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Abstract
The efficiency and robustness are two key performance indexes for first-order reliability method (FORM). In this study, two 
different algorithms, including the adaptive stability transformation method (ASTM) and enhanced adaptive stability trans-
formation method (EASTM), are proposed to improve the efficiency and robustness of FORM. In both ASTM and EASTM, 
the computation of most probable failure point (MPFP) is converted to find a series of most probable target points (MPTPs), 
in which the chaos control factor is properly selected by proposing two different algorithms. Four benchmark examples 
with normal and non-normal random variables and one practical engineering application example are tested to verify the 
effectiveness of the proposed algorithms. The results illustrate that the proposed algorithms not only are more efficient than 
other advanced FORM algorithms, but also are very robust.

Keywords  First-order reliability method · Stability transformation method · Most probable failure point · Most probable 
target point

1  Introduction

Uncertainty propagation extensively exists in structural and 
mechanical engineering system, which should be addressed 
to guarantee the structural safety with uncertainty factors 
[1–3]. To satisfy the reliability requirement at the product 
design phase, its reliability should be computed to handle 
these uncertainties by formulating the performance func-
tion with random variables [4, 5]. There are many existing 
methods to evaluate the structure reliability, in which the 
most probable failure point (MPFP) based methods are one 
popular type [6]. This type of method evaluates the failure 
of probability at MPFP by solving the formulation of first-
order reliability method (FORM). Actually, FORM is one of 
the most commonly utilized method in the domains of reli-
ability assessment and reliability-based design optimization 
(RBDO) because of the high performance of the applicabil-
ity, efficiency and robustness [7–10]. Besides, performance 
measure approach (PMA) is also extensively used in RBDO 

by computing the most probable target point (MPTP) due to 
its efficiency and robustness [11, 12].

Until now, a series of MPFP algorithms have been put 
forward to search MPFP. Hasofer and Lind [13] and Rack-
witz and Fiessler [14] introduced the HL–RF algorithm 
to compute the MPFP. However, it often meets the non-
convergence problem and shows the bifurcation, periodic 
oscillation and chaotic phenomena for nonlinear problem. 
To address the issue, a series of improved algorithms were 
developed consecutively, such as iHL–RF, nHL–RF, full 
characterization method. [15–17]. Among them, iHL–RF 
and nHL–RF are the two robust methods by given a proper 
iterative step, but they are inefficient for solving nonlin-
ear problems [15, 18]. Yang et al. [19] indicated that the 
non-convergence problem of HL–RF algorithm not only is 
impacted by the curvature value and nonlinearity of limit 
state function, but also is related to the system property. 
Then, the stability transformation method (STM) based on 
chaos theory is used to search the MPFP stably. However, it 
also shows low convergence rate.

More recently, Meng et al. [20] found that the iteration 
point of HL–RF algorithm has the directional property, 
and then the efficiency of STM is improved significantly 
by proposing directional stability transformation method 
(DSTM). Moreover, other advanced iterative algorithms, 
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such as conjugate finite-step length method [21], chaotic 
conjugate stability transformation method [22] and lim-
ited Fletcher–Reeves (LFR) method [23], are developed to 
improve the robustness of MPFP search. All these improved 
algorithms calculate the MPFP directly by solving a complex 
nonlinear constraint [24]. On the other hand, it is commonly 
acknowledged that PMA is more efficient and robust than 
MPFP search method by solving a simple constraint [11, 
12]. Thus, if the concept of PMA can be applied to com-
pute the MPFP, the performance of these algorithms can 
be enhanced.

This paper is dedicated to improve the efficiency and 
robustness of MPFP search algorithm through proposing 
two novel algorithms: adaptive stability transformation 
method (ASTM) and enhanced adaptive stability transfor-
mation method (EASTM). The basic idea of the proposed 
algorithms is that the MPFP search model is converted into 
MPTP search model. Based on the DSTM, the reliability 
analysis model is further simplified to the unconstraint opti-
mization model, and then the MPFP is searched efficiently 
and robustly. Furthermore, EASTM is developed by esti-
mating the approximate MPTP, so the efficiency is further 
improved without sacrificing its robustness.

