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Abstract
In this paper, the discrete Galerkin method based on dual-Chebyshev wavelets has been presented to approximate the solution 
of boundary integral equations of the second kind with logarithmic singular kernels. These types of integral equations occur 
as a reformulation of a boundary value problem of Laplace’s equation with linear Robin boundary conditions. The discrete 
Galerkin methods for solving logarithmic boundary integral equations with Chebyshev wavelets as a basis encounter difficul-
ties for computing their singular integrals. To overcome this problem, we establish the dual-Chebyshev wavelets, such that 
they are orthonormal without any weight functions. This property adapts Chebyshev wavelets to discrete Galerkin method 
for solving logarithmic boundary integral equations. We obtain the error bound for the scheme and find that the convergence 
rate of the proposed method is of O(2−Mk) . Finally, some numerical examples are presented to illustrate the efficiency and 
accuracy of the new technique and confirm the theoretical error analysis.

Keywords Boundary integral equation · Laplace’s equation · Logarithmic singular kernel · Dual-Chebyshev wavelet · 
Discrete Galerkin method · Error analysis
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1 Introduction

The main purpose of this article is to propose a method 
for obtaining numerical solutions of logarithmic singular 
boundary integral equations of the second kind, namely

where D ⊂ ℝ
2 is a bounded, open, simply connected region 

in the plane, nx is the outward unit normal on �D , ‖.‖ is the 

Euclidean norm on ℝ2 , p(x) and g(x) are given functions on 
�D with p(x) ≥ 0 , but p ≢ 0 and u(x) is the unknown func-
tion to be determined [10, 18]. Boundary integral equations 
of the second kind with logarithmic singular kernels deduce 
from reformulations of the boundary value problem for two-

dimensional Laplace’s equation with linear Robin boundary 
conditions [10, 18], that is

It should be noted that these integral equations are also used 
in connection with other types of partial differential equa-
tions arising in various branches of applied science such 
as solid and fluid mechanics, electrostatics, heat transfer, 
diffraction and scattering of waves, etc [10, 14, 15, 17, 32].

(1)−�u(x) + ∫�D

u(y)

�
p(y) ln ‖x − y‖ + � ln ‖x − y‖

�ny

�
dsy = ∫�D

g(y) ln ‖x − y‖dsy, x ∈ �D,

(2)

{
Δu(x) = 0, x ∈ D ⊂ ℝ

2,
𝜕u(x)

𝜕nx
+ p(x)u(x) = g(x), x ∈ 𝜕D. * Pouria Assari 
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Boundary integral equations, especially in the singular 
case, are mostly difficult to solve analytically, so it is needed 
to obtain their approximate solutions [4, 24, 38]. The projec-
tion methods, including Galerkin and collocation methods, 
are the commonly used approaches for the numerical solu-
tions of boundary integral equations which require a family 
of orthogonal basic functions, such as wavelets. Wavelets 
as well localized and multi-resolution functions [40, 41] are 
considerably powerful for solving singular integral equations 
and provide accurate solutions [2, 39, 42]. These methods 
usually require some quadrature formulae to estimate the 
logarithmic singular integral appeared in these schemes, 
such as Gauss-type quadrature rules [18, 22]. A useful 
research work conducted by authors of [31] has investigated 
a cell structure together with logarithmical Gaussian quad-
rature schemes for the numerical integration of boundary 
integrals. The wavelet technique also allows establishing fast 
algorithms for the solution of integral equations [3].

Legendre wavelets have been used to obtain the numerical 
solutions of boundary integral equations of the second kind 
with logarithmic singular kernels [18]. Spline wavelets have 
been applied to solve first kind boundary integral equations 
on polygons [36]. Biorthogonal wavelets have been estab-
lished a method for solving boundary integral equations in 
three dimensions [21]. The numerical solutions based on 
the use of trigonometric wavelets have been presented for 
the second kind natural boundary integral equation (NBIE) 
with hyper-singular kernel [16, 19]. Daubechies interval 
wavelets have been utilized to give a numerical solution of 
boundary integral equations [35, 43]. The numerical solu-
tion of the natural boundary integral equation of the Laplace 
equation in the concave angle domains via Harr wavelet has 
been investigated in [26, 44]. The meshless discrete Galer-
kin (MDG) method [4, 27, 29] has been proposed to solve 
logarithmic boundary integral equations based on the mov-
ing least squares (MLS) approximation [6, 30]. In addition, 
radial basis functions (FBFs) have been used to obtain the 
numerical solutions of boundary integral equations [5, 7, 8].

Among wavelets, Chebyshev wavelets have significant 
applications in different problems of the numerical math-
ematics as one of the piecewise polynomial wavelets. The 
Chebyshev wavelets have been used to approximate the solu-
tion of differential equations [12], the second kind integral 
equations [11], the first kind Fredholm integral equations 
[1], Abel’s integral equations [34], nonlinear systems of Vol-
terra integral equations [13], fractional nonlinear Fredholm 
integro-differential equations [45], time-varying delay sys-
tems [20], and fractional differential equations [37].

The adaptation of Chebyshev wavelets to Galerkin 
method for solving singular integral equations has some 
difficulties in computations. The dual-wavelet concept is 
defined for establishing an orthonormal basis from Che-
byshev wavelets and improves these problems. Some good 

properties of Chebyshev wavelets, such as having vanish 
moments and local support, are resulted high accuracy 
approximation for dual-Chebyshev wavelets.

This article applies the dual-Chebyshev wavelets to solve 
the logarithmic boundary integral equations of the second 
kind (1). The scheme utilizes the dual-Chebyshev wavelets 
constructed on the unit interval to estimate the unknown 
function in the discrete Galerkin method. The discrete Galer-
kin method for solving singular integral equations usually 
needs a special integration rule to approximate their inte-
grals. We utilize the composite non-uniform Gauss–Leg-
endre (CNGL) quadrature formula for this aim. At first, 
by parameterizing �D , the boundary integral equation (1) 
converts to a weakly singular integral equation. Then, the 
properties of Chebyshev wavelets and dual of them are used 
to reduce this equation into solving a system of algebraic 
equations. The error bound and the convergence rate for the 
new method are obtained. The new technique is efficient, 
simple, computationally attractive and more flexible for most 
classes of boundary integral equations.

The outline of the current paper is as follows. In Sect. 2, 
dual-Chebyshev wavelets are introduced and used to approx-
imate functions. A computational method for solving the 
integral equation (1) using dual-Chebyshev wavelets is pre-
sented in Sections 3. In Sect. 4, we provide the error analysis 
for the method. Numerical examples are given in Section 5. 
Finally, we conclude the article in Sect. 6.

2  Dual‑Chebyshev wavelets

Chebyshev wavelets, �n,m(x) = �(k, n,m, x) , have four argu-
ments; n = 1, 2,… , 2k−1 , k can assume any non-negative 
integer, m is the degree of Chebyshev polynomial of the first 
kind, and x denotes an independent variable in [0, 1] [11]:

where

and m = 0, 1,… ,M − 1 and n = 1, 2,… , 2k−1 .  Here, 
Tm(x), m = 0, 1,… are Chebyshev polynomials of the first 
kind of degree m which are orthogonal with respect to the 
weight function w(x) = 1√

1−x2
 , on the interval [−1, 1] , and 

satisfy the following formula:

We should note that Chebyshev wavelets are the orthonor-
mal basis for L2

w̄k
[0, 1] with respect to the weight function:

(3)

𝜓n,m(x) =

{
𝛼m

√
2k

𝜋
Tm(2

kx − 2n + 1),
n−1

2k−1
≤ x <

n

2k−1
,

0, otherwise,

(4)𝛼m =

�
1, m = 0,√
2, m > 0,

Tm(cos �) = cosm�, m = 0, 1, 2,… .
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where wn,k(x) = w(2k−1x − n + 1) [1].
A function f (x) ∈ L2

w̄k
[0, 1] may be approximated by Che-

byshev wavelets as [1, 11]

where

2.1  Dual‑Chebyshev wavelets

We define the dual-Chebyshev wavelet concept for establish-
ing an orthonormal basis respect to the weight function 
w(x) = 1 from Chebyshev wavelets which are an orthogonal 
basis for L2

w̄k
[0, 1] (not for L2[0, 1] ). The dual-Chebyshev 

wavelets basis of {�n,k} is defined as an orthogonal basis for 
L2[0, 1] such as {�̃�n,k} , subject to the following 
assumptions:

 (I) span{𝜓
n,m(x)} = span{�̃�

n,m(x)}, m = 0, 1,… ,

M − 1, n = 1, 2,… , 2
k−1

,

 (II) ⟨𝜓n,k, �̃�n�,k�⟩ = ∫ 1

0
𝜓n,k(x).�̃�n�,k� (x)dx = 𝛿k,k�𝛿n,n� .

