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Abstract
Rockburst phenomenon is the extreme release of strain energy stored in surrounding rock mass which could lead to casualties, 
damage to underground structures and equipment and finally endanger the economic viability of the project. Considering the 
complex mechanism of rockburst and a large number of factors affecting it, the conventional criteria cannot be used gener-
ally and with high reliability. Hence, there is a need to develop new models with high accuracy and ease to use in practice. 
This study focuses on the applicability of three novel data mining techniques including emotional neural network (ENN), 
gene expression programming (GEP), and decision tree-based C4.5 algorithm along with five conventional criteria to pre-
dict the occurrence of rockburst in a binary condition. To do so, a total of 134 rockburst events were compiled from various 
case studies and the models were established based on training datasets and input parameters of maximum tangential stress, 
uniaxial tensile strength, uniaxial compressive strength, and elastic energy index. The prediction strength of the constructed 
models was evaluated by feeding the testing datasets to the models and measuring the indices of root mean squared error 
(RMSE) and percentage of the successful prediction (PSP). The results showed the high accuracy and applicability of all 
three new models; however, the GA-ENN and the GEP methods outperformed the C4.5 method. Besides, it was found that 
the criterion of elastic energy index (EEI) is more accurate among other conventional criteria and with the results similar to 
the C4.5 model, can be used easily in practical applications. Finally, a sensitivity analysis was carried out and the maximum 
tangential stress was identified as the most influential parameter, which could be a guide for rockburst prediction.

Keywords  Rockburst occurrence · Data mining techniques · Emotional neural network · Gene expression programming · 
C4.5 algorithm · Conventional criteria

1  Introduction

One of the most important concerns in deep underground 
activities such as mining and civil projects is the occurrence 
of rockburst phenomenon. Rockburst is an unexpected and 
severe failure of a large volume of over-stressed rock caused 
by the instantaneous release of accumulated strain energy. 
This phenomenon usually is accompanied by other events 
such as spalling, slabbing, and throwing of rock fragments 
which could be led to injuries, deformation of supporting 
system, damage to equipment or even collapse of a large area 

of the underground excavation and finally cease the operation 
[1–4]. In deep underground activities, the induced seismic-
ity has a great role in rockburst occurrence; therefore, the 
identification and localization of seismic events are essential 
in rockburst assessment [5–8]. Great number of theoretical 
and experimental studies have been performed since 1930 
by many researchers on the mechanism, prediction, and con-
trol of rockburst [9, 10]. However, rockburst still remains an 
unsolved problem in deep mining [11]. Rockbursts can be 
classified using various criteria comprising potential damage, 
failure pattern, scale, and severity. From the viewpoint of 
damage, it classifies into four classes of none, light, moder-
ate, and strong. Based on the failure pattern, there are four 
types of failures including slabby spalling, dome failure, in-
cave collapse, and bending failure. In terms of scale, rock-
bursts can be introduced as sparse with the rockburst length 
lower than 10 m, large area with the rockburst length between 
10 and 20 m and continuous rockburst with the length higher 
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than 20 m. The severity of rockbursts can be assessed as a 
function of failure depth [12, 13]. According to the influ-
ence diagram developed by Sousa [14], many factors affect 
the occurrence of rockburst such as mechanical properties 
of rock, geological circumstances, construction method, and 
in situ stress state. Considering the great number of effective 
parameters and the vague mechanism of rockburst, predic-
tion and control of this hazardous phenomenon are very dif-
ficult tasks. Rockburst can be predicted in short term and 
long term. In situ measurement techniques such as microseis-
mic monitoring system and acoustic emission can be used to 
acquire the exact location and the specific time of rockburst 
occurrence at each stage of the project (i.e. in short term). 
However, these techniques are time consuming, costly, and 
require precise surveying strategies. On the other hand, rock-
burst prediction in long-term is mainly based on conventional 
criteria, numerical models, and data mining techniques. 
Compared to the short-term prediction technique, the long-
term one can be served as a quick guide for engineers during 
the initial stages of the project and consequently, enable them 
to decide about the excavating and controlling methods [1, 
3]. During the last three decades, various rockburst proneness 
indices have been developed based on strength parameters 
and rock strain energy (see Table 1) [15].

According to Table 1, the conventional criteria only con-
sider very few input parameters; therefore, cannot take into 
account a wide range of parameters that may influence rock 
bursting. Data mining is a relatively new computational 
method with the aim of discovering latent patterns and rela-
tionships between raw datasets which combines different 
areas such as statistics, machine learning, and so on. Data 
mining techniques have the capability to deal with the data-
sets containing multiple input and output variables [15, 19]. 
Hence, they have been used extensively in  different sciences 
[20–23]. As a first attempt, Feng and Wang [24] developed 
two artificial neural networks (ANNs) to predict and con-
trol the probable rockbursts. Their successful experience 

encouraged other scholars to investigate the applicability 
of novel data mining techniques in rockburst assessment 
[25–28]. Although the methods used by the scholars could 
consider more input parameters, most of them are black box, 
i.e. they cannot provide a clear and comprehensible relation-
ship between the input and output parameters. Consequently, 
the developed models using such opaque techniques cannot 
easily be used in practice. On the other hand, the conven-
tional criteria as reported in many studies could not predict 
rockburst with high accuracy. Therefore, there is still a need 
to develop transparent and easy to use rockburst models.

In the current study, the applicability of three robust data 
mining techniques including genetic algorithm-based emo-
tional neural network (GA-ENN), C4.5, and gene expression 
programming (GEP) in rockburst prediction was evaluated. 
Although the GA-ENN is a subset of black-box techniques, 
it is a new version of the ANN with enhanced capacities. In 
this study, for the first time, this method is used for a mining 
and geoscience problem. C4.5 and GEP techniques, in spite 
of the ones used in the previous studies, can provide simple 
models to predict rockburst occurrence. For this purpose, after 
preparing a database and assessing it statistically, three new 
predictive models were developed based on the training data-
set. In continuing, a group of unused data (testing data) was 
fed to the trained models to testify their forecasting accuracy 
using two performance indices. Then, to have a comprehen-
sive comparison, the results of the developed models were 
compared with the results of five conventional criteria. In the 
end, a sensitivity analysis was carried out to evaluate the influ-
ence of input parameters on the corresponding output.

