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Abstract
This paper presents a finite element method for the analysis of scissor-link foldable structures. These structures are capable 
of deforming from compact form to expanded form, and vice versa. Due to their complex mechanism, it is difficult and time-
consuming to simulate foldable structures in analysis softwares, while the proposed method of this paper makes it easy to 
perform the analysis in a simple manner. In addition, this paper uses two different multi-objective meta-heuristic algorithms, 
NSGAII and MOCBO, to perform optimum design of foldable structures. The purpose is to find designs that result in mini-
mum weight and minimum volume of the structures satisfying all the constraints consisting of maximum stress, elements 
buckling, and permissible displacement.

Keywords Scissor-link foldable structures · Finite elements analysis · Optimal design · Meta-heuristic algorithms

1 Introduction

Foldable and deployable structures are accounted in space 
structures having deformation ability. One category of these 
structures is scissor-link foldable structures, which contain 
pined elements acting like scissor mechanism. This mecha-
nism gives the structure the ability to deform from a compact 
form to an expanded one (Fig. 1).

These structures in folded position occupy less volume, 
but after expansion cover significant area and can be used 
as shelters in many places and situations, such as in disas-
ters, wars, contemporary showplaces, and so on. The sup-
ports of these structures generally are rollers. This makes it 
easy for these structures to deform from a folded state to an 
expanded one. After expanding the structures, the supports 
can be fixed to the ground by some bars. Also, the structures 
can be fixed by attaching some cables between the joints.

The scissor mechanism has complicated conditions in 
the analysis and design of these structures. The goal of this 

paper is to present a new practical method to facilitate the 
analysis process of the scissor-link foldable structures.

Analysis of foldable structures has a long history. The 
primary work [2] presented a compact stiffness matrix for 
scissor elements in an idealized situation. That stiffness 
matrix was developed [3] for each pair of scissor elements. 
The mentioned methods are applicable to a kind of foldable 
structure with bar elements such that its joints do not trans-
fer any bending moments between its elements. However, 
the analysis method of this paper is designed for scissor-
link foldable structures with the joints being able to transfer 
bending moments except in the hinged direction to simulate 
the real scissor mechanism in the structure.

Many papers have been published on the design of these 
structures. Foldable structures have various shapes; gener-
ally, they are divided into three categories: flat, barrel vault, 
and spherical shape. The design of these structures requires 
some conditions [4] that provide complete folding ability 
for the structures. The design of barrel vault foldable struc-
tures was studied in Mira et al. [1], Hernandez et al. [5] and 
Escrig and Valcarcel [6], and various spherical shapes were 
investigated in Escrig et al. [7] and Escrig and Sanchez [8].

Foldable structures can be expanded in place. After finish-
ing work, they can be folded and be transported to another 
place and be used again. Due to this advantage, it is beneficial 
to design lightweight foldable structures to make them easy to 
be transported. This paper intends to design structures that are 
lightweight and occupy less space when they are in a folded 
status, using meta-heuristic optimization algorithms.
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Nowadays, meta-heuristic algorithms are considered as 
powerful tools in various fields to perform optimization. There 
are many different optimization algorithms named by their 
origin [9–11]. Recently, scientists have been extending these 
algorithms to multi-objective ones having the ability to mini-
mize more than one objective function. In structural optimiza-
tion, these algorithms are used to perform design process auto-
matically by changing the topology of the structure or cross 
sections of elements.

There are diverse works on optimization of foldable struc-
tures. The primary work [12] tried to attain element’ cross 
sections resulting in minimum weight of structures by using 
the recursive quadratic programming method; also [13, 14] 
optimization by genetic and ACO algorithms was performed. 
As recent works [15, 16] used various algorithms to get an 
optimum shape and elements’ sections to reduce the weight of 
structures, Refs. [17, 18] utilized a multi-objective optimiza-
tion algorithm, NSGAII, to find the optimum weight and vol-
ume for the foldable structures. This paper uses two different 
algorithms to get an optimum design of foldable structures that 
result in minimum weight and volume of structure: the first 
algorithm is NSGAII [19] and the second is multi-objective 
of colliding bodies optimization [9], provided in Panda and 
Pani [20].

The rest of this paper is organized as follows. In Sect. 2, a 
description of the method for analysis of foldable structures 
is presented. In Sect. 3, the method for design of foldable 
structures is provided. Then Sect. 4 explains the optimization 
algorithms for the design. In Sect. 5, numerical examples for 
optimal design of foldable structures are presented. Finally, 
concluding remarks are provided in Sect. 6.