By considering i = M(n − 1) + m + 1 , we can relabel 
�i = �n,m and �̃�i = �̃�n,m where i = 1, 2, ..., 2k−1M . From the 
assumption (I), it can be concluded that the dual-Chebyshev 
wavelets are a linear combination of Chebyshev wavelets, 
that is

or in the matrix form

In addition, we rewrite the assumption (II) in the matrix 
form as follows:

where

(5)
w̄k(x) =

⎧
⎪⎪⎨⎪⎪⎩

w1,k(x), 0 ≤ x <
1

2k−1
,

w2,k(x),
1

2k−1
≤ x <

2

2k−1
,

⋮ ⋮

w2k−1,k(x),
2k−1−1

2k−1
≤ x < 1,

(6)f (x) ≈

2k−1∑
n=1

M−1∑
m=0

cn,m�n,m(x),

(7)cn,m =< f (x),𝜓n,m(x) >w̄k
= ∫

1

0

f (x),𝜓n,m(x)w̄k(x)dx.

(8)�̃�i(x) =

2k−1M∑
j=1

Tij𝜓j(x),

(9)Ψ̃ = �ΨT .

(10)∫
1

0

Ψ̃(x).ΨT (x)dt = �,

and �2k−1M×2k−1M is the identity matrix.
Let � be a 2k−1M × 2k−1M matrix with following entries:

It is easy to obtain that � = �−1 , because

Now, we need to calculate the entries of the matrix L for 
the numerical implementation to compute the matrix � . 
For this purpose, by considering i = M(n − 1) + m + 1 and 
j = M(n� − 1) + m� + 1 , we have

If n ≠ n′ , then the support of two functions in the integral 
(15) is disjoint and yields lij = 0 . In addition, if n = n� , by 
properties of Chebyshev polynomials, we have

where

The following recurrence relationship between Chebyshev 
polynomials and their differentials is

(11)
Ψ = [�

1,0
,�

1,1
,… ,�

1,M−1,�2,0
,�

2,1
,… ,�

2,M−1,… ,

�
2k−1,0

,… ,�
2k−1,M−1]

T
,

(12)
Ψ̃ = [�̃�

1,0
, �̃�

1,1
,… , �̃�

1,M−1, �̃�2,0
, �̃�

2,1
,… , �̃�

2,M−1,… ,

�̃�
2k−1,0

,… , �̃�
2k−1,M−1]

T
,

(13)lij = ∫
1

0

�i(x)�j(x)dx.

(14)� = ∫
1

0

Ψ̃(x)ΨT (x)dx = ∫
1

0

�Ψ(x)ΨT (x)dx = ��.

(15)lij = 2k ∫
1

0

T̃m(2
kx − 2n + 1)T̃m� (2kx − 2n� + 1)dx.

(16)

lij =2
kdm,m� ∫

n

2k−1

n−1

2k−1

Tm(2
kx − 2n + 1)Tm� (2kx − 2n + 1)dx

=dm,m� ∫
1

−1

Tm(�)Tm� (�)d�

=dm,m� ∫
1

−1

1

2
[Tm+m� (�) + T|m−m�|(�)]d�,

dm,m� =
1

�

⎧⎪⎨⎪⎩

1, m = m� = 0,

2, m ≠ 0 ≠ m�,√
2, otherwise.

2Tn(x) =
T �
n+1

n + 1
−

T �
n−1

n − 1
,



178 Engineering with Computers (2019) 35:175–190

1 3

so the integral of Chebyshev polynomials can be writhen as

Overall, using Eq. (17), the matrix � is a blocked-diagonal 
matrix which has the following form:

where A = [Amm� ] is an M ×M matrix with the following 
entries

Remark 1 Note that, L is positive definite and strictly diag-
onally dominant matrix because of Eq. (19) shows a fast 
decreasing pattern of the magnitude of non-zero entries of 
A by increasing distance with main diagonal. It is clear that 
A is a strictly diagonally dominant matrix, and hence, it is 
invertible. The matrix A (and consequently � ) is a sym-
metric matrix and its eigenvalues are real and positive by 
Gershgorin’s circle theorem [33]. In addition, A is positive 
definite, because a symmetric strictly diagonally dominant 
matrix with real positive diagonal entries is positive definite. 
On the other hand, the magnitude of diagonal entries of A is 
bounded with 2

�
 , because

It yields that

Clearly, � can be written as a blocked-diagonal matrix as

2.2  Function approximation

A function f (x) ∈ L2[0, 1] may be expanded by dual-Che-
byshev wavelets for any integer k > 0 and a fixed number 
M ∈ ℕ as follows:

(17)∫
1

−1

Tm(x)dx =

{ 1

m+1
−

1

m−1
, m i s even,

0, m i s odd.

(18)
� = diag(A,A,… ,A

⏟⏞⏞⏞⏟⏞⏞⏞⏟
2k−1times

),

(19)

Amm� =

{
−dm,m�

(
1

(m+m�)2−1
+

1

(m−m�)2−1

)
, m + m� i s odd,

0, m + m� i s odd.

|Amm| = | − dm,m(
1

4m2 − 1
− 1)| = 2

𝜋
|1 − 1

4m2 − 1
| < 2

𝜋
, m ≠ 0.

𝜌(A) ≤ ‖A‖1 =
M�
j=1

�A1,j� = �A1,1� +
M�
j=2

�A1,j� < 4

𝜋
.

(20)
� = diag(A−1,A−1,… ,A−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
2k−1 times

).

(21)f (x) ≈

2k−1∑
n=1

M−1∑
m=0

fn,m�̃�n,m(x) =

2k−1M∑
i=1

fi�̃�i(x) = FTΨ̃(x),

where

and

In the following, the error estimate of the dual-Chebyshev 
wavelets is presented in terms of the parameter k in the mean 
norm. For this aim, we define the orthogonal projection 
operator k,M ∶ L2[0, 1] → VN as the Galerkin operator by

where the space VN = span{�̃�1, ..., �̃�2k−1M} ⊂ L2[0, 1] with 
the dimension dN and the coefficients {c1, ..., c2k−1M} deter-
mined by solving the linear system:

Theorem 2.1 Suppose that the function u(x) is M times con-
tinuously differentiable on [0, 1], i.e., u ∈ CM[0, 1]. Then, 
the function u(x) can be expanded as the infinite sum of dual-
Chebyshev wavelets (23) and this series converges to the 
function u(x) like of O(2−kM). Furthermore

where CM =
2

2MM!
.

Proof Similar to [3], for dual-Chebyshev wavelets, we have

where Qn
k,M

(x) is the interpolation polynomial of degree M at 
the Chebyshev nodes of order M on [ n−1

2k−1
,

n

2k−1
] for the func-

tion u. Thus, utilizing the error bound for Chebyshev inter-
polation [33], we obtain

(22)fn,m =< f (x), �̃�n,m(x) >= ∫
1

0

f (x)�̃�n,m(x)dt,

FT =[f1,0, f1,1,… , f1,M−1, f2,0, f2,1,… , f2,M−1,… , f2k−1,0,… , f2k−1,M−1]
T

=[f1, f2,… , f2k−1M]
T .

