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Abstract
Tunnel construction in urban areas causes ground displacement which may distort and damage overlying buildings and 
municipal utilities. It is therefore extremely important to predict tunneling-induced ground movements in tunneling pro-
jects. To predict the tunneling-induced ground movements, artificial neural networks (ANNs) have been used as flexible 
non-linear approximation functions. These methods, however, have significant limitations that decrease their accuracy and 
applicability. To overcome these problems, the use of optimization algorithms to train ANNs is of advantage. In this paper, 
a hybrid particle swarm optimization (PSO) algorithm-based ANN is developed to predict the maximum surface settlement 
and inflection points in transverse and longitudinal directions. Subsequently, the transverse and longitudinal troughs were 
obtained by means of empirical equations and 3D surface settlement troughs were ploted. For this purpose, extensive data 
consisting of measured settlements from 123 settlement markers, geotechnical properties and tunneling parameters were 
collected from the Karaj Urban Railway Project in Iran. The optimum values of PSO parameters were determined with the 
help of sensitivity analysis. On the other hand, to find the optimal architecture of the network, trial-and-error method was 
used. The final hybrid model including eight inputs, a hidden layer and three outputs was used to predict transverse and 
longitudinal tunneling-induced ground movements. The results demonstrated that the proposed model can very accurately 
predict three-dimensional ground movements induced by tunneling.
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1  Introduction

Over the last few years, the world has witnessed an enor-
mous growth in urban areas. Subsurface structures such as 
tunnels and underground metro stations have become the 
method of choice for overcoming congestion on the ground 
surface, whereas urban environments have become more 

limited. Although underground structures have been effec-
tive in addressing congestion at the ground surface, some 
problems and challenges remain in relation to tunneling in 
urban environments.

Estimation of the environmental impacts of tunnel con-
struction is one of the most important stages in tunnel design 
in urban areas. Although construction of tunnels in urban 
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areas has various long-term benefits, it may also raise impor-
tant environmental issues. In urban areas, for instance, sur-
face settlement as a result of tunnel construction may cause 
considerable damage to adjacent buildings. It is therefore of 
major concern in the design of underground works to esti-
mate tunneling-induced ground movements. In general, five 
types of methods have been employed to predict tunneling-
induced ground movements; empirical methods based on 
case history data, analytical methods based on closed-form 
solution and elastic theory, experimental methods based on 
laboratory tests and centrifuge modeling, and finally, numer-
ical and artificial intelligence methods.

An empirically derived relationship based on observation 
of transverse settlement troughs in several tunneling projects 
was introduced by Peck [1]. He illustrated that the transverse 
settlement trough over a single tunnel can be described by a 
normal probability curve. As shown in Fig. 1a, permanent 
properties of the normal probability curve represent the pat-
tern of the transverse settlement profile above a single tun-
nel. Peck [1] proposed the following equation to estimate 
transverse settlement troughs: 

where Sv is the vertical surface settlement at the y distance 
from the tunnel’s center line, Sv,max is the maximum surface 
settlement that usually occurs above the tunnel’s center line, 
and i is the horizontal distance from the tunnel’s center line 
to the inflection points of the settlement trough. The trans-
verse settlement trough has the maximum slope at the point 
of inflection that represents the standard deviation in the 
normal probability curve.

Based on the normal probability equation, an empirical 
solution was developed by Attewell and Woodman [2] by 
investigating several case histories of tunnel construction to 
estimate the longitudinal settlement of ground surface. They 
showed that the cumulative probability curve is reasonably 
valid for estimating the longitudinal settlement trough, as 
shown in Fig. 1b. The ground displacements for any desired 
point along the longitudinal direction can be obtained as 
follows:

(1)Sv = Sv,max exp
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Fig. 1   a Transverse and b longi-
tudinal settlement troughs
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where Vs is the volume of ground loss, x is the longitudinal 
position of the considered surface point, xi is the initial posi-
tion of the tunnel, xf is the location of the tunnel face, and G 
is the numerical integration of the normal probability curve. 
When x = xf , the quantity of G is 0.5, and when (x − xi ) 
approaches infinity, the quantity of G approaches one.

Principal equations of elastic theory have been employed 
in different studies to develop analytical methods [3–6]. 
These methods apply only to circular tunnels, however, and 
are therefore inappropriate for non-circular tunnels under 
invariant geological conditions.

In the last decades, numerical methods have been devel-
oped in response to the increasing computing power and 
ability of numerical methods used to analyze complex geo-
metrical conditions. Extensive researches have been con-
ducted to estimate tunneling-induced ground movements 
using numerical analyses [7–9]. The time and expense 
required to conduct a full three-dimensional analysis with 
advanced non-linear soil constitutive models are consider-
able. In addition, calculation accuracy strongly depends on 
the selection of an appropriate mesh in terms of type and 
size.

Various laboratory model tests have been conducted by 
previous researchers to investigate the ground movements 
and collapse mechanism induced by tunneling in different 
types of soil [10–13]. Laboratory model tests are carried 
out under single gravity (1 g) or under multiple gravities in 
centrifuge modeling to investigate the most relevant factors 
influencing the ground-tunnel behavior. Tunneling proce-
dure is modeled by either placing soil around a pre-installed 
tube as a tunnel and controlling the supporting pressure or 
pre-cutting the tunnel opening and installing a lining system 
[14]. In physical modeling, the tunnel-ground responses are 
investigated by means of a variety of techniques including 
the trap door, rigid tube, pressurized air bags, polystyrene 
foam and organic solvent.