2 � Database preparation

A database containing 134 rockburst events was prepared 
from the literature (see the “Appendix”). These rockburst 
events have been measured in diverse underground projects 
associated with coal and non-coal mines, powerhouse sta-
tions, hydropower stations, and so on [1, 2, 11, 15]. Each 
record of the database contains four parameters which are 
the maximum tangential stress of surrounding rock ( �� ), the 
uniaxial tensile strength of rock ( �t ), the uniaxial compres-
sive strength of rock ( �c ), and the elastic energy index ( Wet ). 
Maximum tangential stress ( �� ) around the excavation is a key 
factor that is affected by the rock stress, groundwater, shape, 
and diameter of excavation. Since it would not be possible to 
measure these four parameters in association with rockburst 
occurrence, maximum tangential stress can be regarded as 
a representative parameter of those parameters. Rock com-
pressive strength �c and tensile strength �t are the parameters 
that represent the capability of rocks to store elastic strain 
energy as well as its tensile and shear failure characteristics. 
Many theories have been proposed to describe the rockburst 

Table 1   A summary of conventional criteria for rockburst prediction
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mechanism; however, the most accepted one is “energy the-
ory”. Hence, several energy-based indices have been proposed 
by the researchers and most of them are correlated with each 
other and similarly related to rockburst occurrence. Among 
them, Wet (the ratio of stored strain energy to that dissipated 
energy during a cycle of loading–unloading under uniaxial 
compression) is the most common energy criterion which 
has a direct influence on rockburst in such a way that with 
the increase of Wet , the probability of rockburst occurrence 
and its intensity will increase [3, 15, 29, 30]. Therefore, in 
the current study, four parameters of �� , �t , �c , and Wet were 
adopted as the input parameters. Table 2 shows the descrip-
tive statistics of the relevant input parameters that are used to 
develop rockburst models. For convenience, the abbreviations 
of input parameters were considered for modeling instead of 
their symbols; they are characterized by MTS, UTS, UCS, and 
EEI for �� , �t , �c , and Wet , respectively. To understand more 
about the relationship between the input parameters, Pearson 
correlation coefficients were computed which results are listed 
in Table 3. According to this table, there are moderate correla-
tions for the UTS–UCS and EEI–UCS if the categorizations 
proposed by Dancy and Reidy [31] are followed.

Prior to any modeling, the statistical analysis of original 
database has high importance. The presence of outliers in 
the database negatively affects the ability of algorithms to 
find a precise relationship between input and output param-
eters and consequently, decreases the reliability of the 
developed model. Additionally, outliers may create some 
natural groups with different behaviors in a single dataset 
and if this is the case, it is necessary to identify them and 
develop separate models [32, 33]. The box plot is a com-
mon and standardized method to display the distribution of 
data based on minimum, first quartile (Q1), median (Q2), 
third quartile (Q3), and maximum values. The measurements 
outside the range of (Q1 − 3(Q3 − Q1), Q3 + 3(Q3 − Q1)) 
are defined as extreme outliers and should to be omitted 
from the database, while those which are in the range of 
(Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)) are known as 
suspected outliers which are common in a big database and 
could be considered in modeling [32]. Figure 1 shows the 
box plots of input parameters. According to this figure, the 
median line is not in the center of boxes which indicates that 
the input parameters do not have a symmetric distribution. 
Besides, with the exception of MTS, other input parameters 
have few suspected outliers.

As a second effort, a principal component analysis (PCA) 
was conducted to check the existence or non-existence of 
natural groups in the database. PCA is a dimension-reduc-
tion technique that enables the user to transform the ini-
tially correlated variables from an m-dimensional space to an 
n-dimensional one where n < m. The new uncorrelated vari-
ables are nominated as principal components (PCs) which 
are the linear combination of initial variables [34, 35]. To 
perform this analysis, first, the datasets were normalized 
between 0 and 1 using the min–max method to eliminate 
the effect of range. In the second step, the correlation matrix 
was created for input parameters. Then, the eigenvalues 
and eigenvectors corresponding to the previous correlation 
matrix were calculated for each PC as follows:

where X, � , and V are the matrix of datasets, eigenvalue, and 
eigenvectors, respectively.

Eventually, the PCs were obtained by multiplying the 
input parameters in related eigenvectors. Figure 2 shows the 
scree plot of eigenvalues against the number of components. 
According to this figure, 92.872% of the database variations 
can be explained just with three first PCs by projecting the 
observations on these axes (i.e. PC1, PC2, and PC3). The 
scatter plots of PC1–PC2 and PC1–PC3 are shown in Fig. 3. 
As can be seen, there is not any natural group, i.e. the con-
centration of observations in specific areas in the database. 
Besides, few suspected outliers mentioned in the previous 
analysis can be seen in this figure as well. As a result, it 
can be said that the prepared database is suitable for further 
analysis. The output parameter is the rockburst occurrence, 
if any, was nominated as “Yes” otherwise, was nominated as 

(1)

XV = �V → (X − �I)V = 0 → determinant(X − �I)

= 0 →

{

�1, �2,… , �
n

V1,V2,… ,V
n
,

Table 2   Descriptive statistics of 
the input parameters within the 
database

Parameter Abbreviation Unit Minimum Maximum Mean Std. deviation Variance

�� MTS MPa 2.6 108.4 51.354 28.567 816.055
�
t

UTS MPa 1.3 22.6 7.519 4.926 24.268
�
c

UCS MPa 20.0 306.6 127.957 59.417 3530.415
Wet EEI Dimensionless 0.85 10.6 4.726 2.196 4.824

Table 3   Correlation coefficients between the input parameters

Variables T UTS UCS EEI

T 1 0.569 0.589 0.508
UTS 0.569 1 0.650 0.443
UCS 0.589 0.650 1 0.636
EEI 0.508 0.443 0.636 1
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“No”. Since the output is a qualitative parameter, we trans-
ferred it to a binary parameter, i.e. 0 (No) and 1 (Yes).

