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Abstract
In the analysis of a plate, the geometry plays a very important role. The non-uniform rational B-spline (NURBS) basis 
functions are employed for the representation of the geometry and field variables in the isogeometric analysis. These basis 
functions are able to represent the geometry accurately. They are non-interpolating in nature, and hence do not satisfy the 
Kronecker-Delta property. Hence, it becomes difficult to enforce the essential boundary conditions at the control variables. A 
new method called NURBS-augmented finite element method (NAFEM) was proposed (Mishra and Barik, Comput Struct, 
https​://doi.org/10.1016/j.comps​truc.2017.10.011, 2017) and arbitrary shaped plates were successfully dealt for bending 
analysis. In the NAFEM, the authors adopted the finite element basis functions for the field variables as they satisfy the 
Kronecker-Delta property so that the boundary conditions were enforced with ease and the NURBS basis functions were 
employed for the geometry, thereby representing the shape of the plate accurately. In the present work, the same is extended 
for stability analysis of plates having different geometries and boundary conditions and the results are found to be in excellent 
agreement with the existing ones. Some new shapes have also been considered, and the new results are presented.

Keywords  NURBS-augmented finite element method (NAFEM) · Isogeometric analysis (IGA) · Non-uniform rational 
B-spline (NURBS) · Finite element analysis (FEA) · Stability analysis · Arbitrary thin plates

1  Introduction

The finite element analysis is a numerical technique to 
solve various problems in the field of engineering such as 
structural analysis, heat transfer, fluid flow, etc. In the struc-
tural analysis, the geometry plays a vital role which can be 
achieved with a great accuracy with the help of Computer-
aided Design (CAD). The FEA programs developed long 
before CAD were susceptible to inaccuracies. In order to 
vanquish this impediment Hughes et al. [7] proposed a con-
cept called isogeometric analysis (IGA) which was success-
ful in integrating the CAD and FEA resulting in represent-
ing the geometry accurately; where the non-uniform rational 
B-splines (NURBS) basis functions were engaged in repre-
senting the geometry and the field variables. However, the 

NURBS basis functions are non-interpolating in nature and 
do not satisfy the Kronecker-Delta which result in the dif-
ficulty in enforcing the essential boundary condition [6, 10] 
and needed special treatment. A number of methods have 
been developed to impose the essential boundary conditions. 
Some of the most popular methods are Lagrange multiplier 
method [4], penalty method [24] and Nitsche method [6].

The buckling analysis of clamped elliptical plates was 
first carried out by Woinowsky-Krieger [22] subjected to 
uniform compression. A semi-analytical semi-numerical 
method of solution was presented by Zhou et al. [23]) for 
the stability analysis of simply supported sector plates. The 
stability analysis of rectangular Mindlin plates having with 
different boundary conditions have been studied by Liew 
et al. [8] by using the Levy-type solution method.

Thai et al. [15] presented a new inverse tangent shear 
deformation theory (ITSDT), layerwise deformation theory 
[16], higher order shear deformation theory [17] for the 
bending, free vibration and stability analysis of laminated 
composite and sandwich plates of arbitrary shapes using 
isogeometric analysis. The behaviour of laminated compos-
ite Reissner–Mindlin plates of various shapes using NURBS 
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based isogeometric analysis under bending, vibration and 
stability can be found in [18] and [3].

The isogeometric analysis has been used for studying 
the static, vibration and buckling behaviour of isotropic and 
laminated composite structures [13, 14, 20, 21], etc. Mishra 
and Barik [9] coined a new term NURBS-Augmented Finite 
Element Method (NAFEM) similar to the one used in [12] 
but with a difference. In this NAFEM the geometry of the 
plate is represented by NURBS basis functions, whereas the 
displacement functions for all the elements which include 
the internal as well as the boundary elements are represented 
by the classical finite elements.

It is apparent that though IGA is efficient in integrating 
CAD and FEA, its inherent problem with the imposition of 
boundary condition makes it a poor choice for the finite ele-
ment analysis. In the present work, the boundary condition 
imposition problem is alleviated by replacing the NURBS 
with classical finite element basis function to represent the 
field variables.

2 � Proposed analysis

2.1 � Stability analysis

The equation of equilibrium for the stability analysis is given 
by

where [K] and 
[
KG

]
 are the global elastic stiffness and geo-

metric stiffness matrices, respectively, {�} is the displace-
ment vector in the global coordinate system.

2.2 � NURBS basis function

Given a knot vector S =
{
s1, s2, s3, ...sn+p+1

}
 , the associated 

set of B-spline basis functions 
{
Ni,p

}n

i=1
 are defined recursively 

(1)[K]{�} − �
[
KG

]
{�} = {0},

by the Cox–de Boor formula, starting with the zeroth order 
basis function (p = 0) as

and for a polynomial order p ≥ 1

where n is the number of basis functions and p is the order 
of the basis functions. The fractions of the form 0 / 0 are 
defined as zero.