Several studies in recent year employed artificial neural 
networks (ANNs) to predict the tunneling-induced ground 
movements [15–18]. Since the relationships between input 
and outputs data of ANNs are complex, training algorithms 
have to be used in relationship modeling process. The back-
propagation (BP) algorithm seems to be the most popular 
neural network algorithm in civil engineering disciplines 
because of its simplicity. However, the inability of the BP 
algorithm to escape from local minimums has been well 
defined in several studies [19–21]. This is in contrast with 
the aim of simulation with ANNs that is to find the global 
minimum of the error function. Furthermore, the BP algo-
rithm has a slow rate of learning and consequently it can-
not be readily applied to large problems. To overcome these 
limitations, the idea of improving ANNs learning perfor-
mance has been practiced by integrating ANNs with other 

computing paradigms such as genetic algorithms, fuzzy 
logic and ant colony algorithms.

This paper is aimed to develop and employ a hybrid 
ANN-PSO method in prediction of tunneling-induced 
three-dimensional ground movement. For this purpose, 
an optimized PSO-ANN model was generated from data 
obtained from the Karaj Urban Railway (KUR) Project in 
Iran. Subsequently, maximum surface settlement and inflec-
tion points in transverse and longitudinal settlement troughs 
were predicted by means of the proposed model. The pre-
dicted values of maximum surface settlement and inflection 
points and the classical empirical relationship proposed by 
Peck [1] and Attewell and Woodman [2] were used to obtain 
the three-dimensional surface settlements. This method can 
reduce the limitations of ANNs to make them more suitable 
and accurate for predicting ground movements induced by 
tunneling.

2 � A hybrid PSO‑ANN model

Researchers in different disciplines of science attempted to 
improve ANNs learning performance and generalizations 
abilities by integrating ANNs with PSO algorithms [22–25]. 
Since PSO is a robust global search algorithm, it can be used 
to adjust the weights and biases of an ANN to improve its 
performance. Typically, there is more probability of con-
vergence at a local minimum by ANNs, as PSO is capable 
of finding a global minimum. Hence, a hybrid PSO-ANN 
model encompasses the search properties of both, whereby 
PSO looks for a global minimum in the search space and 
ANN uses it to find the best results.

The ability of PSO as a robust algorithm to find the global 
solution for its objective function can be used to improve the 
performance of ANN by adjusting its weights and biases 
[26]. Compared with PSO, it is more probable for ANN to 
trap into local minimums. A hybrid PSO-ANN model takes 
advantage of the both methods; where PSO searches for a 
global minimum and ANN employs the PSO outputs for fine 
the best results.

2.1 � Artificial neural networks

An artificial neural network (ANN) is an information-pro-
cessing pattern based on simulation of the biological nerv-
ous systems which estimate existing functions from actual 
data. ANNs are particularly suitable for problems too com-
plex to be modeled and solved by classical mathematical and 
traditional procedures. They learn by example and obtain a 
close approximation relationship among the data, in contrast 
to most empirical and statistical methods, which need prior 
knowledge.
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McCulloch and Pitts [27] proposed the threshold logic 
unit as the earliest neuron. The first ANN based on their 
work was developed by Rosenblatt [28] and called the per-
ceptron. The perceptron is the simplest kind of feedforward 
neural network. Using a linear combination of inputs, this 
network produces an output scaled as + 1 and − 1. There 
was no algorithm which could adapt the neural network to 
minimize error until 1985, when the BP algorithm was dis-
covered. To calculate the weight changes, the BP-ANN back 
propagated the error at the output layer to the hidden layer. 
Subsequently, ANNs have been further developed in sev-
eral research [29–31]. The most common method of teach-
ing ANNs in prediction modeling is BP that is a supervised 
learning method [31]. This method attempts to reduce the 
error between actual and calculated outputs among differ-
ent layers of the network. Depending on the amount of error 
in the given and calculated outputs, learning arises in the 
perceptron by changing connection weights.

The foundation of an ANN is formed by nodes or neu-
rons in arrays of parallel interconnected processing units. A 
multilayer perceptron (MLP) is a feedforward ANN model 
that maps sets of input data into a set of proper data. An 
MLP network consists of several layers or nodes commonly 
referred to as input layer, hidden layer(s) and output layer. 
The actual processing is done by neurons in the hidden 
layer(s), whereas the input and output neurons only collect 
and distribute the signals.

2.2 � Particle swarm optimization

PSO was proposed by Kennedy and Eberhart [32] and devel-
oped further by Shi and Eberhart [33]. This computational 
method was originally formed on the basis of the social 
behaviors of bird and fish swarms. In a PSO system, parti-
cles as the entities are scattered in a multidimensional space 
that includes potential solutions for an objective function. 
The following criteria govern the movement of particles:

1.	 each particle considers its own best results as individual 
experience

2.	 all particles include overall experiences of the swarm 
that is the best results in the whole system

In other words, each particle discovers its movement 
through the search space by combining some aspect of the 
history of its own fitness value with the experience of neigh-
boring particles during the search. Therefore, particles adjust 
their positions according to their own experience and that of 
the neighboring particles, making use of the best position 
encountered by themselves and their neighbors [34].

