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Abstract
The nonlinear static responses of the skew sandwich flat/curved shell panel including the corresponding stress values are 
examined in this article under the influence of the unvarying transverse mechanical load. To evaluate the said responses of 
the sandwich panel, the physical structure model turned to a mathematical form via a higher-order kinematic theory includ-
ing the stretching term effect in the displacement field variable. The effect of geometrical nonlinearity has been included via 
Green–Lagrange strain–displacement kinematics. The governing equation has been derived from the variational principle 
and is solved via direct iterative technique including the finite element procedure. Further, a customized finite element com-
puter code has been developed in MATLAB environment based on the current mathematical model for the computational 
purpose. To check the comprehensive behavior of the proposed model, the bending responses are obtained for different mesh 
sizes and compared with the published data (numerical and 3D elasticity solution). Subsequently, a wide range of numerical 
examples have been solved for the different geometrical configurations (side-to-thickness ratio, curvature ratio, core-to-face 
thickness ratio, skew angle and support conditions) and the influence of the same on deflection and stress behavior has been 
shown and discussed in detail.

Keywords Bending · Equivalent single layer · Skew · Green–Lagrange · HSDT

1 Introduction

In the recent years, the use of laminated and sandwich com-
posite structures in high-performance engineering fields 
such as aerospace, automotive and naval industries has been 
increased greatly due to their superior performance and relia-
bility. In general, the low specific weight with higher specific 
strength is the prime requirement of the discussed industries 
and due to which the sandwich composites are preferable. 
In addition, the geometry (the length and the width) of the 
structural element used in such weight sensitive industries 
are not necessarily perpendicular to the each other. They 
might be in some angle or in other word skewed. The exam-
ples of such panel ar swept wings, skin panels of aircraft, 
etc. These panels are usually thin and their deflections are 
quite large in comparison to their thickness. Similarly, when 
they exposed to the service condition experiences different 

kinds of loading. Hence, to analyse the structural behaviour 
(large deformation), a nonlinear analysis must be used. In 
this regards, i.e., to improve the comprehensive knowledge 
on the structural behavior including the effect of large defor-
mation and to predict the same accurately, many mid-plane 
kinematic theories (higher-order shear deformation theory, 
HSDT; first-order shear deformation theory, FSDT; zig-zag 
theory, layerwise theory, LW and refined higher-order or 
zig-zag theories) have been developed every now and then. 
Now, a review of the important contribution using above 
discussed theories is present in the following line to find out 
the knowledge gap and to establish the objective and neces-
sity of the present work.

The composite and sandwich structures have been mod-
eled extensively to examine the associated responses (bend-
ing, vibration and buckling) by every now and then using the 
established as well as modified kinematic theories for the 
accurate evaluation. In this regard, few relevant articles are 
discussed in the following lines to establish the knowledge 
gap. The large deformation bending responses including the 
coupled environmental effect on the laminated composites 
and sandwich structure are analysed analytically [1, 2] using 
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the perturbation technique as well as derived new axiomatic 
plate theory [3] for the modeling purpose. The prediction 
of the deflection and the frequency responses the cross-ply 
laminated and sandwich plates presented using a layer-wise 
theory with a generalized differential quadrature (GDQ) tech-
nique [4] and the Carrera’s Unified Formulation (CUF) with 
a radial basis function (RBF) in association with the collo-
cation technique [5]. Similarly, the frequency responses and 
heat transfer rate within a three-dimensional (3-D) solid and 
composite structures are verified by [6] adopting the consec-
utive-interpolation procedure (CIP). Additionally, the study 
related to the strength optimization of the layered structure 
are reported [7] using the modified feasible direction method 
(MFD). Further, to improve the understanding of the lami-
nated and sandwich composite structure with the corrugated 
soft core and to enhance the accuracy of computational 
modeling skill, the finite element method (FEM) including 
the commercial finite element (FE) package ANSYS [8, 9] 
is adopted in the past. In addition, the hybrid-stress based 
FEM [10] technique is adopted for the analysis of the modal 
response and static deflection values of the layered structure. 
Further, the FEM has been adopted for the computational 
analysis purpose of the deflection behaviour of different kind 
of structural geometries and construction (rectangular, stiff-
ened annular sector plate, parallelogram-shaped plate, and 
sandwich plate) including the large deformation behaviour via 
von-Karman strain using the FSDT kinematics by [11–16]. 
Similarly, the FSDT kinematic model is implemented further 
to evaluate the deflection and frequency values of the layered 
composite structures [17–19] with the help of the discrete 
shear gap technique. As discussed earlier, the LW theory 
(displacement based model) in association with the FEM 
technique is adopted to examine the bending, vibration and 
buckling responses [20–22] of the laminated and sandwich 
composite plate structure. Further, the bending and buckling 
responses of the nano-sandwich plate structure is examined 
[23] based on various kind of mid-plane kinematic models 
(refined zigzag theory; RZT, sinusoidal shear deformation 
theory; SSDT, classical plate theory; CPT and the FSDT) 
including solution techniques (differential cubature; DC, dif-
ferential quadrature; DQ and harmonic differential quadrature; 
HDQ) to demonstrate the accuracy and computational effort. 
Further, the mechanical structural responses are computed 
numerically via the FEM for the laminated, sandwich and 
the functionally graded material (FGM) structure [32] using 
the kinematic models i.e. generalized layer-wise HSDT, the 
higher-order zigzag theory (HOZT) and inverse hyperbolic 
shear deformation theory (IHSDT). The linear/nonlinear 
structural behaviour of the functionally graded plate/sandwich 
beam structure are also examined using the third-order shear 
deformation plate theory (TSDPT) [33, 34], an efficient mesh-
free method [35, 36] and isogeometric analysis approach [37, 
38]. The effect of ply angle on the minimum buckling load of 