(23)k,Mu(x) =

2k−1M∑
i=1

ci�̃�i(x), x ∈ [0, 1],

(24)< u, �̃�j >=

2k−1M∑
i=1

ci < �̃�i, �̃�j >, j = 1, ..., 2k−1M.

(25)∥ u − k,Mu∥ ≤ 2−kMCM sup
0≤x≤1

|u(M)(x)|,

∥ u − k,Mu∥ =

�
�

1

0

[u(x) − k,Mu(x)]
2dx

�1∕2

≤
⎛⎜⎜⎝

2k−1�
n=1

�
n

2k−1

n−1

2k−1
�

1

0

[u(x) − Qn
k,M

(x)]2dx

⎞⎟⎟⎠

1∕2

,

∥ u − k,Mu∥ ≤ 2−kM
2

2MM!
⏟⏟⏟

CM

sup
0≤x≤1

|u(M)(x)|.
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Since 2−kM vanishes as k → ∞ it follows that k,Mu con-
verges (in the mean) to u.

Similarly, we can approximate the two-dimensional function 
K(x, y) ∈ L2([0, 1] × [0, 1]) by dual-Chebyshev wavelets as

where � = [Kij]1≤i,j≤2k−1M with the entries

3  Solution of Logarithmic Boundary Integral 
Equations

Consider the boundary Fredholm integral equation of the 
second kind with logarithmic singular kernel:

where D is a bounded, open, simply connected region in 
the plane, nx is the outward unit normal on �D , p(x) and 
g(x) are given functions on �D with p(x) ≥ 0 but p ≢ 0 and 
u(�) ∈ C1(D̄) ∩ C2(D) is the unknown function to be deter-
mined [10, 18].

We also assume that the boundary �D is a smooth simple 
closed curve with a twice continuously differentiable [10] 
and parameterized by

with r ∈ C2[0, 1], |r’(t)| ≠ 0 and the parametrization of �D 
traverses in a counter-clockwise direction. The interior unit 
normal n(t) is introduced as

which is orthogonal to the curve �D at r(t) . Based on the 
parametrization of �D , we obtain the quantities:

and

(26)K(x, y) ≈

2k−1M∑
i=1

2k−1M∑
j=1

Kij𝜓i(x)𝜓j(y) = Ψ̃T (x)�Ψ̃(y),

(27)

Kij = ⟨�̃�i(x), ⟨K(x, y), �̃�j(y)⟩⟩ = ∫
1

0 ∫
1

0

K(x, y)�̃�i(x)�̃�j(y)dxdy.

(28)

− �u(x) + ∫�D

u(y)

�
p(y) ln ‖x − y‖ + � ln ‖x − y‖

�ny

�
dsy

= ∫�D

g(y) ln ‖x − y‖dsy, x ∈ �D,

(29)r(t) = (�(t), �(t)), 0 ≤ t ≤ 1,

(30)n(t) =
(−��(t), ��(t))√
��(t)2 + ��(t)2

,

(31)dsy =
√
��(t)2 + ��(t)2ds,

(32)

� ln ‖x − y‖
�ny

=

⎧⎪⎨⎪⎩

−��(s)[�(t)−xi(s)]+��(s)[�(t)−�(s)]√
��(s)2+��(s)2([�(t)−�(s)]2+[�(t)−�(s)]2)

, s ≠ t,

−��(t)�
��
(t)+��(t)�

��
(t)

2
√
��(s)2+��(s)2(��(t)2+��(t)2)

, s = t.

By substituting Eqs. (31) and (32) into the integral equation 
(28), we reduce the boundary integral equations (28) to the 
following integral equation with the logarithmic kernel:

where

and

with

Note that in the integral Eq. (33), we have used u(t) ≡ u(r(t)) 
for simplicity in notation.

Now, we want to utilize the Galerkin method with dual-
Chebyshev wavelets constructed on [0, 1] as a basis for solv-
ing the integral Eq. (33). From the expansion (21), the solu-
tion u(t) can be approximated by dual-Chebyshev wavelets 
as

Then, instead of u(t), we can replace the expansion (37) in 
the integral equation (33). Thus, we obtain

By taking inner product < Ψ̃(t), . > upon both sides of (38), 
we have

The use of orthonormality of dual-Chebyshev wavelets 
yields

where  �2k−1M×2k−1M  i s  the  ident i ty  matr ix  and 
F = [f1, f2, ..., f2k−1M]

T with fj =< f (t), �̃�j >.
This linear system of algebraic equations can be also writ-

ten in the extended form as

(33)−�u(t) + �
1

0

K(t, s)u(s)ds = f (t), 0 ≤ t ≤ 1,

(34)f (t) = ∫
1

0

g(r(s))‖r�(s)‖ ln ‖r(t) − r(s)‖ds,

(35)K(t, s) = p(r(s))‖r�(s)‖ ln ‖r(t) − r(s)‖ + q(t, s),

(36)q(t, s) =

{ −��(s)[�(t)−�(s)]+��(s)[�(t)−�(s)]

[�(t)−�(s)]2+[�(t)−�(s)]2
, s ≠ t,

−��(t)�
��
(t)+��(t)�

��
(t)

2(��(t)2+��(t)2)
, s = t.

(37)u(t) ≈

2k−1M∑
i=1

ui�̃�i(t) = UTΨ̃(t).

(38)−𝜋Ψ̃T (t)U + ∫
1

0

K(t, s)Ψ̃T (s)Uds = f (t).

(39)
− 𝜋 < Ψ̃(t), Ψ̃T (t) > U+ < ∫

1

0

K(t, s)dsΨ̃T (s)U,

Ψ̃T (t) >=< Ψ̃(t), f (t) > .

(40)(−�� +�)U = F,
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for unknowns UT = [u1, u2,… , u2k−1M]
T .

The discrete Galerkin method arises when all integrals 
required in the Galerkin method are calculated using numeri-
cal integration. Therefore, we must approximate two types 
of integrals in the system (41) as

fj = ⟨Ψ̃(t), f (t)⟩ = ∫ 1

0
f (t)�̃�j(t)dt,

Kij = ⟨�̃�i(x), ⟩K(x, y), �̃�j(y)⟩⟩ = ∫ 1

0
∫ 1

0
K(t, s)�̃�i(s)�̃�j(t)dsdt.

From (33) and (34), we obtain

Since the function ln ‖r(t) − r(s)‖ is a logarithmic weakly 
singular function, the integrals (42) and (43) cannot be 
computed by the usual quadrature formulae, and so, we 
need a specific numerical integration rule. In the follow-
ing, we consider a simple but efficient quadrature rule for 
computing such integrals presented in [18]. For approx-
imating the integrals, we use the double composite qN-
point Gauss–Legendre (DCGL) rule with M non-uniform 
subdivisions.

Suppose that f(t, s) is defined on (0, 1) × (0, 1) and satisfies

for all (t, s) and some � ∈ (0, 1) . Let �1(t), �2(t) be functions 
in C2qN [0, 1] . Then, for any given integer M, we have [18, 22]

where

with

(41)
− 𝜋uj +

2k−1M∑
i=1

ui ∫
1

0 ∫
1

0

K(t, s)�̃�i(s)�̃�j(t)dsdt

= ∫
1

0

f (t)�̃�j(t)dt, j = 1, 2, ..., 2k−1M,

(42)fj = ∫
1

0 ∫
1

0

g(r(s))‖r’(s)‖ ln ‖r(t) − r(s)‖�̃�j(t)dsdt,

(43)

Kij = ∫
1

0 ∫
1

0

{p(r(s))‖r’(s)‖ ln ‖r(t) − r(s)‖ + q(t, s)}�̃�i(s)�̃�j(t)dsdt.