2  Analysis of foldable structures

Finite element is a powerful method for structural analysis 
based on Eq. (1). This equation shows that the displacement 
(d) of an elastic element is proportional to the applied forces 
(P) through the stiffness (K):

The aim of this paper is to apply the finite element method 
for the analysis of scissor-link foldable structures. For this 
purpose, each element is considered as a beam with three 
nodes pinned in the Z direction to make a scissor mechanism 
(Fig. 2). Based on the definition of stiffness, the stiffness 
matrix of the elements is presented in Fig. 3. In this matrix, 
nodal moments in Z direction do not have stiffness relation 
with other degrees of freedom of the element because there 
is hinge in that direction, so that their rows and columns 
in the stiffness matrix are zero. However, these zero rows 
and columns make the stiffness matrix singular; this means 
the structure will not be geometrically stable. In the pre-
sent method due to restricted hinges, the stiffness matrix 
becomes geometrically stable. A small number ε is added 
to the stiffness matrix to constrain the hinges and prevent 
them from having free behavior. The ε makes the stiffness 
relation between the nodal moments in the Z direction with 
themselves. Its value does not have a significant effect on 
the results of the analysis. In this paper, the magnitude of ε 
is considered as 0.001.

Other variables are determined by the properties of the ele-
ment and the material. In foldable structures, elements may 
have a local axis and local rotation that should be considered 
in transforming the stiffness matrix into a global coordinate 
before assembling (2). In the equation, (T) is the transforma-
tional matrix and (R) is the rotational matrix. In the scissor-link 
structures the hinge direction (local Z direction) of the ele-
ments varies for different units and this requires considering 
different element rotational matrixes:

In finite element analysis, the body forces of elements 
should be equalized in nodal degrees of freedom. Importing 
gravity force on scissor elements with three nodes is rather 
complicated, and it depends on the local rotation (�) of ele-
ments (Fig. 2). When gravity load is imposed on the elements 
in the Z direction (� = �∕2) , elements act like a two span 
beams and contain both nodal forces and moments (Eq. 3):

(1)P = K ⋅ d.

(2)K = T �R�kRT .

Fig. 1  Folding process of a barrel vault scissor-link foldable structure [1]
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When the gravity load is imposed in the Y direction (� = 0) , 
there is no equalized moment in nodes since the elements are 
hinged in the Z direction. By solving an indeterminate beam 
with three hinged support the related formulation for this 
direction, the following formulas are obtained (Eq. 4):

(3)
G1 = [0, p2, 0, p4, 0, p6, 0, p80, p10, 0, p12, 0, p14, 0, p16, 0, p18]

�,

p2 = − (A × � × l1∕2),

p4 = ((A × � × l1
2∕12) × zki∕L),

p6 = −((A × � × l1
2∕12) × xki∕L),

p8 = −(A × � × L∕2),

p10 = ((A × � × (l2
2 − l1

2)∕12) × zki∕L),

p12 = ((A × � × (l1
2 − l2

2)∕12) × xki∕L),

p14 = − (A × � × l2∕2),

p16 = − ((A × � × l2
2∕12) × zki∕L),

p18 = ((A × � × l2
2∕12) × xki∕L),

L = l1 + l2 zki = zk − zi xki = xk − xi.

(4)G2 = [0, p2, 0, 0, 0, 0, 0, p8, 0, 0, 0, 0, 0, p14, 0, 0, 0, 0]
�,

p2 = −w,

Generally for all amounts of � , nodal forces and moments 
are obtained by Eq. (5). All forces and moments obtained by 
the equations are in the global coordinate system. In the equa-
tions, A is the area of element section, � is the mass density of 
materials, l1 and l2 are lengths of elements (Fig. 2), and x and 
z are coordinates of the element nodes:

3  Design of foldable structures

In all scissor-link foldable structures, Eq. (6) should be 
satisfied; it is a fundamental condition that gives the 
structure complete folding ability (Fig. 4). Barrel vault 
and spherical dome foldable structures are divided into 
various groups [6]; each of them have their own geometric 
formulations. In this paper, two-way barrel vault and a 
kind of spherical dome that previously had been inves-
tigated in [8] are presented. For two-way barrel vault of 
Fig. 5, nodal coordinates are attained by Eq. (7), and for a 

p8 = − (A × � × L2∕(2 × l2) − w × L∕l2),

p14 = − (3 × A × � × (l1
3 + l2

3)∕(8 × l2
2) − w × l1

2∕l2
2),

w = A × � × (L − L
2∕(2 × l

2
) − 3 × (l

1

3 + l
2

3)∕

(8 × l
2

2))∕(1 − L∕l
2
− (l

1
∕l

2
)2).