In the starting step of the optimization, certain numbers 
of particles are scattered throughout a multidimensional 
search space in a random pattern and subsequently the initial 

positions of particles are determined. Each particle is a rep-
resentative of a feasible solution and an objective function 
determines the goal of the swarm. The fitness of each parti-
cle is calculated as its corresponding value obtained from the 
objective function. After determination of fitness values for 
all particles, velocity of each particles is calculated based on 
the above mentioned two criteria using the velocity function 
from the following equation:

 where ������⃗vnew , �⃗v and �⃗p are the new velocity, current veloc-
ity, and current position of particles, respectively. C1 and C2 
are the predefined velocity coefficients (acceleration coef-
ficients), ������⃗pbest is the personal best position of a particle, and 
������⃗gbest  is the global best position among all particles. r1 and 
r2 are the random values in the range (0, 1) sampled from a 
uniform distribution. Following Kennedy and Eberhart [32], 
r1 and r2 were added to update the scheme to avoid settle-
ment of particles in a united, unchanging direction. The next 
position of particles ( ������⃗pnew ) is then determined from their 
velocities derived from the following equation:

An inertia weight (w) was introduced to the PSO velocity 
function by Poli et al. [35] to provide more precise control 
over velocity of the particles. The inertia weight controls the 
acceleration of swarm and avoids a phenomena called explo-
sion of swarm by determining the rate of contribution of par-
ticle’s previous velocity into their current velocity [36]. The 
following equation provides the updated velocity function:

where w is the inertia weight. Figure 2 shows the standard 
flowchart of a PSO algorithm. This iterative process contin-
ues until the swarm meets the termination criterion/criteria. 
Different criteria have been use by researchers with most 
common among them are reaching a number of iterations 
and approaching a pre-determined accuracy level in the 
results.

2.3 � The hybrid PSO‑ANN model

The main objective in ANN training is to adjust a set of 
weights and biases to minimize an objective function. Usu-
ally, root mean square error (RMSE) is used as the objec-
tive function. PSO and ANNs employ different approaches 
to minimize an objective function. Typically, there is more 
probability of convergence at a local minimum by ANNs, as 
PSO is capable of finding a global minimum and continues 
searching around it. Therefore, a hybrid PSO-ANN model 
has the search properties of both PSO and ANN; PSO looks 

(3)������⃗vnew = v⃗ + r1C1 ×
(

������⃗pbest − p⃗
)

+ r2C2 ∗
(

������⃗gbest − p⃗
)

,

(4)������⃗pnew = p⃗ + ������⃗vnew.

(5)
������⃗vnew = w ⋅ v⃗ + r1C1 ×

(

������⃗pbest − p⃗
)

+ r2C2 ×
(

������⃗gbest − p⃗
)

,
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for a global minimum in the search space and ANN uses it 
to find the best results.

The main goal in ANN training is to minimize an objec-
tive function by adjusting a set of weights and biases. In 
general, the root mean square error (RMSE) is used as 
the objective function. PSO and ANNs employ different 
approaches to minimize an objective function. As discussed 
earlier, there is more likelihood of convergence to a local 
minimum by ANNs, since PSO is more powerful in finding 
the global minimum. Therefore, the best results are expected 
to be achieved by developing a hybrid PSO-ANN model 

with benefits of both PSO and ANN. In this model, PSO is 
responsible to look for the global minimum in the search 
space and ANN completes the job by finding the best results.

An appropriate objective function is required to train 
ANNs by means of PSO algorithms. Since the main target 
of ANNs is reaching the minimum difference between pre-
dicted and actual values, RMSE can be used as the objective 
function. In this case, each particle represents a candidate 
solution for minimizing RMSE, whereas each component 
of a particle represents one ANN weight or bias. Figure 3 
shows the initializing process of a group of random parti-
cles prior to start the learning process in hybrid PSO-ANN 
model. The weight and biases of ANN are assigned ran-
domly as positions of particles. In the next step, the model 
training is started by calculating the error between the ran-
domly assigned initial values of weight and biases that are 
alternatively called initial position of the particles and the 
actual values. The hybrid model continuously reduces the 
magnitude of the error by improving the positioning of the 
particles during iterations. The updated positions of particles 
are calculated by the velocity function in which includes the 
values of ������⃗pbest and ������⃗gbest , respectively, representatives of the 
smallest error obtained by each particle and by the swarm 
so far. Therefore, a value for position adjustment to the best 
solutions is produced and a new error is obtained from the 
updated positions. The error minimization is continued dur-
ing the iterations until the termination criteria of the model 
are met. The optimization output is then determined based 
on the foremost ������⃗gbest value.

3 � Model implementation for surface 
settlement prediction

3.1 � The database

Large numbers of reliable data are required to generate a 
comprehensive hybrid PSO-ANN network. For that reason, 
Phase I of Line No. 2 of the Karaj Urban Railway (KUR) 
Project in Iran was chosen to develop the desired model. 
Extensive geotechnical studies were performed before and 
during the tunnel construction and ground movements were 
frequently monitored during tunnel construction.