(44)
|||||
𝜕2qN f

𝜕t2qN

|||||
< C1t

−𝜖−2qN ,
|||||
𝜕2qN f

𝜕s2qN

|||||
< C2t

−𝜖 ,

(45)

∫
1

0 ∫
�2(t)

�1(t)

f (t, s)dtds =

M∑
q=1

Δtq

2

qN∑
k=1

wk

Δs(�
q

k
)

2

Mp,r∑
r=1

qN∑
p=1

wpf (�
q

k
, �r

p
(�

q

k
)) + O

(
1

M2qN

)
,

𝜃
q

k
=

Δtq

2
vk + t̄q, Δtq = tq − tq−1 and t̄q =

tq + tq−1

2
,

tq =
( q

M

)�

, � =
2qN + 1

1 − �
, Mp,r = 1 + [M(�2(�

q

k
) − �1(�

q

k
))],

Note that the integrals (42) and (43) are singular along the 
diagonal t = s (not only at point t = 0 ) and also at the points 
(0, 1) and (1, 0) because �D is a simple closed curve, so the 
quadrature rule (45) cannot be applied for them. The change 
of variables

for these integrals transform the unit square [0, 1] × [0, 1] to 
the diamond {(u, v) ∶ |u| + |v − 1| ≤ 1} [18, 22]. Therefore, 
we have

and

with

The integrals of (46) and (47) have weakly singularity at 
u = 0,±1 and are sufficiently smooth for every v. To approxi-
mate these singular integrals via the quadrature rule (45), 
we give

where

It is easy to see by a simple changing variables that

Similarly, we obtain

Δs(�
q

k
) =

�
2
(�

q

k
) − �

1
(�

q

k
)

Mp,r

and �r
p
(�

q

k
)

=
Δs(�

q

k
)

2
sp + �

1
(�

q

k
) +

(
r −

1

2

)
Δs(�

q

k
).

u = t − s, v = s + t,

(46)
fj = ∫

1

−1 ∫
𝛼2(u)

𝛼1(u)

1

2
g
(
r
(
v − u

2

))‖‖‖‖r’
(
v − u

2

)‖‖‖‖
ln
‖‖‖‖r
(
v + u

2

)
− r

(
v − u

2

)‖‖‖‖�̃�j

(
v + u

2

)
dvdu,

(47)
Kij = ∫

1

−1 ∫
𝛼2(u)

𝛼1(u)

1

2
K
(
v + u

2
,
v − u

2

)
�̃�i

(
v − u

2

)
�̃�j

(
v + u

2

)
dvdu.

�(u) = max{−u, u} and �(u) = min{2 − u, 2 + u}.

(48)

fj =∫
−1

2

−1

F(u)du + ∫
0

−1

2

F(u)du + ∫
1

2

0

F(u)du + ∫
1

1

2

F(u)du

=∫
1

2

0

[F(−u) + F(u)]du + ∫
1

1

2

[F(−u) + F(u)]du,

F(u) = ∫
𝛼2(u)

𝛼1(u)

1

2
g(r(

v − u

2
))
‖‖‖‖r’(

v − u

2
)
‖‖‖‖

ln
‖‖‖‖r(

v + u

2
) − r(

v − u

2
)
‖‖‖‖�̃�j

(
v + u

2
)dv.

(49)

fj =
1

2 ∫
1

0

[
F
(
−u

2

)
+ F

(
u

2

)
+ F

(
u

2
− 1

)
+ F

(
1 −

u

2

)]
du.
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where

The integrands of (49) and (50) are singular in u = 0 and 
satisfy the condition (44) for any positive integer k and for 
any small positive number � [18]. Now, using the quadrature 
rule (45), we compute

where

with

In addition, we have

where

Utilizing the numerical integration schemes (51) and (53) 
in the system (41) results the linear system of algebraic 
equations:

(50)

Kij =
1

2 ∫
1

0

[H(
−u

2
) + H(

u

2
) + H(

u

2
− 1) + H(1 −

u

2
)]du,

H(u) = ∫
𝛼2(u)

𝛼1(u)

1

2
K(

v + u

2
,
v − u

2
)�̃�i(

v − u

2
)�̃�j(

v + u

2
)dv.

(51)
fj =

qN∑
k=1

wk

M∑
q=1

Δuq

2
[F̂(

−𝜃
q

k

2
) + F̂(

𝜃
q

k

2
)

+ F̂(
𝜃
q

k

2
− 1) + F̂(1 −

𝜃
q

k

2
)] + O(

1

M2qN
),

(52)

F̂(u) =
1

2

Δv

2

qN∑
r=1

wk

M∑
p=1

g(r(
𝜂
p
r − u

2
))
‖‖‖‖‖
r’(

𝜂
p
r − u

2
)
‖‖‖‖‖

ln
‖‖‖‖‖
r(
𝜂
p
r + u

2
) − r(

𝜂
p
r − u

2
)
‖‖‖‖‖
�̃�j(

𝜂
p
r + u

2
),

𝜃
q

k
=

Δtq

2
vk + t̄q, Δtq = tq − tq−1, t̄q =

tq + tq−1

2
,

tq =
( q

M

)s

, s =
2qN + 1

1 − r
,

Δs =
�(t) − �(t)

Mt

and �p
r
=

Δs

2
vr + (p −

1

2
)Δs.

(53)

Kij =

qN∑
k=1

wk

M∑
q=1

Δuq

2
[Ĥ(

−𝜃
q

k

2
) + Ĥ(

𝜃
q

k

2
) + Ĥ(

𝜃
q

k

2
− 1)

+ Ĥ(1 −
𝜃
q

k

2
)] + O(

1

M2qN
),

(54)

Ĥ(u) =
1

2

Δv

2

qN∑
r=1

wk

M∑
p=1

K(
𝜂
p
r + u

2
,
𝜂
p
r − u

2
)�̃�i(

𝜂
p
r − u

2
)�̃�j(

𝜂
p
r + u

2
).

for the unknowns û = [û1, û2,… , ûN] . The solution of this 
system eventually leads to the following numerical solution 
which can be approximated u(t) at any point t ∈ [0, 1]:

3.1  Notes on 3D boundary integral equations

The solution of boundary value problems for three-dimen-
sional Laplace’s equations with linear Robin boundary con-
ditions reduces to the solution of the following boundary 
integral equation [10]:

where R is a bounded, open, simply connected region in ℝ3 
and the surface �R denotes its boundary, Ω(�) indicates the 
interior solid angle at x ∈ �R , n� is the outward unit normal 
on the surface �R , the known function g(�, u) is assumed 
to be continuous on �R ×ℝ and f (�) is a given function on 
�R and the unknown function u(�) ∈ C1(R̄) ∩ C2(R) must 
be determined.

Suppose that the surface �R is a smooth parametric ori-
entable surface given by the equation:

and �R is covered just once as (t1, t2) ranges throughout the 
parameter domain  = [0, 1] × [0, 1] with r ∈ C2() and 
‖r’(t1, t2)‖ ≠ 0 . Based on the parametrization of r(t1, t2) , the 
interior unit normal n(t) is obtained by

Moreover, we result that

and

(55)

−𝜋ûj+

2
k−1M∑
i=1

ûi

qN∑
k=1

wk

M∑
q=1

Δuq

2
[Ĥ(

−𝜃
q

k

2
) + Ĥ(

𝜃
q

k

2
)

+ Ĥ(
𝜃
q

k

2
− 1) + Ĥ(1 −

𝜃
q

k

2
)]

=

qN∑
k=1

wk

M∑
q=1

Δuq

2
[F̂(

−𝜃
q

k

2
) + F̂(

𝜃
q

k

2
) + F̂(

𝜃
q

k

2
− 1) + F̂(1 −

𝜃
q

k

2
)],

(56)û(t) =

2k−1M∑
j=1

ûj�̃�j(t).

(57)

− Ω(�)u(�) + ∫�R

u(�)

�
p(�)

1

‖� − �‖ +
�

�n�

�
1

‖� − �‖
��

�s�

= ∫�R

g(�)

‖� − �‖�s�, � ∈ �R,

(58)
r(t1, t2) = (�(t1, t2), �(t1, t2), �(t1, t2)), (t1, t2) ∈ [0, 1] × [0, 1],

(59)n(t1, t2) =
rt1 × rt2

‖rt1 × rt2‖
.