3 � Data mining techniques

3.1 � Genetic algorithm‑based emotional neural 
network (GA‑ENN)

Artificial neural network (ANN), a brain-inspired approach, is 
a popular branch of soft computing techniques first invented 
by McCulloch and Pitts [36] and has been used extensively 

in different areas [37–40]. ANNs, however, suffer from a 
fundamental problem which is known generally as the curse 
of dimensionality, i.e. the number of learning parameters 
increases exponentially with increase in the number of neu-
rons in input, hidden, and output layers that finally lead to 
high computational complexity (CC). Recently, a limbic-based 
emotional neural network (ENN) is developed by Lotfi and 
Akbarzadeh-T [41] based on the emotional process of the brain 
with a single-layer structure. Unlike ANNs that are formed 
based on a biological neuron, ENNs are based on the interac-
tion of four neural areas of the emotional brain comprising 
thalamus, sensory cortex, orbitofrontal cortex (OFC), and 
amygdala. These four areas using the features of expanding, 
comparing, inhibiting, and exciting overcome the shortages 
related to the common ANNs and provide more precise solu-
tions. Initial ENNs have a low CC during the learning process, 
but the number of patterns which can be stored is limited that 
makes a low information capacity (IC) for this method. Lotfi 
and Akbarzadeh-T [42], thanks to a winner-take-all approach 
(WTA), introduced a new version of ENN with the name of 
WTAENN which is able to increase the IC of the algorithm. 
The structure of WTAENN with n input, one output, and m = 1 
competitive part is shown in Fig. 4. According to this figure, 
original input data (i.e. p⃗ = [p1, p2, … , pn] ) first enter the 
thalamus part. In the thalamus, input data will expand by the 
following equation: 

(2)
[

pn+1,… , pn+k
]

= FEj=1,…,n(pj),

Fig. 1   Box plots of input parameters

Fig. 2   Scree plot of PCA analysis
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where FE is an expander function which can be a Gaussian 
or sinusoidal function or in general can be defined as:

Then, the expanded signals are sent to winner sensory 
cortex i∗ which is selected if only and only if:

where c1, c2, … , cn are the learning weights.
Afterwards, the signals propagate to the related OFC and 

amygdala and the weights of w1,i, w2,i, … , wn,i from the ith 
OFC and the weights of v1,i, v2,i, … , vn,i from ith amygdala 

(3)FEj=1,…,n(pj) = max
j=1,…,n

(pj)m.

(4)

∀i
[

p1, p2, … , p
n

]

−
[

c1,i∗ , c2,i∗ , … , c
n,i∗

]

≤
[

p1, p2, … , p
n

]

−
[

c1,i, c2,i, … , c
n,i

]

, 1 ≤ i ≤ m,

are used during the learning process to determine the final 
output. During the learning process, amygdala receives the 
imprecise input of pn+1 from the thalamus to determine the 
output signal of Ea . After that, amygdala receives an inhibit-
ing signal from OFC ( Eo ) which with applying the activation 
function (e.g. purelin , tansig , hardlim and logsig functions), 
the final emotional signal (predicted value) will be achieved. 
The final output can be calculated by the following equation:

where vj,i is the weight of ith amygdala, pj is the input pat-
tern, wj,i is the weight which belongs to ith OFC and bi is 
the related bias.

Generally, in the process of WTAENN learning, the learn-
ing weights (i.e. competitive weights ( c-weights), amygdala 
weights ( v-weights) and OFC weights ( w-weights)) should be 
adjusted [42].

The genetic algorithm is the most popular optimization 
algorithm which can minimize a cost function to achieve the 
best solution. The solutions in GA are known as chromosomes 
and each chromosome consists of one or more genes. In rela-
tion to WTAENN, a chromosome can be expressed as follows:

where

After generating the first population, the fitness of chromo-
somes will be evaluated by the following equation:

where Yk is the output of the winner part for kth input pat-
tern, Tk is the related target and m is the number of training 
pattern targets. By minimizing the cost function, the best 
learning weights for WTAENN can be obtained [41–43].

(5)

Ei

(

p⃗
)

= f
(

Eai − Eoi

)

= f

(

n+1
∑

j=1

(

vj,ipj
)

−

n
∑

j=1

(

wj,ipj
)

− bi

)

,

(6)Chromosomek =
[

gene1, gene2, … , genem
]

k
,

(7)
gene1 =

[

c1,1, c2,1,… , cn,1, v1,1, v2,1,… , vn,1,w1,1,w2,1,… ,wn,1, b1
]

,

(8)
gene2 =

[

c1,2, c2,2,… , cn,2, v1,2, v2,2,… , vn,2,w1,2,w2,2,… ,wn,2, b2
]

,

(9)
genem =

[

c1,m, c2,m,… , cn,m, v1,m, v2,m,… ,

vn,m,w1,m,w2,m,… ,wn,m, bm
]

.

(10)Fitness
(

Chromi

)

=
1

m

(

n
∑

k=1

(

Yk − Tk
)2

)0.5

,

Fig. 3   Scatter plots of PC1–PC2 and PC1–PC3
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3.1.1 � Rockburst prediction using GA‑ENN

In this study, for the first time, the applicability of ENNs was 
examined to predict rockburst occurrence as a geotechni-
cal engineering problem. In GA-based ENN algorithm, it 
is necessary to determine the optimum values of its param-
eters, i.e. the number of competitive parts (m), number of 
generations, and the population size. The MatLab code 
was used to develop this model. Since the input parameters 
have different units and range of values, in soft computing 
techniques, it is better to normalize datasets on account of 
speeding up the modeling process, reducing errors, and more 
importantly preventing the over-fitting phenomenon. So, the 
input parameters were normalized between 0 and 1 using the 
following equation:

where Xi, Xmin, Xmax, and Xnorm are ith actual value, mini-
mum value, maximum value and the normalized value of an 
input parameter, respectively.