the symmetrically stacked layered structure has been studied 
using the robust design optimization (RDO) [39] technique. 
In addition, the HSDT kinematic model has been adopted 
to study the nonlinear static and dynamic responses of the 
laminated composite curved shell panel [40] and skew sand-
wich plates [41] including the geometrical nonlinearity of 
the structure via von-Karman strain. In continuation to that 
the structural responses (static, frequency and buckling) of 
the laminated composite and sandwich plate have also been 
examined using the HSDT kinematic based IGA [42, 43], 
mesh-free [44, 45] and polygonal [46] approach. Similarly, 
few research are reported on the nonlinear transverse bending 
behaviour of the laminated composite shell structures [47–49] 
using the HSDT kinematics and Green–Lagrange nonlinear 
strain equation.

The current review clearly indicates two major lacunae 
regarding the analysis of the bending behaviour of the skew 
and non-skew layered structures. First, regarding the mid-
plane kinematics, i.e., the static deflection is studied exten-
sively using the FSDT kind of mid-plane theories whereas the 
study using the HSDT is limited. Second, the large deforma-
tion is considered via von-Karman type of strain–displace-
ment equations for layered and sandwich plate structure 
only in few studies. Therefore, it is easy to point out the gap 
between the reported research that none of the articles dis-
cussed the non-linear static analysis of the skew sandwich 
shell panel using the higher-order mid-plane kinematics and 
Green–Lagrange strain–displacement relation. Hence, the 
aim of the current study is to derive a new generalized model 
of the skew sandwich shell structure using Green–Lagrange 
strain kinematics in the framework of the higher-order mid-
plane theory. The current model included all of the nonlinear 
higher-order strain terms to achieve the necessary general-
ity for the accurate modeling. The nonlinear responses are 
obtained computationally using a suitable computer code for 
the structural equilibrium equations with the help of isopara-
metric FEM steps and the direct iterative method. Moreo-
ver, the current numerical model incorporated the thickness 
stretching term effect for precise prediction of the deflection 
parameter. Further, the responses are evaluated using the 
newly developed nonlinear sandwich panel model and verified 
with those of the available published results. After showing 
the required accuracy of the currently developed numerical 
model, it is extended to compute the deflection characteristics 
of the skew sandwich structure for the important geometrical 
parameters including the skew angle and core thickness.

2  Theory

The geometrical configuration of the sandwich composite 
shell panel structure is provided in Fig. 1. The length, the 
breadth and the thickness are denoted by the symbol ‘a’, ‘b’ 
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and ‘h’, respectively. The total thickness of the panel is the 
combination of the core thickness ‘hc’ and the face sheet 
thickness ‘hf’. Further, the principal radii of the curvatures 
of the shell panel are defined as R�x

andR�y
 , along the length 

and the width, respectively. Different geometry of the  
shell panel say cylindrical (Cyl), spherical (Sph), elliptical 
(Elpt), hyperboloid (Hyp) and flat panels flat (FP) can be 
achieved by altering the principal radii of curvature (Cyl, 
R�x

= R ,R�y
= ∞ ; Sph, R�x

= R�y
= R ; Elpt, R�x

= 2R ,R�y
=

R ; Hyp, R�x
= R ,R�y

= −R and FP, R�x
= R�y

= ∞ ). Now, 

the necessary skew effect has been added in the current 
model by varying the skew (ϕ) angle and the details pro-
vided in Fig. 2.

2.1  Constitutive relation

The required constitutive relation for any arbitrary kth 
layer of the laminated sandwich composite face sheets is 
expressed [50] mathematically in the following equation by 
considering an arbitrary angle ‘θ’ of the fibre orientation as:

or
{
�ij
}
=
[
Qij

]{
�ij
}
,

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎𝜉1𝜉1
𝜎𝜉2𝜉2

𝜎𝜍𝜍
𝜎𝜉2𝜍
𝜎𝜉1𝜍
𝜎𝜉1𝜉2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

k

=

⎡⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄13 0 0 0

Q̄12 Q̄22 Q̄23 0 0 0

Q̄13 Q̄23 Q̄33 0 0 0

0 0 0 Q̄44 Q̄45 0

0 0 0 Q̄54 Q̄55 0

0 0 0 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎥⎦

k⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜀𝜉1𝜉1
𝜀𝜉2𝜉2

𝜀𝜍𝜍
𝜀𝜉2𝜍
𝜀𝜉1𝜍
𝜀𝜉1𝜉2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

k

,

where, 
{
�ij
}
 , 
[
Qij

]
 and 

{
�ij
}
 are the stress tensor, the 

reduced transformed stiffness matrix, and the strain tensor, 
respectively.