(60)dsy = ‖rs1 × rs2‖ds1ds2, � = r(s1, s2),

(61)dsx = ‖rt1 × rt2‖dt1dt2, � = r(t1, t2).
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To start the proposed method, we estimate the unknown 
function u(t1, t2) utilizing dual-Chebyshev wavelets con-
structed on [0, 1] as follows:

where the matrix � = [uij]1≤i,j≤2k−1M is determined by solving 

the system which is obtained by replacing the expansion (62) 
with u(t1, t2) in the boundary integral equation (33) and tak-
ing the inner product

upon both sides. In addition, to compute the singular inte-
grals on  ×  appeared in the scheme, we need to choose 
a suitable quadrature formula based on the generalized non-
uniform composite Gauss–Legendre quadrature rule. In fact, 
this work is not really easy for dimension bigger than 2 and 
increases the difficulties to apply the method. It should be 
noted that solving high dimensional boundary integral equa-
tions by the proposed method can be interesting for future 
researches.

4  Error analysis

In this section, we investigate the error estimate and the con-
vergence rate in terms of the parameter k for the presented 
method. This discussion is mostly based on the error analysis 
of discrete Galerkin method in [10, 25].

The operator  ∶ L2[0, 1] → L2[0, 1] with weakly singular 
kernel is introduced as

Therefore, we can rewrite the integral equation (28) in the 
operator form:

where

If ‖‖ < 𝜋 , then the operator −� + is a contraction opera-
tor, by the Banach contraction mapping principle, Eq. (28) 
has a unique solution u0 ∈ L2[0, 1] [10]. Now, we present the 

(62)

u(t
1
, t
2
) ≈ ūk,Mu(t1, t2)

2
k−1M∑
i=1

2
k−1M∑
i=1

ui,j�̃�i(t1)�̃�j(t2)

= Ψ̃T (t
1
)�Ψ̃(t

2
), (t

1
, t
2
) ∈  ,

�
, ⟨., �̃�i(t1)⟩ , �̃�j(t2)

�
= ∫

1

0 ∫
1

0

u(t1, t2)�̃�i(t1)�̃�j(t2)dt1dt2,

i, j = 1, ..., 2k−1M,

(63)

u(t) = ��D

u(y)

�
p(y) ln ‖x − y‖ + � ln ‖x − y‖

�ny

�

dsy = �
1

0

k(t, s)u(s)ds.

(64)(−� +)u = f ,

(65)

f (t) = ∫�D

g(y) ln ‖x − y‖dsy = ∫
1

0

g(r(s))‖r�(s)‖ ln ‖r(t) − r(s)‖ds.

definition of compact operators and the respective theorems 
from [10, 25] to establish the error analysis of the method.

Definition 4.1 [25] A linear operator  ∶ L
2[0, 1] →

L
2[0, 1] is called compact if the set {u�‖u‖ ≤ 1} has com-

pact closure in L2[0, 1].

Theorem 4.1 [25] Compact linear operators are bounded.

Theorem 4.2 [10] The logarithmic integral operator  is 
a compact operator on L2[0, 1].

We are ready to exchange Eq. (55) in the operator form 
by the operators (23) and (63) as

We introduce the discrete semi-definite inner product using 
the qN-point Gauss–Legendre rule with M non-uniform sub-
divisions such that ( qN ≥ dN ) as follows:

and, for every g ∈ L2[0, 1] , the discrete semi-norm

The discrete projection operator k,M ∶ L2[0, 1] → VN is 
defined as

where the coefficients {c1, ..., cN} determined by solving the 
linear system:

The family {k,M} is uniformly bounded on L2[0, 1] which 
is proved at some length in Atkinson and Bogomolny [9], 
namely

Since k,M is a projection operator and k,Mu ∈ VN , we give 
k,M(k,Mu) = k,Mu [10]. Therefore

Now, we obtain

(66)(−� + k,M)u = k,Mf .

(67)

< f , g >qN
=

qN∑
k=1

M∑
q=1

Δx(𝜃
q

k
)

2
wkf (𝜃

q

k
)g(𝜃

q

k
), f , g ∈ L2[0, 1],

(68)‖g‖qN =
√
< g, g >qN

.

(69)k,Mu(x) =

2k−1M∑
k=1

ck�̃�k(x), x ∈ [a, b],

(70)< u,𝜓j >qN
=

2k−1M∑
k=1

ck < �̃�k, �̃�j >qN
j = 1, ...,N.

(71)‖k,M‖ ≤ m < ∞.

(72)u −k,Mu =u − k,Mu + k,Mu −k,Mu

(73)
=u − k,Mu +k,Mk,Mu −k,Mu = ( −k,M)(u − k,Mu).

(74)‖k,Mu − u‖ ≤ (1 + m)‖u − k,Mu‖.
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From Theorem 2.1, we have

for every u ∈ CM([0, 1]).
A family of qN-point Gauss–Legendre rule with M non-

uniform subdivisions operators N ∶ L2[0, 1] → L2[0, 1] for 
approximating  is introduced by

Note that {N} is a collectively compact family that is point-
wise convergent to  on L2[0, 1] of O( 1

M
2qN

) [10, 18]. Then, 

Eq. (55) can be rewritten as

(75)‖k,Mu − u‖ ≤ (1 + m)2−kMCM‖u(M)‖,

(76)Nu(x) =

qN∑
r=1

M∑
p=1

wr

Δy(�
p
r )

2
K(x, �p

r
)u(�p

r
), N ≥ 1.

(77)(−𝜋 +NN)ûN = Nf .

for every u ∈ CM[0, 1] , and so, when k → ∞ , the condition 
(78) is satisfied. Therefore, Theorem 4.3 certifies that there 
exists M > 0 such that for every N ≥ M , the inverse opera-
tors (−� +k,MN)

−1 exist and are uniformly bounded, that 
is

Now, from Eq. (77), it is clear that the present method in this 
paper, for every N ≥ M , has a unique solution as

On the other hand, from Eq. (82), we obtain

(81)‖(−𝜋 +k,MN)
−1‖ ≤ C1 < ∞.

ûN = (−𝜋 +k,MN)
−1k,Mf .

(82)‖u0 − ûN‖ ≤‖(−𝜋 +k,MN)
−1‖�‖u0 −Nu0‖ + ‖N(I − k,M)u0‖

�
≤C1

�‖u0 −Nu0‖ + ‖N‖‖u0 −k,Mu0‖
�
.

To obtain the error analysis of the method, we present the 
following convergence theorem about the discrete Galerkin 
method [10].

Theorem 4.3 Let u0 be a unique solution of the integral 
equation (28). Assume that for every u ∈ L2[0, 1]

Then, the inverse operator (� +k,MN)
−1 exists for all suf-

ficiently large N and is uniformly bounded. Furthermore

Here, we complete the error analysis by the following 
theorem:

Theorem 4.4 Having in mind the assumptions of Theorems 
4.3 and 2.1. Assume that u0 ∈ C�[0, 1], where � = max{M, qN}

, is the unique exact solution of the boundary integral equation 
(28). Then, for all sufficiently large N the proposed method 
has a unique solution ûN which converges to u0 as N → ∞. 
Besides, the error bound follows as

Proof Since k,M ∈ VN and from Theorem 2.1, we have

(78)inf
�∈VN

‖u − �‖ → 0, as N → ∞.

(79)
(𝜋 +k,MN)(u0 − ûN) = (u0 −Nu0) +N(I −k,M)u0.