In the following, the initial database was divided into 
three parts of training (70% of the database), validation 
(10% of the database), and testing (20% of the database) to 
conduct a series of sensitivity analysis and subsequently to 
find the best combination of parameters. In the first analysis, 
the parameters of m and activation function were fixed on 1 
and “Hard–limit”, and the values of population size and the 
number of generations increased from 20 to 300. Figure 5 
shows the variation of mean square error (MSE) as the fit-
ness function in each run. According to this figure, after 
generation no. 100, the MSE value remained constant and no 

(11)Xnorm = 1 −
Xmax − Xi

Xmax − Xmin

,

change was observed up to generation no. 300. So, the value 
of 100 was selected as the optimum value for the parameters 
of population size and generation number. An increase in 
MSE can be seen between generations 60–100, which may 
refer to the stochastic mechanism of ENN algorithm for 
searching and finding the best combination of training coef-
ficients (i.e. c, v, and w weights) among all the possible solu-
tions. Similarly, the second analysis with the aim of finding 
the optimum value of m was executed by varying its value 
from 1 to 40 and recording the corresponding MSE values. 
The m = 1 provided the minimum value of MSE. Eventually, 
the algorithm was executed for several times based on the 
obtained optimum values for parameters and the best model 
was identified. Table 4 indicates the characteristics of the 
best GA-ENN model.

Fig. 4   The structure of proposed WTAENN with the single competitive unit [42]

Fig. 5   Variation of fitness function for different values of generation 
number and population size
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3.2 � C4.5 algorithm

One of the best-renowned data mining techniques is decision 
tree (DT). The decision tree is a nonparametric technique 
which benefits from simple and interpretable structure, low 
computational cost and the ability to represent graphically. 
DTs have proven their efficiency for various purposes such 
as classification, decision-making and as a tool to make a 
relationship between independent variables and the depend-
ent one [20, 44–46]. The most important characteristic of a 
DT as a “white box” technique is its simple graphical struc-
ture which enables the user to clarify the relations between 
variables easier, while other machine learning techniques 
such as ANNs have a vague internal computational proce-
dure, which means the results are difficult to interpret. In the 
case of having a problem with many variables which act in 
reciprocally and non-linear ways, finding a comprehensive 
model may be very difficult. In these circumstances, DT can 
be a suitable alternative which is able to break down (sub-
divide) the initial space into smaller parts so that the inter-
actions are easier to manage. A decision tree is a collection 
of nodes (root node, internal nodes, and terminal or leaf 
nodes) arranged as a binary tree. The root node and internal 
nodes belong to decision stage and represent specific input 
variables which are connected together based on a smaller 
range of values. The terminal nodes show the final classes 
[47–50]. There are various types of decision trees, includ-
ing classification and regression tree (CART), Chi-squared 
automatic interaction detection (CHAID), C4.5, ID3, quick, 
unbiased, efficient statistical tree (QUEST). C4.5 proposed 
by Quinlan [51] is a powerful classification algorithm which 
is derived from the development of ID3 algorithm and is 
able to handle numeric attributes, missing values, and noisy 
data [52]. C4.5 identifies decision tree classifiers and using 
a divide-and-conquer method grows the decision tree. The 
C4.5 algorithm acts in two main stages: tree constructing 
and pruning. Tree constructing starts by calling the train-
ing dataset. All of the datasets first are concentrated in the 
root node and then divided into homogeneous sub-nodes 
based on a modified splitting criterion, called gain ratio. 

The attribute with the highest normalized information gain 
is chosen to make the decision [51]. This splitting will con-
tinue till the stopping condition is met, i.e. all instances in a 
node belong to the same class and this node is identified as 
a leaf node. The generated DT by training dataset often is 
prone to the over-fitting problem because of having a great 
number of branches and such DTs fail to classify the new 
unused data. To overcome this problem, there is a need to 
prune the tree. Pruning is the process of reducing decision 
tree size by eliminating parts of the tree which have little 
power for classifying and this process finally led to increas-
ing the accuracy of the classifier and its reliability [51, 53, 
54].

3.2.1 � Rockburst prediction using C4.5

In this study, the C4.5 algorithm was applied to the training 
dataset using WEKA (Waikato Environment for Knowledge 
Analysis) software. There are two main parameters which 
should be adjusted to develop a high-performance C4.5 clas-
sifier including confidence factor (CF) and the minimum 
number of instances (MNI) (data samples) per leaf. The 
CF is used to compute a pessimistic upper bound on the 
error rate at a leaf/node. The smaller this value, the more 
pessimistic the estimated error is and generally the heavier 
the pruning. If a CF greater than 0.5 is chosen, then the 
pruning will be done on the basis of unchanged classifica-
tion error on the training dataset and this is equivalent to 
turning off the pruning. The MNI affect the volume (i.e. 
the complexity) of the developed tree [55]. Hence, accord-
ing to Bui et al. [55] and Ghasemi et al. [52], the CF and 
MNI varied from 0.1 to 0.5 and 1 to 20, respectively, and 
the corresponding accuracy values were recorded. Finally, 
the optimum values of 0.25 and 2 were determined for CF 
and MNI, respectively. After adjusting the C4.5 parameters 
in WEKA software, the model was executed and the cor-
responding tree was obtained. Figure 6 displays the results 
obtained by this algorithm which contains a root node, five 
internal nodes, and seven leaves. There are two numbers in 
the parentheses of leaf nodes, the first number belongs to 
the number of instances in that node and the second number 
shows the number of misclassified instances. The process of 
rockburst prediction using the developed tree model is very 
simple. For example, taking into account the values of 4.6, 
3, 20, and 1.39 for MTS, UTS, UCS, and EEI, respectively, 
and passing through the path of MTS ≤ 25.7 , UTS ≤ 4.55 , 
EEI ≤ 2.04 and UCS ≤ 30 , the leaf node Yes (2, 0) can be 
achieved which shows the occurrence of rockburst.