The 27 km long Line No. 2 of KUR is planned to connect 
north-west of Karaj city to its south through Kamal-Shahr 
to Malard railway stations. The metro line is composed of 
a single tunnel (with a double track) with 23 underground 
stations constructed by the New Austrian Tunneling Method 
(NATM). Figure 4 shows Line No. 2 of the KUR construc-
tion, divided into two phases; phase I, constructed between 
Kamal-Shahr and Station Q, and phase II, under construc-
tion between Station Q and Malard.

Fig. 2   Standard flowchart of PSO
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The NATM technique is used for excavation of the tun-
nel in the KUR project. This tunnel is classified as a shal-
low tunnel, in which the depth is changing between 6.5 and 
23.5 m below the ground surface. A two-section excavation 

was designed for the tunnel to improve the self-stability of 
the ground in the gap time between excavation and comple-
tion of the lining installation. The upper part or top heading 
is excavated in one step, while the lower part or the bench is 
bored in two steps. The tunnel has a horseshoe shape with 
a height of 9 m and width of 9.6 m after excavation, and a 
height of 7.8 m and width of 8.4 m with the lining. A layer 
of shotcrete lining with a thickness of 0.30 m, including wire 
mesh, and lattice girders forms the primary support system. 
The lattice girders are made of curved steel frames installed 
every 120 cm along the tunnel axis on the inner side. A 
30-cm thick reinforced concrete layer shapes the final tunnel 
lining. The tunnel dimensions and excavation sequence are 
shown in Fig. 5.

3.1.1 � Geotechnical studies

Using various in situ and laboratory tests, comprehensive 
geotechnical studies were performed before the start of the 
KUR Project. The ground conditions were determined from 
samples collected from the boreholes and other geophysical 
techniques. By visual inspection of the soil during excava-
tion, inorganic clay with clayey sand, clayey sand, and occa-
sionally silty sand overlying clayey and silty gravel were 
identified, respectively, from top to bottom.

Boreholes drilled throughout the excavation area are 
spaced every 100 m along the tunnel alignment to provide 
information about the soil layer thickness, the physical and 
mechanical characteristics of the soil, and groundwater level. 
In total, 136 boreholes have been excavated in phase I of 
Line No. 2 of KUR at a depth of 25 m in the tunnel route and 
30 m in the stations. The investigation of boreholes showed 
no water table in the containing soil of the tunnel and sta-
tions. In addition, 38 hand-dug wells have been excavated to 
carry out visual inspection of the soil layers.

3.1.2 � Surface settlement measurement

Steel rod settlement markers were fixed throughout the tun-
nel alignment as a part of an extensive monitoring program 
to frequently measure the surface settlement. The markers 
were grouted in a depth of 100 cm into the ground to isolate 
them from any external surface movements such as asphalt 
movements. This monitoring operation was conducted in 
accordance with conventional survey techniques. In this pro-
ject, tunneling was mostly conducted below the streets and 
hence arrays of settlement markers were placed throughout 
the streets to determine the settlement trough properties. In 
some of the stations, extensometers were also included in 
investigation of the subsurface settlement. To obtain a reli-
able source of ground movement data, transverse arrays of 
settlement markers were placed in three configurations along 
the tunnel axis and stations as shown in Fig. 6.

Fig. 3   Development process of a hybrid PSO-based ANN model
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1.	 The first group of arrays consisting of five markers (the 
distance between them is 7.5 m) installed every 25 m 
above the stations’ axis

2.	 The second group of arrays consisting of five markers 
installed 50 m away from the stations’ portal

3.	 The third group consisting of three settlement markers 
spaced every 100 m throughout the tunnel alignment.

3.2 � Input and output parameters

In general, tunneling-induced ground movements are caused 
by three factors; immediate settlement owed to tunnel exca-
vation, deformation of tunnel lining, and consolidation. 
Immediate settlement, the major factor, is a function of 
the tunnel depth and diameter, geological and geotechnical 

Fig. 4   Schematic view of KUR Line No. 2 and location of subway stations



258	 Engineering with Computers (2020) 36:251–269

1 3

conditions, and construction procedure. Deformation of the 
tunnel lining has an insignificant role in creating surface 
settlement and is usually negligible. Long-term settlement 
because of primary and secondary consolidation takes 
place in the saturated soils and groundwater conditions. 
To predict the tunneling-induced ground movements using 
ANNs, it is essential to determine all influential parameters 
on surface settlements. This is due to the fact that ANNs 
only relies and work on the given data without having any 
prior knowledge about the settlement. In prediction of tun-
neling-induced ground movements by means of ANNs, the 
accuracy of the results is significantly influenced by the rel-
evance of the selected parameters and their accuracy. It is 

worth mentioning that rejection of inappropriate inputs may 
enhance the prediction results and reduce the training time.

