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Abstract
Reliable determination/evaluation of the rock deformation can be useful prior any structural design application. Young’s 
modulus (E) affords great insight into the characteristics of the rock. However, its direct determination in the laboratory is 
costly and time-consuming. Therefore, rock deformation prediction through indirect techniques is greatly suggested. This 
paper describes hybrid particle swarm optimization (PSO)–artificial neural network (ANN) and imperialism competitive 
algorithm (ICA)–ANN to solve shortcomings of ANN itself. In fact, the influence of PSO and ICA on ANN results in pre-
dicting E was studied in this research. By investigating the related studies, the most important parameters of PSO and ICA 
were identified and a series of parametric studies for their determination were conducted. All models were built using three 
inputs (Schmidt hammer rebound number, point load index and p-wave velocity) and one output which is E. To have a fair 
comparison and to show the capability of the hybrid models, a pre-developed ANN model was also constructed to estimate 
E. Evaluation of the obtained results demonstrated that a higher ability of E prediction is received developing a hybrid 
ICA–ANN model. Coefficient of determination (R2) values of (0.952, 0.943 and 0.753) and (0.955, 0.949 and 0.712) were 
obtained for training and testing of ICA–ANN, PSO–ANN and ANN models, respectively. In addition, VAF values near to 
100 (95.182 and 95.143 for train and test) were achieved for a developed ICA–ANN hybrid model. The results indicated that 
the proposed ICA–ANN model can be implemented better in improving performance capacity of ANN model compared to 
another implemented hybrid model.
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1  Introduction

Rock engineering properties have major effects in designing 
geotechnical structures. Two of these properties are strength 
and deformability characteristics that could be pre-neces-
sities for investigation, planning, and effective use of the 
Earth’s resources [1, 2]. Responsibility of the rock’s elastic 
ability and strength under different pressure conditions can 
affect on design of structures. The extensional stress–strain 
ratio is main elastic constant, calls as young’s modulus (E) 
[3, 4]. In most cases, the unconfined compression test (UCT) 
could define the strength and deformability of the rock. The 
International society for Rock Mechanics [5] has standard-
ized UCT test. Straight determinations of these characteris-
tics in the lab are difficult and it takes a long time [6–8]. The 
lab’s strength and elasticity tests are not only tiresome, but 
also require precise tool that is costly [9–11]. In exchange 
some other tests such as Brazilian tensile test, point load 
strength test, ultrasonic velocity test, Schmidt hammer test 
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and physical tests are comfortably and cheap to carry out. 
Those are well-distributed by executing these basic rock 
index tests [3]. Therefore, it is reasoning to indirectly define 
the uniaxial compressive strength (USC) and Young’s modu-
lus utilizing index testing of rock.

A lot of correlations to estimate UCS and E have been 
published [12–16]. Multiple regression (MR) analyses can 
be acceptable for estimation of UCS and E too; as a replace-
ment for traditional regression models [4, 6, 17]. Neverthe-
less, these mutual relations are not exact enough; though 
there is a need of more accurate prediction models of USC 
and E in rock engineering field. Thus, execution of statisti-
cal prediction ways is unreliable on condition that recent 
data and original one are dissimilar hence the design of the 
achieved equation requires some changes [4, 18]. In many 
studies, the necessity and practicability of applying artificial 
intelligence methods like artificial neutral networks (ANNs), 
fuzzy systems and gene expression programming in estimat-
ing the UCS and E have been showed [19–23].