2.3 � Mapping of the plate

The use of NURBS basis functions for the representation of 
geometry introduces the concept of parametric space which is 
absent in the conventional finite element formulation [9, 11]. 
The consequence of this additional space is that an additional 
mapping is performed to operate in the parent element coordi-
nates. First, the parent space is mapped to the parametric space 
and then to the physical space (Fig. 1).

The mapping from parametric to physical space is given by

where Pi,j are the control points and Rp,q

i,j
(s, t) is the bivariate 

NURBS basis function defined as

Ni(s) and Mj(t) are the univariate B-spline basis functions of 
order p and q corresponding to the knot vectors in the 
respective directions and 

{
wi,j

}n,m

i=1,j=1
 , where wi,j > 0 are the 

(2)Ni,0 =

{
1 if si ≤ s ≤ si+1
0 otherwise

(3)Ni,p(s) =
s − si

si+p − si
Ni,p−1(s) +

si+p+1 − s

si+p − si+1
Ni+1,p−1(s),

(4)
[
X
]
=

n∑
i=1

m∑
j=1

Pi,jR
p,q

i,j
(s, t),

(5)R
p,q

i,j
(s, t) =

Ni(s)Mj(t)wi,j∑n

ī=1

∑m

j̄=1
Nī(s)Mj̄(t)wī,j̄

Fig. 1   Mapping parent to physical space through parametric space
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set of NURBS weights. The mapping from parent to para-
metric space is given by [9, 11]

The geometries in the physical space may also be divided 
into simple patches and then those patches are mapped to 
the parent space through the parametric space. As a typi-
cal example the physical space defined by the coordinates 
ACDB is divided into two patches namely ACFE and EFDB 
as shown in Fig. 2. The parent space is then mapped to two 
patches in the physical space through the parametric space 
and the procedure is followed as before to compute the stiff-
ness matrix of each patch. The stiffness matrices of all the 
patches are assembled to form the global stiffness matrix of 
the whole plate. Thus the analysis of the plates can be made 
simpler by subdividing them into more amenable patches 
which can be dealt with ease [9].

2.4 � Displacement interpolation function

For the proposed element, the four-noded rectangular non-
conforming ACM plate bending element with 12◦ of freedom 
is taken as the basic element. As the element is in � − � plane 
the shape functions and the nodal parameters for the displace-
ments and slopes are expressed in terms of the coordinates 

(6)
s(�) =

(si+1 − si)� + (si+1 − si)

2
, t(�) =

(ti+1 − ti)� + (ti+1 − ti)

2

� − � unlike the x − y coordinates of the parent ACM element 
[2]. Thus the displacement function can be written as [9]:

where

The shape functions for the displacement field for the jth 
node are given as:

where s0 = �sj and t0 = �tj.

2.5 � Strain–displacement matrix 

The displacement functions of the plate element is 
expressed in terms of the local coordinate system � − �, 
whereas strains are in terms of the derivatives of the 

(7)w = [Nw]
{
�
}
,

(8)[Nw] =
[
N1

w
N1

��
N1

��
⋯N4

w
N4

��
N4

��

]
,

(9)

{
�
}
=

[
w1

(
�w

��

)

1

(
�w

��

)

1

⋯ w4

(
�w

��

)

4

(
�w

��

)

4

]T
.

(10)

�
N

j
w N

j

��
N

j

��

�
=

1

8

⎡⎢⎢⎣

(s0 + 1)(t0 + 1)(2 + s0 + t0 − �2 − �2)

sj(s0 + 1)2(s0 − 1)(t0 + 1)

tj(s0 + 1)(t0 + 1)2(t0 − 1)

⎤
⎥⎥⎦

T

,

Fig. 2   Mapping parent to the different patches in physical space through parametric space
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displacements with respect to x − y coordinates. Hence 
before establishing the relationship between the strain and 
displacement, the first- and second-order derivatives of the 
displacements w with respect to the x − y coordinates are 
expressed in terms of those of local coordinates (� − �) 
using the chain rule of differentiation and are obtained 
as [9]:

Differentiating Eq. (11) with respect to � and �

Also we have,

Differentiating Eq. (13) with respect to s and t

(11)

⎧
⎪⎨⎪⎩

�w

��
�w

��

⎫
⎪⎬⎪⎭
=

⎡
⎢⎢⎢⎣

�s

��

�t

��
�s

��

�t

��

⎤
⎥⎥⎥⎦

⎧
⎪⎨⎪⎩

�w

�s
�w

�t

⎫
⎪⎬⎪⎭
= [J1]

⎧
⎪⎨⎪⎩

�w

�s
�w

�t

⎫
⎪⎬⎪⎭
.