Table 4   Characteristics of developed GA-ENN model

Parameter Value

Input variables MTS, UTS, UCS, EEI
Output variable Rockburst occurrence

Yes: 1
No: 0

Generation number 100
Population size 100
Number of competitive units (m) 1
Activation function Hard limit
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3.3 � Gene expression programming (GEP)

During the progress of evolutionary algorithms (EAs) since 
1975, Ferreira [56] introduced a new powerful population-
based algorithm called gene expression programming (GEP) 
that takes advantage of basic GA and genetic program-
ming (GP) methods. The main goal of the GEP is to find a 
rational mathematical relationship between the independent 
variables and the corresponding dependent in such a way 
that the defined fitness function reaches its minimal value. 
In GEP, possible solutions are in the form of fixed-length 
coded chromosomes consisting of two groups of entities: 
terminals and functions. Terminals can be both of input 
variables and user-defined constant values. Functions are 
algebraic symbols, e.g. +, − , × , ∕ , Ln , Log and so on. The 
chromosomes can consist of one or more genes, and each 
gene comprises two parts of the head and tail so that the 
genetic operators create effective changes in these areas to 
produce better solutions. In contrast to multiple non-linear 
regression techniques, there is no need to consider a pre-
defined mathematical framework (e.g. exponential, power, 
logarithmic, etc.) for GEP to develop a model. As a matter of 
fact, the GEP algorithm during its intelligent search is capa-
ble to find the optimum combination of terminals and func-
tions to provide a predictive equation with enough accuracy. 
As shown in Fig. 7, the process of GEP modeling starts with 
the random generation of chromosomes in Karva language (a 
symbolic expression of GEP chromosomes) which are then 
expressed and executed as the tree and mathematical struc-
tures, respectively. Then, the generated chromosomes are 
evaluated according to the pre-defined fitness function. Bests 
of the first population are copied into the next generation, 
and the others are influenced by genetic operators, includ-
ing selection and reproduction (i.e. mutation, inversion, 
transposition, and recombination). Finally, the modified 

chromosomes are transferred to the next generation and this 
process will continue until the stopping criteria (maximum 
generation number or reach to pre-defined fitness) are met 
[56–60]. The detailed information concerning genetic opera-
tors and their mechanisms can be found in [56].

3.3.1 � Rockburst prediction using GEP

The GeneXproTools 5.0, an exceedingly flexible modeling 
tool designed for function finding, classification, time series 
prediction, and logic synthesis, was implemented to clas-
sify and predict rockburst events. This software classifies the 
value returned by the evolved model as “1” or “0” via the 
0/1 rounding threshold. If the returned value by the evolved 
model is equal to or greater than the rounding threshold, 
then the record is classified as “1”, “0” otherwise. Similar to 
the GA-ENN and C4.5 modeling, 80% of the database was 
applied to the software as the training dataset to develop the 
model. In the first step, a fitness function for the algorithm 
should be defined. The sensitivity/specificity with the round-
ing threshold of 0.5 was used for this aim. The sensitivity/
specificity (SSi) of a chromosome as a solution can be cal-
culated by the following equation:

where SEi is the sensitivity and SPi is the specificity of the 
chromosome i, and are given by the following formulas:

where TPi, TNi, FPi, and FNi represent, respectively, the 
number of true positives, true negatives, false positives, and 
false negatives. TPi, TNi, FPi, and FNi are the four differ-
ent possible outcomes of a single prediction for a two-class 
case with classes “1” (Yes) and “0” (No). A false positive 
is when the outcome is incorrectly classified as “Yes” (or 
positive) when it is in fact “No” (or negative). A false nega-
tive is when the outcome is incorrectly classified as “No” 
when it is in fact “Yes”. True positives and true negatives 
are obviously correct classifications. Keeping track of all 
these possible outcomes is such an error-prone activity that 
they are usually shown in what is called a confusion matrix. 
Thus, the fitness value of chromosome i is evaluated by the 
following equation:

which obviously ranges from 0 to 1000, with 1000 cor-
responding to the maximum prediction accuracy. In the 
second step, terminals and functions which are kernels of 

(12)SSi = SEi ⋅ SPi,

(13)SEi =
TPi

TPi + FNi

,

(14)SPi =
TNi

TNi + FPi
,

(15)fi = 1000 ⋅ SSi,

Fig. 6   Developed C4.5 tree model based on training dataset
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generated chromosomes should be assigned. Terminals are 
input parameters (i.e. MTS, UTS, UCS, and EEI). The most 
common arithmetic functions were selected as follows:

The goal of GEP modeling is to develop a rockburst index 
in the form of RBI = f (MTS, UTS, UCS, EEI) . The third 
step is to determine the structural parameters, i.e. the number 
of genes and head size. These two parameters affect the length 
of the generated chromosomes and subsequently the complex-
ity of the proposed formula. By trial and error, the best values 
of 4 and 9 were obtained for the number of genes and head 
size, respectively. In the fourth step, the ratios of genetic opera-
tors (i.e. mutation, inversion, transposition, and recombina-
tion) as chromosome modifiers should be determined. A set of 
values has been recommended by the researchers for genetic 
operators that their validity has been confirmed in many engi-
neering problems [57, 61–63]. So, these values were set for 
the operators in the current study as well (see Table 5). As the 
final step, since we face multi-genic chromosomes, we need to 
define a linking function to link genes to each other. Addition 
(+) is the most common linking function which was used for 
this aim. After adjusting the GEP parameters (Table 5), the 
model was executed in training mode for 2000 generations and 
the results were recorded. Equation (17) shows the developed 

(16)F = {+, −, ×, ∕, Sqrt, Exp, Ln, ∧ 2, ∧ 3, 3Rt}.

rockburst index based on GEP algorithm. By feeding the input 
parameters to Eq. (17) and comparing the calculated value 
with Eq. (18), the rockburst occurrence can be determined. 

