been 
used for real-time visualization of fluid–structure interac-
tions (FSI) for two-dimensional problems [15]. The authors 
achieved a speed increase when using their GPU-LBM of 
222 times compared with a one core and 78 times compared 
with a two core CPU. Schönherr et al. [48] compare two 
multi-thread based parallel implementations of the LBM 
on different hardware platforms: a multi-core CPU imple-
mentation and a GPU implementation. They show that the 
limiting factor for the speed of the lattice Boltzmann simula-
tion is the memory bandwidth. More recently Obrecht et al. 
[40], present a multi-GPU LBM solver managing to run the 
solver on six GPUs in parallel. With this architecture, they 
observed up to 2.15 × 109 node updates per second for the 
2D lid-driven cavity test case. Such a performance is compa-
rable to large high performance clusters or massively parallel 
super computers, showing the potential of GPU implemen-
tation in LBMs. Delbosc et al. [12] showed that real-time 
compute capability and satisfactory physical accuracy are 
achievable by combing a lattice Boltzmann model with the 
parallel computing power of a GPU. Along these lines Khan 
et al. [22], performed real-time simulations of indoor envi-
ronments, demonstrating significant speed up when imple-
menting a lattice Boltzmann method on a GPU compared 
with traditional CFD based large eddy simulations.

The aim of this article is to determine the feasibility of 
using a GPU-LBM code with a bi-directional evolutionary 
structural optimization (BESO) algorithm for real world 

multi-physics design problems. So far BESO algorithms 
have not been employed with GPU architectures [3]. Fur-
thermore, GPU implementation in topology optimization 
is a very recent field of research and therefore more stud-
ies must be made to increase the application of topology 
optimization in real world design problems. To the best of 
the authors’ knowledge this is the first time a multi-physics 
topology optimization problem with an LBM-FEA code is 
implemented in a GPU architecture and compared with a 
CPU version of the code. The speed-up and optimization 
results are compared and discussed giving new insights into 
the difficulties involved with GPU-implemented topology 
optimization.

2 � Methodology

In this section, the LBM for modeling the fluid dynamics 
is briefly introduced. This is followed by the mathemati-
cal definition of the topology optimization problem and the 
BESO method is then described. For further details on GPU 
computing, the LBM and BESO methods the reader should 
seek out the textbooks by Sanders and Kandrot [46], Succi 
[52] and Huang and Xie [20], respectively.

2.1 � Lattice Boltzmann modelling

The ability to simulate flows through the use of CFD has 
progressed considerably, reducing test requirements at a 
lower cost and risk. Furthermore, CFD has been used to 
simulate real-world phenomena [25]. In the case when 
engineering applications require resolving fluid interac-
tions with high accuracy, or involve low Mach number flow, 
mesoscopic flows and complex geometrical arrangements, 
LBM offers an alternative CFD method rather than using 
the Navier–Stokes (NS) equations [52]. Moreover, LBM has 
been applied to a wide range of applications from theoretical 
physics to real-world problems, and is expected to provide 
one of the next evolutions in the computational sciences [2, 
60], notably for multi-scale simulation and optimization 
[26, 27]. The LBM is a memory-bound algorithm, which 
makes it suitable for the GPU architectures. GPU offers a 
computational environment with many processors. GPU-
implemented LBM codes have been used on a variety of 
applications in the aerospace field [60], being competitive 
in both accuracy and execution speed. However, the LBM 
has not been used extensively in topology optimization algo-
rithms [35]. Furthermore, to the best of the authors’ knowl-
edge, a GPU-implemented LBM has not been coupled with 
and compared against CPU topology optimization codes. 
Therefore, this work couples a GPU-implemented LBM to 
a BESO algorithm and compares both the final design, in 
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terms of objective, and the computational time to a CPU-
implemented version of the code.

The LBM constructs kinetic models, based on Newton’s 
laws, incorporating the essential physics of microscopic pro-
cesses, such that one can correctly model the macroscopic 
processes. A finite number of molecules, whose motion is 
governed by Newton’s laws of dynamics, are used to model 
the fluid. A discretized Boltzmann equation is solved by the 
LBM, which uses velocity distribution functions to repre-
sent macroscopic properties. Both collision, the interaction 
of two particles, and streaming, the movement of particles 
from one node to the nearest neighbor, are modeled by the 
discrete Boltzmann equation. The fundamental concept 
behind the LBM is to calculate the macroscopic quantities 
from the moments of the finite number of velocity distribu-
tion functions, which are obtained by solving the discrete 
Boltzmann equation. A D3Q19 lattice is used in this work, 
i.e. 3 dimensions and 18 moving particles per rest node. The 
total number of iterations used for the LBM simulations is 
4000, since stability has been demonstrated and validated 
against NS simulations using a commercial code, ANSYS 
CFX [14], and experimental analysis [33]. For a more in-
depth overview of the LBM, interested readers should seek 
out the textbook by Succi [52]. For details on how the LBM 
and FEA are coupled, the reader is advised to seek out the 
previous works by the authors on this topic [35–37].

2.2 � Topology optimisation

The first optimization problem studied in this article is the 
compliance minimization, or stiffness maximization, of a 
micro fluidic mixer under fluid pressure loads with a struc-
tural volume constraint. Therefore, the objective is to find 
the distribution of a pre-defined amount of material such 
that a design with maximum stiffness is obtained. Hence, 
the topology optimization problem can be mathematically 
stated as:

where � is the vector of design variables, xi , n is the total 
number of elements in the model and V is a predefined struc-
tural volume. Since the algorithm is discrete (Sect. 1) the 
design variables can only be equal to xi = 1 , representing 
solid material, or xi = 0 , representing fluid/void material.

The second optimization problem this article is concerned 
with is the vorticity maximization of micro fluidic mixers for 
a given Reynolds number and structural volume. Therefore, 
the objective is to find the topology of the mixer that gives 

(1)

Minimize:
1

2
�T[�]�

subject to: [�]� = �
n∑
i=1

xiVei
≤ V

� = {0, 1},

the highest vorticity in the region of interest. Hence, the 
topology optimization problem for this case is mathemati-
cally formulated as follows:

where ��⃗𝜔 is the vorticity of the flow in the region of interest, 
Re is the Reynolds number of the flow, and Re0 represents 
a predefined Reynolds number. For this problem, a design 
variable of xi = 1 represents fluid elements, whereas xi = 0 
represents solid elements.

2.2.1 � Evolutionary structural optimisation

The original ESO algorithm is monotonic, i.e. elements can 
only be removed from the design domain [63]. These early 
methods are based on the successive elimination of inef-
ficient material, gradually evolving the design towards the 
optimum [65]. Although the ESO method has been applied 
to a wide range of problems [51, 64], it is limited in two 
main ways. First, as already mentioned, structure can only 
be removed from the design domain, consequently the ini-
tial model must be significantly over designed. Second, if 
structure is prematurely removed it cannot be recovered 
[34]. Subsequent ESO methods, referred to as BESO, allow 
material to be re-admitted to the design domain [44]. Mod-
ern BESO algorithms are convergent and mesh independ-
ent [18], simultaneously removing and adding material 
from and to the design domain until all constraints and a 
convergence criterion are satisfied. More recently, a fur-
ther improvement to BESO methods introduced the use of 
soft material to model the void elements in the FEA [19], 
known as soft-kill BESO with the former being hard-kill 
BESO. This article uses a soft-kill BESO method coupled 
to a GPU-implemented LBM. This work builds on a recent 
study by the authors [35], which implemented a CPU version 
of the code, aiming to drastically improve computational 
efficiency, bring high-fidelity methods forward to the pre-
liminary design stage.