2.2  Displacement field

Now, the skew laminated sandwich structure model is 
derived mathematically via the proposed higher-order 
displacement kinematics [47] assuming the ESL theory 
including the stretching effect. The current kinematic model 

Fig. 1  Representation of the sandwich shell geometry

Fig. 2  Representation of the skew sandwich flat panel
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maintains the required order of equation for the proper strain 
and stress of the shell structure [49]. In addition, the dis-
placement function maintains the parabolic shear stress dis-
tribution through the shell thickness and expressed as:

Here, the displacement of any general point within the 
panel is represented as (ū, v̄,w̄) whereas (u, v,w) signifies 
the mid-plane displacement of any particular point along 
the corresponding direction 

(
�x, �y, �

)
 , respectively. Simi-

larly, the rotation of normal to the mid-plane and extension 
terms are denoted as �x, �y and �z , respectively, along the 
corresponding direction. Few mathematical functions i.e. 
�x, �y,�x and�y are defined at the mid-plane, showing the 

(2)

ū
�
𝜉x, 𝜉y, 𝜁

�
= u

�
𝜉x, 𝜉y

�
+ 𝜁𝜃x

�
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�
+ 𝜁2𝜆x

�
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�
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�
𝜉x, 𝜉y

�

v̄
�
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�
= v

�
𝜉x, 𝜉y

�
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�
𝜉x, 𝜉y

�
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�
𝜉x, 𝜉y

�
+ 𝜁3𝜓y

�
𝜉x, 𝜉y

�

w̄
�
𝜉x, 𝜉y, 𝜁

�
= w

�
𝜉x, 𝜉y

�
+ 𝜁𝜃z

�
𝜉x, 𝜉y

�

⎫⎪⎬⎪⎭
.

higher-order terms introduced from Taylor’s series expan-
sion for the required parabolic distribution of shear stress 
across the thickness.

Now, the above Eq. (2) can be represented in the matrix 
form as:

where, {𝛿} = {ū v̄ w̄}T  , 
[
f
]
 and 

{
�0
}
=

[
u v w �x �y �z �x

�y �x �y

]T are the displacement field vector at any point, 
thickness coordinate matrix and displacement field vector 
within the mid-plane.

2.3  Strain–displacement relationship

The geometrical distortion of the sandwich composite shell 
panel including the large deformation has been mentioned 
using Green–Lagrange nonlinear strains as same as in [52] 
and elucidated as:

(3){�} =
[
f
]{
�0
}
,
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𝜕ū

𝜕𝜉y
+

𝜕v̄

𝜕𝜉x
+ 2

w̄

R𝜉x𝜉y

�

+

��
𝜕ū
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or {�} = {�l} + {�nl}.

Further, the detailed strain–displacement equation is 
expressed by incorporating the displacement functions 
(Eq. 2) in the corresponding strain Eq. (4) and conceded as:

or 
{
𝜀l
}
+
{
𝜀nl

}
=
[
Tl
]{
�̄�l
}
+
[
Tnl

]{
�̄�nl

}
,

where 
[
Tl
]
 and 

[
Tnl

]
 are the thickness co-ordinate matrix 

associated with the linear and nonlinear mid-plane strains, 
respectively, and the individual strain values can be referred 
in the reference [48]. In addition, the mid-plane linear and 
nonlinear strain vectors are represented as 

{
�̄�l
}
 and 

{
�̄�nl

}
 , 

respectively.

2.4  Nonlinear finite element scheme

The FEM has proved to provide an accurate numerical solu-
tion for the complex engineering problems with minimal 
error. Moreover, the composite modeling and analysis of the 
layered composite become a nontrivial type for the larger 
number of unknowns due to the increase in layer number. In 
addition, the presently developed numerical model is asso-
ciated with complexities associated with the sandwich con-
struction including the variable material properties. Hence, 
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�x�x

k
nl6
�y�y

0

0

0

2k
nl6
�x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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�nl

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

the geometry has been modeled with the advent of FEM 
using a nine-noded isoparametric quadrilateral Lagrangian 
element and ten degrees of freedom per node for the accurate 
prediction of the final solution. The nodal displacement field 

expressions are rewritten using the FEM steps and conceded 
to the following form:

Here, the interpolation function (shape function) termed 
as, 

[
Ni

]
 and the displacement field vector for the ith node is 

denoted as 
{
�0i

}
 . The mathematical expressions of the nodal 

points are generally replicate the physical characteristics and 
the shape functions of the current element can be seen in [51].

Now, the mid-plane strain vector can be written as:

where, 
[
Bi

]
 is the strain displacement relation matrix.

Further, the transformed nodal co-ordinates in the Carte-
sian coordinate system are defined using the transformation 
matrix [TS] as:

(6)

{
�∗
0

}
=
[
u v w �x �y �z �x �y �x �y

]T
=

9∑
i=1

[
Ni

]{
�0i

}
.

(7){�}i =
[
Bi

]{
�∗
0i

}
,
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where,

2.5  Strain energy of the panel

In general, for any laminated sandwich composite shell 
panel, the strain energy (U) can be expressed in the follow-
ing form [52]:

By substituting the total stress tensors and the strain vec-
tors from the Eqs. (1) and (5) into the energy Eq. (9) and the 
final form of the energy functional of the panel configuration 
can be elucidated as:

where,

Now, substituting Eq. (7) into Eq. (10) and the expression 
for the strain energy conceded:

(8)
{
�∗∗
0

}
=

[
TS
]{
�∗
0

}
,

[TS] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos � −sin � 0 0 0 0 0 0 0 0

sin � cos � 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 cos � −sin � 0 0 0 0 0

0 0 0 sin � cos � 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 cos � −sin � 0 0

0 0 0 0 0 0 sin � cos � 0 0

0 0 0 0 0 0 0 0 cos � −sin �

0 0 0 0 0 0 0 0 sin � cos �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)U =
1

2 ∫v

{�}T
i

{
�i
}
dV .