4 � Performance evaluation of the proposed 
models

In this section, the remaining testing datasets (27 cases) were 
applied to the developed models of GA-ENN, C4.5, and GEP 
to evaluate their prediction performance. For further evalu-
ation, five conventional criteria mentioned in Table 1 were 
considered as well. Table 6 shows the obtained results from 
eight different models in testing stage. A confusion matrix 
is a useful tool to describe the performance of a classifier 

(17)

RBI =
√

exp(MTS) −
UCS

3

EEI
+ 2T

+
exp

�

MTS

EEI

�

(UTS − exp(UTS)) ×
�

EEI

UTS

+ EEI − EEI
9
,

(18)RBI∗ =

{

1 (Yes) RBI ≥ 0.5

0 (No) RBI < 0.5.

Fig. 7   GEP flowchart
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on a set of test data. Each row of the matrix represents the 
instances in an actual class while each column represents the 
instances in a predicted class (or vice versa). Table 7 shows 
the confusion matrices of the developed models. According 
to Tables 6 and 7, GA-ENN and GEP models have the equal 
number of misclassified cases (i.e. 4 cases), while this num-
ber is equal to 9 for stress coefficient and brittleness coef-
ficient criteria. In the following, two indices of root mean 
squared error (RMSE) (an index to measure the deviation 
between the actual and predicted data) and the percentage 
of the successful prediction (PSP) (the percentile quotient 
of the number of correct predictions to the total number of 
testing data) were used to investigate the accuracy and capa-
bility of the models. Ideally, RMSE and PSP are equal to 0 
and 100%, respectively. The results of performance indices 
are shown in Table 8. As can be seen in this table, all three 
new constructed models (i.e. GA-ENN, GEP, and C4.5) have 
higher accuracy and lower estimation error compared with 
five conventional criteria. Table 8 also shows that two mod-
els of GA-ENN and GEP with the similar results outper-
formed the C4.5. On the other hand, EEI criterion acted just 
like the C4.5 model which shows that this criterion with its 
simple formula can be used effectively to predict rockburst 
occurrence in engineering projects. Figure 8 compares the 
prediction performance of the developed models.

5 � Sensitivity analysis

In this section, a sensitivity analysis is performed to evaluate 
the effects of input parameters on rockburst prediction mod-
els. To this end, the relevancy factor [68] was used which is 
calculated by the following equation:

where Ii,k and Īk are the ith and average values of the kth 
input parameter, respectively, Pi , and P̄ are the ith and aver-
age values of the predicted rockburst, respectively, and n is 
the number of rockburst events. The higher the r value the 
more influence the input has in predicting the output value. 
Figure 9 shows the r values. As can be seen in this figure, 
the maximum tangential stress (MTS) is the most influential 
parameter in rockburst prediction, and uniaxial compressive 
strength (UCS) has the lowest impact. These results are in 
agreement with those obtained by others in a recent study 
[3].

6 � Discussion

A supplementary explanation regarding the proposed three 
models is contained in this section. As previously men-
tioned, this is the first attempt in the application of ENNs 
in earth sciences, and its results were promising. Accord-
ingly, it is highly recommended to check the applicability of 
ENNs in combination with other meta-heuristic algorithms, 
as hybrid models, for different aims (e.g. classification, pre-
diction, and minimization) for mining and geotechnical 
engineering applications. However, as a black-box method 
like ANN, GA-ENN neither can provide any equation nor a 
visual pattern for users. This may be considered as a disad-
vantage for this algorithm, but it is possible to overcome this 
issue using this technique to find some optimum coefficients 

(19)
r =

∑n

i=1
(Ii,k − Īk)(Pi − P̄)

�

∑n

i=1
(Ii,k − Īk)

2 ∑n

i=1
(Pi − P̄)

2

,

Table 5   Characteristics of 
developed GEP models

Type of setting Parameter

General setting Terminal set MTS, UTS, UCS, EEI
Function set +, −, ×, ∕, Sqrt, Exp, Ln, ∧ 2, ∧ 3, 3Rt

Fitness function Sensitivity/specificity
Population size 90
Number of generation 2000
Head size 9
Number of genes 4
Linking function Addition (+)

Genetic operators Mutation rate 0.044
Inversion rate 0.1
Transposition rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
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of the multiple non-linear regressions in future studies. In 
contrast to GA-ENN, C4.5 has a very simple modeling 
mechanism. Its tree structure easily can be adopted as a 
guide by engineers in the projects to predict the rockburst 
occurrence just by tracking the values of inputs within the 
branches of the tree. In some cases, this algorithm may pro-
vide large and complex trees according to the defined con-
trolling parameters, which finally decrease the applicability 
of the developed trees. Besides, C4.5 algorithm on account 
of its innate PCA characteristic may remove some input 
parameters during the training stage to increase the accu-
racy of the final output. Hence, the process of C4.5 modeling 
requires extensive modeling experiences. The common mul-
tiple non-linear regressions need a pre-defined mathematical 
structure, while the GEP algorithm is able to find the latent 
relationship between the input and output parameters with-
out any presupposition. This can be introduced as the most 
important characteristic of GEP algorithm compared with 

the GA-ENN and C4.5 algorithms. In addition, GEP does 
not have the limitations of previous methods and is more 
practical. In the end, it is worth mentioning that the devel-
oped models are valid just in the defined ranges of values 
of inputs and for the new datasets out of these ranges, the 
models should be adjusted again.