2 � The concept of FORM

FORM evaluates the probability of failure by solving an 
optimization model [18] that is formulated as 

 where U ∈ Rn is the vector of random variables in standard 
normal space (U-space). The optimum U∗ is named as most 
probable failure point (MPFP) that is the closest point from 
origin to the limit state surface, as shown in Fig. 1a. Then, 
the reliability is measured by the distance between design 

(1)
min
U

‖U‖
s.t. G(U)=0,

point and origin. The probability of failure can be calculated 
by the formulation: Pf = Φ(−�) = Φ

(
−‖‖U∗‖‖

)
.

Tu and Choi [25] introduced the PMA of FORM to solve 
RBDO problem, the formulation is as follows: 

 where � t is the target reliability index. The optimum in 
Eq. (2) is called as the most probable target point (MPTP). 
It represents the minimum value of performance function 
at the target reliability surface, as shown in Fig. 1b. It has 
been proved that the calculation of PMA is more efficient 
and robust than that of reliability index approach [11, 12]. 
Therefore, we attempt to enhance the efficiency and robust-
ness of MPFP search algorithm by transforming it to finding 
MPTP. This is introduced in Sect. 5.

3 � The iterative algorithms of FORM

3.1 � HL–RF algorithm

The MPFP search methods solve the FORM problem, and 
then the structural probability of failure is obtained. The 
reliability of FORM is evaluated by the reliability index β, 
and MPFP is the closest point from origin to the limit state 
surface [1]. The probability of failure can be evaluated by 
reliability index as follows: 

 where Ф is the cumulative distribution function in standard 
normal space (U-space). Assume the performance function 
is 

The HL–RF algorithm of FORM is expressed as follows: 

(2)
min
U

G(U)

s.t. ‖U‖= � t,

(3)Pf = Φ(−�) = Φ
(
−‖‖U∗‖‖

)
,

(4)Z = g(X) = g
(
X1,X2,… ,Xn

)
.

Fig. 1   a MPFP search process. 
b MPTP search process
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 where U ∈ Rn is the vector of random variables in U-space. 
The mean and standard deviation are μ and σ, respectively. 
If the random variable vector X follows the normal distri-
bution, then it can be calculated by X = μ + σU. Otherwise, 
when random variable vector follows the non-normal dis-
tribution, the random variables should be transformed to 
standard normal variables. As shown in Fig. 2a, if HL–RF 
is used for solving nonlinear problems, the iterative point 
appears oscillation or non-convergence phenomenon. Thus, 
other improved algorithms, including iHL–RF and CC meth-
ods, are developed to overcome this problem.

3.2 � iHL–RF iterative algorithm

iHL–RF iterative algorithm is widely used for evaluating the 
reliability due to its efficiency and stability [6]. The iterative 
formulation is constructed based on the merit function. 

 where dk is the search direction and is computed by 

The iterative step length is decided by solving the following 
merit function: 

 where c is the constant. Here, c is selected as 
c =

‖U‖
‖∇G(U)‖ + 10, according to the reference [6].

(5)Uk+1 =

(
∇g

(
Uk

))T
Uk

− g
(
Uk

)
(
∇g

(
Uk

))T
∇g

(
Uk

) ∇g
(
Uk

)
,

(6)Uk+1
= Uk

+ �dk,

(7)dk =

(
∇g

(
Uk

))T
Uk

− g
(
Uk

)
(
∇g

(
Uk

))T
∇g

(
Uk

) ∇g
(
Uk

)
− Uk.