Meulenkamp and Grima [24] applied a back-propagation 
neural network to predict UCS of different rock types. In 
their research, porosity, rock type and grain size, Equotip 
hardness reading, density were set as inputs. They showed 
that ANN could be more accurate than statistical models. 
In one other research, a fuzzy model and regression meth-
ods were used to estimate the UCS and Young’s modulus 
of rocks with difficulties by Gokceoglu and Zorlu [6]. The 
UCS of sandstone was estimated by Zorlu et al. [19] apply-
ing two dissimilar prediction techniques: multiple regression 
and ANN. They indicated that ANN model compare to the 
multiple regression model have a higher ability of predic-
tion. An adaptive neuro-fuzzy inference system (ANFIS) 
model was used and proposed to estimate the E of various 
rocks to show limitations of ANN and fuzzy logic by Singh 
et al. [3]. For training the network, 85 datasets and for testing 
and confirming the rules of the network, 10 datasets were 
used. Point load, density and water absorption were three 
geo-mechanical parameters which considered as inputs in 
their research. At the end, it was indicated that these out-
comes were precise and promising in measuring Young’s 
modulus. As shown above, ANN technique has been widely 
used and proposed for UC and E prediction.

The ANNs are one of the most innovative area of 
researches for various related topics of science and engi-
neering [11, 25–35]. However, they still have some limi-
tations: the slow rate of learning and getting trap in local 
minima [36–38]. Using the particle swarm optimization 
(PSO) and imperialism competitive algorithm (ICA), which 
are a population-based evolutionary algorithms, contributes 
to succeed these defects. The successful usage of PSO and 
ICA algorithms in optimizing divers engineering problem 
has been reported in several studies [39–43]. In the present 
study, two hybrid models of PSO–ANN and ICA–ANN are 

designed and developed for prediction of E in granitic rock 
material. To have a fair comparison purpose, the obtained 
results of hybrid models are compared with results of a sim-
ple ANN model.

2 � Methods

2.1 � Artificial neural network

ANN is an artificial computational system that is formed by 
simulating some organizational rules of the nervous system 
functions. ANN can learn from the provided training pat-
terns automatically to nearly discover approach connection 
of input and result for a mapping issue [44]. As pioneers of 
neural net modelling McCulloch and Walter [45] research 
guided to a binary threshold logic unit (binary decision 
unit) to model an artificial neuron behavior. Weighted sum 
of arriving signals is caught by all artificial joint of the sys-
tem, so the signals is passed over a certain activation func-
tion to present better practical result. Mainly, ANNs look 
as highly parallel systems that a network of connected with 
others calculative units, nerve cell or joints are arranged into 
layers in a row. Additionally, each junction model of nerve 
cells influences network treat and already describes class of 
network [46].

Actually, the output error is figured by a squared error 
function presented below:

The number of training patterns is presented by P param-
eter. Additionally, t and y parameters show the target value 
and the actual value in a row. Through a gradient-based 
learning procedure, learning task of network is usually 
done. It named back-propagation (BP) learning algorithm. 
This is for multilayer pre-feed nets [44]. Fundamentally in 
BP learning twofold procedure forms every training period 
that includes forward and backward stages. If forward stage 
input signals move forwards through the network, it will be 
sending out error signal for each output-layer rode. Next 
stage, the rotes of resulting error will back in the direction of 
network make network’s weights and biases better [47, 48].

Feed-forward and feedback are two functional groups 
according to the network architecture in field of ANNs. Mul-
tilayer perceptron (MLP) is frequently employed as an option 
of multilayer feed-forward networks, that successive layers of 
working elements (neurons) replace and run information (sig-
nals) by weighted connections and activation functions, in a 
row [49, 50]. Some particular net input’s activation functions 
to present neuron outputs can be performed by hidden and 

(1)E =
1

2

p
∑

i=1

(t(i) − y(i))
2
.
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output in a general manner. It is very important to select type 
of activation function, in terms of complexity of the problem 
to be solved. Correspondingly, for nonlinear problems, utiliz-
ing the sigmoid transfer functions and including log-sigmoid 
or tangent sigmoid is helpful. Total net input feed each of the 
hidden neurons; each incoming signal from previous layer is 
multiplied by an associated adaptive weight coefficient to yield 
weighted input signals and then a total function is applied to 
the weighted signals, and at last a little bias is added to the col-
lective signal. The procedure is done for every layer repeatedly 
until the network general result is built. In mathematical terms, 
a total net input to every hidden or output neuron is showed as:

The resulting total net input is put down to the activation 
function (for example, sigmoid) for each neuron output. There-
fore, the equation below derives for not only every hidden neu-
ron but also output neuron:

2.2 � Particle swarm optimization

Kennedy and Eberhart [51] first developed PSO that is a sub-
field of the swarm and computational intelligence. The search-
ing for food behavior of many animals like fish and bird moti-
vated that idea, in nature [20, 52]. There are some similarities 
between PSO with genetic algorithm (GA) and ant colony 
algorithm (ACO), imperialism competitive algorithm (ICA), 
but PSO is easier to use compared to them. To have a particles 
random movement in PSO, however, particles have tendency, 
they come nearer the current global best (p*) and the best loca-
tion for itself (x∗

i
) . After that, in comparison with the previous 

location, a particle gets better one. There is a current best for 
all of the n particles, whenever t from repetitions. At last, the 
global best among the current best answers to stopping process 
criteria (a certain number of repetition) is searched by parti-
cles. Schematically, Fig. 1 displays a movement of particles 
within, x∗

i
 = the current best for particle i, and p∗ ≈ min{f

(

xi
)

} 
for (i = 1, 2, … , n) is the global best.

A function founded on the best position of each particle and 
the swarm applying Eq. 4, defines the velocity of the entire 
particles, after forming suitability of the swarm. Next positions 
of the particles can be gotten using Eq. 5.

(2)Nethj =

n
∑

i=1

wij ⋅ xi + bj.

(3)yj = 1
/(

1 + exp
{

−nethj

})

.

(4)������⃗vnew = v⃗ + C1 ×
(

��������⃗pbest − p⃗
)

+ C2 ×
(

��������⃗gbest − p⃗
)

,

(5)������⃗pnew = p⃗ + ������⃗vnew,

where new velocity, current velocity showed by ������⃗vnew , v⃗ , 
respectively, and C1 and C2 represent pre-defined coef-
ficients; ��������⃗pbest signifies personal best position of particle, 
and ��������⃗gbest denotes global best position among all particles. 
Additionally, ������⃗pnew , and p⃗ present new position, and current 
position of particles, respectively. Equation 4 was updated 
adding a new parameter namely inertia weight (w) to have a 
better performance (see Eq. 6).

2.3 � Imperialism competitive algorithm

Atashpaz-Gargari and Lucas [53] introduced the imperi-
alism competitive algorithm (ICA) which is considered 
as a global search algorithms for solving optimization 
problems of science and engineering. ICA begins with 
countries, which is an accidental starting population, the 
same as other optimization algorithms (OAs) such as GA 
and PSO. After producing N countries (also named as 

(6)
������⃗vnew = w ⋅ v⃗ + C1 ×

(

��������⃗pbest − p⃗
)

+ C2 ×
(

��������⃗gbest − p⃗
)

.

Fig. 1   Standard flow chart of PSO [51]
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Ncountry), some of them with the lowest costs or objective 
functions, for example, root mean square error (RMSE), 
are selected as the imperialists (Nimp). So, the remaining 
countries are delineated as colonies or Ncol. All coun-
tries are dispersed among the empires in accordance with 
the initial power of them. Clearly, more colonies can be 
attracted to more powerful imperialists (lowest RMSE). 
Assimilation, revolution and competition are three algo-
rithm operators of ICA. A colony is able to achieve better 
condition than its imperialist condition and take power 
of entire empire, while assimilation and revolution [43, 
53–55].

In contest, operator imperialists try to get more col-
onies and whole empires try to take control of other 
empires colonies. All the empires have the chance to 
take possession of a colony’s minimum of the weakest 
empire, depend on their competence. Whenever entire 
empires, but the strongest one, fail or a user-defined end 
principles (desirable RMSE or maximum number of dec-
ades) is reached optimistically, this process finish. It is 
valuable to mention that the number of decades, which is 
called Ndecade in ICA, is like the iterations number of PSO 
method in theory. This article is not planned to prepare 
ICA mathematical formulation, hence, more information 
and feature about the ICA and its process are discussed in 
related articles (e.g., [42, 53, 56]). Figure 2 demonstrates 
the ICA flowchart for better understanding its process.