(12)

⎧⎪⎪⎨⎪⎪⎩

�2w

��2

�2w

��2

�2w

����

⎫⎪⎪⎬⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎣

�2s

��2
�2t

��2

�2s

��2
�2t

��2

�2s

�� ��

�2t

�� ��

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩

�w

�s
�w

�t

⎫⎪⎬⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎣

�
�s

��

�2 �
�t

��

�2 �
2
�s

��

�t

��

�

�
�s

��

�2 �
�t

��

�2 �
2
�s

��

�t

��

�

�
�s

��

�s

��

� �
�t

��

�t

��

� �
�s

��

�t

��
+

�s

��

�t

��

�

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫⎪⎪⎬⎪⎪⎭

= [J2][J1]−1

⎧⎪⎨⎪⎩

�w

��
�w

��

⎫⎪⎬⎪⎭
+ [J3]

⎧⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫⎪⎪⎬⎪⎪⎭

(13)

⎧⎪⎨⎪⎩

�w

�s
�w

�t

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

�x

�s

�y

�s
�x

�t

�y

�t

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

�w

�x
�w

�y

⎫
⎪⎬⎪⎭
= [J4]

⎧
⎪⎨⎪⎩

�w

�x
�w

�y

⎫
⎪⎬⎪⎭
.

Therefore,

From Eq. (13), we have

Again from Eq. (12),

Hence Eq. (16) becomes

(14)

⎧
⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

�2x

�s2

�2y

�s2

�2x

�t2

�2y

�t2

�2x

�s �t

�2y

�s �t

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩

�w

�x
�w

�y

⎫⎪⎬⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−
�
�x

�s

�2

−

�
�y

�s

�2 �
�x

�s

�y

�s

�

−
�
�x

�t

�2

−

�
�y

�t

�2 �
�x

�t

�y

�t

�

−
�
�x

�s

�x

�t

�
−

�
�y

�s

�y

�t

�
1

2

�
�x

�s

�y

�t
+

�x

�t

�y

�s

�

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧
⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x �y

⎫
⎪⎪⎬⎪⎪⎭

= [J5]

⎧⎪⎨⎪⎩

�w

�x
�w

�y

⎫⎪⎬⎪⎭
+ [J6]

⎧
⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x �y

⎫
⎪⎪⎬⎪⎪⎭

(15)

⎧⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x �y

⎫⎪⎪⎬⎪⎪⎭

= [J6]−1

⎧⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫⎪⎪⎬⎪⎪⎭

− [J6]−1[J5]

⎧⎪⎨⎪⎩

�w

�x
�w

�y

⎫⎪⎬⎪⎭
.

(16)

⎧⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x �y

⎫⎪⎪⎬⎪⎪⎭

= [J6]−1

⎧⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫⎪⎪⎬⎪⎪⎭

− [J6]−1[J5][J4]−1

⎧⎪⎨⎪⎩

�w

�s
�w

�t

⎫⎪⎬⎪⎭
.

(17)

⎧⎪⎪⎨⎪⎪⎩

�2w

�s2
�2w

�t2
�2w

�s �t

⎫⎪⎪⎬⎪⎪⎭

= [J3]−1

⎧⎪⎪⎨⎪⎪⎩

�2w

��2

�2w

��2

�2w

�� ��

⎫⎪⎪⎬⎪⎪⎭

− [J3]−1[J2][J1]−1

⎧⎪⎨⎪⎩

�w

��
�w

��

⎫⎪⎬⎪⎭
.
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 where

From Eq. (6) all the elements of the matrix [J2] are zeros. 
Hence Eq. (18) becomes

(18)