(80)‖u0 − ûN‖ = O(M−2qN ) + O(2−kM).

inf
�∈VN

‖u − �‖ ≤ ‖u − k,Mu‖ ≤ 2−kMCM sup
0≤t≤1

�u(M)(t)�,

The family N is a pointwise convergence sequence and 
from the principle of uniform boundedness (see [10], Theo-
rem A.3 in the Appendix), we can assume that ‖N‖ ≤ C2 , 
so

The inequality (75) concludes the error bound

where u0 ∈ CM[0, 1] and also as u0 ∈ CqN [0, 1] , Eq. (45) 
implies N is convergence to  of order 1

M2qN
 , namely

Altogether

This completes the proof.

(83)
‖ûN − u0‖ ≤ C1‖u0 −Nu0‖ + C1C2‖u0 −k,Mu0‖.

(84)‖u0 −k,Mu0‖ ≤ CM2
−kM sup

0≤t≤1
�u(M)(t)�,

(85)‖u0 −Nu0‖ ≤ C3

M2qN
.

(86)‖ûN − u0‖ ≤ C1C3

M2qN
+ C1C2CM2

−kM sup
0≤t≤1

�u(M)(t)�.
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Corollary 4.1 As a conclusion from Theorem 4.4, it should 
be noted that for qN sufficiently large, the error of the dual-
Chebyshev wavelet approximation is dominated over the 
error of integration rule, and so, increasing the number of 
integration nodes qN has no significant effect on the error. 
Therefore, by increasing k, the proposed method will be of 
O(2−kM).

We can estimate the solution of the boundary value prob-
lem with linear Robin boundary conditions (2) using the 
numerical solution ûN(x) of the boundary integral equation 
(28) as follows:

Based on the theoretical analysis in [28, 29], we can obtain 
an error bound for the approximate solution ũN(x) which 
requires an error analysis of the dual-Chebyshev wavelet 
approximation in the Sobolev space norm. To this aim, we 
firstly consider

Suppose that there exists a non-negative integer � such 
that the dual-Chebyshev wavelets �̃�i are �-times con-
tinuously differentiable and the boundary �D is a piece-
wise C� . If there exists a constant 𝛿 > 0 such that 
dx ≡ d(x, �D) = miny∈�D{|x − y|} ≥ � , then

and

where 𝜌1, 𝜌2 > 0 are constants (for more details please see 
[28, 29]). Thus, we have

where ‖p(x)‖H�+2(�D) ≤ �3.

ũ
N
(x) =

1

2𝜋 ∫𝜕D

û
N
(�)

�
p(y) ln ‖x − y‖ + 𝜕 ln ‖x − y‖

𝜕ny

�

dsy −
1

2𝜋 ∫𝜕D

g(y) ln ‖x − y‖dsy, x ∈ D.

�u(x) − ũN(x)� = 1

2𝜋

������𝜕D

(u(y) − ûN(y))

�
p(y) ln ‖x − y‖ + 𝜕 ln ‖x − y‖

𝜕ny

�
dsy

�����
≤C1‖u − ûN‖H−(𝛾+2)(𝜕D)

�����
p(y) ln ‖x − y‖ + 𝜕 ln ‖x − y‖

𝜕ny

�����H𝛾+2(𝜕D)

.

(87)

�����
� ln ‖x − y‖

�ny

�����H�+2(�D)

=
�����
−

1

2�

cos(y − x, ny)

‖x − y‖
�����H�+2(�D)

≤ �1

�+2�
l=0

d−l−1
x

,

(88)���ln ‖x − y‖���H�+2(�D)
≤ �2

�
� ln dx� +

�+2�
l=1

d−l
x

�
,

�u(x) − ũN(x)� ≤ C1‖u − ûN‖H−(𝛾+2)(𝜕D)

�
𝜌2𝜌3

�
� ln dx� +

𝛾+2�
l=1

d−l
x

�
+ 𝜌1

𝛾+2�
l=0

d−l−1
x

�
,

5  Numerical examples

In this section, three boundary integral equations with loga-
rithmic singular kernels are solved to demonstrate the effi-
ciency and accuracy of the proposed method. These numeri-
cal examples are deduced from some mixed boundary value 
problems for Laplace’s equation. We utilize 10-points com-
posite non-uniform Gauss–Legendre (CNGL) quadrature 
rule with M = 10 for approximating singular integrals in 
the scheme. In order to measure the accuracy of the method, 
the maximum error ‖ek‖∞ and the mean error ‖ek‖2 have 
been used as follows:

where û(x) is the numerical solution of the exact solution 
uex(x) . We have also been reported the convergence rate of 
the presented method by

In addition, the results obtained in the numerical examples 
are compared with the method presented in [26] based on 
the use of Haar wavelets. Although Haar wavelets establish 
a simple algorithm, they have few vanish moments in com-
parison with dual-Chebyshev wavelets. Therefore, we expect 
that the scheme proposed in the current paper will be faster 
than the Haar wavelet method. We have written all routines 
in “Maple” software with the “Digits” 20 (Digits environ-
ment variable controls the number of digits in Maple) and 
a Laptop with 2.10 GHz of Core 2 CPU and 4 GB of RAM 
has been used to run these. To solve the final linear system 
of algebraic equations the “LinearSolve” command from 
“LinearAlgebra” package has been employed.

Example 5.1 Consider the boundary value problem for 
Laplace’s equation [18]:

‖e
k
‖∞ = max

x∈𝜕D
{�u

ex
(x) − û

k
(x)�},

‖e
k
‖2 =

�
∫𝜕D

�u
ex
(x) − û

k
(x)�2dx

� 1

2

,

Ratio =
ln(‖ek‖∞) − ln(‖ek+1‖∞)

ln(2)
.
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with the boundary condition:

This problem is reduced to the following logarithmic bound-
ary integral equation of the second kind:

where

with the exact solution uex(x) = uex(x1, x2) = 1 + x1.
Table 1 reports ‖e‖∞ , ‖e‖2 and the values of the ratio at 

different numbers of k for M = 3 and M = 4 . In addition, 
the results are compared with the Haar wavelet method [26] 
in this table. It is clear that the obtained results by the pro-
posed scheme are better than the obtained results by the Haar 
wavelet method. From Table 1, we find that the ratio of error 
remains approximately constant ( ≈ 3 ) for M = 3 and ( ≈ 4 ) 
for M = 4 . Therefore, numerical results confirm the theo-
retical error estimates in Theorem 4.4. The obtained errors 
of M = 2, 3, 4 for different numbers of k are drawn in the 
logarithmic mode in Fig. 1. The absolute errors for M = 3, 4 
and k = 7 are graphically shown in Fig. 2.

Δu(x) = 0, x ∈ D =

{
(x1, x2) ∶ x2

1
+

x2
2

4
< 1

}
,

�u(x)

�nx
+ u(x) =

2x1

1 +
√

1 + 3x2
1

+ x1 + 1,

x ∈ �D =

{
(x1, x2) ∶ x

2
1
+

x
2
2

4
= 1

}
.

(89)

− �u(x) + ∫�D

u(y)

�
ln ‖x − y‖ + � ln ‖x − y‖

�ny

�
dsy

= ∫�D

g(y) ln ‖x − y‖dsy, x ∈ �D,

g(x) = g(x1, x2) =
2x1

1 +
√

1 + 3x2
1

+ x1 + 1,

Example 5.2 In this example, we solve the following Dir-
ichlet problem:

with the boundary condition

Using Green’s formula and conditions, we obtain the loga-
rithmic boundary integral equation:

where

(90)Δu(x) = 0, x ∈ D = (0,�) × (0,�),

u(0, x2) = 0, u(�, x2) = 0,

u(x1, 0) = 0, u(x1,�) = sin x sinh�.