(8)

⎧⎪⎨⎪⎩

m(U) =
1

2
‖U‖ + c�G(U)�

c >
‖U‖

‖∇G(U)‖
,

4 � Iterative algorithms based on the chaos 
control theory

4.1 � Stability transformation method

Chaos control theory has been adopted successfully to elimi-
nate the unstable phenomena of iterative algorithms [26, 27]. 
Yang [24] introduced the stability transformation method 
(STM), which stabilizes the unstable fixed points of dynami-
cal system by modifying the eigenvalues of Jacobian matrix 
[28]. The formulation is described as 

 where f is the vector of iterative function. Uk is the 
m-dimensional random variables at the kth iterative step. 
C is the m × m-dimensional involutory matrix, and the ele-
ments in each row and each column have only one element 
with value of 1 or − 1 and the other elements are 0. So the 
total number of involutory matrix is 2mm!. The control fac-
tor λk is the range [0, 1] and is determined by the spectral 
radius of the original system’s Jacobian matrix. The larger 
the spectral radius of Jacobian matrix is, the smaller the con-
trol factor λ should be selected to achieve stability. Specially, 
when C = I, Eq. (9) becomes 

A two-dimensional example is shown in Fig. 2b. It is 
found that STM achieves the stability by reducing the itera-
tive step size. Since every step size is controlled strictly, it 
is inefficient for MPFP search. To address this issue, the 
DSTM is developed by adopting the directional chaos con-
trol strategy, which will be introduced in the next section.

(9)Uk+1
= Uk

+ �k�
(
f
(
Uk

)
− Uk

)
,

(10)f (Uk) =

(
∇g

(
Uk

))T
Uk

− g
(
Uk

)
(
∇g

(
Uk

))T
∇g

(
Uk

) ∇g
(
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)
,

(11)Uk+1
= Uk

+ �k
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f (Uk

)
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− Uk

)
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Fig. 2   a HL–RF iterative process. b STM iterative process. c DSTM iterative process
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4.2 � Directional stability transformation method

Recently, Meng et al. [20] pointed out that the oscillation 
of iterative point has directional property, and then the 
DSTM is suggested to improve the efficiency. As shown 
in Fig. 2c, the oscillation is mainly incurred by circumfer-
ential direction n⊥

(
Uk

)
 other than radial direction ñ

(
Uk

)
 . 

The formulation of DSTM is depicted as 

 where ñ(Uk
) is the vector of radial direction. �k is the reli-

ability index at the kth iterative step. Since all parameters of 
DSTM can be obtained by original STM, it is very conveni-
ent for engineering application. However, a proper control 
factor λk should be provided to guarantee the robustness and 
efficiency of DSTM. If the control factor is too large, the 
results of DSTM may lead to non-convergence. Otherwise, 
if the control factor is too small, it requires too much compu-
tational cost. Therefore, the improved MPFP search methods 
should be suggested, which is introduced in Sect. 5.

5 � Adaptive stability transformation method

Although DSTM improves the efficiency of STM signifi-
cantly, it must select a proper chaos control factor. If the 
chaos control factor is too large, the iterative point may 
lead to non-convergence. On the contrary, if the chaos con-
trol factor is too small, it needs to much computational 
cost. Therefore, how to select a proper chaos control factor 
is crucial.

Property 1  For DSTM, the iterative point at the k + 1th iter-
ative step is located at hyper-sphere with radius equal to �k.

Proof  From Eq. (12), it is found that 

(12)

Uk+1
=𝛽k

ñ(Uk+1)

‖‖‖ñ(U
k+1)

‖‖‖
𝛽k =

(
∇g

(
Uk

))T
Uk − g

(
Uk

)
(
∇g

(
Uk

))T
∇g

(
Uk

)

ñ
(
Uk

)
=Uk + 𝜆k�

(
f
(
Uk

)
− Uk

)
,

Uk+1
(
Uk+1

)T
=𝛽k

ñ(Uk+1)

‖‖‖ñ(U
k+1)

‖‖‖
𝛽k

ñ(Uk+1)
T

‖‖‖ñ(U
k+1)

‖‖‖
=𝛽k2

ñ(Uk+1
)ñ(Uk+1

)
T

‖‖‖ñ(U
k+1)

‖‖‖
2

=𝛽k2.