(10)

U =
1

2 ∫v

{𝜀}T
i

�
Q̄
�
{𝜀}idV

=
1

2∭
�
𝜀l + 𝜀nl

�T�
Q̄
��
𝜀l + 𝜀nl

�
d𝜉xd𝜉yd𝜁

=
1

2 ∫A

��
𝜀l
�T

i

�
D1

��
𝜀l
�
i
+

1

2

�
𝜀l
�T

i

�
D2

��
𝜀nl

�
i
+

1

2

�
𝜀nl

�T

i

�
D3

��
𝜀l
�
i
+

1

2

�
𝜀nl

�T

i

�
D4

��
𝜀nl

�
i

�
dA

⎫⎪⎪⎪⎬⎪⎪⎪⎭

[
D1

]
=

N∑
k=1

∫
𝜁k

𝜁k−1

[
Tl
]T[

Q̄
][
Tl
]
d𝜁 ,

[
D2

]
=

N∑
k=1

∫
𝜁k

𝜁k−1

[
Tl
]T[

Q̄
][
Tnl

]
d𝜁 ,

[
D3

]
=

N∑
k=1

∫
𝜁k

𝜁k−1

[
Tnl

]T[
Q̄
][
Tl
]
d𝜁 ,

[
D4

]
=

N∑
k=1

∫
𝜁k

𝜁k−1

[
Tnl

]T[
Q̄
][
Tnl

]
d𝜁 ,

(11)U =
1

2 ∫A

⎛⎜⎜⎜⎝

�
�∗
0

�T�
Bl

�T
i

�
D1

��
Bl

�
i

�
�∗
0

�
+

1

2

�
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0

�T�
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i

�
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�
[A]i[G]i

�
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�
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1
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�
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�T
[G]T

i
[A]T

i

�
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�
[A]i

�
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�
i

�
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0

�
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1

2

�
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0

�T
[G]T

i
[A]T

i

�
D4

�
[A]i[G]i

�
�∗
0

�
⎞⎟⎟⎟⎠
dA

w h e r e ,
{
�l
}
i
=
[
Bl

]
i

{
�∗∗
0

}
and

{
�nl

}
i
=

1

2

[
Bnl

]
i

{
�∗∗
0

}
=

1

2

[A]i[G]i
{
�∗∗
0

}
 . 
[
Bl

]
 is linear strain–displacement matrix 

whereas [A] is the function of the displacement associated 
with nonlinear strain matrix. Additionally, [G] is as same as 
the linear strain–displacement matrix. The nonlinear strain 
terms including the detailed individual coefficients can be 
seen in [48].

2.6  Work done of the panel

The total work done expression due to the externally applied 
distributed mechanical transverse static load ‘q’ on a gener-
alized structure or the current sandwich panel and it can be 
interpreted as in [52]:

(12)W = ∫A

{
�∗∗
0

}T
qdA.
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2.7  Governing equation and solution approach

Now, the final form of the governing equation of the sand-
wich structural panel including the large deformation behav-
iour is obtained by minimising the total energy functionals 
and denoted as in [52]:

where, Π = (U −W).
Subsequently, Eqs. (9)–(12) are inducted into Eq. (13) in 

association with the FE approximation as stated in Eq. (6). 
The final system equilibrium equation will be turned into 
the following form:

where, 
[
Kl

]
 and 

[
Knl

]
 are the global stiffness matrices for the 

structural component considering the linear and the nonlin-
ear strain expression, respectively.

The desired deflection (linear or nonlinear) values of the 
sandwich structural panel have been obtained by solving the 
derived final Eq. (14) with the help of a robust solution tech-
nique (the direct iterative method). Further, the nonlinear 
deflection parameter of the sandwich panel is computed by 

setting the necessary tolerance 
(√

(𝛿n − 𝛿n−1)
2
∕(𝛿n)

2 ≤ 𝜀

)
 

limit (≈ 10−3) between two successive iterations. The details 
steps regarding the implementation of nonlinear solution 
process can be seen from the source [49].

3  Results and discussions

To establish the robustness of the current FEM solution, 
the convergence rate is evaluated for different mesh division 
(coarse to fine mesh) as well as the final responses (linear 
and nonlinear deflection) are compared with the published 
results. The necessary results are evaluated computationally 
through a customized computer code (MATLAB environ-
ment) using the current higher-order nonlinear FE model 
of the sandwich skew panel. To avoid the locking phenom-
ena, a selective integration scheme has been employed, i.e., 
reduced integration for the transverse shear cases and full 
integration for the all other stress. In addition, the computa-
tion has been carried out for the combination of different end 
support conditions and provided in Table 1. Three different 
set of materials have been used in the current study named 
as M1, M2 and M3 and the details are provided below. The 
values are not altered in any case if not stated otherwise.

3.1  Material 1 (M1) [40]

(13)�Π = 0

(14)[K]
{
�∗∗
0

}
= {q} or

[
Kl + Knl

]{
�∗∗
0

}
= {q},

Face ∶ E1∕E2 = 10,G12= G13= 0.33E2,G23 = 0.2E2, �12 = 0.22,

Core ∶ E1= 0.04E2,G12 = 0.016E2,G13 = G23 = 0.06E2, �12 = 0.25.

3.2  Material 2 (M2) [28]

3.3  Material 3 (M3) [54]

Finally, different parametric studies have been carried out 
to assess the static deflection values of the skew sandwich 
structural components including the variation of geometries.