(91)
− �u(x) + ∫�D

u(y) ln ‖x − y‖ + dsy

= ∫�D

g(y) ln ‖x − y‖dsy, x ∈ �D,

Table 1  Some numerical results 
for Example 5.1

 k M = 3 M = 4 Haar wavelet 
[26]

‖e
k
‖
2

‖e
k
‖∞ Ratio ‖e

k
‖
2

‖e
k
‖∞ Ratio J ‖e

J
‖∞

2 1.46 × 10
−1

2.15 × 10
−1 − 4.55 × 10

−3
9.03 × 10

−3 − 2 5.19 × 10
−2

3 1.47 × 10
−2

2.43 × 10
−2 3.16 1.42 × 10

−3
2.69 × 10

−3 1.79 3 2.43 × 10
−2

4 1.88 × 10
−3

3.77 × 10
−3 2.67 9.09 × 10

−5
2.11 × 10

−4 3.63 4 1.53 × 10
−2

5 2.37 × 10
−4

4.96 × 10
−4 2.94 5.71 × 10

−6
1.39 × 10

−5 4.01 5 7.56 × 10
−3

6 2.97 × 10
−5

6.28 × 10
−5 2.98 3.57 × 10

−7
8.80 × 10

−7 3.88 6 3.59 × 10
−3

7 3.71 × 10
−6

8.12 × 10
−6 2.95 2.23 × 10

−8
5.52 × 10

−8 3.99 7 1.81 × 10
−3

Fig. 1  Distribution absolute error for Example 5.1
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with the exact solution uex(x) = uex(x1, x2) = sin x1 sinh x2.
Table 2 shows ‖e‖∞ , ‖e‖2 and the values of the ratio at 

different numbers of k for M = 3 and M = 4 . To compare the 
presented method, we also solve the integral equation (91) 
utilizing the Haar wavelet method and the numerical results 
are given in Table 2.

It should be noted that from Theorem 4.4, the results 
gradually converge to the exact values as the parameter k 
increases. In addition, the ratio of error, as k → ∞ , remains 
approximately constant for M = 2 , M = 3 and M = 3 nearly 
2, 3, and 4, respectively, i.e., the proposed method is of 
O(2−Mk) . The obtained errors of M = 3, 4 for different num-
bers of k are drawn in the logarithmic mode in Fig. 3. The 
numerical solutions for k = 3, 4, 5, 6 and M = 2 are graphi-
cally shown in Figure 4.

Example 5.3 In this example, we solve the following 
Laplace’s equation:

with the boundary condition

g(x) = g(x1, x2) =

{
sin x1 sinh x2, 0 ≤ x1 ≤ �, x2 = �,

0, otherwise,

Δu(x) = 0, x ∈ D =
{
(x1, x2) ∶ x2

1
+ x2

2
− 2x2 < 0

}
,

This problem is reduced to the following logarithmic bound-
ary integral equation of the second kind:

�u(x)

�nx
+

x1 + x2

2(x1 + x2 + 2)
u(x) =

2x1 + 2x2 − 1

2
√
x1 + x2 + 2

,

x ∈ �D =
�
(x1, x2) ∶ x

2
1
+ x

2
2
− 2x2 = 0

�
.

Fig. 2  Absolute error of Example 5.1 with k = 7

Fig. 3  Distribution absolute error for Example 5.2
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Fig. 4  The numerical solutions of Example 5.2 with M = 2

Table 2  Some numerical results 
for Example 5.2

k M = 3 M = 4 Haar wavelet 
[26]

‖e
k
‖
2

‖e
k
‖∞ Ratio ‖e

k
‖
2

‖e
k
‖∞ Ratio J ‖e

J
‖∞

2 2.09 × 10
−1

3.31 × 10
−1 − 2.06 × 10

−2
5.01 × 10

−2 − 2 1.14 × 10
−1

3 2.92 × 10
−2

7.89 × 10
−2 2.44 1.17 × 10

−3
2.82 × 10

−3 4.15 3 5.47 × 10
−2

4 3.74 × 10
−3

1.11 × 10
−2 2.89 7.28 × 10

−5
2.01 × 10

−4 3.81 4 2.62 × 10
−2

5 4.71 × 10
−4

1.43 × 10
−3 2.95 4.55 × 10

−6
1.29 × 10

−5 3.96 5 1.18 × 10
−2

6 5.91 × 10
−5

1.81 × 10
−4 2.98 2.84 × 10

−7
8.16 × 10

−7 3.98 6 5.96 × 10
−3

7 7.41 × 10
−6

2.21 × 10
−5 3.04 1.78 × 10

−8
5.10 × 10

−8 3.99 7 2.91 × 10
−3
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where

with the exact solution uex(x) = uex(x1, x2) =
√
x1 + x2 + 2.

(92)

− �u(x) + ∫�D

u(y)

�
(x1 + x2) ln ‖x − y‖

2(x1 + x2 + 2)
+

� ln ‖x − y‖
�ny

�

dsy = ∫�D

g(y) ln ‖x − y‖dsy, x ∈ �D,

g(x) = g(x1, x2) =
2x1 + 2x2 − 1

2
√
x1 + x2 + 2

,

Table 3 shows ‖e‖∞ , ‖e‖2 and the values of the ratio at 
different numbers of k for M = 3, 4, 5 . Also, the results are 
compared with the Haar wavelet method [26] in this table. 
As can be seen, the convergence rate for the proposed 
scheme is high in comparison with Haar wavelet method. 
We parameterize �D by

Therefore, we can reduce the boundary integral equation 
(92) to the logarithmic singular Fredholm integral equa-
tion of the second kind for the known function u(r(t)) . In 
addition, the approximate solution u(r(t)) for M = 3 and 
k = 2, 3, 4, 5 is graphically shown in Fig. 5. It is remark-
able that by increasing the parameter k, the results improves. 

(93)r(t) = (cos(2�t), sin(2�t) + 1), 0 ≤ t ≤ 1.

Fig. 5  Approximate solutions with k = 4, 5, 6, 7,  M = 3 for Example 5.3
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Apparently, the method provides accurate numerical solu-
tions for the logarithmic singular integral equation.

6  Conclusion

This paper has investigated a numerical method for solving 
logarithmic singular boundary Fredholm integral equations 
of the second kind by combining dual-Chebyshev wavelets 
and discrete Galerkin method. The singular integrals occur-
ring in the method are computed by a composite non-uni-
form Gauss–Legendre integration rule. The properties of 
dual-Chebyshev wavelets are used to reduce the problem to 
the solution of the linear system of algebraic equations. The 
error analysis is provided for the method. The convergence 
accuracy of the new method was examined in three boundary 
Fredholm integral equations which occur as reformulations 
of a boundary value problem for Laplace’s equation. All 
numerical results confirm the theoretical error estimates. We 
can also expand this method to various types of boundary 
integral equations with little additional works.

Acknowledgements The authors are very grateful to the reviewers for 
their valuable comments and suggestions which have improved the 
paper.

References

 1. Adibi H, Assari P (2010) Chebyshev wavelet method for numeri-
cal solution of Fredholm integral equations of the first kind. Math. 
Probl. Eng

 2. Adibi H, Assari P (2011) On the numerical solution of weakly 
singular Fredholm integral equations of the second kind using 
Legendre wavelets. J Vib Control 17:689–698

 3. Alpert BK (1993) A class of bases in l2 for the sparse representa-
tion of integral operators. SIAM J Math Anal 24(1):246–262

 4. Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galer-
kin (MDG) method for the numerical solution of integral equa-
tions with logarithmic kernels. J Comput Appl Math 267:160–181

 5. Assari P, Dehghan M (2017) A meshless discrete collocation 
method for the numerical solution of singular-logarithmic bound-
ary integral equations utilizing radial basis functions. Appl Math 
Comput 315:424–444

 6. Assari P, Dehghan M (2018) Solving a class of nonlinear bound-
ary integral equations based on the meshless local discrete Galer-
kin (MLDG) method. Appl Numer Math 123:137–158

 7. Assari P, Dehghan M (2018) A meshless Galerkin scheme for the 
approximate solution of nonlinear logarithmic boundary integral 
equations utilizing radial basis functions. J Comput Appl Math 
333:362–381

 8. Assari P, Dehghan M (2018) Application of thin plate splines 
for solving a class of boundary integral equations arisen from 
Laplace’s equations with nonlinear boundary conditions. Int. J. 
Comput. Math. https ://doi.org/10.1080/00207 160.2017.14207 86