Then, the radius of hyper-sphere ‖‖‖U
k+1‖‖‖ = �k. Thus, 

Property 1 has been proved.
From the definition of reliability analysis model and 

PMA, it is observed that the direction U
MPFP

− Uk+1
MPTP

 rep-
resents the steepest descent direction at the hyper-sphere 
with radius ‖‖‖U

k+1
MPTP

‖‖‖ , as shown in Fig. 3. Especially, when � 

computed by Eq. (1) is equal to � t in Eq. (2), the MPFP and 
MPTP become the same point. Then, the reliability analysis 
model can be converted into the optimization model of 
PMA. From Property 1, the best chaos control factor at the 
kth iterative step that can be estimated by solving the follow-
ing optimization formulation:

  

 where �k is deemed as the design variable in Eq.  (13). 
According to property 1, the equality constraint ‖U‖=�k 
is satisfied naturally. Then we substitute the Eq. (12) into 
Eq. (13), the optimization model of Eq. (13) can be further 
simplified as an unconstraint optimization model with only 
one design variable �k,

Here the Eq. (14) can be solved by classical gradient algo-
rithm, such as sequential quadratic programming (SQP). To 
solve the optimization model conveniently, the sensitivity of 

(13)
min
�k

G
(
Uk+1

(
�k
))

s.t.
‖‖‖U

k+1‖‖‖= �k,

(14)min
�k

G

⎛⎜⎜⎝
�k

Uk + �k�(f (Uk) − Uk)

���U
k + �k�(f (Uk) − Uk)

���

⎞⎟⎟⎠
.
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Fig. 3   ASTM iterative process
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objective function should be offered. According to chain rule, 
the sensitivity is as follows: 

When involutory matrix C is set as the unit matrix I, the 
Eq. (15) becomes 

Since the vectors ñ
(
Uk+1

)
, f

(
Uk

)
 and Uk are already 

obtained from the previous iterative step, the sensitivity can 
be calculated simply without generating additional compu-
tational cost. Then, the SQP can be used to compute the 
chaos control factor, and the optimization model of Eq. (14) 
can be rewritten by Taylor expansion at the current chaos 
control factor �k,

 where dG
d�k

 is the first order derivative, d
2G̃

d𝜆k2
 is the approxi-

mate second order sensitivity that can be computed by sym-
metric rank-one update [5]. Based on Eq. (17), the chaos 
control factor can be solved easily. Although ASTM can 
solve the nonlinear problem, it may show inefficiency for 

(15)

dG

d�k
=�k

⎛
⎜⎜⎝

�k�(f (Uk) − Uk)

���U
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���
−

�
�
Uk

+ �k�
�
f (Uk
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�
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��
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Uk
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����
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dG
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ñ
�
Uk+1

�
���ñ
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(17)min
𝜆

G +
dG

d𝜆k

(
𝜆 − 𝜆k

)
+

d2G̃

d𝜆k
2

(
𝜆 − 𝜆k

)2
2

,

linear problems. Thus, the following update criterion is con-
structed to overcome this problem for ASTM: 

 where Uk represents the iterative random point of ASTM at 
the kth step. sgn(⋅) is the sign function. As shown in Fig. 4, if 
cos �k+1 is less than zero, it means that the vectors Uk+1

− Uk 
and Uk

− Uk−1 have the same descent direction and the itera-
tive point does not oscillate during the iterative process. If 
cos �k+1 is larger or equal to zero, the vectors Uk+1

− Uk and 
Uk

− Uk−1 are in the opposite descent direction and the itera-
tive point is oscillatory during the iterative process. The for-
mulations of Eqs. (12) and (13) are applied to search MPFP 
and a middle value 0.5 is selected as the initial value of 
chaos control factor to achieve a better efficiency. Otherwise, 
the HL–RF iterative algorithm is employed. In general, the 
flowchart of ASTM is shown in Fig. 5a and the procedures 
are as follows:

Step 1:	 Initialize the random variables X0.
Step 2:	 Transform the random variables Xk to standard nor-

mal variables Uk.