2.2.2 � Sensitivity analysis

In this study, two different objectives are considered 
(Sect.  2.2). The first is minimum compliance or maxi-
mum stiffness, used for structural optimization. In FEA the 
removal of an element results in a reduction in the stiffness 
of the structure which is equal to the element strain energy 

(2)

Minimize: − ��⃗𝜔

subject to: Re = Re0
n∑

i=1

xiVei
≤ V

� = {0, 1},
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[9]. This change is defined as the element sensitivity for the 
compliance minimization problem:

where c is the compliance, p = 3 is the penalization fac-
tor, the subscript e represents elemental values and super-
script cmp and 0 represents a compliance objective and 
solid values, respectively. The element sensitivity (Eq. 3) 
takes advantage of the SIMP material model [5], where the 
Young’s modulus, E, is modeled using a power law penaliza-
tion method, as follows:

In design-dependent load problems, as is the case here, 
changes in the structure lead to variations in the load vector. 
Therefore, this variation in the load vector must be consid-
ered in the sensitivity analysis [35]. Thus, from the definition 
of the optimization problem (Eq. 1) the sensitivity analysis 
for compliance minimization (Eq. 3) can be updated such 
that the variation in the load vector is considered, as follows 
[35, 37, 66]

where ��e is the change in the element load vector between 
optimization iterations. Taking the isoparametric bilinear 
elements used in this work, the change in the load vector of 
one element for a fluid pressure load is found by [35]

where Pi and Ai are the pressure load and elemental area, 
respectively. Equation 6 is applicable for cases where the 
flow travels in the x-direction and the structure is aligned 
perpendicular to the flow, as is the case in this study. If this is 
not the case then the vector defined in Eq. 6 must be updated 
to match the loading conditions. This study takes advan-
tage of a two-domain approach, i.e. the structural and fluid 
dynamics are solved separately, during every optimization 
iteration. This method is more flexible than a monolithic 
approach, which solves an adjoint problem to update the 
structure and fluid solutions together. Furthermore, a mon-
olithic approach is problem specific unlike a two-domain 
approach, which can be applied to all FSI problems. In a pre-
vious study by the authors [37], this approach was demon-
strated to work well as both the structural and fluid dynamics 
were shown to converge, even allowing a relaxation of the 
coupling conditions.

The second objective considered in the paper is vorticity 
maximization (Sect. 2.2). Thus, the goal of this problem is, 
for a given Reynolds number, to increase the mixing of two 

(3)�cmp
e

=
�c

�xi
=

1

2
px

p−1

i
�T
e
[�]0

e
�e,

(4)E(xi) = E0x
p

i
.

(5)�cmp
e

=
�c

�xi
=

1

2
px

p−1

i
�T
e
[�]0

e
�e + px

p−1

i
�T
e
��e,

(6)��e =
1

4
PiAi{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,… , 0}T

24×1
,

fluid species. This is imperative for the operation of micro 
fluidic mixers, as their purpose is to efficiently mix two, or 
more, fluid species. Hence, since the flows have low Reynolds 
numbers, normally lower than 1000, vorticity is an accurate 
measure of the degree of mixing as shown in the works of 
Woodfield et al. [61] and Moghtaderi et al. [33]. The authors 
of this work recently developed a soft-kill BESO method for 
the vorticity maximization of fluids using the LBM [35]. The 
circulation method for vorticity [1] and the shape derivative 
given in Kasumba and Kunisch [21] are used to derive the 
sensitivity number to solve this optimization problem. There-
fore, the sensitivity number for the vorticity maximization is 
determined by:

where ��⃗𝜔 is the vorticity of the flow, the superscript vrt rep-
resents the vorticity objective and ��e is the change of, � , 
the element velocity vector defined as:

where �x , �y , �z are the spatial components and Wx , Wy and Wz 
are the circulation components. For more information on the 
derivation of the sensitivity numbers (Eqs. 5 and 8) and for 
a validation against meta-heuristic algorithms the reader is 
advised to seek out the previous study by the authors [35], 
which outlines the method in more detail.

2.2.3 � Mesh dependency and convergence

To guarantee that a solution to the topology optimization prob-
lem (Eqs. 1 and 2) exists, some restrictions on the design must 
be introduced [50]. The sensitivity numbers can become dis-
continuous across the element boundaries, resulting in mesh 
dependency or checkerboarding (the repetition of solid and 
void material). A filter scheme is used, to smooth the element 
sensitivity numbers across the entire domain, alleviating the 
problem of mesh dependency and checkerboarding. The filter 
scheme is similar to that presented by Sigmund and Petersson 
[50]; however, nodal sensitivity numbers are used when cal-
culating the updated element sensitivity numbers based on the 
surrounding structure. The nodal sensitivity numbers are found 
by taking the average of all the element sensitivity numbers 
that are connected to the node, thus:

where M is the number of elements connected to the jth node 
and �ei is the ith element sensitivity number (Eqs. 5 and 7). 
The weighting factor of the ith element, wi , is a function of 

(7)𝛼vrt
e

= max(��⃗𝜔) − 𝛥𝛾T
e
x
p−1

i
𝛥𝛾e,

(8)�e =
{
��x,��y,��z,�Wx,�Wy,�Wz

}T
,

(9)�nj =

M∑

i=1

wi�ei ,
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the distance between the center of the ith element and the 
jth node, rij , thus:

The nodal sensitivity numbers (Eq. 9) are then used in the 
mesh independency filter to find the smooth element sensi-
tivities. A filter radius, rmin , is defined to identify the nodes 
that will have an effect on the element sensitivity. The value 
of rmin must be large enough such that the associated sub-
domain, � , covers at least one element. Furthermore, this 
value must remain constant for all mesh sizes. Nodes that are 
located inside � contribute to the smoothing of the element 
sensitivity, by:

where N is the total number of nodes in the sub-domain, � , 
and w(rij) is the linear weighting factor, defined as:

The filter scheme effectively addresses the mesh-dependency 
and checkerboard problems. However, the objective func-
tion and corresponding topology may not be convergent. To 
overcome this problem, Huang and Xie [18] showed that 
when the sensitivity numbers (Eq. 11) are averaged with 
their previous values the solution becomes steadier, thus:

where itr is the current iteration number. Therefore, the 
updated sensitivity number includes the history of the sen-
sitivity information from previous iterations.

2.2.4 � Convergence criteria

For every iteration the BESO algorithm defines a target vol-
ume, found by:

where ER, the evolutionary ratio, is a percentage of the 
current structural volume, and increases or decreases Vitr+1 
towards the desired volume constraint, V, defined in Eq. 1. 
This, in turn, sets the threshold, �th , of the sensitivity num-
bers. Thus, solid elements are removed from the design 
domain when:

and elements are added back to the design domain when:

(10)wi =
1

M − 1

�
1 −

rij
∑M

i=1
rij

�
.

(11)�ei =

∑N

j=1
w(rij)�nj

∑N

j=1
w(rij)

,

(12)w(rij) = rmin − rij j = 1, 2,… ,N.

(13)�ei =
�itr
ei
+ �itr−1

ei

2
,

(14)Vitr+1 = Vitr(1 ± ER),

(15)�ei ≤ �th,

(16)𝛼ei > 𝛼th.

A maximum addition ratio, ARmax , is set to restrict the 
amount by which the volume of the structure can increase 
between iterations. Once AR > ARmax , the elements with 
the highest sensitivity numbers only are added, such that 
AR = ARmax . Then, to satisfy the target volume Vitr+1 , the 
elements with the lowest sensitivity numbers are removed.