In general, the parameters affecting ground movements 
can be categorized into two universal groups; (1) geologi-
cal and geotechnical conditions, and (2) tunnel geometric 
properties and tunneling methods. Hence, various influential 
geotechnical parameters such as SPT N values, soil cohe-
sion, friction angle, soil unit weight, elastic modulus, and 
Poisson’s ratio were selected as input data to predict ground 
movements induced by tunneling. It is well known that soil 
cohesion can only be investigated as a suitable parameter 
to evaluate the ground movements in fine-grained soils. 
Therefore, both SPT N-value and soil cohesion parameters 

Fig. 5   Tunnel dimensions and 
construction sequence

Fig. 6   Schematic plan of settlement markers’ location in the KUR Project
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were investigated as input data because the KUR Project 
includes a wide range of fine-grained and coarse-grained 
soils. Ground water level, as a critical parameter in all exca-
vation methods, can strongly affect ground movements. As 
previously mentioned, however, investigations of hand-dug 
wells and boreholes showed no water table in the containing 
soil of the tunnel and stations in the project. Therefore, this 
parameter was not investigated in the simulations.

The excavation’s cross-sectional area and the tunnel 
depth are influential geometric parameters regarding sur-
face settlement. It is expected that a greater area of ground 
moves towards the tunnel face when the diameter is larger. 
However, the excavation cross-sectional area in the KUR 
Project is constant and the effect of the tunnel diameter on 
the surface settlement can be neglected. Therefore, as an 
influential geometric parameter in tunneling-induced ground 
movements, tunnel depth was used as an input parameter. 
As an operational parameter, the advancement rate appears 
to influence surface settlement. This parameter has been 
recorded during tunnel excavation. Observations of the KUR 
Project suggest that a low advancement rate or stopping the 
excavation can cause considerable surface settlement. There-
fore, tunnel advancement rate was used as an input param-
eter. Table 1 shows the range of values for the parameters 
used in the prediction of transverse and longitudinal surface 
settlements. A total of 123 input datasets, each including 
eight input parameters, were obtained from a 14.5-km dis-
tance in the phase I of line No. 2 of the KUR Project.

To simulate surface settlements in transverse and longi-
tudinal directions, it is necessary to consider the parameters 
that describe the settlement trough in both directions. The 
maximum surface settlement and horizontal distance from 
the tunnel’s center line to the point of inflection determine 
the transverse settlement trough (as in Eq. 1). The overall 
settlement and the settlement profile of a tunnel consist 
of a number of elements can be obtained as the result of 
settlement of its distinct elements (as in Eq. 2). To simu-
late the surface settlement in transverse and longitudinal 

directions, maximum surface settlement and location of 
inflection points in transverse and longitudinal directions 
were employed as output data. Table 1 shows the ranges of 
parameters used for training in the models. A total of 123 
output datasets were obtained from the KUR Project, each 
of which corresponds to one input dataset.

3.3 � Network design

The computer code for the hybrid PSO-ANN model was 
developed in Matlab. It is worth mentioning that there is 
no BP concept in hybrid PSO-ANN networks. The main 
objective of integrating PSO into ANNs training is to mini-
mize RMSE by determining a set of appropriate weights and 
biases. PSO performs best when its parameters are selected 
properly. Therefore, PSO parameters were defined by con-
ducting a series of sensitivity analyses. The optimum val-
ues of swarm size, iteration number, and particle velocity 
coefficients (C1 and C2) were obtained from the mentioned 
analyses. The role of PSO is to adjust the weights and biases 
of ANN and minimize the learning error. The network archi-
tecture including the number of hidden layer(s) and conse-
quent number of nodes in each hidden layer is defined by 
trial-and-error method.

To perform the aforementioned analyses, a network with 
one hidden layer and eight nodes in that hidden layer was 
used as the initial model. This model was trained several 
times with different numbers of desired parameters and a 
fixed number of other parameters to determine the optimum 
PSO parameters. Consequently, the optimum network archi-
tecture was determined by the trial-and-error method.

To perform the above analysis, an initial model of a net-
work was used with a hidden layer and eight nodes in the 
hidden layer. This model was formed several times with dif-
ferent numbers of desired parameters and a fixed number 
of other parameters to determine the optimal parameters of 
PSO and finally led to the optimal network architecture.

Table 1   Input and output 
parameters in surface settlement 
prediction

No. Parameter Category Minimum value Maximum value

1 Tunnel depth (m) Input 11.5 28.3
2 Advancement rate (m/day) Input 0.24 2.26
3 SPT N-value Input 22 76
4 Cohesion (kPa) Input 0 64
5 Internal friction angle (°) Input 24 42
6 Unit weight (kN/m3) Input 17 22.4
7 Poisson’s ratio Input 0.27 0.39
8 Elasticity modulus (MPa) Input 39.4 216
9 Maximum surface settlement (cm) Output 0.119 11.014
10 Inflection point in transverse direction (m) Output 5.80 15.70
11 Inflection point in longitudinal direction (m) Output 5.30 12.10
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3.3.1 � Swarm size

The first sensitivity analysis was performed on the swarm 
size (number of particles). While a small swarm usually can-
not converge to a global solution, a large swarm can lead to 
delayed convergence and lengthy training time. To date there 
is no theoretical solution on the optimal size of the swarm. 
Therefore, it is common to conduct a series of sensitivity 
tests on convergence of the swarm to find the optimum num-
ber of particles for each problem.

In this study, sensitivity analyses were performed for each 
size of the proposed swarm by considering a fixed number of 
1000 iterations and an equal value of 2 for both coefficients 
C1 and C2. The objective was to find the minimum and maxi-
mum values of RMSE and coefficients of determination (R2), 
respectively. The results of the analyses are shown in Fig. 7.