(18)
𝜍k+1 =

(
Uk+1 − Uk

)(
Uk − Uk−1

)T
sgn

(
𝜍k+1

)
> 0 ∶ Not oscillation
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Fig. 4   Oscillation-checking criterion. a Not oscillation. b Oscillation
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Step 3:	 Identify the oscillation of the random variables by 
Eq. (18).

Step 4:	 If the iterative point does not oscillate during the 
iterative process, the random variables are updated using 
HL–RF algorithm of Eq. (5). Once the iterative point 
oscillates in the iterative process, the chaos control fac-
tor is updated by Eqs. (14) and (17). The random vari-
ables are calculated by DSTM using Eq. (12).

Step 5:	 Transform the standard normal variables Uk to ran-
dom variables Xk.

Step 6:	 If convergent, stop; otherwise, go to step 2.

6 � Enhanced adaptive stability 
transformation method

Although ASTM determines the chaos control factor adap-
tively, it requires solving a complete optimization model 
to obtain the chaos control in each iterative step. Thus, 
the enhanced adaptive stability transformation method 
(EASTM) is further developed to avoid the optimization 
process. Here we use the angle ratio between the current and 
previous angles to update the chaos control factor. As shown 
in Fig. 4, when the angels between two consecutive itera-
tive points decrease gradually, i.e., �k+1 ⩽ �k, the iterative 
point converges to the optimum without oscillation. Thus, 

the chaos control factor does not required update. Otherwise, 
when the angel increases during the iterative process, i.e., 
𝜃k+1 > 𝜃k, the iterative process appears oscillation. Thus, the 
value of chaos control factor should be decreased to achieve 
stability. Then, the angle ratio �k

/
�k+1 is used to reduce 

the value of chaos control factor. To avoid the update of 
the chaos control too strictly, the minimum value of angle 
ratio �� = �k

/
�k+1 is set to be 0.4. Then, the formulation is 

described as follows: 

 where angel �k is evaluated by 

In EASTM, the approximate MPFP is computed to avoid 
solving the optimization formulation of Eq. (14). There-
fore, the computational cost of MPFP search can be fur-
ther reduced. Because the EASTM is only utilized when the 
iterative point is oscillatory, a middle value 0.5 is selected as 
initial value of chaos control factor. In general, both ASTM 

(19)𝜆=

{
max

[
𝜆𝜃k

/
𝜃k+1 𝜂𝜃𝜆

]
𝜃k+1 > 𝜃k

𝜆 𝜃k+1 ⩽ 𝜃k
,

(20)�k = arcos

⎛⎜⎜⎝
Uk
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Fig. 5   a Flowchart of ASTM. b Flowchart of EASTM
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and EASTM can compute the MPTP efficiently. The flow-
chart is shown in Fig. 5b. The procedures of EASTM are 
identical to ASTM except that the chaos control factor is 
computed by Eqs. (19) and (20).

7 � Illustrative examples

In this section, five examples with nonlinear perfor-
mance function are carried on by the proposed ASTM and 
EASTM and are compared by other five popular iterative 
algorithms, including HL–RF, iHL–RF, LFR, STM and 
DSTM algorithms. The chaos control factors of both STM 
and DSTM are set to be 0.05. The initial point is the mean 
of the random variables, and the stopping criterion is 10− 4 (‖‖�k − �k−1‖‖

/‖‖�k‖‖ ⩽ 10−4
)
 for all these algorithms.