The iteration target volume remains constant at V once the 
volume constraint is satisfied. The topology evolves until a 
convergence criterion is satisfied. This is defined as:

where � is a predefined tolerance, O is the objective function 
and itr is the current iteration of the optimization algorithm. 
Equation 17 evaluates the change in the objective for the 
last ten solutions. Therefore, if the change in the objective 
is minimal the solution is said to be converged. For a more 
in-depth discussion on evolutionary structural optimization 
algorithms, one should consult the latest textbook [20] and 
review paper [34] on the subject.

3 � Case study

A baffled micro-reactor is used in this study as depicted in 
Fig. 1. The model is made up of a main pipe which is fitted 
with a fuel inlet tube, running along the axis of the main 
pipe, and a multi-holed baffle, which is where the secondary 
flow is introduced to the main flow. The lay-out and initial 
topology of the baffle are shown in Fig. 1.

The fluid domain (Fig. 1c) is defined in LBM nodes, here 
the lattice used has dimensions 680 × 73 × 73 lattice units, 
with additional nodes used for the wall, in the x, y and z 
directions, respectively. The location of the baffle in the main 
pipe is 60 lattice units downstream of the flow inlet (Fig. 1c). 
The inlet boundary condition imposed is the velocity of the 
flow in the inlet tube and annulus area. The outlet boundary 
condition has a convective boundary condition, based on 
the velocity, applied. A no-slip condition is implemented 
along the walls by modeling them as full-way bounce-back. 
To mimic the experiments performed by Moghtaderi et al. 
[33], the difference in the mass flow rate between the inner 
tube and annulus area is set to 5%.

In the FEA a clamped boundary condition is applied 
along the perimeter of the baffle. Non-designable material is 
designated for the central hole boundary, since this is deter-
mined by the fuel line and inlet conditions, which have been 
fixed in the flow domain (Fig. 1a) to be consistent with the 
previous studies [14, 33].

The CPU simulations are performed on an Intel(R) 
Core(TM) i7-2720QM CPU 2.20 GHz using 4 cores in 

(17)�O =

∑4

k=0
Oitr−k −

∑9

k=5
Oitr−k

∑4

k=0
Oitr−4

≤ �,
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parallel. The GPU simulations are performed on a Tesla 
M2070 with 5375 MB of total global memory, 448 available 
cores, 1150 MHz of stream processor rate and 1566 MHz 
of memory clock rate. However, the speed of a simulation 
on the GPU is affected by the number of threads, which 
are created in the GPUs. Therefore, the specification of the 
hardware automatically calculates the number of threads by 
using the interfacing features of CUDA to query the pro-
vided GPU. Here, the solver is instructed to use 512 threads 
per block/kernel for a single simulation, which is one of the 
fastest settings provided by the current GPU.

4 � Compliance minimization

In this section, topology optimization (Sect. 2.2) is applied 
to the multi-holed baffle plate (Fig. 1b) to maximize its stiff-
ness for a given volume fraction. First, the CPU results are 
presented. These results are used as the benchmark for the 
GPU-implemented solutions. This is followed by the results 
of the single-precision GPU implantation of the code. In 
the literature of GPU-implemented FEA codes, it has been 
shown that using single-precision can cause numerical 
issues which result in convergence issues [67]. Therefore, 
a double-precision version of the code is implemented and 
compared with the CPU and single-precision GPU results 
as well. However, it must be noted that while double-
precision improves the numerical accuracy compared to 

single-precision, it only partially corrects these numerical 
issues as has been shown in [13, 54].

4.1 � CPU implementation

The CPU-LBM code is coupled with the BESO algorithm 
(Sect. 2.2). The optimization parameters: evolutionary ratio, 
ER = 0.02 , volume fraction, V = 0.58V0 , maximum addition 
ratio, ARmax = 0.02 , and tolerance, � = 0.001 ; are defined 
before the BESO algorithm is applied. The CFD mesh has 
21,742,320 degrees of freedom. The initial and final struc-
ture is shown in Fig. 2.

The final design obtained using the CPU code has been 
validated in previous numerical studies [35, 36]. The com-
pliance of the initial structure is 5.13 × 109 Nm , whereas the 

Fig. 1   Baffled micro-reactor 
used in this study [57]

(a) Fluid domain (b) Multi-holed baffle plate

(c) Lay-out of micro-reactor model

(a) Initial structure (b) Final structure

Fig. 2   Initial and final topology found using the CPU-LBM BESO 
algorithm
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final structure has a compliance of 2.281 × 109 Nm . There-
fore, the CPU-implementation of the code is able to reduce 
the compliance by approximately 56% . The convergence his-
tory for the CPU algorithm is shown in Fig. 3.

The algorithm takes 179 iterations to converge to the final 
solution (Fig. 3) when performed on a CPU. The computa-
tion time is approximately 7 days and 11 h to complete the 
optimization. This is mainly due to the computational bur-
den of the LBM, which has to be run 179 times. Typically, at 
the preliminary design stage, hundreds of design variations 
are being considered. Thus, at this computational expense 
it would take the CPU-implementation years to run all the 
cases. Hence, this is not a viable option and could only be 
used for the last iterations later in the design process.

4.2 � Single‑precision GPU implementation

The most computational efficient version of the multi-phys-
ics topology optimization algorithm studied in this work 
makes use of the single-precision GPU-LBM. However, one 
finds in the literature, on GPU-implemented topology opti-
mization algorithms, cases where single-precision results in 
a lack of convergence, due to the inherent round-off errors 
[30]. Thus far, GPU-implemented topology optimization 
has been confined to structural optimization, hence GPU-
FEA codes are producing these errors (Sect. 1). Therefore, 
it is expected in this study to observe similar errors when a 
single-precision code is used, since this study extends the 
GPU implementation to multi-physics problems. Namely, 
GPU fluids and CPU structures.

The single-precision GPU-LBM code is coupled with 
the BESO algorithm (Sect. 2.2). The optimization param-
eters are identical to the previous case (Sect. 4.1). The final 

structure determined by CPU and single-precision GPU is 
shown in Fig. 4.

The final structure obtained using the single-precision 
GPU code is clearly not optimal (Fig. 4). First, the initial 
structure (Fig. 2a) has a symmetry about the x- and y-axis, 
which is lost with the use of the single-precision GPU code. 
Further, it is known that the optimal structure for this par-
ticular problem should be symmetric, since the physics of 
the problem does not contain any unsymmetrical behav-
ior [35, 36]. Second, there is clear evidence of numerical 
errors in the topology (Fig. 4b), shown by the small holes 
that have formed, which are not present in the final topol-
ogy of the CPU code (Fig.  4a). The compliance of the 
final structure found using the single-precision GPU code 
is 3.912 × 109 Nm , which is 71.5% increase from the final 
compliance of the structure found by the CPU code. The 
convergence history of the single-precision GPU algorithm 
is shown in Fig. 5.