Figure 7 shows a substantial increase in the network per-
formance between the swarm sizes of 10 and 25 and a mod-
erate one between the swarm sizes of 25 and 125. There is 

no significant change in the values of R2 and RMSR for par-
ticles of more than 125. On the other hand, Fig. 8 indicates 
that the training time (elapsed time recorded by an INTEL 
CORE i7 PROCESSOR 2600 3.40 GHz) increased sharply 
as the swarm size increased. Therefore, swarm a size of 125 
was selected as the optimum population of the swarm.

3.3.2 � Termination criteria

The iterative process end when termination criteria are met. 
One or two termination criteria are usually defined, in which 
the first criterion and the easier one is a condition to achieve 
the required precision, while the second one is that is set to 
limit the number of iterations is more difficult to be defined. 
This number can be determined by comparing the outcomes 
of a sensitivity analysis on accuracy and convergence by set-
ting different limits for maximum iteration number.

Smaller iteration numbers are normally suitable for prob-
lems with simple search spaces, while they must be larger to 

Fig. 7   Relationship between 
swarm size and network perfor-
mance

Fig. 8   Total times taken to 
train the network with different 
swarm sizes
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satisfy the convergence and required accuracy for the prob-
lems with more complex search spaces. Here, the maximum 
number of iterations is used as a termination criterion. It is 
worth noting that the training time gradually increases with 
an increase in the maximum number of iterations. Therefore, 
a series of sensitivity analyses was applied to a hybrid PSO-
ANN model to find the appropriate number of iterations. 
These analyses were conducted by setting a fixed iteration 
number of 1000, the value of two for velocity coefficients 
(C1 and C2), one hidden layer and eight nodes in the hidden 
layer, and different swarm sizes. The aim of the sensitivity 
analyses was to monitor the Gbest among all the particles in 
each iteration.

Figure 9 shows the results of sensitivity analyses regard-
ing the iteration number. According to the figure, the sig-
nificant changes happened in the first iterations, whereas 
the changes were moderate up to iteration 200. After this 
iteration number, there were no significant changes in the 
Gbest values. Therefore, maximum number of iterations was 

set to 200 and the optimization process stopped at this num-
ber of iterations.

3.3.3 � Velocity coefficients

The same model was used to conduct the next sets of sensi-
tivity analyses with the goal of finding the optimum values 
of velocity coefficients (C1 and C2). The original coefficients 
of Kennedy and Eberhart [32] and the modified values of 
Clerc and Kennedy [37] were used as initial boundaries to 
form a series of candidate combinations that are shown in 
Table 2. A constant swarm size of 125 together with the 
previously defined maximum iterations of 200 was used in 
all the analyses. The formation of the network was also the 
same as the network.

Based on the relationship of the velocity coefficients, 
the results can be divided into two groups. The first group 
includes unequal coefficients (models 1–7), whereas the sec-
ond group contains equal coefficients (models 8–12) (see 

Fig. 9   Convergence process 
in each iteration for different 
swarm sizes

Table 2   Results of sensitivity 
analyses for velocity coefficients

Model Relationship C 1 C 2 C 1 + C2 Train Test

R 2 RMSE R 2 RMSE

1 C 1 = 0.25 C2 0.800 3.200 4 0.709 0.242 0.708 0.271
2 C 1 = 0.5 C2 1.333 2.667 4 0.885 0.132 0.871 0.115
3 C 1 = 0.75 C2 1.714 2.286 4 0.792 0.160 0.776 0.197
4 C 2 = 0.25 C1 3.200 0.800 4 0.655 0.259 0.631 0.230
5 C 2 = 0.5 C1 2.667 1.333 4 0.666 0.245 0.664 0.276
6 C 2 = 0.75 C1 2.286 1.714 4 0.842 0.142 0.712 0.233
7 C 1 = 2 C2 2.500 2.500 5 0.848 0.145 0.807 0.188
8 C 1 = C2 2.000 2.000 4 0.870 0.157 0.824 0.164
9 C 1 = C2 1.750 1.750 3.5 0.712 0.233 0.666 0.245
10 C 1 = C2 1.500 1.500 3 0.616 0.282 0.609 0.289
11 C 1 = C2 1.250 1.250 2.5 0.569 0.268 0.503 0.309
12 C 1 = C2 1.000 1.000 2 0.565 0.308 0.536 0.270
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Table 2). Generally, it can be said that when C1 < C2 the 
model yielded better results than other conditions. In the 
second group, the best results were obtained when the coef-
ficients were equal to 2. In this case, Model 2 yielded the 
best performance amongst all models. Consequently, values 
of 1.333 and 2.667 were selected as C1 and C2, respectively.

3.3.4 � Network architecture

To later determine the parameters of the PSO for superior 
performance in a hybrid PSO-ANN model is important to 
architecting optimal network. Since the input parameters 
are governing the number of nodes in the input layer, the 
network architecture is constrained by the number of input 
parameters. The output layer is adjusted according to the 
variable response in a similar way. Therefore, the compo-
nents of the network architecture are number of hidden lay-
ers and the number of nodes connected to each hidden layer. 
The optimal network architecture is usually determined 
according to the described trial-and-error method, due to 
the fact that there is no theoretical analysis to be employed 
in this process.