Fig. 6   a Bifurcation plot of reliability index of Example 1 using the HL–RF algorithm. b Chaos control of the HL–RF algorithm of Example 1 
using STM and EASTM

Fig. 7   Two Lyapunov exponents of the HL–RF algorithm for Example 1

Table 1   The number of function evaluations of different algorithms 
for Example 1

Methods MPFP Iterations F evaluations β βMcs

HL–RF – – – – 2.5234
iHL–RF (1.6855, 

1.9679)
31 280 2.2983 2.5234

STM (1.6855, 
1.9679)

202 606 2.2983 2.5234

DSTM (1.6855, 
1.9679)

25 75 2.2983 2.5234

LFR (1.6855, 
1.9679)

20 60 2.2983 2.5234

ASTM (1.6855, 
1.9679)

8 38 2.2983 2.5234

EASTM (1.6855, 
1.9679)

9 27 2.2983 2.5234
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Example 1  g1 = X3
1
+ X2

1
X2 + X3

2
− 18, in which X1 and X2 

represent the random variables with normal distribution, 
μ1 = 10, μ2 = 9.9, σ1 = σ2 = 5 [24].

The standard deviation σ2 is deemed as the control 
parameter that is used to demonstrate the convergence of 
HL–RF algorithm. The bifurcation plot of reliability index 
of HL–RF algorithm and two Lyapunov exponents are given 
in Figs. 6 and 7, respectively, which are identical to reference 
[20]. If all Lyapunov exponents are less than 0, it means that 
the HL–RF algorithm has periodic or fixed solutions. Other-
wise, if the maximum Lyapunov exponent is less than 0, the 
solution is unstable and generates chaotic solutions. From 
Figs. 6 and 7, it is seen that the reliability index β shows the 
bifurcation, chaos and periodic oscillation phenomena as the 
change of parameter σ2, and the Lyapunov exponents reflect 
these phenomena strictly.

The results of all different algorithms are listed in 
Table 1, and the F evaluations denotes the number of func-
tion calls. In addition, Monte Carlo simulation (MSC) is 
used to verify outcomes of different methods with a 10-mil-
lion sample size. It is found that all these FORM methods 
have some errors for this highly nonlinear limit state func-
tion, and the second-order reliability method (SORM) can 
be further utilized to improve the accuracy. From Table 1, 

all these methods except HL–RF iterative algorithm con-
verge to the same optimum. iHL–RF and STM algorithms 
are robust but not efficient. The DSTM is more efficient than 
LFR, STM and iHL–RF using the directional chaos control 
strategy. Comparing with other algorithms, the efficiency 
of ASTM and EASTM is improved significantly by taking 
advantage of MPTP search. Although the number of itera-
tions of ASTM is less than that of EASTM, ASTM needs 
calling performance function 28 times to obtain the chaos 
control factor. So EASTM is the more efficient than ASTM 
because it avoids entire optimization model for determining 
chaos control factor. In addition, the impact of different min-
imum angle ratios ηθθ and initial chaos control factor λ0 for 
EASTM is investigated, and the results are listed in Table 2. 
When large values of ηθθ and λ0 are related, the EASTM 
meets the convergence problem. On the contrary, when the 
values of two parameters are too small, the EASTM is inef-
ficient. As evident from Table 2, the middle values λ0 = 0.5 
and �� = 0.4 are very promising for EASTM.

Example 2  g2 = e1+�X1−X2 + e5−5�X1−X2 − 1, in which α = 0.4, 
both X1 and X2 represent the random variables with normal 
distribution, μ1 = 0, μ2 = 0, σ1 = σ2 = 1 [6].