As a first step, a convergence study (different mesh divi-
sion) is carried out for an example of all edges clamped 
(CCCC) (0°/90°/Core/90°/0°) skew (ϕ = 45°) sandwich flat 
panel and the corresponding values presented in Fig. 3. The 
results are obtained for the various loading parameter (Q) 
by utilizing the necessary input parameter (material prop-
erties [1] and geometry related data) i.e. side-to-thickness 
ratio (a/h = 40) and core-to-face thickness ratio (hc/hf = 8). 
It is clearly understood from the figure that the results are 
converging well with the mesh refinement and the current 
(6 × 6) mesh size is capable of calculating the nonlinear 

Face ∶ E1 = 25E,E2 = E,G12= G13= 0.5E,G23 = 0.2E, �12 = 0.25,

Core ∶ E1= 0.04E,E2= 0.04E,G12 = 0.016E,

G13 = G23 = 0.06E, �12 = 0.25.

Face ∶ E1 = 172.5GPa, E2 = E3 = 6.89GPa,

G12= G13= 3.45 GPa,G23 = 1.378GPa,

�12 = �13 = �23 = 0.25,

Core ∶ E1 = E2 = 0.276GPa, E3 = 3.45GPa,

G12= 0.1104 GPa,G13=G23 = 0.414GPa,

�12 = 0.25�13 = �23 = �12.

Q = q0a
4∕E𝜉2

h4; W ∗= W0∕h,

�̄�𝜉x𝜉x (a∕2, b∕2, 𝜁) = 𝜎𝜉x𝜉xh
2∕(qa2);�̄�𝜉y𝜉y(a∕2, b∕2, 𝜁) = 𝜎𝜉y𝜉yh

2∕(qa2),

𝜏𝜉x𝜁 (0, b∕2, 𝜁) = 𝜏𝜉x𝜁h∕(qa);𝜏𝜉y𝜁 (a∕2, 0, 𝜁) = 𝜏𝜉y𝜁h∕(qa);

𝜏𝜉x𝜉y (a, b, 𝜁) = 𝜏𝜉x𝜉yh
2∕(qa2).

Table 1  End support conditions

Condition at �x = 0, a at �y = 0, b

Simply-supported (S)
v

w

�y

�z

�y

�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= 0

u

w

�x

�z

�x

�x

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

= 0

Clamped (C) u = v = w = �x = �y = �z = �x =

�y = �x = �y = 0
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static responses with satisfactory exactitude for further com-
putational purpose.

Subsequently, the validity of the current numerical model 
is checked by solving a new example taking the input param-
eter (the material and geometrical parameters) as same as 
the convergence case and plotted in Fig. 4. Additionally, the 
responses are also obtained for different lamination schemes 
(0°/90°/Core/90°/0°, 0°/90°/Core/0°/90°, 45°/− 45°/
Core/− 45°/45° and 45°/− 45°/Core/45°/− 45°) of the com-
posite face sheets. The final values are compared with the 

reference [40] which shows a good agreement with the small 
deviation. However, the major reason of the differences is 
strain–displacement relation, i.e., Green–Lagrange strain 
is used in a present case whereas reference used the von-
Karman type of strain field. Additionally, the said numerical 
model first time includes all of the nonlinear higher-order 
terms for the skew sandwich structure to arrest the exact 
flexure.

Moreover, to show the model accuracy another example 
is solved to validate the deflection and normal stress values 
with available benchmark solutions i.e. 3D elasticity result. 
The values are computed using the material properties (M2) 
and the geometrical parameters as same as [28].

For the computational purpose, a square simply-sup-
ported sandwich plate under uniformly distributed load 
with two different lamination schemes (0°/90°/C/0°/90° 
and 30°/− 30°/C/30°/− 30°) and two side-to-thickness ratios 
(a/h = 10 and 20) is considered and the results are presented 
in Table 2. It is observed from the table that the calculated 
values are in good agreement with the RHSDT solution 
including the results computed via 3D elasticity theory. 
Here, the normalized non-dimensional values of the central 
deflections and the in-plane normal stress at the centre of 
the panel are obtained using the similar formula as in the 
reference ( W̄ = 100wEh3∕(qa4) and �̄�𝜉x𝜉x = 𝜎𝜉x𝜉xh

2∕(qa2) ). 
The small deviation in the present and the reference results 
may be due to the different kinematic models and types of 
element. It is important to note that the current solutions 
are obtained by utilizing the higher-order displacement kin-
ematics with ten DOF and 2-D nine-noded isoparametric 
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Fig. 4  Non-dimensional defec-
tion (W* = W0/h) of clamped 
skew (ϕ = 45°) sandwich flat/
curved panels (a/h = 40, hc/hf 
= 8)
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quadrilateral Lagrangian element whereas the refined 
higher-order kinematics with seven DOF including the six-
noded triangular element adopted in the reference [28].

Further, the stresses (in-plane and out of plane) are evalu-
ated for the three-layered (0°/C/0°) square simply-supported 
sandwich plate structure under the sinusoidal loading. The 
responses are compared with available data solved via dif-
ferent techniques (semi-analytical model [54]; elasticity 
solution [55]; FEM and HSDT with 5 DOF [56]; mixed 
FEM [57, 58] with 11 and 6 DOF) and presented in Table 3. 
The material and geometrical parameter are considered same 
as reference [54]. The sinusoidal load is considered accord-
ing to the formulae: Q = q0 sin

(
��x

a

)
sin

(
��y

b

)
 . The valida-

tion study indicates that the present responses are close to 

the reference values. Additionally, the small deviation 
between the present and the reference results may be due to 
the difference kinematic models including the numbers of 
DOF at each node.