Twelve hybrid models were developed by the trial-and-
error method. Different numbers of hidden layers and dif-
ferent number of nodes in each hidden layer were used in 
the process. One or two hidden layers and 6, 9, 12, 15, 
18 and 21 nodes in each hidden layer were considered to 
find the related optimum parameters of the network. All 
of the produced models utilized the PSO with optimized 
parameters in their training. At the same time, the perfor-
mance of each model was evaluated by a transverse K-fold 
validation technique [38]. This technique works by divid-
ing the data into K parts, in which K-1 parts are involved 
with training and the remaining one part is used to test the 

model. By repeating the same process for K times, all the 
data are used in training and the test phases.

A total of 123 datasets were used in the analyses. Five-
fold cross-validation was employed to evaluate the perfor-
mance of models and each model was trained with four-
fold (98 datasets) and tested with onefold (25 datasets). 
Consequently, each model was trained and tested with 
different combinations of training and testing datasets for 
five times and the model performance was evaluated by 
average values of R2 and RMSE for testing datasets. The 
architecture of the model that yielded the best performance 
(high values of R2 and low values of RMSE) was selected 
as the optimum network architecture to be used in settle-
ment prediction.

Table 3 summarizes the results of analyses. Model 3 
composed of 1 hidden layer and 12 nodes was the best 
performer among all the models. Therefore was selected as 
the optimum network architecture to be used in predicting 
the tunneling-induced ground movements. The R2 values 
for the selected PSO-ANN model were 0.94 and 0.93 for 
training and testing datasets, respectively. Figure 10 illus-
trates the agreement between the actual and predicted val-
ues of maximum surface settlement and inflection points 
in transverse and longitudinal directions obtained by the 
proposed model for testing datasets. Since the predicted 
values are in close agreement with the actual results, it can 
be assumed that the proposed approach is an applicable 
and accurate tool for predicting ground surface settlement.

Table 3   Performance of trained 
PSO-based ANN and BP-ANN 
models

Model Network architecture Train Test

Hidden 
layers

Nodes in 
hidden 
layer(s)

PSO-based ANN BP-ANN PSO-based ANN BP-ANN

R2
ave RMSEave R2

ave RMSEave R2
ave RMSEave R2

ave RMSEave

1 1 6 0.840 0.172 0.841 0.188 0.816 0.223 0.516 0.268
2 1 9 0.901 0.147 0.904 0.123 0.868 0.129 0.748 0.166
3 1 12 0.938 0.110 0.993 0.032 0.926 0.135 0.878 0.147
4 1 15 0.909 0.136 0.997 0.024 0.873 0.125 0.786 0.195
5 1 18 0.897 0.132 0.955 0.090 0.900 0.141 0.671 0.230
6 1 21 0.896 0.128 0.897 0.142 0.863 0.160 0.626 0.257
7 2 6 0.809 0.188 0.859 0.157 0.785 0.202 0.468 0.277
8 2 9 0.876 0.149 0.971 0.074 0.885 0.141 0.756 0.210
9 2 12 0.925 0.102 0.934 0.109 0.917 0.119 0.828 0.185
10 2 15 0.913 0.136 0.936 0.106 0.879 0.156 0.803 0.171
11 2 18 0.880 0.169 0.899 0.132 0.849 0.183 0.732 0.241
12 2 21 0.854 0.173 0.873 0.160 0.815 0.218 0.649 0.240
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4 � Comparison with pre‑developed BP‑ANN 
model

A comparative study of the performances of the hybrid PSO-
ANN and pre-developed BP-ANN models was conducted to 
demonstrate the advantages of the proposed hybrid model. 
Similar to the PSO-ANN models, the optimum architec-
ture of the pre-developed BP-ANN was determined with 
the trial-and-error method and was evaluated by a fivefold 

cross-validation technique. The results of the analyses are 
provided in Table 3. Interestingly, the same network archi-
tecture (Model 3) was obtained for both BP-ANN and hybrid 
PSO-ANN models with one hidden layer and 12 nodes in 
the hidden layer. The R2 values for the selected BP-ANN 
model were 0.99 and 0.88 for training and testing datasets, 
respectively.

Comparing the R2
ave and RMSEave in different mod-

els helps one to understand how the PSO increases the 

Fig. 10   Concordance between actual and predicted values for testing datasets
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applicability of ANN in predicting tunneling-induced 
ground movements. The values of R2

ave for training datasets 
in different BP-ANN and hybrid PSO-ANN models are illus-
trated in Fig. 11. In Fig. 11a, the BP-ANN models in general 
can be seen to have higher R2

ave than the hybrid PSO-ANN 
models for the training datasets. The R2

ave values for the 
testing datasets are significantly higher for hybrid PSO-ANN 
models than for the BP-ANN models in all cases, however, 
as shown in Fig. 11b.

The same condition obtained when the two ANN methods 
were compared in terms of RMSEave, as shown in Fig. 12. 
Large differences were recorded between the R2

ave for train-
ing and testing datasets in the BP-ANN models, whereas 
these differences are considerably smaller in the hybrid 
PSO-ANN models. The same condition can be seen in terms 
of RMSEave for training and testing datasets in BP-ANN 
models and hybrid PSO-ANN models. This is because of 
the ability of PSO to minimize error with high efficiency; 
the PSO algorithm adjusts weights and biases of the error 

objective function in ANN to obtain minimum RMSE. From 
the results, it can be concluded that hybrid PSO-ANN mod-
els produce far more reasonable results than pre-developed 
BP-ANN models.