⎧
⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x �y

⎫
⎪⎪⎬⎪⎪⎭

= [J6]−1[J3]−1

⎧
⎪⎪⎨⎪⎪⎩

�2w

��2

�2w

��2

�2w

�� ��

⎫
⎪⎪⎬⎪⎪⎭

−
�
[J6]−1[J3]−1[J2][J1]−1 + [J6]−1[J5][J4]−1[J1]−1

�⎧⎪⎨⎪⎩

�w

��
�w

��

⎫⎪⎬⎪⎭
,

[J1] =

⎡⎢⎢⎢⎣

�s

��

�t

��
�s

��

�t

��

⎤⎥⎥⎥⎦
, [J2] =

⎡
⎢⎢⎢⎢⎢⎣

�2s

��2
�2t

��2

�2s

��2
�2t

��2

�2s

�� ��

�2t

�� ��

⎤
⎥⎥⎥⎥⎥⎦

,

[J3] =

⎡⎢⎢⎢⎢⎢⎢⎣

�
�s

��

�2 �
�t

��

�2 �
2
�s

��

�t

��

�

�
�s

��

�2 �
�t

��

�2 �
2
�s

��

�t

��

�

�
�s

��

�s

��

� �
�t

��

�t

��

� �
�s

��

�t

��
+

�s

��

�t

��

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

[J4] =

⎡⎢⎢⎣

�x

�s

�y

�s
�x

�t

�y

�t

⎤
⎥⎥⎦
,

[J5] =

⎡
⎢⎢⎢⎢⎢⎣

�2x

�s2

�2y

�s2

�2x

�t2

�2y

�t2

�2x

�s �t

�2y

�s �t

⎤
⎥⎥⎥⎥⎥⎦

,

[J6] =

⎡⎢⎢⎢⎢⎢⎢⎣

−
�
�x

�s

�2

−

�
�y

�s

�2 �
�x

�s

�y

�s

�

−
�
�x

�t

�2

−

�
�y

�t

�2 �
�x

�t

�y

�t

�

−
�
�x

�s

�x

�t

�
−

�
�y

�s

�y

�t

�
1

2

�
�x

�s

�y

�t
+

�x

�t

�y

�s

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

(19)

⎧⎪⎪⎨⎪⎪⎩

−
�2w

�x2

−
�2w

�y2

2
�2w

�x�y

⎫⎪⎪⎬⎪⎪⎭

=
�
[TF1

] [TF2
]
�

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�w

��
�w

��
�2w

��2

�2w

��2

�2w

�� ��

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

or

where [TF1
] = −[J6]−1[J5][J4]−1[J1]−1 , [TF2

] = [J6]−1[J3]−1 
and 

{
�(x, y)

}
 and 

{
�(�, �)

}
 denote the strain vectors in the 

respective coordinate system. The expression for 
{
�(�, �)

}
 

is given by:

Using Eq. (8)–(9), Eq. (21) can be rewritten as:

where [B̄] =
[
𝜕Nw

𝜕𝜉

𝜕Nw

𝜕𝜂

𝜕2Nw

𝜕𝜉2

𝜕2Nw

𝜕𝜂2

𝜕2Nw

𝜕𝜉 𝜕𝜂

]T
.

Hence the combination of Eq. (20)–(22), yields

where [B] = [T][B̄].
The stress–strain relationship can be expressed as

where 
{
�
}
 is the stress resultant vector given by,

2.6 � Stiffness matrix

Total potential energy of the plate element is given by [9]

Applying the principle of minimum potential energy and 
making appropriate substitutions for

{
�(x, y)

}
 and

{
�(x, y)

}
 , 

we have

where 
{
�
}
 is the vector of nodal displacements, 

{
P
}
e
 is the 

vector of nodal forces and [K]e is the plate element stiffness 
matrix given by

Since the NURBS basis is a function of s and t, Eq. (28) 
becomes

Again since [B] is a function of � and �, Eq. (29) becomes

(20)
{
�(x, y)

}
=
[
T
] {

�(�, �)
}
,

(21)
{
�(�, �)

}
=

[
�w

��

�w

��

�2w

��2
�2w

��2
�2w

�� ��

]T
.

(22)
{
𝜖(𝜉, 𝜂)

}
= [B̄]

{
𝛿
}
,

(23)
{
�(x, y)

}
=
[
B
] {

�
}
,

(24)
{
�
}
= [D]

{
�
}
= [D][B]

{
�
}
,

(25)
{
�
}
=
[
Mx My Mxy

]T

(26)Πp =
1

2 ∬
{
�(x, y)

}T {
�(x, y)

}
dx dy −∬ wTdx dy.

(27)[K]e
{
�
}
=
{
P
}
e
,

(28)[K]e = ∬ [B]T [D][B] dx dy.

(29)[K]e = ∬ [B]T [D][B]|J4| ds dt.
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The integration is carried out numerically by adopting 2 × 2 
Gaussian quadrature formula.

2.7 � Geometric stiffness matrix

The geometric stiffness matrix is formulated considering the 
action of the in-plane loads causing the bending strains. The 
membrane strains associated with the small rotations �w

�x
 and 

�w

�y
 of the plate mid-surface are given by

The stresses �x , �x and �xy are assumed to remain constant, 
the work done is given by

where

Now putting the value of 
{
�G
}
 from Eq. (31) in Eq. (32), 

we have

where

and

From Eqs. (13) and (11), Eq. (35) can be expressed in terms 
of � and � as

(30)[K]e = ∬ [B]T [D][B]|J1||J4| d� d�.

(31)
�
�G
�
=

⎧⎪⎨⎪⎩

�x
�y
�xy

⎫⎪⎬⎪⎭
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

2

�
�w

�x

�2

1

2

�
�w

�y

�2

�
�w

�x

��
�w

�y

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

(32)W = ∫ ∫ ∫
{
�G
}T

{�} dx dy dz,

(33){�} =
[
�x �y �xy

]T
.