4  Numerical examples

After the required conformation test of the present higher-
order numerical model of the skew sandwich panel structure, 
it is extended to examine the substantial effect different asso-
ciated design parameters on the transverse deflection val-
ues including the geometries (Cyl, Elpt, Sph, Hyp and FP) 
and full geometrical nonlinearity. It is important to mention 

Table 2  Deflection and normal 
stress comparison for a simply-
supported square sandwich plate 
under uniformly distributed load

Lamination scheme a/h Theory Deflection 
(
W̄
)

Normal 
stress (
�̄�𝜉x𝜉x

)

(0°/90°/C/0°/90°) 10 Present HSDT 2.4588 1.7923
RHSDT [28] 2.6296 1.6249
3-D Elasticity [53] 2.6384 1.6214

20 Present HSDT 1.6273 1.7022
RHSDT [28] 1.7114 1.5988
3-D Elasticity [53] 1.7116 1.5931

(30°/− 30°/C/30°/− 30°) 10 Present HSDT 2.0199 0.8103
RHSDT [28] 2.2237 0.8882

20 Present HSDT 1.1327 0.7707
RHSDT [28] 1.2362 0.7653

Table 3   Maximum stresses 
of simply-supported square 
symmetric (0°/C/0°) sandwich 
plate under sinusoidal 
transverse load

a/h Model �̄�𝜉x𝜉x

(
a

2
,

b

2
,

h

2

)
�̄�𝜉y𝜉y

(
a

2
,

b

2
,

h

6

)
𝜏𝜉x𝜉y

(
0, 0,

h

2

)
𝜏𝜉x𝜁

(
0,

b

2
, 0

)
𝜏𝜉y𝜁

(
a

2
, 0, 0

)

4 Present 1.509 0.2457 − 0.1378 0.2256 0.0961
Kant et al. [54] 1.556 0.259 − 0.144 0.239 0.107
Pagano [55] 1.556 0.259 − 0.144 0.239 0.107
Pandya and Kant [56] 1.523 0.241 − 0.142 0.275 –
Wu and Kuo [57] 1.548 0.249 – – − 0.134
Ramtekkar et al. [58] 1.57 0.26 – 0.237 0.104

10 Present 1.1563 0.0912 − 0.0679 0.2812 0.0506
Kant et al. [54] 1.153 0.11 − 0.0707 0.3 0.0527
Pagano [55] 1.153 0.11 − 0.071 0.3 0.053
Pandya and Kant [56] 1.166 0.105 − 0.069 0.34 –
Wu and Kuo [57] 1.21 0.111 − 0.071 0.324 –
Ramtekkar et al. [58] 1.159 0.111 − 0.071 0.303 0.055

20 Present 1.1154 0.0621 − 0.0497 0.3011 0.0397
Kant et al. [54] 1.11 0.07 − 0.051 0.317 0.036
Pagano [55] 1.11 0.07 − 0.051 0.317 0.036
Wu and Kuo [57] 1.173 0.072 0.052 0.353 –
Ramtekkar et al. [58] 1.115 0.07 − 0.051 0.317 0.036
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Fig. 5  Effect of side-to-thickness ratio (a/h) on non-dimensional defection (W* = W0/h) of clamped skew (ϕ = 45°) sandwich flat/curved panels 
(R/a = 50, hc/hf = 8)
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that the material property M1 is considered further for new 
numerical illustration else stated otherwise.

4.1  Effect of side‑to‑thickness ratio (a/h)

In the present numerical example, the non-dimensional 
deflections are obtained for the clamped skew (ϕ = 45°) 
flat/curved shell panels using the earlier defined material 
parameters and presented in Fig. 5. For the computation pur-
pose, the two lamination schemes (0°/90°/Core/90°/0° and 
45°/− 45°/Core/− 45°/45°) and the geometrical parameters 
a/h = 10, 20, 50, 100 and 200, R/a = 50 and hc/hf = 8 are con-
sidered. From the figure, it is observed that the non-dimen-
sional deflection values are decreasing while the a/h values 
increase. The deflection results indicate the higher values 
for the angle-ply (45°/− 45°/Core/− 45°/45°) sandwich panel 
in comparison to the cross-ply (0°/90°/Core/90°/0°) case. 
In addition, the deflection values are following an increas-
ing trend when the load parameter (Q) values increase. The 

deflection values decrease as the geometry of the structure 
changes from, Hyp, Cyl, Elpt, Sph, and FP.