 9. Atkinson K, Bogomolny A (1987) The discrete Galerkin method 
for integral equations. Math Comp 48(178):31–38

 10. Atkinson KE (1997) The numerical solution of integral equations 
of the second kind. Cambridge University Press, Cambridge

 11. Babolian E, Fattahzadeh F (2007) Numerical computation 
method in solving integral equations by using Chebyshev 
wavelet operational matrix of integration. Appl Math Comput 
188(1):1016–1022

 12. Babolian E, Fattahzadeh F (2007) Numerical solution of differ-
ential equations by using Chebyshev wavelet operational matrix 
of integration. Appl Math Comput 188(1):417–426

 13. Biazar J, Ebrahimi H (2012) Chebyshev wavelets approach for 
nonlinear systems of Volterra integral equations. Comput Math 
Appl 63(3):608–616

 14. Boersma J, Danicki E (1993) On the solution of an integral equa-
tion arising in potential problems for circular and elliptic disks. 
SIAM J Appl Math 53(4):931–941

 15. Bremer Rokhlin V, J., and I. Sammis. (2010) Universal quadra-
tures for boundary integral equations on two-dimensional domains 
with corners. J. Comput. Physics 229:8259–8280

 16. Chen W, Lin W (2001) Galerkin trigonometric wavelet methods 
for the natural boundary integral equations. Appl Math Comput 
121(1):75–92

 17. Dehghan M, Mirzaei D (2008) Numerical solution to the unsteady 
two-dimensional Schrodinger equation using meshless local boundary 
integral equation method. Int J Numer Methods Eng 76(4):501–520

 18. Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet 
Galerkin methods for integral equations of the second kind. J Sci 
Comput 20(2):277–302

 19. Gao J, Jiang Y (2008) Trigonometric Hermite wavelet approxima-
tion for the integral equations of second kind with weakly singular 
kernel. J Comput Appl Math 215(1):242–259

 20. Ghasemi M, Tavassoli M (2011) Kajani. Numerical solution of 
time-varying delay systems by Chebyshev wavelets. Appl Math 
Model 35(11):5235–5244

 21. Harbrecht H, Schneider R (2006) Wavelet Galerkin schemes for 
boundary integral equations—implementation and quadrature. 
SIAM J Sci Comput 27(4):1347–1370

 22. Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singu-
lar integrals and their application to Fredholm integral equations 
of the second kind. Math Comp 62(206):739–753

Table 3  Some numerical results 
for Example 5.3

k M = 3 M = 4 M = 5 Haar wavelet 
[26]

‖e
k
‖
2

‖e
k
‖∞ ‖e

k
‖
2

‖e
k
‖∞ ‖e

k
‖
2

‖e
k
‖∞ J ‖e

J
‖∞

2 6.89 × 10
−2

1.30 × 10
−1

1.14 × 10
−2

1.41 × 10
−2

9.27 × 10
−3

1.42 × 10
−2 2 6.47 × 10

−2

3 5.82 × 10
−3

9.21 × 10
−3

2.89 × 10
−3

4.53 × 10
−3

1.89 × 10
−4

2.54 × 10
−3 3 3.17 × 10

−2

4 1.50 × 10
−3

1.82 × 10
−3

7.70 × 10
−5

8.51 × 10
−5

2.35 × 10
−5

4.71 × 10
−5 4 1.43 × 10

−2

5 1.91 × 10
−4

2.51 × 10
−4

1.01 × 10
−6

1.15 × 10
−5 8.29 × 10

−7
1.25 × 10

−6 5 7.08 × 10
−3

6 2.49 × 10
−5

8.52 × 10
−5 8.41 × 10

−7
6.88 × 10

−6
6.04 × 10

−8
4.12 × 10

−7 6 3.61 × 10
−3

https://doi.org/10.1080/00207160.2017.1420786


190 Engineering with Computers (2019) 35:175–190

1 3

 23. Khuri SA, Wazwaz AM (1996) The decomposition method for 
solving a second kind Fredholm integral equation with a logarith-
mic kernel. Intern J Comput Math 61(1–2):103–110

 24. Khuri SA, Sayfy A (2010) A numerical approach for solving an 
extended Fisher-Kolomogrov-Petrovskii-Piskunov equation. J 
Comput Appl Math 233(8):2081–2089

 25. Kress B (1989) Linear Integral Equations. Springer, Berlin
 26. Lepik U (2008) Solving integral and differential equations 

by the aid of non-uniform Haar wavelets. Appl Math Comput 
198(1):326–332

 27. Li X (2011) The meshless Galerkin boundary node method for 
Stokes problems in three dimensions. Int J Numer Methods Eng 
88:442–472

 28. Li X (2011) Meshless Galerkin algorithms for boundary integral 
equations with moving least square approximations. Appl Numer 
Math 61(12):1237–1256

 29. Li X, Zhu J (2009) A Galerkin boundary node method and its 
convergence analysis. J Comput Appl Math 230(1):314–328

 30. Li X, Zhu J (2009) A Galerkin boundary node method for bihar-
monic problems. Eng Anal Bound Elem 33(6):858–865

 31. Li X, Zhu J (2009) A meshless Galerkin method for Stokes prob-
lems using boundary integral equations. Comput Methods Appl 
Mech Eng 198:2874–2885

 32. Mirzaei D, Dehghan M (2009) Implementation of meshless LBIE 
method to the 2D non-linear SG problem. Int J Numer Methods 
Eng 79(13):1662–1682

 33. Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics, 
2nd ed, texts in applied mathematics. Springer, New York

 34. Sohrabi S (2011) Comparison Chebyshev wavelets method with 
BPFs method for solving Abel’s integral equation. Ain Shams Eng 
J 2(3–4):249–254

 35. Tang X, Pang Z, Zhu T, Liu J (2007) Wavelet numerical solutions 
for weakly singular Fredholm integral equations of the second 
kind. Wuhan Univ J Nat Sci 12(3):437–441

 36. Von Petersdorff T, Schwab C (1996) Wavelet approximations for 
first kind boundary integral equations on polygons. Numer Math 
74(4):479–519

 37. Wang Y, Fan Q (2012) The second kind Chebyshev wavelet 
method for solving fractional differential equations. Appl Math 
Comput 218(17):8592–8601

 38. Wazwaz AM (2011) Linear and Nonlinear Integral equations: 
methods and applications. Higher Education Press and Springer 
Verlag, Heidelberg

 39. Wazwaz AM, Rach R, Duan J (2013) The modified Adomian 
decomposition method and the noise terms phenomenon for 
solving nonlinear weakly-singular Volterra and Fredholm integral 
equations. Cent Eur J Eng 3(4):669–678

 40. Yousefi SA, Banifatemi A (2006) Numerical solution of Fredholm 
integral equations by using CAS wavelets. Appl Math Comput 
183:458–463

 41. Yousefi SA, Razzaghi M (2005) Legendre wavelets method for 
the nonlinear Volterra-Fredholm integral equations. Math Comput 
Simul 70:1–8

 42. Yousefi SA (2006) Numerical solution of Abel’s integral equation 
by using Legendre wavelets. Appl Math Comput 175:574–580

 43. Zhang P, Zhang Y (2000) Wavelet method for boundary integral 
equations. J Comput Math 18(1):25–42

 44. Zhe W (2014) Haar wavelet for the natural boundary integral 
equation. Appl Mech Mater 17:1569–1573

 45. Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm inte-
gro-differential equations by the second kind Chebyshev wavelet. 
Commun Nonlinear Sci Numer Simul 17(6):2333–2341


	Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels
	Abstract
	1 Introduction
	2 Dual-Chebyshev wavelets
	2.1 Dual-Chebyshev wavelets
	2.2 Function approximation

	3 Solution of Logarithmic Boundary Integral Equations
	3.1 Notes on 3D boundary integral equations

	4 Error analysis
	5 Numerical examples
	6 Conclusion
	Acknowledgements 
	References