(34)

W = ∫ ∫ ∫
[
1

2

(
�w

�x

)2 1

2

(
�w

�y

)2 (
�w

�x

)]
{�} dx dy dz

= ∫ ∫ ∫
1

2
{�}T [�]{�} dx dy dz,

(35){�} =

[
�w

�x

�w

�y

]T

(36)[�] =

[
�x �xy
�xy �y

]
.

where

and

where

Combining Eq. (37) and Eq. (39), {�} can be expressed as

where

Now substituting the value of {�} from Eq. (41), Eq. (34) 
becomes

The external work done by the nodal force is given by

From Eqs. (43) and (44), the geometric stiffness matrix of 
the plate element can be written as

(37)

{�} =

⎧
⎪⎨⎪⎩

�w

�x
�w

�y

⎫
⎪⎬⎪⎭
= [J4]−1

⎧
⎪⎨⎪⎩

�w

�s
�w

�t

⎫
⎪⎬⎪⎭

= [J4]−1[J1]−1

⎧
⎪⎨⎪⎩

�w

��
�w

��

⎫
⎪⎬⎪⎭
=
�
TG

� ⎧⎪⎨⎪⎩

�w

��
�w

��

⎫
⎪⎬⎪⎭
,

(38)
[
TG

]
= [J4]−1[J1]−1

(39)

⎧
⎪⎨⎪⎩

𝜕w

𝜕𝜉
𝜕w

𝜕𝜂

⎫
⎪⎬⎪⎭
=
�
B̄G

�
{𝛿},

(40)
[
B̄G

]
=

[[
𝜕Nw

𝜕𝜉

𝜕Nw

𝜕𝜂

]]T
.

(41){𝜃} =
[
TG

][
B̄G

]
{𝛿} =

[
BG

]
{𝛿},

(42)
[
BG

]
=
[
TG

][
B̄G

]
.

(43)
W = ∫ ∫ ∫

1

2
{�}T

[
BG

]T
[�]

[
BG

]
{�} dx dy dz

=
t

2 ∫ ∫ {�}T
[
BG

]T
[�]

[
BG

]
{�} dx dy dz.

(44)W =
1

2
{�}T

[
KG

]
{�}.

(45)

[
KG

]
= t ∫ ∫

[
BG

]T
[�]

[
BG

]
dx dy

= t ∫ ∫
[
BG

]T
[�]

[
BG

]|J4| ds dt

= t ∫ ∫
[
BG

]T
[�]

[
BG

]|J1||J4| d� d�.
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2.8 � Boundary conditions

Reproducing the procedures adopted in [1, 9], as a general 
case, the stiffness matrix for a curved boundary supported on 
elastic springs continuously spreads in the directions of all 
possible displacements and rotations along the boundary line 
is formulated from which the specific boundary conditions can 
be obtained by incorporating the appropriate value of spring 
constants. Considering a local axis system x1 − y1 at a point P 
on a curved boundary along the direction of the normal to the 
boundary at that point as shown in Fig. 3, the displacement 
components along it can be found. Let � be the angle made by 
the local axis x1 − y1 with the global axis x − y.

Hence the relationship between the two axes is given by

The displacements at P which may be restrained can be 
expressed as

where �n and �t represent the slopes which are normal and 
transverse to the boundaries, respectively. Substituting from 
Eq. (46), Eq. (47) can be written as

(46)
{
x

y

}
=

[
cos � − sin �

sin � cos �

]{
x1
y1

}
.

(47){fb} =

⎧⎪⎨⎪⎩

w

�n
�t

⎫⎪⎬⎪⎭
=

⎧
⎪⎪⎨⎪⎪⎩

w
�w

�x1
�w

�y1

⎫
⎪⎪⎬⎪⎪⎭

,

(48){fb} =

⎡⎢⎢⎣

1 0 0

0 cos � sin �

0 − sin � cos �

⎤⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

w
�w

�x
�w

�y

⎫
⎪⎪⎬⎪⎪⎭

.

Expressing Eq. (48) in terms of the shape functions, we have

Let kw, k� , and k� be the spring constants or restraint coef-
ficients corresponding to the direction of w, �nand �t , respec-
tively. The reaction components per unit length along the 
boundary line due to the spring constants corresponding to 
the possible boundary displacements are given by

Equation (51) can be rewritten by combining Eqs. (47)–(49) 
as

where [Nk] =

⎡⎢⎢⎣

kw 0 0

0 k� cos � k� sin �

0 −k� sin � k� cos �

⎤⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

[Nw]
�[Nw]

�x
�[Nw]

�y

⎫⎪⎪⎬⎪⎪⎭

.

Using Eqs. (48) and (51), the stiffness matrix can be 
obtained by the virtual work principle and is expressed as

where �1 is the direction of the boundary line in the � − � 
plane and Jacobian |Jb| =

ds1

d�1
 . The value of the Jacobian 

along a boundary line is considered as a ratio of the actual 
length to the length on the mapped domain considering any 
segment of the boundary line. A classical boundary condi-
tion can be attained by substituting a high value of the 
restraint coefficients corresponding to the restraint 
direction.