The standard deviation σ1 is deemed as the control 
parameter, which is used to demonstrate the convergence 

Table 2   The impact of different 
minimum angle ratios ηθ and 
initial chaos control factor λ0

λ0 �� = 0.1 �� = 0.2 �� = 0.4 �� = 0.5 �� = 0.6 �� = 0.8 �� = 0.9

0.1 2.2982 (186) 2.2983 (114) 2.2983 (69) 2.2983 (57) 2.2983 (51) 2.2983 (39) 2.2983 (36)
0.2 2.2983 (114) 2.2983 (69) 2.2983 (39) 2.2983 (33) 2.2983 (27) 2.2983 (27) 2.2983 (27)
0.5 2.2983 (57) 2.2983 (33) 2.2983 (27) 2.2983 (48) 2.2983 (144) 2.2983 (42) –
0.7 – 2.2983 (30) 2.2983 (81) – – – –
0.9 – 2.2983 (27) – – – – –

Fig. 8   a Bifurcation plot of reliability index of Example 2 using the HL–RF algorithm. b Chaos control of the HL–RF algorithm of Example 2 
using STM and EASTM
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of HL–RF algorithm. The bifurcation plot of reliability 
index of HL–RF algorithm and two Lyapunov exponents 
is, respectively, given in Figs. 8 and 9, which is identi-
cal to reference [20]. It is seen that the reliability index 
β shows the bifurcation, chaos and periodic oscillation 
phenomena as the change of standard deviation σ1, and 
the Lyapunov exponents reflect these phenomena strictly. 
In addition, MCS is used to verify outcomes of different 
methods with a ten-million sample size, and the results 
are listed in Table 3, and the reliability index is 3.0707.

The results of different algorithms are listed in Table 3. 
It is shown that FORM method has some errors for highly 
nonlinear limit state function. All methods except HL–RF 
iterative algorithm converge to the same optimum. iHL–RF 
and STM are robust but inefficient. DSTM is more efficient 
than iHL–RF, STM and LFR using the directional chaos 

Fig. 9   Two Lyapunov exponents of the HL–RF algorithm for Example 2

Table 3   The number of function evaluations of different algorithms 
for Example 2

Methods MPFP Iterations F evaluations β βMCS

HL–RF – – – – 3.0707
iHL–RF (1.7113, 

2.3256)
21 247 2.8873 3.0707

STM (1.7113, 
2.3256)

202 606 2.8873 3.0707

DSTM (1.7113, 
2.3256)

50 150 2.8873 3.0707

LFR (2.5518, 
2.1336)

31 93 3.3262 3.0707

ASTM (1.7113, 
2.3256)

13 47 2.8873 3.0707

EASTM (1.7113, 
2.3256)

13 39 2.8873 3.0707

Fig. 10   a Bifurcation plot of reliability index of Example 3 using the HL–RF algorithm. b Chaos control of the HL–RF algorithm of Example 3 
using STM and EASTM
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control strategy. Comparing with STM and DSTM, the 
efficiency of ASTM is improved significantly by finding a 
suitable chaos control factor, and the number of function 
calls for calculating chaos control factor is eight times. 
EASTM is the most efficient method by updating the chaos 
control factor adaptively.

Example 3  g3 = X4
1
+ X4

2
+ X4

2
− 20, in which X1 and X2 

represent the random variables with normal distribution, 
μ1 = 10, μ2 = 10, σ1 = σ2 = 5 [20].

The mean μ2 is deemed as the control parameter, which is 
used to demonstrate the convergence of HL–RF algorithm. 
The bifurcation plot of reliability index of HL–RF algo-
rithm and two Lyapunov exponents is given in Figs. 10 and 
11, respectively, which is identical to reference [20]. It is 
seen that the reliability index β shows the bifurcation, chaos 
and periodic oscillation phenomena as the change of mean 
μ2, and the Lyapunov exponents reflect these phenomena 
strictly. In addition, MCS is used to verify outcomes of dif-
ferent methods with a 10-million sample size, and the results 
are listed in Table 4. It is shown that FORM method has 
some errors for highly nonlinear limit state function.