Clearly convergence is never achieved by the single-
precision GPU algorithm, which stops after 336 iterations 

Fig. 3   Convergence history for the compliance minimization problem 
using the CPU-LBM BESO algorithm

(a) CPU (b) Single-precision GPU

Fig. 4   Final topology found using the single-precision GPU-LBM 
BESO algorithm and comparison with the CPU optimum

Fig. 5   Convergence history for the compliance minimization problem 
using the single-precision GPU-LBM BESO algorithm
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(Fig. 5). This equates to a computational time of approxi-
mately 13 h, 31 min and 48 s. However, while this is a sig-
nificant improvement over the computational expense of the 
CPU algorithm, over 13 times faster, the final result is not 
a feasible optimum. One could take the best solution found 
by the algorithm, in this case at iteration 47 a solution was 
found having a compliance of around 2.6 × 109 Nm , but 
convergence is never achieved and thus it is unlikely this 
solution is an optimum. Alternatively the best solution found 
could be used as an initial structure for an algorithm that is 
known to converge, possibly speeding up the overall process. 
Therefore, the single-precision GPU-driven topology opti-
mization code, of this work, cannot guarantee convergence 
for the multi-physics compliance minimization problem. 
This confirms the conclusions of previous studies, which 
have observed the same phenomena for GPU-implemented 
SIMP algorithms on structural optimization problems [30, 
67]. Thus, double-precision must be used.

4.3 � Double‑precision GPU implementation

Double-precision GPU codes are not as computationally 
efficient as single-precision GPU codes; however, they have 
a lower round-off error due to a higher floating point capac-
ity. This is also the cause of the reduction in computational 
efficiency, since more memory is needed to store a higher 
amount of floating points. The GPU used in this work has 
a 2.0 compute capability, meaning that the floating point 
computation abides by the IEEE 754 standard for floating 
point arithmetic. Hence, round-off errors should be kept to 
a minimum.

The double-precision GPU-LBM code is coupled with 
the BESO algorithm (Sect. 2.2). The optimization param-
eters are again identical to the benchmark case (Sect. 4.1). 
The final structure determined by the single-precision and 
double-precision GPU codes is shown in Fig. 6.

The final structure obtained using the double-preci-
sion GPU code shows a significant improvement over the 

single-precision GPU (Fig. 6). The structure is symmet-
ric about both the x- and y-axis (Fig. 6b). Furthermore, 
no numerical errors are present in the structure, unlike the 
single-precision GPU code (Fig. 6a). Moreover, clear simi-
larities between the final structure found using the CPU code 
(Fig. 2b) and the structure found using the double-precision 
GPU code are observed. The compliance of the final struc-
ture found using the double-precision GPU algorithm is 
2.577 × 109 Nm , which is a 34% reduction compared with 
the single-precision GPU code and only a 12% increase com-
pared with the CPU code. This increase in compliance is 
significant; however, by observing the convergence history 
of the CPU algorithm (Fig. 3) it is clear that the double-
precision GPU algorithm is converging to a local optimum. 
This is evident by comparing the final compliance found 
by the double-precision GPU algorithm with the multiple 
convergence cycles of the CPU algorithm (Fig. 3). Moreo-
ver, in a recent study by the authors [37], it was shown that 
several local optima for this problem exist. Therefore, it is 
well known that one cannot criticize a gradient based opti-
mization method for finding a locally optimal solution. The 
convergence history of the double-precision GPU algorithm 
is shown in Fig. 7.

Unlike the single-precision GPU code, convergence 
is achieved for the double-precision GPU code (Fig. 7). 
Furthermore, the double-precision topology optimization 
algorithm only takes 129 iterations to converge, which is 
less than the 179 iterations required by the CPU algorithm 
(Sect.  4.1). Hence, the computational time required to 
achieve convergence is approximately 10 h, 1 min and 48 s. 
Hence, 1 optimization iteration takes approximately 280 s, 
which is about double the time the single-precision topol-
ogy optimization code takes (145 s). Therefore, the double-
precision GPU code is implemented efficiently. Moreover, 

(a) Single-precision GPU (b) Double-precision GPU

Fig. 6   Final topology found using the double-precision GPU-LBM 
BESO algorithm and comparison with the single-precision GPU opti-
mum

Fig. 7   Convergence history for the compliance minimization problem 
using the double-precision GPU-LBM BESO algorithm
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the double-precision GPU code is about 18 times faster than 
the CPU code, with a 12% reduction in objective. Hence, 
Pareto’s principle of design is applicable here—80% of the 
design comes from 20% of the time. Thus, this computa-
tional efficiency is more than beneficial at the preliminary 
design stages. Therefore, the double-precision GPU code 
could feasibly be used at the preliminary stages, whereas 
the CPU code could only be employed at the last stages in 
the design.

4.4 � Difference between CPU and GPU 
implementation

The final analysis of this section is to quantify the differ-
ence between the CPU and GPU algorithms. Clearly, the 
CPU algorithm is able to find an optimal solution (Sect. 4.1), 
while the single-precision GPU is not (Sect. 4.2). The rea-
son for this must lie in a discrepancy between the two algo-
rithms calculated sensitivity functions, which drive the 
design updates. Therefore, to quantify this discrepancy, the 
percentage difference of the sensitivity functions for the ini-
tial baffle topology using the CPU and GPU algorithms, i.e. 
|�CPU − �GPU|∕�CPU , is illustrated in Fig. 8.

Clearly the discrepancies are kept to a minimum, having 
a maximum difference of 0.48% and an average difference 
of 0.038% (Fig. 8). However, one observation is that the 
distribution of the difference between the two sensitivity 
functions is not uniform and, more importantly, not sym-
metric. This explains why the GPU implemented algorithm 
becomes asymmetric, driving the solution to a non-optimal 
final design (Sect. 4.2). Therefore, even small variations, 
due to differences in computational architecture are able to 
perturb a system away from the optimum design. This is an 

important consideration when performing topology optimi-
zation on GPU-architectures.

5 � Vorticity maximization

The second problem solved in this article applies the topol-
ogy optimization algorithm (Sect. 2.2) to the multi-holed 
baffle plate (Fig. 2b) to maximize the amount of mixing 
between the two fluid species in the micro fluidic mixer. 
This problem is first solved using a CPU implementation 
of the code, to get a benchmark, which the GPU implemen-
tation can be compared against. A single-precision GPU-
implemented code is then applied to the same problem. The 
previous section demonstrated how the lower floating point 
accuracy of single-precision GPU can lead to convergence 
errors in the topology optimization algorithm. Therefore, 
a double-precision GPU implementation is applied to the 
problem and compared against the CPU and single-precision 
GPU results.

5.1 � CPU implementation

The CPU-LBM code is coupled with the BESO algorithm 
(Sect. 2.2). The optimization parameters are identical to that 
of the compliance minimization problem (Sect. 4). Further-
more, the CFD mesh is the same as for the compliance mini-
mization problem, having 21,742,320 degrees of freedom. 
The initial and final structure is shown in Fig. 9.

The final design obtained using the CPU algorithm has 
been validated in previous numerical studies [35, 36]. The 
vorticity of the initial topology is 4856 s−1 , whereas the final 
topology has a vorticity of 6060 s−1 . Therefore, the CPU 
implementation of the code increases the vorticity of the 
fluid by 25% . The convergence history for the CPU algo-
rithm is given in Fig. 10.

The algorithm takes 76 iterations to converge to the final 
solution (Fig. 10) when performed on a CPU. Therefore, 
the computation time is approximately 3 days and 4 h to 

Fig. 8   Difference of the sensitivity functions determined by the CPU 
and GPU implementations

(a) Initial topology (b) Final topology

Fig. 9   Initial and final topology found using the CPU-LBM BESO 
algorithm for the vorticity maximization problem
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complete the optimization. Hence, similarly to the first 
topology optimization problem (Sect. 3), at the preliminary 
design stages this computation time is not viable, making 
the method only feasible for use later in the design cycle.