7 � Summary and conclusions

This study was intended to assess rockburst hazard in 
deep underground openings using three renowned data 
mining techniques including GA-ENN, C4.5, and GEP. A 
database including the maximum tangential stress of the 
surrounding rock, the uniaxial tensile strength of rock, 
the uniaxial compressive strength of rock and the elas-
tic energy index of 134 rockburst experiences in various 
underground projects was compiled. After a statistical 

Table 6   Results of validation of developed models with testing dataset

BC brittleness coefficient criterion, SC stress coefficient criterion, EEI elastic energy index criterion

No. Input parameters Actual output Developed models

MTS UTS UCS EEI GA-ENN C4.5 GEP Russenes 
criterion

Hoek 
criterion

SC BC EEI

1 45.7 3.2 69.1 4.1 1 1 1 1 1 1 1 1 1
2 62.4 9.5 235 9 1 1 1 1 1 0 0 1 1
3 55.6 18.9 256.5 9.1 1 1 1 1 0 0 0 1 1
4 41.6 2.7 67.6 3.7 1 1 1 1 1 1 1 1 1
5 30.3 3.1 88 3 1 1 1 1 1 1 1 1 1
6 28.6 12 122 2.5 1 1 1 1 0 0 0 1 1
7 4.6 3 20 1.39 0 0 1 0 0 0 0 1 0
8 2.6 3 20 1.39 0 0 1 0 0 0 0 1 0
9 33.6 10.8 156 5.2 1 1 1 1 0 0 0 1 1
10 23 3 80 0.85 1 1 0 0 1 1 0 1 0
11 80 6.7 180 5.5 0 1 1 1 1 1 1 1 1
12 19 4.48 153 2.11 1 0 1 0 0 0 0 1 1
13 38.2 3.9 53 1.6 0 1 0 0 1 1 1 1 0
14 73.2 5 120 5.1 1 1 1 1 1 1 1 1 1
15 3.8 3 20 1.39 0 0 1 0 0 0 0 1 0
16 89.56 17.13 190.3 3.97 1 1 1 1 1 1 1 1 1
17 18.8 6.3 171.5 7 0 0 0 0 0 0 0 1 1
18 105.5 12.1 170 5.76 1 1 1 1 1 1 1 1 1
19 39 2.4 70.1 4.8 1 1 1 1 1 1 1 1 1
20 27.8 2.1 90 1.8 0 1 0 0 1 1 1 0 0
21 30 3.7 88.7 6.6 1 1 1 0 1 1 1 1 1
22 40.6 2.6 66.6 3.7 1 1 1 1 1 1 1 1 1
23 11 5 115 5.7 0 0 0 0 0 0 0 1 1
24 59.82 7.31 85.8 2.78 1 1 1 1 1 1 1 1 1
25 7.5 3.7 52 1.3 0 0 0 0 0 0 0 1 0
26 11 4.9 105 4.7 0 0 0 0 0 0 0 1 1
27 57.6 5 120 5.1 1 1 1 1 1 1 1 1 1
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analysis, the GA-ENN, C4.5, and GEP models were 
developed based on training datasets. In the following, 
the prediction performance of the models was evaluated 
by applying unused testing datasets. The results of the new 
models were compared with five conventional rockburst 
prediction criteria via performance indices of root mean 
squared error (RMSE) and percentage of the successful 
prediction (PSP). Finally, a sensitivity analysis was con-
ducted to know about the influence of input parameters on 
rockburst using relevancy factor. The following conclu-
sions have been drawn:

1.	 According to the results of statistical analysis, the orig-
inal database neither has extreme outliers nor natural 
groups. So, it is suitable for further analysis.

2.	 According to the performance indices values, the mod-
els of GA-ENN, GEP, and C4.5 have high accuracy in 
predicting rockburst occurrence, respectively, while the 
criteria of stress coefficient and brittleness coefficient 

Table 7   Confusion matrices of developed models in testing stage

Model Confusion matrix Number of 
misclassified 
cases

GA-ENN Predicted 4
No Yes

Actual No 7 3
Yes 1 16

GEP Predicted 4
No Yes

Actual No 9 1
Yes 3 14

C4.5 Predicted 5
No Yes

Actual No 6 4
Yes 1 16

Russenes criterion Predicted 7
No Yes

Actual No 7 3
Yes 4 13

Hoek criterion Predicted 8
No Yes

Actual No 7 3
Yes 5 12

Stress coefficient criterion Predicted 9
No Yes

Actual No 7 3
Yes 6 11

Brittleness coefficient criterion Predicted 9
No Yes

Actual No 1 9
Yes 0 17

Elastic energy index criterion Predicted 5
No Yes

Actual No 6 4
Yes 1 16

Table 8   Summary of the results based on test datasets

Model Performance index

RMSE PSP (%)

GA-ENN 0.385 85.185
GEP 0.385 85.185
C4.5 0.431 81.481
Elastic energy index criterion 0.430 81.481
Russenes criterion 0.509 74.074
Hoek criterion 0.544 70.370
Stress coefficient criterion 0.577 66.667
Brittleness coefficient criterion 0.577 66.667

Fig. 8   Comparison of performance indices for different models in 
testing stage (SC stress coefficient criterion, BC brittleness coefficient 
criterion)

Fig. 9   Relevancy factor of each input parameter



671Engineering with Computers (2019) 35:659–675	

1 3

with the same performance indices values have the low-
est capability for predicting.

3.	 Strain energy index (EEI) with the RMSE of 0.430 and 
PCP of 81.481% like C4.5 model, can be a beneficial 
tool to predict rockburst occurrence in practice.

4.	 The maximum tangential stress (MTS) is the most influ-
ential parameter to predict rockburst occurrence. This 
parameter should be controlled during the design of 
underground excavations by optimizing their geometry.
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Appendix

See Table 9.