3 � Numerical examples

The stability analyses of a number of plates having dif-
ferent shapes and boundary conditions are carried out 
using the simultaneous iteration algorithm of Corr and 

(49){fb} = [Nb]{�},

(50)[Nb] =

⎡
⎢⎢⎣

1 0 0

0 cos � sin �

0 − sin � cos �

⎤
⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

[Nw]
�[Nw]

�x
�[Nw]

�y

⎫
⎪⎪⎬⎪⎪⎭

.

(51){fk} =

⎧
⎪⎨⎪⎩

fkw
fk�
fk�

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

kww

k��n
k��t

⎫
⎪⎬⎪⎭
.

(52)
{
fk
}
=
[
Nk

] {
�
}
,

(53)[Kb] = ∫ [Nb]
T [Nk]|Jb| d�1,

Fig. 3   Coordinate axes at any point of an elastically restrained curved 
boundary
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Jennings [5] and the results obtained are compared with 
the existing ones. The results are presented in tabular 
form with a mesh division of 32 × 32 for the whole plate. 
Figures of typical plates showing mesh divisions of 8 × 8 
along with the nodes (asterisk) are presented for each 
case. The abbreviations used in the table for the bound-
ary conditions (S—simply supported, C—clamped, F—
free) are depicted in the anti-clockwise direction starting 
from the left edge of the plate. The ability of NAFEM to 
analyse some new shapes is showcased by considering a 
rectangular plate with one side curved edge consisting 
of a rectangular portion as patch-1 and the remaining as 
patch-2.

3.1 � Circular plate

The buckling loads for the simply supported and the clamped 
bare circular plates are computed and the results are pre-
sented in the form of the parameter k =

(
Nr

)
cr
a2∕D, where (

Nr

)
cr

 is the critical compressive force uniformly around 
the edge of the plate, a is the radius of the circular plate 
and D is the flexural rigidity of the plate. The results are 
presented in Table 1 for various mesh divisions of the whole 
plate to study the convergence of the buckling parameter and 
they are compared with the analytical values of Timoshenko  
and Gere [19]. There is excellent agreement between the 
results (Fig. 4).

3.2 � Rectangular plate with curved edges

A rectangular plate having curved edges (Fig. 5) is ana-
lysed for different boundary conditions and aspect ratios 
r1∕r2 (where r1 and r2 are the semi-major and semi-minor 

axes of the plate, respectively) that are presented in 
Tables 2 and 3.

3.3 � Semi‑circular semi‑elliptical plate

The stability analysis of a plate consisting of a semi-circle 
and semi-ellipse (Fig. 6) is carried out for different boundary 
conditions and aspect ratios a / b (where a is the radius of the 
semi-circle and the semi-minor axis of the semi-ellipse and 
b is the semi-major axis of the semi-ellipse) and the results 
are presented in Tables 4 and 5.

3.4 � Dome‑shaped plate

A typical plate resembling the shape of a dome is consid-
ered by taking one of the edges straight and its opposite 
edge as the top of a dome (Fig. 7). The stability analysis 

Table 1   Buckling parameter k =
(
Nr

)
cr
a2∕D for uniformly com-

pressed clamped and simply supported circular plates (� = 0.3)

Boundary condition Mesh size Present analysis Timoshenko 
and Gere 
[19]

Clamped 2 × 2 18.048 14.68
4 × 4 15.959
8 × 8 14.777
16 × 16 14.685
32 × 32 14.681

Simply supported 2 × 2 3.1476 4.20
4 × 4 3.8908
8 × 8 4.1144
16 × 16 4.1764
32 × 32 4.1924

r

Fig. 4   A typical circular plate having 8 × 8 mesh

r 2

r1

A

DB

E

Fig. 5   A typical rectangular plate with curved edges having 8 × 8 
mesh
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of this dome-shaped plate is carried out for different 
boundary conditions and aspect ratio r1∕r2, where r1 is 
the length of the straight edge and r2 is the semi-minor 
axis of the dome. The results obtained are presented in 
Tables 6 and 7.

3.5 � Rectangular plate with one side curved edge

A rectangular plate with one side being curved is analysed 
by considering the rectangular portion as patch-1 ( 32 × 32 
mesh) and the remaining portion as patch-2 ( 32 × 32 
mesh) subjected to uniaxial and biaxial compression 