5.2 � Single‑precision GPU implementation

The single-precision GPU implementation has the fastest 
speed-up compared to the other methods, but has already 
been shown to produce numerical issues in the topology 
optimization algorithm (Sect. 4.2). This can only be attrib-
uted to the round-off errors inherent in single-precision 
GPU, since double-precision implementations have been 
able to achieve convergence (Sect. 4.3). Thus far, GPU-
implemented BESO topology optimization algorithms have 
only been applied to structural objectives, namely compli-
ance minimization. This section deals with a fluid objec-
tive, i.e. vorticity. Therefore, it is expected that the single-
precision GPU implementation will not be able to solve this 
topology optimization problem, since the round-off errors 
are present in the formulation of the objective, i.e. the fluid 
properties, rather than the load application.

The single-precision GPU-LBM code is coupled with the 
BESO algorithm (Sect. 2.2). The optimization parameters 
are the same as is defined in the compliance minimization 
problem (Sect. 4). The final structure determined by CPU 
and single-precision GPU is shown in Fig. 11.

As was expected, the final topology obtained by the sin-
gle-precision GPU code is clearly not optimal (Fig. 11). Fur-
thermore, the topology is not physically feasible, since there 
is structure which is suspended inside void material with 
no connection to the constraints. Moreover, in [35] it was 
demonstrated that the final topology had a symmetry about 
the ±45◦ diagonals. This symmetry is observed in the CPU 

result (Fig. 11a), whereas the single-precision GPU produces 
a final topology that is almost symmetric about the x- and 
y-axis. The final vorticity found using the single-precision 
GPU code is 5541 s−1 , which is a 9% decrease compared to 
the final vorticity found by the CPU code. The convergence 
history of the single-precision GPU algorithm is shown in 
Fig. 12.

Unlike the compliance optimization problem (Sect. 4.2), 
convergence does seem to be achieved (Fig. 12). Further-
more, the algorithm only requires 25 iterations to achieve 
convergence, compared to 76 for the CPU implementation. 
This equates to a computational time of approximately 1 
h, which is 76 times faster than when a CPU algorithm is 
used. However, this notable improvement in computational 
expense is fruitless, since the final result is not a feasible 
optimum; although, it expressed convergence. Therefore, 
alike the compliance minimization problem, the single-
precision GPU-implemented topology optimization code, 
of this work, cannot guarantee convergence to a feasible 
design for the vorticity maximization problem. Therefore, 

Fig. 10   Convergence history for the vorticity maximization problem 
using the CPU-LBM BESO algorithm

(a) CPU (b) Single-precision GPU

Fig. 11   Final topology found using the single-precision GPU-LBM 
BESO algorithm for the vorticity maximization problem

Fig. 12   Convergence history for the vorticity maximization problem 
using the single-precision GPU-LBM BESO algorithm
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in the next section a double-precision GPU implementation 
is applied to the same problem to determine if the increase 
in numerical accuracy can produce a feasible optimum for a 
minimal increase in computational expense.

5.3 � Double‑precision GPU implementation

For the compliance minimization problem, it was found that 
the convergence issues occurring in the single-precision 
GPU implementation are avoided when double-precision is 
used. However, for the problem of this section, the single-
precision GPU implementation does not seem to have con-
vergence issues, but does not converge to a similar design 
found by the CPU implementation, or even a feasible one. 
Therefore, the double-precision GPU code may not be able 
to improve on the result found by the single-precision code. 
Nevertheless, the double-precision GPU implementation is 
applied to determine if round-off errors are the cause of the 
infeasible final design.

The double-precision GPU-LBM code is coupled with 
the BESO algorithm (Sect. 2.2). The optimization param-
eters are defined as in the compliance minimization problem 
(Sect. 4). The final structure determined by the single-preci-
sion and double-precision GPU codes is shown in Fig. 13.

The final topology obtained using the double-precision 
GPU code (Fig. 13b) is very similar to that found using 
the single-precision code (Fig. 13a). Again, the topology 
is almost symmetric about the x- and y-axis. Further, the 
final design is still not physically feasible since structure is 
suspended in void material. Unlike the compliance mini-
mization problem, implementing double-precision in the 
GPU does not produce a feasible optimum. The vorticity of 
the final topology found using the double-precision code is 
5553 s−1 , which is a 0.2% increase compared to the single-
precision code and still a 8% decrease compared to the CPU 
code. The convergence history of the double-precision GPU 
algorithm is given in Fig. 14.

As would be expected, since the final designs are similar 
(Fig. 13), so too are the convergence histories of the single- and 

double-precision GPU-implemented topology optimization 
algorithms (Figs. 12, 14). Again, the double-precision GPU 
code requires 25 iterations to achieve convergence. There-
fore, the computational time required to achieve convergence 
is approximately 1 h, 56 min and 24 s, almost the double of 
what is required by the single-precision code. Hence, the 
double-precision code is about 39 times faster than the CPU 
implemented code. However, alike the single-precision GPU 
implementation the double-precision implementation fails to 
produce a feasible final design. Hence, unlike the compliance 
minimization problem (Sect. 4), this computational efficiency 
is not beneficial at the preliminary design stages, since infea-
sible designs are produced.

The results of this section indicate that there is an inher-
ent difference between CPU and GPU architectures, which 
results in the optimizer converging to a different solution. This 
is troubling, since both CPU and GPU topology optimization 
codes started at the same initial design, had the same opti-
mization parameters and both achieved convergence accord-
ing to the same convergence criteria; however, they did not 
produce complementary results. This was not observed in the 
compliance minimization problem (Sect. 4), where the single-
precision GPU code could not achieve convergence, but the 
double-precision code was able to converge to a design con-
sistent with the CPU algorithm. One possibility is the differ-
ence in the reliance of the objectives, compliance and vorticity, 
on the GPU implementation. The objective, J, for compliance 
and vorticity is formulated as follows:

(18)J(u) =
1

2
�T[�]�,

(19)J(�) =
1

2 ∫�

|curl�|2d�,

(a) Single-precision GPU (b) Double-precision GPU

Fig. 13   Final topology found using the double-precision GPU-LBM 
BESO algorithm for the vorticity maximization problem

Fig. 14   Convergence history for the vorticity maximization problem 
using the double-precision GPU-LBM BESO algorithm
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where � is the fluid domain, � is the velocity field, � is the 
displacement field and [�] is the stiffness matrix of the struc-
ture. Therefore, since it is assumed that the structure stays 
within the elastic limit, i.e. does not undergo any plastic 
deformation, the following must hold:

where � is the force field applied to the structure. Hence, the 
compliance objective can be re-written as:

Therefore, by comparing Eqs. 19–21 it is noted that the 
reliance of the objectives on the GPU-LBM are different. 
For the compliance minimization problem the reliance 
is linear, since the applied force ( � ) is determined by the 
LBM; whereas, for the vorticity objective it is more com-
plicated, since the velocity field ( � ) is determined by the 
LBM. The vorticity objective takes the square of the curl of 
this velocity field. Where the curl of a vector describes the 
infinitesimal rotation of the vector field. Therefore, it takes 
the difference of the partial differential in the three-spacial 
dimensions at every point in the vector field, mathematically 
this is described as:

where � , � and � are unit vectors for the x-, y- and z-axes. 
As pointed out in the CUDA programming guide [38, 39] 
CUDA implements division and square root operations that 
are not IEEE-compliant, i.e. their error in units in last place 
is non-zero. However, addition and multiplication are IEEE-
compliant. Therefore, any discrepancies between the CPU 
and GPU are greater in the vorticity objective than in the 
compliance objective since division and square root opera-
tions are involved in the calculation of the objective and 
sensitivity functions.