(5)Gtotal = G1 × sin(�) + G2 × cos(�).

Fig. 2  A three-node scissor 
element
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Fig. 3  Stiffness matrix of scissor elements



597Engineering with Computers (2019) 35:593–604 

1 3

spherical dome of Fig. 6, Eq. (8) is used. In the presented 
equations, R, t, and the number of units are determined. 
The number of units in one arch for the barrel vault and 
in the base semicircle for spherical dome are considered:

(6)a + b = c + d,

(7)
� = 180/number of units, sin(s)/(R − t) = sin(p)/R = sin(�)/L,

4  Optimization of foldable structures

Recently, meta-heuristic algorithms are extensively used in 
different fields of engineering as a powerful computational tool 
to find optimum solution of the functions. These algorithms 
test iteratively sets of variables which result in less cost, while 
satisfying the constraints. Generally, meta-heuristic algorithms 
are inspired by natural events. For example, CBO algorithm 
[9] is inspired from the collision of bodies or VPS algorithm 
[10] is established on the system of vibrating particles. Fig-
ure 7 shows the flowchart of these algorithms:

(8)

⎧⎪⎪⎨⎪⎪⎩

�i = 180/(2 × numberofunits) i = 1

R × cos(�1 + �i) × sin(�1) = R × sin(�i) i = 2

R × cos

�
�1 + 2 ×

i−1∑
j=2

�j + �i

�
× sin(�1) = R × sin(�i) i ⩾ 3

.

Fig. 4  A scissor mechanism

Fig. 5  A barrel vault foldable structure
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Fig. 6  A spherical foldable structure



598 Engineering with Computers (2019) 35:593–604

1 3

(9)
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1
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n
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n

2
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2
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�
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n

2
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2

�
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2
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n
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i
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i
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2
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n

2
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Colliding bodies optimization works based on the collision 
of particles (9). Each particle has its own variables and weight 
( mk ). The weights of the particles correspond to their cost; Par-
ticles with less cost are heavier. In each iteration, particles are 
divided into two groups (Fig. 8) stationary and moving. Mov-
ing particles collide with stationary ones with primary velocity 
( vi ). After the collision, each particle updates its velocity ( v′

i
 ). 

According to Eq. (9), the updated velocity of heavier particles 
is less than lightweight particles; It causes the algorithm to 
converge to a better particle which corresponds to less cost.

If there is more than one objective in the optimization issue, 
multi-objective meta-heuristic algorithms should be used. 
These algorithms are established on the basic meta-heuristic 
algorithm, but the solution space is divided by the number 
of objectives. Multi-objective optimization algorithms try to 
find an area of solutions that minimize all objective functions 
simultaneously. Multi-objective, genetic algorithm, NSGA-II, 
is presented in Deb et al. [19]. In this paper, a multi-objective 
version of the CBO algorithm (MOCBO) [20] is utilized using 
the NSGA-II method.

In multi-objective algorithms, particles take place in search 
space. They are divided into different groups by their front 
number (Fig. 9). The first front contains particles that do not 
concur with other best front. By excluding particles of the 
first front from solution space, the particles that do not concur 
would be in the next front. It continues until all particles take 
place in different fronts. A particle can concur with others if 
it has better cost at least in one objective than them. In each 
front, particles are graded for their distance from others. Parti-
cles that have more crowding distance will have higher value. 
This helps the algorithm to cover all parts of the solution area.

Multi-objective colliding body formulation is exactly like 
the standard CBO (9), but the difference is in the weight of 
the particles. In the MOCBO, the weights of the particles are 
assigned by Eq. (10).

(10)mk =
nf + crk + 1 − pfk

nf
, k = 1, 2,… , n,

crk = 1 For end particles of front,

crk =

g∑
i=1

| cos ti
k+1

− cos ti
k−1

|
| cos ti

end
− cos ti

1
| Formiddle particles of front.

Start

Count and evaluation of fitness 
for each particle

Presenting best solution

Is termination 
criterion fulfilled 

? 