5 � Numerical examples

To predict ground movements with the proposed model, two 
measured points were selected from different parts of the 
KUR Project in terms of geotechnical conditions and tunnel 
depth. Subsequently, the transverse and longitudinal surface 
settlements were obtained by means of the proposed model 
and the results were compared with the actual settlements. 
The geotechnical properties and tunneling characteristics of 
the selected points are provided in Table 4. It is worth men-
tioning that the applicability and accuracy of this approach 
are constrained by the data used in the training step. Outside 

Fig. 11   R 2 ave for a training and 
b testing datasets in different 
hybrid PSO-based ANN and 
BP-ANN models
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the employed range this network may not be able to predict 
ground movements accurately enough.

Figure 13 shows the transverse and longitudinal settle-
ment troughs obtained by the proposed hybrid model at 
Point 1 (chainage 2 + 085 km). Maximum surface settle-
ment and point of inflection in transverse direction were 
obtained by the proposed hybrid PSO-ANN model. Sub-
sequently, the transverse trough was plotted by means of 
Peck’s theory [1] (Eq. 1), as shown in Fig. 13a. The solid 
curve in this figure shows the actual settlements measured 
by settlement markers at a distance of 0 m, 7.5 m and 
15 m from the tunnel axis. Figure 13b compares the actual 
and predicted longitudinal settlement troughs. Similar to 
transverse settlement troughs, the maximum surface set-
tlement and inflection point in the longitudinal direction 
were obtained by the proposed hybrid model, and the 
longitudinal settlement trough was plotted by means of 
Attewell and Woodman’s [2] equation (Eq. 2), as shown 

Fig. 12   RMSEave for a training 
and b testing datasets in differ-
ent hybrid PSO-based ANN and 
BP-ANN models

Table 4   Geotechnical properties and tunneling characteristics at the 
measurement points

Variables Point 1 Point 2

Chainage (km) 2 + 085 11 + 841
Tunnel depth (m) 13.2 20.2
SPT N-value 44 64
Cohesion (kPa) 29 0.06
Frictional angle (°) 32.4 32.1
Unit weight (kN/m3) 18.8 21.2
Poisson’s ratio 0.31 0.30
Elasticity modulus (MPa) 52.6 140
Advancement rate (m/day) 0.89 0.58
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in Fig. 13b. From these figures, it can be concluded that 
the predicted settlement trough is in good concordance 
with the actual trough. Conversely, some differences exist 
between the actual and the predicted longitudinal troughs. 
The beginning and end parts of the settlement troughs are 
in close agreement, however. Finally, three-dimensional 
settlement troughs were plotted with the predicted trans-
verse and longitudinal troughs, as in Fig. 14.

The transverse and longitudinal settlement troughs for 
Point 2 (chainage 11 + 841 km) obtained by the proposed 
model are shown in Fig. 15. According to this figure, the 
percentage error of the predicted maximum surface set-
tlement is less than 5%. Furthermore, the transverse and 
longitudinal troughs are fairly close to the actual troughs. 
The three-dimensional settlement trough obtained by the 
proposed model at Point 2 is shown in Fig. 16.

6 � Conclusion

This paper presents a new hybrid PSO-ANN model for 
predicting three-dimensional ground movements induced 
by tunneling. Comprehensive information including 
geological and geotechnical conditions, instrumentation 
readings from surface settlement markers, and tunneling 
operations were collected from line No. 2 of the KUR 
Project in Iran. To perform the modeling, a MATLAB 
code was prepared and input and output parameters were 
subsequently determined. Input parameters were com-
posed of the geometrical and operational parameters of 
the tunnel and geotechnical properties, whereas the out-
put data consisted of the maximum surface settlement and 
inflection points of the settlement troughs in transverse 

Fig. 13   a Transverse and b 
longitudinal settlement trough 
obtained by proposed hybrid 
model at Point 1
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Fig. 14   Three-dimensional settlement trough at Point 1

Fig. 15   a Transverse and b 
longitudinal settlement troughs 
obtained by proposed hybrid 
model at Point 2
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and longitudinal directions. A series of sensitivity anal-
yses was conducted to find the optimum parameters of 
PSO algorithm and the optimum network architecture 
by means of the trial-and-error method. Fivefold cross-
validation was employed to evaluate the performance of 
models and finally an optimized hybrid PSO-ANN model 
consisting of eight inputs, one hidden layer with 12 nodes 
and three outputs was selected as the optimized network 
for ground movement prediction in transverse and lon-
gitudinal directions. A comprehensive comparison was 
conducted between the obtained results by pre-developed 
BP-ANN and proposed hybrid PSO-ANN models using the 
performance of trained and tested models. The results indi-
cated that the hybrid models produce far more consistent 
results than the ordinary ANN models. Numerical simula-
tions from two cases of the KUR line indicated that the 
proposed PSO-ANN model is capable of predicting very 
accurately three-dimensional ground movements induced 
by tunneling.
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