2.4 � Hybrid algorithms

A lot of researchers utilized the optimization methods 
such as GA, PSO and ICA to improve the performance of 
ANNs in engineering problems (e.g., [47, 54, 57–67]). 
The optimal search procedure of ANN could be unsuc-
cessful and give back dissatisfied result because BP is 
not a learning method of global search [68]. Accordingly, 
for adapting the ANN’s bias and weight to make its per-
formance better, OAs could perform. Since OAs can 
find a global minimum convergence at a local minimum 
is more probable by ANNs. Thus, hybrid systems such 
as PSO–ANN and ICA–ANN gain search feature of all 
ANN and OAs. Combining these algorithms for optimiz-
ing ANN models have received attention because of their 
capability in solving problems.

In the next parts, a short description about experimen-
tal framework is explained then more detail about model-
ling process of intelligent systems including PSO–ANN 
and ICA–ANN are given. The PSO and ICA were selected 
due to their successful ability in optimizing ANN. This 
point has been emphasized by many researchers in field 
of computer sciences.

3 � Experimental framework

To achieve objectives of this study, the block samples were 
collected from a water transfer tunnel in Malaysia. This tun-
nel has the duty of transferring water demand between two 
states in Malaysia. The tunnel was excavated in mountain 
area with rock type of granite. A maximum overburden 
of 1400 m was measured for the mentioned tunnel. The 
strength of representative rock in this tunnel was between 
150 and 200 MPa. There were three sections to be excavated 
by tunnel boring machine (TBM) with lengths of 11.7, 11.7 
and 11.3 Km for TBM1, TBM2 and TBM3, respectively.

Many granitic block samples were collected from the 
face of tunnel in different TBMs, to construct a method for 
predicting E. After moving the samples to the lab, coring 
and cutting the specimens, every sample was flattened per-
pendicularly at the end of it. Both sides of samples were 
softened and improved then, the appearance of each sam-
ple were inspected for cracks, breaks and other flaws. Then, 
perfect samples were selected for conducting point load 

Fig. 2   ICA flowchart [53]
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test, Schmidt hammer test, p-wave velocity test and UCS 
test. After carried out the UCS tests, elastic modulus was 
calculated from the stress–strain diagram of rock using the 
tangent method. Two linear variable differential transformer 
(LVDT) were performed to indicate axial strain of rock sam-
ples. All of the conducted tests were performed utilizing 
the recommended by ISRM [5]. In this research, point load 
index (Is50), p-wave velocity (Vp) and Schmidt hammer 
rebound number (Rn) were selected and used as inputs to 
estimate E. It should be mentioned that a total number of 71 
datasets were prepared to design intelligent systems of this 
study. Table 1 shows the results of laboratory tests (inputs) 
and output of the system together with their ranges.

4 � Intelligent systems

4.1 � ANN

Liou et al. [68] reported that at first step of ANN modeling, 
to obtain a better performance, the datasets should be nor-
malized. This normalization removes the complexities from 
the process of the design using equation below:

where X is the measured and Xnorm is normalized form of X. 
Xmax means maximum of X and Xmin means the least amount 
of X.

All data sets divided into training and testing parts for 
achieving better result and advanced modelling. Testing 
datasets in the inspection guided by Nelson and Illingworth 
[69] recommends a range of (20–30%) of all data sets. In this 
case testing datasets got 20% of all datasets (71 data sets). 
According to several researchers [27, 70], an ANN with one 
hidden layer is able to estimate any continuous function, 
so, a hidden layer was used in this study. Hornik et al. [71] 
determined the number of hidden node to ≤ 2 × Ni + 1 where 
Ni is number of input layers. For solving problem of the 
present study, with Ni = 3, it seems that a range of 1–7 can 
be utilized. Many ANN models with on output (E), number 
of 1, 2, 3, 4, 5, 6 and 7 as hidden node and three mentioned 
inputs (Is50, Vp and Rn) were considered and designed. The 
results of analyzing ANN models were evaluated based on 
coefficient of determination (R2) and RMSE and based on 

(7)Xnorm =
(

X − Xmin
)

∕
(

Xmax − Xmin
)

,

average results of them, a model with four hidden nodes 
found better. The results of (0.753 and 0.712) for R2,and 
(0.113 and 0.090) for RMSE were obtained for the best ANN 
model. So, the optimum selected architecture for predicting 
the E of the rock was as 3 × 4 × 1.