End

Arrange particles 
from the best one

Produce new variables 
according to their fitness 
and algorithm structure

Yes

No

Random initialize of variables

Fig. 7  Flowchart of the optimization algorithm

Fig. 8  Pairing of the particles of 
the colliding bodies optimiza-
tion [9] 1

2
2

2
+2

2
+1 ……

….
:

:
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mk : weight of the particle, nf: number of fronts, pf: front 
number of particle, cr : crowding distance of particles, g : 
number of the objective functions.

Another feature of the MOCBO algorithm is that in 
each iteration, the best front particles combine to the next 
generation to save the best positions, and then they are 
sorted according to their weight to achieve the best popula-
tion; this part is similar to the ECBO [21].

5  Numerical studies

In this paper, one barrel vault and one spherical dome 
are optimized by the NSGA-II and MOCBO algorithms. 
The objective functions of the optimization consist of the 
weight (11) and volume (12) of structures. The material 
used for elements is aluminum 6061-T4 (E = 70 GPa, fy
= 110 MPa, ρ = 2727 kg/m3, υ = 0.33). The cross sections 
of elements are rectangular tubes (Fig. 10):

N: number of elements, A: section-sectional area, L: length 
of the element, Nj: number of joints, wj: weight of the joints.

Optimization variables are presented in Table 1. The 
number of scissor units is the number of units in one arch 
in a barrel vault, and it is the number of units in the base 
semicircle of the spherical dome. Optimization constraints 

(11)w = Nj × wj +

N∑
i=1

� × Ai × Li,

(12)v =

N∑
i=1

(a × b)i × Li,

are maximum displacements, allowable stress and control 
of the element buckling.

• Permissible displacement is R/50 , and R is the radius of 
structure.

• Allowable stress is 110 MPa according to the material, 
6061-T4.

• Buckling of elements is checked by Eurocode 9.

Wind and snow loads are imposed on the structures 
according to Eurocode, as shown in Figs. 11 and 12. The 
basic velocity for wind load and the height of sea level are 
considered as 21 m/s and 26 m, respectively The weight of 
each joint is 0.5 kg. A uniform PVC membrane 0.7 kg/m2 
is considered on the structures. All the loads are equalized 
to external nodes of structures. Equation (13) is used for 
load combination in this paper. This load combination has 
more effect on these structures:

In both optimization algorithms, the numbers of 
iterations and populations are taken as to 150 and 50, 
respectively.

(13)1.5 × w + 0.75 × s + 1.35 × G.

Fig. 9  Objective function space

Fig. 10  Element cross section

Table 1  Optimization variables and their lower and upper limits

Optimization variable Lower limit Upper limit

Number of scissor units 5 10
Thickness of arch 15 cm 50 cm
Height of polar elements 12 mm 120 mm
Width of polar elements 12 mm 120 mm
Thickness of polar elements 1.2 mm 6.3 mm
Height of translational elements 12 mm 120 mm
Width of translational elements 12 mm 120 mm
Thickness of translational elements 1.2 mm 6.3 mm
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Fig. 11  Lateral wind load, drift snow, and longitude wind load to barrel vault

Fig. 12  Imposed snow and wind 
load on spherical dome
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5.1  Optimization of barrel vault

The first part of this study consists of an optimal design of a 
barrel vault foldable structure hinged to the ground by four 
supports in each arch. Wind load is imposed on the struc-
ture in two directions (Fig. 11). The structure is analyzed by 
combination of lateral wind load with other load cases, and 
it is also analyzed by combination of longitudinal wind load 
with other load cases. Radius and length of the barrel vault 
are constant and equal to 3.45 and 10 m. The number of 
arches in the length of the structure depends on the number 
of units in the arch to keep the structure’s length fixed. Some 
of the results obtained by the MOCBO and NSGA-II are pre-
sented in Tables 2 and 3, respectively. Figure 13 shows the 
range of the results in search space and the achieved optimal 
solution of the objectives by both algorithms.

5.2  Optimization of spherical dome

The other studied structure is a spherical dome foldable 
structure. All basic nodes of the structure are connected to 
the ground. Figure 12 shows the imposed wind and snow 
loads on the structure. Figure 14 shows the different parti-
cles in search space and the obtained minimum objectives 
in some different iteration. Variables parameters of selective 

particles from MOCBO and NSGA-II are presented in 
Tables 4 and 5.