6 � Constrained topology optimization

It is sometimes possible, by looking at the physics of the 
topology optimization problem, to determine certain 
required conditions, which can be directly enforced as con-
straints on the optimizer. This reduces the design space of 
the optimization problem and can often assist the algorithm 
in finding an optimum solution, or reduce its computational 
expense. Therefore, in this section two different constraints 
are applied, separately, to both the single-precision and 
double-precision GPU implementations to try and improve 
the designs obtained. First, it was shown that for the compli-
ance minimization problem (Sect. 5.2) a symmetry about the 

(20)� = [�]�,

(21)J(u) =
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2
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x- and y-axis is an inherent feature of any feasible optimum 
to this problem [35]. This is due to the lack of any unsym-
metrical physical drivers in the system. Therefore, a sym-
metry constraint is implemented. Similarly, for the vorticity 
maximization problem, it was found that the CPU result has 
a symmetry about the ± 45◦ diagonals (Sect. 5.1); however, 
is not symmetric about the x- and y-axis. Therefore, a sym-
metry constraint is applied to this problem, ensuring that this 
symmetry is enforced. Finally, it was demonstrated that for 
the vorticity maximization problem, physically infeasible 
final designs are produced by the single- and double-preci-
sion GPU implementations. Therefore, the last analysis of 
this section derives a novel feasibility constraint and applies 
it to the vorticity maximization problem only, since the GPU 
implementations of the compliance minimization problem 
do not produce infeasible designs.

6.1 � Symmetry constraint

6.1.1 � Compliance minimization

First, a symmetry constraint is applied to the compliance 
minimization problem for the single-precision GPU imple-
mentation. This constraint simply takes advantage of the 
symmetry of the problem, by taking only the top left quarter 
of the structure, at the end of every optimization loop, and 
then reflecting it about the z and then y-axis (Fig. 1c) to cre-
ate the bottom half and right side of the structure for the next 
optimization loop. The final structure determined by CPU 
without a symmetry constraint and single-precision GPU 
with a symmetry constraint is shown in Fig. 15.

The final structure obtained using the single-precision 
GPU code with a symmetry constraint is comparable to the 
CPU final design (Fig. 15). The symmetry constraint has 
forced the optimizer to only consider designs which are sym-
metric about the x- and y-axes. This restriction on the design 
domain is completely valid, since it is known before the 
optimizer is run that symmetry is a requirement of the final 

(a) CPU no symmetry constraint (b) Single-precision GPU
symmetry constraint

Fig. 15   Final topology found using the CPU and the single-precision 
GPU-LBM BESO algorithm without and with a symmetry constraint, 
respectively for the compliance minimization problem
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design [35]. Therefore, by adding the symmetry constraint 
we are not restricting the optimizer, rather ensuring that it 
only considers physically feasible designs. The compliance 
of the final design found using the single-precision GPU 
code with a symmetry constraint is 2.416 × 109 Nm , which 
is only a 6% increase from the final compliance of the struc-
ture found using the CPU implementation ( 2.281 × 109 Nm ). 
Furthermore, the compliance is 6% less than the compli-
ance of the final structure found using the double-precision 
GPU implementation. Hence, simply adding a symmetry 
constraint has produced a more optimum design than using 
a double-precision GPU code instead of a single-precision. 
The convergence history of the single-precision GPU algo-
rithm with a symmetry constraint is shown in Fig. 16.

As is expected, since the final design is consistent with the 
CPU result, convergence is achieved for the single-precision 
GPU implementation with a symmetry constraint (Fig. 16). 
However, the single-precision GPU algorithm with a sym-
metry constraint takes 287 iterations to converge. Hence, 
the computational time required for convergence is approxi-
mately 11 h, 33 min and 36 s, which is over an hour and half 
longer than the double-precision code without the symmetry 
constraint, due to the significant increase in required itera-
tions. Nevertheless, this is still over 15 times faster than the 
CPU implementation, with only a 6% reduction in objective. 
The double-precision had a speed-up of 18 times, but with 
a 12% forfeit in objective. Therefore, the double-precision 
implementation is still the most computationally efficient. 
A further observation is the large number of convergence 
cycles present in the convergence history (Fig. 16). This 
clearly indicates the presence of several local optima in the 
design space, the impact of this was discussed in the analysis 
of the results of the double-precision algorithm (Sect. 4.3). 

Therefore, it is no surprise that the different algorithms 
find different local optima. The symmetry constraint is not 
applied to the double-precision implementation for the com-
pliance minimization problem since it produces a symmet-
ric final design. Hence, symmetry is never broken and the 
constraint would never be violated. Therefore, applying the 
symmetry constraint will simply yield the same results as 
without the constraint.

6.1.2 � Vorticity maximization

Next, the symmetry constraint is applied to the vorticity 
maximization problem for the single-precision GPU imple-
mentation. In this case, the initial structure of the problem 
is asymmetric about the x- and y-axis as this was found to 
be the case in the final design produced by the CPU imple-
mentation. Further, the symmetry constraint ensures that the 
structure is always symmetric about the ± 45◦ diagonals. 
This is done by taking only the structure on one side of 
the 45◦ diagonal, at the end of each optimization loop, and 
reflecting it over this axis to create the structure on the other-
side of the 45◦ diagonal for the next optimization loop. The 
final structure determined by CPU without a symmetry con-
straint and single-precision GPU with a symmetry constraint 
is shown in Fig. 17.

The final structure obtained using the single-precision 
GPU code with a symmetry constraint is comparable to the 
CPU design (Fig. 17). The symmetry constraint has forced 
the optimizer to only consider designs that are symmetric 
about both the ± 45◦ diagonals and asymmetric about the 
x- and y-axis. Unlike the symmetry constraint on the compli-
ance minimization problem, this restriction on the design is 
not physically valid as there is no physical reason to enforce 
it. Instead, we are using our knowledge of the CPU solu-
tion to assist the optimizer in finding a feasible design. The 
difference is, one would not have any reason to enforce this 
symmetry constraint without any prior knowledge of the 

Fig. 16   Convergence history for the compliance minimization prob-
lem using the single-precision GPU-LBM BESO algorithm with a 
symmetry constraint

(a) CPU no symmetry constraint (b) Single-precision GPU
symmetry constraint

Fig. 17   Final topology found using the CPU and the single-precision 
GPU-LBM BESO algorithm without and with a symmetry constraint, 
respectively for the vorticity maximization problem
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solution. The final vorticity of the design found using the 
single-precision GPU code with a symmetry constraint is 
6077 s−1 , which is an increase of 0.3% from the vorticity of 
the final design obtained using the CPU code ( 6060 s−1 ). 
This small increase in objective is due to the algorithm being 
guided to the right solution, therefore, it is already in the 
neighborhood of the solution before the optimization begins. 
The convergence history of the single-precision GPU algo-
rithm with a symmetry constraint is given in Fig. 18.

The solution only takes 18 iterations to converge to the 
final design (Fig. 18). This further emphasizes that the solu-
tion is put on the right track by the symmetry constraint. 
This equates to a computational time of approximately 43 
min and 30 s. Therefore, while this method would not be 
possible if no prior knowledge of the solution is known, it 
could be used after the CPU implementation has revealed 
certain features of the design, from earlier solutions, to 
speed up the solution of other design alternatives.

Finally, since the double-precision GPU implementation 
could not produce feasible design for the vorticity maximiza-
tion problem, the symmetry constraint is applied. The final 
structure determined by the single-precision and double-
precision GPU code with a symmetry constraint is shown 
in Fig. 19.