4.2 � PSO–ANN

This section presents developing process of a hybrid intel-
ligent PSO–ANN to predict E of the rock samples. As men-
tioned previously, many parameters such as coefficient of 
velocity equation, number of particle, number of iteration 
and inertia weight have a deep effect on PSO algorithm. 
Based on several related studies such as Keneddy and Eber-
hart [51] and Tonnizam Mohamad et al. [20] and Clerc and 
Kennedy [72], an acceptable results are achieved when 
coefficients of velocity equations are equal to 2 and inertia 
weight is 0.25. Thus, in all PSO–ANN models these values 
will be used. For choosing optimum number of iteration, 
different models with swarm size value of 50, 100, 150, 200, 
250, 300, 350, and 400 were generated and designed based 
on their RMSE results. It is important to note that thou-
sand number of iterations were considered for all models. 
According to Fig. 3, the results of vertical axis (RMSE) are 
not changed after swarm size of 400 for all hybrid models. 
In addition, the minimum error was obtained by swarm size 
of 200. Therefore, values of 400 and 200 were set in this 
study for maximum number of iteration and swarm size, 
respectively. Results of the optimum PSO–ANN model with 
swarm size = 200 and iteration number = 400 are obtained 
as R2 values of 0.943 and 0.949 for train and test datasets 
respectively. Selected PSO–ANN model will be evaluated 
more in the following part.

4.3 � ICA–ANN

For ICA–ANN model, it is necessary to inspect important fac-
tor/parameters to achieve the best model in terms of accuracy. 
Determination of ANN architecture is coming before inspec-
tion of ICA where an ANN architecture of 3 × 4 × 1 gets more 
desirable output (see ANN section). So, all hybrid ICA–ANN 
intelligent structure in this research used referred architec-
ture. Parameters such as Ncountry, Ndecade and Nimp have a great 
impact on ICA. A lot of models, which used various values of 
Nimp, i.e., 5, 10, 15, 20, 25 and 30, were planned to determine 
this parameter. Ncountry = 300 and Ndecade = 100 were applied 
in these models. The results demonstrated that higher imple-
mentation system capacity can be achieved when Nimp = 5. 
In the next step, different models with Ncountry values of 50, 
100, 150, 200, 250, 300, 350 and 400 were built to choose the 
best value for Ndecade and Ncountry. The obtained results of these 
analyses can be seen in Fig. 4 according to RMSE values. As 
shown in Fig. 4, number of country = 200 received the lower 

Table 1   Some descriptions of the utilized datasets

Factor Rn Vp Is50 E

Unit – m/s MPa GPa
Category Input Input Input Output
Range 37–61 2823–7943 0.89–7.1 22–183.3
Average 49.6 5586 3.3 88
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RMSE and RMSE values were constant after number of dec-
ade equal to 500. Therefore, values of 200 and 500 were set 
in this study for numbers of country and decade, respectively. 
Results of the best ICA–ANN model with the determined 
parameters are obtained as R2 values of 0.952 and 0.955 for 
train and test datasets, respectively. Considering results of 
PSO and ICA parameters, it was found that modelling time of 
ICA–ANN (with 500 number of decades) is longer than that 
of PSO–ANN model (with number of iteration = 400), while 
the performance prediction obtained by ICA–ANN model is 

higher than PSO–ANN predictive model. Selected ICA–ANN 
and PSO–ANN models will be evaluated more in the follow-
ing part.