Table 9   Database used in this 
article for rockburst analysis

No. MTS (MPa) UCS (MPa) UTS (MPa) EEI Rockburst References

1 89.56 190.3 17.13 3.97 Yes Dong et al. [2]
2 89.56 170.28 12.07 5.76 Yes
3 89.56 187.17 19.17 7.27 Yes
4 56.1 131.99 9.44 7.44 Yes
5 54.2 133.99 9.09 7.08 Yes
6 70.3 128.52 8.73 6.43 Yes
7 48.75 180 8.3 5 Yes
8 62.5 175 7.25 5 Yes
9 75 180 8.3 5 Yes
10 57 180 8.3 5 Yes
11 89 236 8.3 5 Yes
12 50 130 6 5 Yes
13 108 140 8 5.5 Yes
14 18.8 178 5.7 7.4 No
15 11 115 5 5.7 No
16 55.4 176 7.3 9.3 Yes
17 30.9 82.56 6.5 3.2 Yes
18 89 128.6 13.2 4.9 Yes
19 12.3 237.1 17.66 6.9 No
20 55.6 256.5 18.9 9.1 Yes
21 91.3 225.6 17.2 7.3 Yes
22 61 171.5 22.6 7.5 Yes
23 34.15 54.2 12.1 3.17 Yes
24 108.4 138.4 7.7 1.9 Yes
25 69.8 198 22.4 4.68 Yes
26 105 171.3 22.6 7.27 Yes
27 105 237.16 17.66 6.38 Yes
28 105 304.21 20.9 10.57 Yes
29 25.49 54.2 2.49 3.17 Yes
30 72.07 147.09 10.98 6.53 Yes
31 21.8 160 5.2 2.22 No
32 20.9 160 5.2 2.22 No
33 12.1 160 5.2 2.22 No
34 75 170 11.3 9 Yes
35 43.4 123 6 5 Yes
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Table 9   (continued) No. MTS (MPa) UCS (MPa) UTS (MPa) EEI Rockburst References

36 62.6 165 9.4 9 Yes
37 30 88.7 3.7 6.6 Yes
38 105 128.61 13 5.76 Yes
39 105 304 9.12 5.76 Yes
40 105 306.58 13.9 6.38 Yes
41 7.5 52 3.7 1.3 No
42 24.93 99.7 4.8 3.8 No
43 14.96 99.7 4.8 3.8 No
44 34 150 5.4 7.8 No Adoko et al. [1]
45 60.7 111.5 7.86 6.16 Yes
46 54.2 134 9.09 7.08 Yes
47 70.3 129 8.73 6.43 Yes
48 35 133.4 9.3 2.9 Yes
49 38.2 53 3.9 1.6 No
50 11.3 90 4.8 3.6 No
51 92 263 10.7 8 Yes
52 62.4 235 9.5 9 Yes
53 43.4 136.5 7.2 5.6 Yes
54 11 105 4.9 4.7 No
55 90 170 11.3 9 Yes
56 90 220 7.4 7.3 Yes
57 80 180 6.7 5.5 No
58 98.6 120 6.5 3.8 Yes
59 108.4 140 8 5 Yes
60 56.8 112 2.2 5.2 Yes Zhang [64]
61 58.2 83.6 2.6 5.9 Yes
62 40.1 72.1 2.3 4.6 Yes
63 41.6 67.6 2.7 3.7 Yes
64 55.6 114 2.3 4.7 Yes
65 30.3 88 3.1 3 Yes
66 27.8 90 2.1 1.8 No
67 29.1 94 2.6 3.2 Yes
68 29.7 116 2.7 3.7 Yes
69 62.1 132 2.4 5 Yes
70 56.9 123 2.7 5.2 Yes
71 55.6 114 2.3 4.7 Yes
72 57.2 80.6 2.5 5.5 Yes
73 39 70.1 2.4 4.8 Yes
74 40.6 66.6 2.6 3.7 Yes
75 39.4 69.2 2.7 3.8 Yes
76 35.8 67.8 3.8 4.3 Yes
77 45.7 69.1 3.2 4.1 Yes
78 38.2 71.4 3.4 3.6 Yes
79 39.4 65.2 2.3 3.4 Yes
80 40.4 72.1 2.1 1.9 Yes
81 26.9 62.8 2.1 2.4 Yes
82 25.7 59.7 1.3 1.7 No
83 43.62 78.1 3.2 6 Yes Jian et al. [15]
84 47.56 58.5 3.5 5 Yes
85 105.5 170 12.1 5.76 Yes
86 105.5 190 17.1 3.97 Yes
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Table 9   (continued) No. MTS (MPa) UCS (MPa) UTS (MPa) EEI Rockburst References

87 105.5 187 19.2 7.27 Yes
88 68 107 6.1 7.2 Yes
89 59.9 96.6 11.7 1.8 Yes
90 55.9 128 6.29 8.1 Yes
91 26.9 92.8 9.47 3.7 Yes
92 33.6 156 10.8 5.2 Yes
93 29.8 132 11.5 4.6 Yes
94 28.6 122 12 2.5 Yes
95 18.7 82 10.9 1.5 No
96 19.7 142 4.55 2.26 Yes
97 19 153 4.48 2.11 Yes
98 17.4 161 3.98 2.19 Yes
99 13.9 124 4.22 2.04 No
100 46.2 105 5.3 2.3 Yes
101 23 80 3 0.85 Yes
102 46.4 100 4.9 2 Yes
103 11 105 4.9 4.7 No Feng and Wang [24]
104 18.8 171.5 6.3 7 No
105 34 149 5.9 7.6 Yes
106 38.2 53 3.9 1.6 No
107 11.3 90 4.8 3.6 No
108 92 263 10.7 8 Yes
109 62.4 235 9.5 9 Yes
110 43.4 136.5 7.2 5.6 Yes
111 44.4 120 5 5.1 Yes Yang et al. [65]
112 13.5 30 2.67 2.03 Yes
113 70.4 110 4.5 6.31 Yes
114 3.8 20 3 1.39 No
115 57.6 120 5 5.1 Yes
116 19.5 30 2.67 2.03 Yes
117 81.4 110 4.5 6.31 Yes
118 4.6 20 3 1.39 No
119 73.2 120 5 5.1 Yes
120 30 30 2.67 2.03 Yes
121 15.2 53.8 5.56 1.92 No Zhang and Li [66]
122 88.9 142 13.2 3.62 Yes
123 59.82 85.8 7.31 2.78 Yes
124 32.3 67.4 6.7 1.1 No
125 30.1 88.7 3.7 6.6 Yes
126 60 135 15.04 4.86 Yes Yi et al. [67]
127 60 66.49 9.72 2.15 Yes
128 60 106.38 11.2 6.11 Yes
129 60 86.03 7.14 2.85 Yes
130 60 149.19 9.3 3.5 Yes
131 60 136.79 10.42 2.12 Yes
132 63.8 110 4.5 6.31 Yes
133 2.6 20 3 1.39 No
134 35 133.4 9.3 2.9 Yes
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