As is expected the double-precision algorithm with 
a symmetry constraint produces an almost identical final 
topology to the single-precision algorithm with a symmetry 
constraint (Fig. 19). The final vorticity of the design found 
using the double-precision GPU algorithm with a symmetry 
constraint is 6084 s−1 , which is an increase of 0.1% from the 
vorticity of the final design using a single-precision algo-
rithm with a symmetry constraint. The convergence history 

of the double-precision GPU algorithm with a symmetry 
constraint is shown in Fig. 20.

The solution takes 19 iterations to converge to the final 
design (Fig. 20). This equates to a computational time of 
approximately 1 h, 28 min and 48 s. This is just over double 
the time required by the single-precision GPU code with 
a symmetry constraint, with only a 0.1% improvement in 
objective. Therefore, in the case of a symmetry constraint 
the computational efficiency of the single-precision GPU 
code is superior to the increase in numerical accuracy of the 
double-precision GPU code.

6.2 � Feasibility constraint

As mentioned earlier, the designs produced by the single- 
and double-precision GPU codes for the unconstrained vor-
ticity maximization problem are not feasible. This is because 

Fig. 18   Convergence history for the vorticity maximization problem 
using the single-precision GPU-LBM BESO algorithm with a sym-
metry constraint

(a) Single-precision GPU
symmetry constraint

(b) Double-precision GPU
symmetry constraint

Fig. 19   Final topology found using the single-precision and double-
precision GPU-LBM BESO algorithm with a symmetry constraint for 
the vorticity maximization problem

Fig. 20   Convergence history for the vorticity maximization problem 
using the double-precision GPU-LBM BESO algorithm with a sym-
metry constraint
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the final topology contains structure suspended in void mate-
rial. Therefore, in this section a feasibility constraint, which 
checks for structural islands is implemented to ensure fea-
sible designs are produced. The feasibility constraint works 
by creating, what is termed here as, a connectivity matrix, 
[�]m×n , where each entry, (m, n), in the matrix corresponds 
to an element on the baffle structure. Therefore, each entry 
contains a 1 if the corresponding element is solid and a 0 if 
the corresponding element is void. Hence, for each struc-
ture produced at the end of each optimization loop an [�] is 
calculated. The closed structural boundaries, inside the baf-
fle, for each structure are determined. Finally, the feasibility 
constraint sums the number of closed boundaries, ncb inside 
the structure. If the number of closed boundaries is less than 
or equal to two, ncb ≤ 2 , the volume constraint for that itera-
tion is reduced and a new design is found. This process is 
repeated until a feasible design is produced for that iteration.

The feasibility constraint is applied to the single-precision 
GPU algorithm for the vorticity maximization problem with 
the same initial topology and optimization parameters as 
outlined in Sect. 5. The final design for the single-precision 
GPU algorithm with and without the feasibility constraint 
is shown in Fig. 21.

The final structure produced by the single-precision GPU 
is only feasible when the feasibility constraint is preformed 
(Fig. 21). There are no longer any structural islands present 
in the final design. Furthermore, unlike the symmetry con-
straint applied to the vorticity maximization problem, the 
restriction on the design domain is physically valid, since 
a feasible structure is a requirement of the final design. 
However, the final design is still noticeably different from 
the design found by the CPU algorithm (Fig. 13). This is 
because the design found using the single-precision GPU 
code with a feasibility constraint is still symmetric about 
the x- and y-axis, similar to that found without a feasibility 
constraint. The final vorticity of the design found by the sin-
gle-precision GPU algorithm with a feasibility constraint is 

5881 s−1 . This is a 3% reduction compared to the vorticity of 
the topology determined by the CPU algorithm ( 6060 s−1 ). 
The convergence history of the single-precision GPU algo-
rithm with a feasibility constraint is given in Fig. 22.

The solution takes 28 iterations to converge to the final 
design (Fig. 22). This equates to a computational time of 
approximately 1 h, 7 min and 41 s, which is a speed-up of 
about 67 times compared with the CPU code. Therefore, 
for such a large increase in computational efficiency and 
only a 3% reduction in the objective, this is beneficial in the 
preliminary design stages where the CPU code is not viable 
due to its large computation time (over 3 days). Therefore, 
adding the feasibility constraint to the single-precision GPU 
algorithm has made the topology optimization method a via-
ble option for use in the preliminary design stages, bringing 
these tools forwards in the design process.

Finally, the feasibility constraint is applied to the double-
precision GPU algorithm to determine if the increase in the 
numerical accuracy can reduce the drop in the objective 
from the CPU code. The vorticity maximization problem 
with the same initial topology and optimization parameters 
as outlined in Sect. 5 is solved. The final design for the sin-
gle- and double-precision GPU algorithm with the feasibility 
constraint is shown in Fig. 23.

The final design produced, with a feasibility con-
straint, by the double-precision GPU algorithm is almost 
identical to the design produced by the single-precision 
algorithm (Fig. 23). Hence, the design is still symmetric 
about the x- and y-axis when a double-precision GPU 
algorithm with a feasibility constraint is used, as was the 
case without the feasibility constraint. The vorticity of 
the final design found by the double-precision algorithm 

(a) Without a feasibility
constraint

(b) With a feasibility constraint

Fig. 21   Final topology found using the single-precision GPU-LBM 
BESO algorithm without and with a feasibility constraint, respec-
tively for the vorticity maximization problem

Fig. 22   Convergence history for the vorticity maximization problem 
using the single-precision GPU-LBM BESO algorithm with a feasi-
bility constraint



1075Engineering with Computers (2019) 35:1059–1079	

1 3

with a feasibility constraint is 5903 s−1 , which is only a 
0.4% increase compared to the single-precision algorithm 
with a symmetry constraint ( 5881 s−1 ). The convergence 
history of the double-precision GPU algorithm with a 
feasibility constraint is given in Fig. 24.

The solution takes 27 iterations to converge to the final 
design (Fig. 24). This equates to a computational time of 
approximately 2 h and 6 min, which is just under double 
the time required by the single-precision GPU code with 
a feasibility constraint. Thus in the case of the feasibility 
constraint, having only a 0.4% improvement in objective 
with twice the computation cost, the benefit of the com-
putational efficiency inherent in the single-precision GPU 
code is superior to the increase in numerical accuracy of 
the double-precision GPU algorithm.

7 � Summary

In this section, a brief summary of the results of this work 
is given. The first problem solved was the compliance 
minimization problem (Sect. 4). It is demonstrated that 
the single-precision GPU implementation is unable to pro-
duce a feasible solution, having convergence issues. There-
fore, a converged solution is never reached. The cause of 
this is the inherent round-off errors, which have also been 
observed in the literature for structural problems only [30]. 
However, it was shown that by implementing a double-
precision GPU algorithm convergence could be achieved 
and a feasible optimum is found. Furthermore, the speed-
up of the double-precision GPU algorithm is about 18 
times compared with the CPU algorithm, having only a 
12% reduction in objective. Therefore, it was concluded 
that the double-precision GPU implementation represent a 
feasible method that can be used at the preliminary design 
stages, whereas the CPU algorithm could not. Thus, for the 
compliance minimization problem, the implementation on 
a GPU has enabled these methods to be brought forward 
in the design cycle.

The next problem analyzed in this work was the vorti-
city maximization problem (Sect. 5). It is shown that nei-
ther the single- or double-precision GPU implementation 
could produce feasible solutions to this problem. However, 
unlike the compliance minimization problem, both imple-
mentations appear to converge. Thus, why implementing 
double-precision did not solve the problem. Moreover, it 
is demonstrated that the reliance of the topology optimi-
zation algorithm on the GPU numerics is greater in the 
vorticity maximization problem than in the compliance 
minimization problem, due to the different formulations 
of the objective functions.