6  Conclusions

This research is divided into two parts. In the first part, 
for the first time it presents a finite element method for 
the analysis of scissor-link foldable structure. This method 
results in a real analysis of scissor-link foldable structures 
by considering all degrees of freedom of the structure. 
Another feature of this method is avoiding complicated 
simulation using the existing softwares. In addition, it con-
sumes less time for analysis of foldable structures in com-
parison to the analysis by existing softwares. Reduction of 
time consumption is important especially in optimization 
because of the large number of analyses being needed.

The second part is allocated to the optimal design of 
these structures. Two multi-objective meta-heuristic algo-
rithms are used. Both algorithms present a wide range of 
designs that balance between the weight and volume of 
the structures. The presented designs by these algorithms 
satisfy all the constraints. The repetitive analysis shows 
that the proposed MOCBO algorithm covers a bigger range 

Table 2  Variables obtained by the MOCBO algorithm for the barrel vault

Number 
of units

Height of 
polar ele-
ments

Width of 
polar ele-
ments

Thickness 
of polar ele-
ments

Height of 
translational 
elements

Width of 
translational 
elements

Thickness of 
translational ele-
ments

Thick-
ness of 
arch

Weight of 
structure

Volume of 
structure

5 34 90 6.4 12 20 3.5 50 553.73 0.3862
5 40 99 4.1 12 20 3.0 50 426.63 0.4235
5 53 108 2.8 13 18 3.0 43 356.08 0.4771
5 72 111 2.1 15 21 1.9 40 305.86 0.5452
5 95 115 1.6 14 21 1.9 41 273.52 0.6095
5 120 120 1.2 12 30 1.7 44 247.50 0.7054

Table 3  Variables obtained by the NSGA-II algorithm for the barrel vault

Number 
of units

Height of 
polar ele-
ments

Width of 
polar ele-
ments

Thickness 
of polar ele-
ments

Height of 
translational 
elements

Width of 
translational 
elements

Thickness of 
translational ele-
ments

Thick-
ness of 
arch

Weight of 
structure

Volume of 
structure

5 59 83 3.9 12 42 3.2 47 469.52 0.4861
5 57 86 3.6 12 42 2.7 50 430.63 0.4879
5 61 94 3.1 12 35 1.4 50 363.89 0.5003
5 69 96 2.6 12 38 1.3 50 332.17 0.5325
5 83 96 2.2 12 40 1.2 50 309.13 0.5721
5 92 97 1.8 35 42 1.2 50 295.09 0.6588
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of search space and it is more powerful to get minimum 
objectives.

The covered area by the considered barrel vault 
structure is 70  m2 and the minimum weight obtained 
by MOCBO algorithm is 247 kg. Also, covered area by 
the considered dome structure is 38 m2 and its minimum 
weight is 103 kg. A comparison of these values shows that 

the optimized structures have acceptable weights and can 
be considered as suitable structures.

Finally, foldable structures are divided into two catego-
ries: compatible and incompatible. Compatible foldable 
structures show stress release during the folding process, 
but incompatible one has nonlinear behavior during the 
folding process [22]. The studied structures in this paper 
are compatible and do not need nonlinear analysis.

Fig. 13  Optimization results of the barrel vault
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Fig. 14  Optimization results of the spherical dome

Table 4  Variables obtained by the MOCBO algorithm for the spherical dome

Number 
of units

Height of 
polar ele-
ments

Width of 
polar ele-
ments

Thickness 
of polar ele-
ments

Height of 
translational 
elements

Width of 
translational 
elements

Thickness of 
translational ele-
ments

Thick-
ness of 
arch

Weight of 
structure

Volume of 
structure

5 20 38 4.8 12 35 2.5 38 191.17 0.2153
5 23 38 3.9 12 36 2.3 39 175.05 0.2230
5 21 42 2.9 12 38 2.2 40 154.10 0.2311
5 26 40 2.6 12 47 1.3 42 132.56 0.2571
5 28 47 1.8 12 49 1.2 44 115.47 0.2778
5 32 58 1.2 12 49 1.2 43 103.67 0.3054
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Table 5  Variables obtained by the NSGA-II algorithm for the spherical dome

Number 
of units

Height of 
polar ele-
ments

Width of 
polar ele-
ments

Thickness 
of polar ele-
ments

Height of 
translational 
elements

Width of 
translational 
elements

Thickness of 
translational ele-
ments

Thick-
ness of 
arch

Weight of 
structure

Volume of 
structure
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