Table 2   Buckling load 
parameter k = �r2

1
∕�2D 

for biaxially compressed 
rectangular plate with curved 
edges

Aspect ratio r
1
∕r

2

Support condition 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SSSS 0.71166 1.3347 2.236 3.4056 4.808 6.4742 8.388
CCCC​ 2.1254 4.4427 7.9233 12.432 17.938 24.436 31.925
CCSS 1.2372 2.4378 4.199 6.4898 9.2932 12.599 16.396
CSCS 1.2015 1.7273 2.5617 3.6702 5.0398 6.6662 8.5476
SCSC 1.7793 4.0339 6.6394 9.5241 12.775 16.411 20.291
CFCF 1.2085 1.0758 1.0026 0.96181 0.93556 0.92375 0.91465
FCFC 0.90863 1.5608 2.1185 2.5834 2.9723 3.3179 3.6372
FSFS 0.52899 1.1545 1.6692 2.0923 2.4457 2.7372 2.9939
SFSF 0.45808 0.7837 0.92723 0.90515 0.89072 0.885 0.87878
FFCC 0.22887 0.36918 0.55356 0.78208 1.0384 1.3093 1.5774
FFSS 0.11392 0.14488 0.15506 0.15762 0.15763 0.15693 0.15611

Table 3   Buckling load 
parameter k = �r2

1
∕�2D for uni-

axially compressed rectangular 
plate with curved edges

Aspect ratio r
1
∕r

2

Support condition 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SSSS 2.0404 5.1509 8.1281 13.157 21.194 25.941 33.1247
CCCC​ 4.8887 8.8438 15.314 23.273 32.127 43.688 56.115
CCSS 2.8711 6.077 10.792 1.262 24.731 33.619 44.55
CSCS 2.8146 5.978 9.2513 13.906 19.449 26.499 34.29
SCSC 3.2760 7.1407 13.025 19.5 28.458 39.295 51.045
CFCF 1.4092 1.5068 1.5738 1.6246 1.6673 1.7065 1.7443
FCFC 1.0568 1.7401 2.2794 2.7128 3.08 3.4066 3.7098
FSFS 0.80973 1.3733 1.8742 2.2661 2.5824 2.8474 3.0781
SFSF 0.5541 0.91456 1.212 1.3862 1.4933 1.5694 1.6219
FFCC 0.4244 0.81065 1.2015 1.5892 1.9472 2.2824 2.5875
FFSS 0.23789 0.4715 0.74787 1.0518 1.3551 1.6372 1.895

Table 4   Buckling load 
parameter k = �b2∕�2D for 
biaxially compressed semi-
circular semi-elliptical plate

Support 
condition

Aspect ratio a / b

1.125 1.25 1.5 1.75 2.0 2.25 2.5

SSSS 0.50947 0.6015 0.81242 1.0606 1.3459 1.6672 2.0231
CCCC​ 1.7872 2.1072 2.8178 3.6551 4.6128 5.6917 6.8922
CCSS 1.0083 1.1933 1.6172 2.1154 2.6873 3.3298 4.0394
CSCS 1.2025 1.343 1.6286 1.9176 2.2331 2.5711 2.9342
CFCF 1.0202 1.2142 1.4591 1.646 1.811 1.9436 2.0592
FCFC 1.0264 1.2163 1.6019 1.9696 2.3132 2.369 2.9499
FSFS 0.5688 0.5988 0.80066 1.0327 1.289 1.5776 1.8828
SFSF 0.50964 0.60172 0.80721 1.0459 1.3187 1.6348 1.8199
FFCC 0.23163 0.27243 0.35959 0.45335 0.55311 0.65858 0.76969
FFSS 0.17966 0.21288 0.28 0.34573 0.40832 0.46674 0.52051



360	 Engineering with Computers (2019) 35:351–362

1 3

under different boundary conditions and aspect ratios 
(a—half of the length of the rectangular portion; b—
breadth of the rectangular portion). The nodes of the rec-
tangular portion (patch-1) are represented with asterisk 

and the remaining portion (patch-2) with circular mark-
ers, respectively. The results obtained are presented in 
Tables 8 and 9. A typical rectangular plate with one side 
curved edge consisting of a rectangular portion as patch-1 
( 4 × 4 mesh) and the remaining as patch-2 ( 4 × 4 mesh) 
is shown in Fig. 8.

4 � Conclusions

In the present formulation, NURBS basis functions are 
used to represent the exact shape of the arbitrary thin 
plates. In contrast to the isogeometric analysis, the use 
of classical finite element basis functions as field vari-
ables helps in imposing the boundary conditions easily 
which is the main drawback of isogeometric analysis. 
Further, the knot refinement technique of the NURBS 
basis function takes care of the mesh generation. The 
stability analyses of the arbitrary shaped plates are car-
ried out and the results obtained are found to be well in 

Table 5   Buckling load 
parameter k = �b2∕�2D for 
uni-axially compressed semi-
circular semi-elliptical plate