In an effort to assist the GPU implementations addi-
tional constraints were formulated and added to the topol-
ogy optimization problems. First, a symmetry constraint, 
which takes advantage of the symmetry of the physics of 
the compliance minimization problem, is implemented on 
the single-precision GPU algorithm. Since there are no 
physical asymmetric drivers, it is evident that the design 
of the baffle should be symmetric about the x- and y-axes 
[35]. Therefore, by enforcing this symmetry, through the 
symmetry constraint, the single-precision GPU implemen-
tation is able to achieve convergence and produce opti-
mum designs. Furthermore, the speed-up when compared 
with the CPU algorithm is about 15 times, with only a 6% 
reduction in objective.

Similarly, a symmetry about the ± 45◦ diagonals and an 
asymmetry about the x- and y-axes was observed for the 
optimum solution to the vorticity maximization problem. 
Therefore, a symmetry constraint was employed, which 

(a) Single-precision (b) Double-precision

Fig. 23   Final topology found using the single- and double-precision 
GPU-LBM BESO algorithm with a feasibility constraint

Fig. 24   Convergence history for the vorticity maximization problem 
using the double-precision GPU-LBM BESO algorithm with a feasi-
bility constraint
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enforced these conditions, in the single- and double-preci-
sion GPU implementations. This resulted in optimum final 
structures, similar to that found using the CPU algorithm, 
being produced. Furthermore, the computational efficiency 
is increased by 105 and 51 times compared with the CPU 
when using the single- and double-precision GPU algo-
rithm, respectively. However, it was noted that this sym-
metry constraint was not valid, since the characteristics 
of the symmetry enforced were only known due to a prior 
knowledge of the solution. Thus, the symmetry constraint 
pushed the algorithm in the right direction. Nevertheless, 
this demonstrates how certain characteristics of the solu-
tion can be determined by running the slow CPU and then 
can be enforced in the fast GPU for quick optimization of 
other preliminary structures.

Finally, it was noted that the GPU implementations 
seemed to achieve convergence for the vorticity maximi-
zation problem; however, to infeasible designs. Therefore, 
a feasibility constraint was employed to ensure that the 
algorithms only considered feasible designs. By adding a 
feasibility constraint to the single- and double-precision 
GPU implementations for a vorticity objective, reasonable 
designs are produced without pushing the optimizer in the 
correct direction. Therefore, no pre-knowledge of the solu-
tion is required, making this a much more realizable solu-
tion compared to the symmetry constraint. Furthermore, the 
final design produces a similar final objective compared to 
the CPU result, having a reduction of 3% and 2% in objec-
tive for the single- and double-precision GPU implemen-
tation, respectively. However, this comes at a speed-up of 
67 and 36 times for the single- and double-precision code, 
respectively. Thus, the small reduction in objective is worth 
the huge increase in computational efficiency. Again the 
double-precision code outperforms the single-precision. 
However, due to the increase in computational efficiency 
achieved by the single-precision code (about 46% ) and the 

small improvement in objective by the double-precision 
code (about 0.4% ) the single-precision code is more suited.

A quantitative comparison for all cases studied in this 
article is given in Table 1.

8 � Conclusion

A multi-physics topology optimization algorithm has been 
presented here for use in the preliminary design phases. The 
aim of this study is to use HPC methods to reduce the com-
putational time required, such that these methods are viable 
for use at the preliminary design stages. A BESO algorithm 
is coupled to a GPU-enabled LBM flow solver to optimize 
the structural and flow characteristics of a micro-reactor. 
Hence, the process takes advantage of the high computa-
tional efficiency of GPU, which carried out the most com-
putationally intensive part of the process, namely, the simu-
lation of the flow via LBM. The implementation on both 
CPU and single- and double-precision GPU are performed 
and compared, determining the speed-up gained and loss in 
objective when different architectures are used. It was found 
that, for both topology optimization problems, implementa-
tion on a GPU resulted in a significant gain in computational 
efficiency, with only a small reduction in objective. There-
fore, bringing these methods forward in the design cycle, 
where implementation on a CPU is not viable.

First, a multi-physics compliance minimization problem 
with design-dependent pressure loads was solved. It was 
found that the single-precision GPU implementation had 
convergence issues, and thus, was unable to find a suitable 
optimum. This phenomena has been noted in the literature 
for GPU-enabled FEA topology optimization [30], but is 
a first here for multi-physics topology optimization. How-
ever, it is demonstrated that using a double-precision GPU 
implementation avoids these convergence issues, resulting 

Table 1   Numerical summary 
of results

aConvergence not achieved

Implementation Iterations Computational time Objective

CPU (compliance) 179 7 days 11 h 2.281 (109) Nm

CPU (vorticity) 76 3 days 4 h 6060 Nm
−1

GPU SP (compliance)a 336 13 h 31 months 3.912 (109) Nm

GPU SP (vorticity) 25 1 h 5541 s−1

GPU DP (compliance) 129 10 h 1 month 2.577 (109) Nm

GPU DP (vorticity) 25 1 h 56 months 5553 s−1

GPU SP sym (compliance) 287 11 h 34 months 2.416 (109) Nm

GPU SP sym (vorticity) 18 43 months 30 s 6077 s−1

GPU DP sym (vorticity) 19 1 h 29 months 6084 s−1

GPU SP feasb (vorticity) 28 1 h 8 months 5881 s−1

GPU DP feasb (vorticity) 27 2 h 6 months 5903 s−1
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in a speed-up of approximately 18 times, with only a 12% 
reduction in objective, compared to CPU.

Next, a vorticity maximization problem was solved on 
both single- and double-precision GPU. For this case, con-
vergence is achieved; however, to infeasible designs, since 
structural islands are present for both single- and double-
precision GPU. It was concluded that this discrepancy was 
due to the different reliance on the GPU numerics for the 
two different objectives.

Finally, a symmetry constraint and a feasibility constraint 
were added, separately, to the topology optimization prob-
lems to improve their convergence by eliminating infeasible 
designs from consideration. For the compliance minimiza-
tion problem, adding a symmetry constraint, which takes 
advantage of the symmetrical physics, enabled the single-
precision GPU implementation to converge to an optimum 
design. Similarly, for the vorticity maximization problem, 
adding a feasibility constraint forced only structurally fea-
sible design to be considered by the optimizer, resulting in 
optimum designs being produced. Therefore, a speed-up of 
about 67 times was achieved for the vorticity maximization 
problem, with only a 3% reduction in objective. Hence, the 
main findings of this article can be summarized by the fol-
lowing points:

•	 Single-precision GPU cannot be used without a symme-
try constraint for the compliance minimization problem.

•	 Double-precision GPU produces better, in terms of 
objective, designs compared with single-precision for 
all cases.

•	 Single-precision is more computationally efficient for all 
cases, except compliance minimization problem.

•	 For all cases, computational time is drastically reduced 
with GPU implementation compared to CPU results.

•	 Adding a feasibility constraint to the vorticity maximiza-
tion problem produces comparable designs for both the 
single- and double-precision GPU codes.

This study adds to the limited literature on GPU-accelerated 
topology optimization. New insights into the discrepancies 
between CPU and GPU numerics have been found, with rea-
sonable methods developed to overcome these discrepancies. 
The work presented here brings high fidelity methods, such 
as lattice Boltzmann flow simulations, coupled with reward-
ing optimization algorithms, such as topology optimization, 
forward to the preliminary design stages. This type of analy-
sis is key to the continued application of topology optimiza-
tion to real world aerospace design problems.
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