4.2  Effect of curvature ratio (R/a)

To study the influence of the curvature ratio, the non-dimen-
sional deflection parameter of the skew (ϕ = 30°) clamped 
curved shell panel example is solved. The results are com-
puted using the M1 material parameter and presented in 
Fig. 6. Here, the responses also examined for two lamination 
schemes i.e. the cross-ply and angle-ply (0°/90°/Core/90°/0° 
and 45°/− 45°/Core/− 45°/45°) cases. The results are 
obtained for four curvature ratios (R/a = 2, 5, 20 and 50) 
by setting other geometrical parameters i.e. a/h = 100 and 
hc/hf = 8. The obtained results clearly indicate that the non-
dimensional deflection values are increasing when the load 
parameter (Q) and curvature ratio (R/a) values increase. It 
is because of the well-known fact that the structural stiff-
ness reduces when curvature value increase. In addition, the 

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Cyl

 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)
R/a

 2  2
 5  5
 20  20
 50  50

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Sph

 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)
       R/a

 2  2
 5  5
 20  20
 50  50

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Hyp

 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)
       R/a

 2  2
 5  5
 20  20
 50  50

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Elpt

 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)
       R/a

 2  2
 5  5
 20  20
 50  50

Fig. 6  Effect of curvature ratio (R/a) on non-dimensional defection (W* = W0/h) of clamped skew (ϕ = 30°) sandwich curved panels (a/h = 100, 
hc/hf = 8)



478 Engineering with Computers (2019) 35:467–485

1 3

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Cyl
 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)

       hc/hf

 2  2
 4  4
 8  8
 20  20

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Sph
 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)

       hc/hf

 2  2
 4  4
 8  8
 20  20

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Elpt
 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)

       hc/hf

 2  2
 4  4
 8  8
 20  20

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

Hyp
 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)

       hc/hf

 2  2
 4  4
 8  8
 20  20

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
on

-d
im

en
si

on
al

 d
ef

le
ct

io
n 

(W
* 

= 
W

0/h
)

Load parameter (Q)

FP
 (0°/90°/Core/90°/0°) (45°/-45°/Core/-45°/45°)

       hc/hf

 2  2
 4  4
 8  8
 20  20

Fig. 7  Effect of core-to-face thickness ratio (hc/hf) on non-dimensional defection (W* = W0/h) of clamped skew (ϕ = 45°) sandwich curved pan-
els (a/h = 100, R/a = 50)
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results show that the deflection values are higher for the 
angle-ply (45°/− 45°/Core/− 45°/45°) sandwich structure 
in comparison to the cross-ply (0°/90°/Core/90°/0°) panel 

as in the earlier case. The deflection values are following a 
declining trend while the geometrical configuration changes 
from, Cyl, Hyp, Elpt and Sph panel.
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Fig. 9  Effect of support conditions on non-dimensional defection (W* = W0/h) of skew (ϕ = 45°) sandwich curved panels (a/h = 100, R/a = 50, 
hc/hf = 20)
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4.3  Effect of core‑to‑face thickness ratio (hc/hf)

The core-to-face thickness ratio (hc/hf) have significant 
influence on the nonlinear deflection parameter of the sand-
wich structure. In this regard, an example is solved for a 
thin (a/h = 100) clamped skew (ϕ = 45°) shell structural 
panel (R/a = 50) of two lamination (0°/90°/Core/90°/0° and 
45°/− 45°/Core/− 45°/45°) schemes. The central deflection 
are obtained for four different hc/hf (2, 4, 8 and 20) val-
ues and presented in Fig. 7. The results clearly indicate that 
the non-dimensional deflection values are increasing while 
the hc/hf and the load parameters (Q) increase. In addition, 
the results show that the deflection values are following a 
similar type of trend as in the earlier case for the lamination 
scheme i.e. higher for angle-ply (45°/− 45°/Core/− 45°/45°) 
in comparison to the cross-ply (0°/90°/Core/90°/0°) sand-
wich panel. In addition, interesting to note that the deflec-
tions are higher and lower for the Hyp and FP sandwich 
panel structure.

4.4  Effect of skew angle (ϕ)

It is well known that the skew angle (ϕ) affects the structural 
responses greatly. Hence, an example is solved to study the 
effect of different values of the skew angles (ϕ = 0°, 15°, 30° 
and 45°) on the non-dimensional deflection values of the 

clamped shell panel (flat/curved) structure. The responses 
are obtained using the defined elastic properties and reported 
in Fig. 8. In this example, two different lamination schemes 
(0°/90°/Core/90°/0° and 45°/− 45°/Core/− 45°/45°) for the 
face sheets are adopted including the necessary geometri-
cal parameters as: a/h = 100, R/a = 20 and hc/hf = 8. From 
the computed results, it is easy to understand that the non-
dimensional deflection values are decreasing while the skew 
angle (ϕ) increases from 0° to 45°. However, the responses 
follow an increasing slope when the load parameter (Q) 
increase. Further, it is significant to note that the central 
point deflection values of the angle-ply laminations are 
higher in comparison to the cross-ply cases. In addition, the 
results indicate that the deflection values follow a declining 
trend when the geometry of the panel changes from, FP, 
Hyp, Cyl, Elpt and Sph i.e., the structural panel become 
stiffer as the curvature values increase.

4.5  Effect of support conditions

The effect of end conditions on the static responses are 
investigated and presented in Fig. 9. For the computational 
purpose, the skew (ϕ = 45°) flat/curved shell panel problem 
is solved including different end support conditions i.e., all 
edges clamped (CCCC), all edges simply-supported (SSSS), 
two opposite edges clamped and free (CFCF), two opposite 

Table 4  Deflection and normal 
stress of a simply-supported 
(0°/90°/C/0°/90°) square 
sandwich shell panels under 
uniformly distributed load (hc/hf 
= 8)

a/h Theory R/a

Deflection 
(
W̄
)

Normal stress 
(
�̄�𝜉x𝜉x

)