Support Aspect ratio a / b

condition 1.125 1.25 1.5 1.75 2.0 2.25 2.5

SSSS 1.0793 1.3533 2.0464 2.9428 3.9984 5.1705 6.4633
CCCC​ 3.4418 4.1802 5.8939 7.7924 9.9082 12.239 14.795
CCSS 2.1096 2.6738 4.0967 5.8054 7.3749 9.0295 11.009
CSCS 2.1078 2.4683 3.2852 4.2262 5.345 6.6454 8.1413
SCSC 2.9397 3.5355 4.9687 6.7713 8.9825 11.371 13.666
CFCF 1.5358 1.7116 2.0449 2.3539 2.6393 2.9029 3.1471
FCFC 1.1938 1.4061 1.8264 2.1826 2.5298 2.8451 3.1457
FSFS 0.79463 0.9488 1.2881 1.6222 1.9344 2.2068 2.4468
SFSF 0.77122 0.90106 1.1764 1.4481 1.703 1.9359 2.1472
FFCC 0.44179 0.54292 0.78461 1.0758 1.4062 1.7846 2.1849
FFSS 0.36032 0.44731 0.64655 0.87978 1.1416 1.4434 1.7906

a

b

b

A

B D

E

Fig. 6   A typical semi-circular semi-elliptical plate having 8 × 8 mesh

Table 6   Buckling load 
parameter k = �r2

1
∕�2D for 

uni-axially compressed dome-
shaped plate

Aspect ratio r
1
∕r

2

Support condition 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SSSS 0.92116 2.6223 4.9068 7.3203 10.42 13.87 17.767
CCCC​ 2.6381 5.3275 8.5076 12.715 17.777 23.506 30.016
CCSS 1.5718 3.9923 6.6373 9.8915 13.819 18.471 23.708
CSCS 1.6826 2.9994 5.1835 7.8613 10.656 14.02 18.119
SCSC 2.4942 4.5597 7.9851 12.628 17.317 23.243 30.022
CFCF 0.99238 1.0785 1.1642 1.2466 1.3241 1.3961 1.4626
FCFC 0.866991 1.7341 2.6787 3.7163 4.8407 6.0745 7.3658
FSFS 0.62767 1.176 1.8784 2.5593 3.2623 3.994 4.7453
SFSF 0.32856 0.4714 0.66202 0.84867 1.0031 1.1226 1.2175
FFCC 0.24119 0.44356 0.63387 0.82257 1.004 1.1749 1.3362
FFSS 0.20103 0.38655 0.5021 0.62451 0.74336 0.86184 0.97197
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agreement in all the cases. To showcase the robustness of 
NAFEM some plates of different geometries (semi-cir-
cular semi-elliptical, rectangular plate with curved edges 
and dome-shaped plate) have been considered for the sta-
bility analysis and the new results are presented. Further 
a rectangular plate with one side being curved is ana-
lysed by considering the rectangular portion as patch-1 
and the remaining potion as patch-2, thereby showing 
the capability of NAFEM to analyse certain geometries 
by breaking them into more amenable patches which can 
be dealt with ease.

Table 7   Buckling load 
parameter k = �r2

1
∕�2D for 

biaxially compressed dome-
shaped plate

Aspect ratio r
1
∕r

2

Support condition 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SSSS 0.43082 0.74445 1.2152 1.8212 2.5658 3.4405 4.4442
CCCC​ 1.3453 2.4319 4.1078 6.3153 9.0261 12.299 15.997
CCSS 0.79178 1.3765 2.2768 3.4623 4.8976 6.6143 8.6006
CSCS 0.91935 1.1326 1.5221 2.0705 2.7639 3.5954 4.5619

r1

r 2

E

BA

D

Fig. 7   A typical dome-shaped plate having 8 × 8 mesh

Table 8   Buckling load 
parameter k = �a2∕�2D 
for biaxially compressed 
rectangular plate with one side 
curved edge

Aspect ratio r
1
∕r

2

Support condition 1.15 1.35 1.55 1.75 2.15 2.35 2.55

CCCC​ 1.7989 2.2276 2.7417 3.352 4.8227 5.6894 6.6165
SSSS 0.5585 0.6745 0.8151 0.9801 1.3807 1.6153 1.8723
CCSS 0.9191 1.1564 1.4476 1.7908 2.6184 3.1039 3.6351

Table 9   Buckling load 
parameter k = �a2∕�2D for 
uniaxial compressed rectangular 
plate with one side curved edge

Aspect ratio r
1
∕r

2

Support condition 1.15 1.35 1.55 1.75 2.15 2.35 2.55

CCCC​ 3.5888 4.7096 5.9017 7.1686 10.022 11.658 13.43
SSSS 1.2715 1.8413 2.6341 3.6633 5.62 6.5834 7.6277
CCSS 2.0263 2.9892 4.1526 5.2174 7.548 8.8727 10.328

Fig. 8   A typical rectangular 
plate with one side curved edge 
consisting of a rectangular por-
tion as patch-1 ( 4 × 4 mesh) and 
the remaining as patch-2(4 × 4 
mesh)

Patch-1

Patch-2

b

b

a
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