5 � Results and discussion

The target of this research is to estimate Young’s modulus 
of the granitic rock samples. In consequence, several index 
tests were conducted and their results were considered and 

Fig. 3   RMSE values verses iteration number for different sizes of swarm

Fig. 4   RMSE values verses number of decades for different number of countries
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prepared to try for developing hybrid predictive models. 
In the present paper, PSO and ICA as two of the strongest 
OAs were used to optimize weight and bias of the ANN. 
Therefore, many combinations of ANN, PSO and ICA were 
proposed considering the most effective parameters of PSO 
and ICA. Apart from them, a series of ANN analyzing were 
conducted for comparison purposes. After developing the 
mentioned models, they need to be evaluated through several 
performance indices such as R2, RMSE and variance account 
for (VAF). The definition related to these indices can be 
found in some other researches [43, 62, 73, 74].

After a precise evaluation, higher performance capac-
ity was provided by hybrid models in terms of all VAF, 
RMSE and R2 values of both training and testing phases 
(see Table 2). RMSE values of (0.050, 0.049 and 0.113) 
and (0.066, 0.035 and 0.090) were obtained for training 
and testing of PSO–ANN, ICA–ANN and ANN models, 
respectively. In addition, VAF values near to 100 (94.344, 
and 93.943, and 95.182 and 95.143 for train and test of 
PSO–ANN and ICA–ANN, respectively) were achieved 
for a new developed hybrid models. These results demon-
strated that minimum system error can be achieved advanc-
ing hybrid models, while ICA–ANN model provided slightly 
higher performance prediction compared to PSO–ANN pre-
dictive model. Figures 5, 6, 7, 8, 9 and 10 shows predicted E 
values together with their actual values for ANN, PSO–ANN 
and ICA–ANN models. Both of training and testing data-
sets are showed in these figures. As shown, the developed 
hybrid models give a higher level of capability in prediction 
of Young’s modulus of the granitic rock samples.

Moreover, the obtained results of this study are better 
than some other related studies such as Yilmaz and Yuksek 
[4] with R2 = 0.91, Beiki et al. [75] with R2 = 0.67 and Gok-
ceoglu and Zorlu [6] with R2 = 0.79. Therefore, the devel-
oped predictive models could be used for similar condition 
in the future.

6 � Conclusions

To prepare a good database for prediction of Young’s modu-
lus, results of p-wave velocity, Schmidt hammer and point 
load tests were set as inputs of the system. Then, three 

Table 2   The obtained results of 
intelligent methods

Model Performance Index

R2 RMSE VAF

Train Test Train Test Train Test

ANN 0.753 0.712 0.113 0.090 74.738 69.570
PSO–ANN 0.943 0.949 0.050 0.066 94.344 93.943
ICA–ANN 0.952 0.955 0.049 0.035 95.182 95.143

Fig. 5   Training dataset results obtained by ANN model

Fig. 6   Testing dataset results obtained by ANN model

Fig. 7   Training dataset results obtained by PSO–ANN model
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intelligent models, i.e., ANN ICA–ANN and PSO–ANN 
were considered and developed for prediction of E. With 
respect to the related previous studies, the most important 
parameters of PSO and ICA were identified and determined 
in the present study. To estimate E, many ICA–ANN, 
PSO–ANN and ANN models were applied and the best 
ones among them were selected to be introduced in this 
study. Considering the most famous performance indices, 

all proposed models were carefully evaluated. After evalu-
ation, it was found that in terms of both train and test, the 
I-ANN model receives better results in solving E problem. 
R2 values of (0.952, 0.943 and 0.753) and (0.955, 0.949 and 
0.712) were obtained for training and testing of ICA–ANN, 
PSO–ANN and ANN models, respectively. In addition, VAF 
values near to 100 (95.182 and 95.143 for train and test) 
were achieved for a developed ICA–ANN hybrid model. 
These results demonstrated that although both hybrid mod-
els are applicable for E prediction, ICA–ANN model can be 
performed better with the lowest error among the applied 
models.
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