5 10 20 50 5 10 20 50

5 FP 5.772 5.772 5.772 5.772 2.1955 2.1955 2.1955 2.1955
Cyl 5.7703 5.7708 5.7713 5.7717 0.7489 1.4742 1.8353 2.0516
Sph 5.7236 5.7596 5.7688 5.7714 0.779 1.4892 1.8434 2.055
Hyp 5.8201 5.7827 5.774 5.772 0.7215 1.46 1.8275 2.0482
Elpt 5.7465 5.7651 5.77 5.7715 0.7636 1.4816 1.8393 2.0533

10 FP 2.4588 2.4588 2.4588 2.4588 1.7923 1.7923 1.7923 1.7923
Cyl 2.4516 2.4569 2.4582 2.4586 0.5666 1.1814 1.4875 1.6705
Sph 2.4107 2.4465 2.4557 2.4582 0.5852 1.1908 1.4932 1.6732
Hyp 2.48 2.4639 2.46 2.4589 0.5452 1.1705 1.4813 1.6678
Elpt 2.4327 2.4521 2.457 2.4585 0.5763 1.1862 1.4904 1.6719

15 FP 1.8429 1.8429 1.8429 1.8429 1.7241 1.7241 1.7241 1.7241
Cyl 1.8292 1.8394 1.842 1.8427 0.3527 1.0398 1.3828 1.5878
Sph 1.7749 1.8254 1.8385 1.8422 0.3714 1.0473 1.388 1.5905
Hyp 1.8587 1.8468 1.8438 1.843 0.3278 1.0283 1.3762 1.5849
Elpt 1.8049 1.8332 1.8404 1.8425 0.3628 1.044 1.3855 1.5892

20 FP 1.6273 1.6273 1.6273 1.6273 1.7022 1.7022 1.7022 1.7022
Cyl 1.6051 1.6217 1.6259 1.6271 0.0945 0.8979 1.301 1.5421
Sph 1.5297 1.6018 1.6209 1.6263 0.1219 0.9045 1.3061 1.545
Hyp 1.6411 1.6307 1.6282 1.6275 0.0613 0.8848 1.2936 1.5387
Elpt 1.5717 1.6131 1.6237 1.6267 0.109 0.902 1.3038 1.5436
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Fig. 10  Distribution of stresses over the thickness of a simply-supported (0°/C/0°) square sandwich spherical shell panel under sinusoidal trans-
verse load (hc/hf = 8, a/h = 80)
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edges clamped and simply-supported (CSCS) along with 
the two lamination schemes i.e. (0°/90°/Core/90°/0° and 
45°/− 45°/Core/− 45°/45°) and other geometrical parameters 
are: a/h = 100, R/a = 50 and hc/hf = 20. The results indicate 
that the non-dimensional deflection values are increasing 
with an increase in the load parameter (Q). It is noted from 
the results that the deflection values are decreasing as the 
end support condition changes from, CFCF, SSSS, CSCS, 
and CCCC. In addition, the results show that the deflec-
tion values are higher for the cross-ply (0°/90°/Core/90°/0°) 
lamination when compared to angle-ply (45°/− 45°/
Core/− 45°/45°) sandwich panel.

Finally, one more example is solved to show the variation 
of the deflection and the normal stress values for different 
geometries. The responses are obtained under uniformly dis-
tributed loading for the square simply-supported cross-ply 
(0°/90°/C/90°/0°) sandwich shell panel using M2 properties 
and presented in Table 4. For the computational purpose, 
the responses are obtained using the various geometrical 
parameters i.e., a/h = 5, 10, 15 and 20; R/a = 5, 10, 20 and 
50. It is observed from the responses that the deflection val-
ues are decreasing with an increase in the side-to-thickness 
ratio (a/h) and the reverse trend follows with an increase in 
the curvature ratio (R/a). In addition, the in-plane normal 
stress values are following the same trend. It is also observed 
that the results are following the decreasing trend when the 
geometry of the structure changes from, Hyp, Cyl, Elpt, and 
Sph.

Now, a square three-layered (0°/C/0°) simply-supported 
spherical sandwich shell panel (a/h = 80) under sinusoidal 
loading is analysed for the normal and the shear stresses 
through the panel thickness. The non-dimensional stresses 
are obtained using M3 material property for different cur-
vature ratios (R/a = 10, 20, 30, 40 and 50) and presented in 
Fig. 10. From the figure, it can be seen that for almost all 
the cases the stress values are increasing while the curva-
ture ratio increase. In general, the stresses are symmetric in 
nature for the symmetric laminate, however, in the present 
case there is some discrepancies due to the consideration of 
the geometrical nonlinearity.

5  Conclusions

The nonlinear static responses of the skew sandwich compos-
ite shell (cylindrical/spherical/elliptical/hyperbolical) panel 
is analysed in the present article. The desired responses are 
obtained computationally with the help of customized com-
puter code (MATLAB environment) via geometrically non-
linear FE model and the direct iterative method. The current 
model includes all of the higher-order nonlinear strain terms 
to compute the exact structural flexure. The effectiveness 

of the presently proposed and developed numerical model 
is checked by convergence and comparison study. Finally, 
few sets of numerical examples have been solved to explore 
the influence of the various geometrical parameters on the 
non-dimensional static responses of the sandwich composite 
structure. The computed responses (deflection and stress) 
indicate that the Sph panels are most robust structural panel 
while compared to other geometries (Cyl, Elpt, Hyp and 
FP). The deflection values are following an increasing trend 
with the increase of mechanical load parameter irrespective 
of geometries. However, the central deflections of the skew 
sandwich panel for the lamination schemes follow a variable 
behaviour due to multiple parameters variation i.e. either 
related to the geometrical shape or sizes.
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