The results of different algorithms are listed in Table 4. 
It is shown that FORM method has some errors for 
highly nonlinear limit state function. All methods except 
HL–RF iterative algorithm converge to the same optimum. 
iHL–RF and STM are robust but inefficient. LFR is more 
efficient than iHL–RF and STM. DSTM shows the high 
efficiency, but how to find a proper chaos control factor is 
questionable. Both ASTM and EASTM are very efficient. 
Since EASTM only obtains the approximate MPTP during 
each iterative step, it is more efficient than ASTM.

Fig. 11   Two Lyapunov exponents of the HL–RF algorithm for Example 3

Table 4   The number of function evaluations of different algorithms 
for Example 3

Methods MPFP Iterations F evaluations β βMCS

HL–RF – – – – 2.9038
iHL–RF (1.8158, 

1.4617)
53 745 2.3654 2.9038

STM (1.8158, 
1.4617)

241 723 2.3655 2.9038

DSTM (1.8158, 
1.4617)

21 63 2.3655 2.9038

LFR (1.8158, 
1.4617)

35 105 2.3655 2.9038

ASTM (1.8158, 
1.4617)

12 92 2.3655 2.9038

EASTM (1.8158, 
1.4617)

12 36 2.3655 2.9038

Table 5   The number of function 
evaluations for Example 4

Methods MPFP Iterations F evaluations β βMCS

HL–RF – – – – 1.3810
iHL–RF (14.8387, 25.0441, 0.8667, 0.0466) 17 314 1.0256 1.3810
STM (14.7909, 25.0440, 0.8622, 0.0468) 89 445 1.0256 1.3810
DSTM (14.8622, 25.0925, 0.8620, 0.0479) 36 180 1.0255 1.3810
LFR (14.8349, 25.0452, 0.8669, 0.0468) 9 45 1.0256 1.3810
ASTM (14.8389, 25.0419, 0.8666, 0.0466) 7 51 1.0256 1.3810
EASTM (14.8389, 25.0436, 0.8666, 0.0467) 9 45 1.0256 1.3810
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Example 4  This reliability analysis example was studied by 
many researchers (Liu and Der Kiureghian [29]; Yang et al. 
[19]; Yang [24]). The performance function is obtained by 
response surface method. 

 where random variables X1, X2 and X3 follow normal dis-
tribution (μ1 = 10, σ1 = 5, μ2 = 25, σ2 = 5, μ3 = 0.8, σ3 = 0.2). 
Random variable X4 follows lognormal distribution 
(μ4 = 0.0625, σ4 = 0.0625).

HL–RF algorithm obtains periodic solutions, and the 
Lyapunov exponents are (–0.1266, − 1.2681, − 1.7133, 
− 3.5744). So it reflects the chaotic phenomenon of HL–RF 
algorithm clearly. To address this issue, advanced algo-
rithms (iHL–RF, STM, DSTM, LFR, ASTM and EASTM) 
are employed, and the results of all these algorithms are 
listed in Table 5. The MCS is used to validate the accuracy 
of different algorithms with a 10-million sample size. It is 
seen that all these algorithms except HL–RF can satisfy 

g
4
= 1.1 − 0.00115X

1
X
2
+ 0.00157X2

2
+ 0.00117X2

1

+ 0.0135X
2
X
3
− 0.0705X

2
− 0.00534X

1

− 0.0149X
2
X
3
− 0.0611X

2
X
4
+ 0.0717X

1
X
4

− 0.226X
3
+ 0.0333X2

3
− 0.558X

3
X
4

+ 0.998X
4
− 1.339X2

4
,

the accuracy requirement. iHL–RF and STM are robust 
but inefficient, in which iHL–RF algorithm requires many 
computational cost to find MPFP. DSTM is more efficient 

Fig. 12   A tower crane

Table 6   The number of function 
evaluations for tower crane

Methods MPFP Iterations F evaluations β βMCS

HL–RF (1.9758 × 105, 2.8002, 188.32, 109.16) 16 80 2.2462 2.2464
iHL–RF (1.9761 × 105, 2.8001, 195.42, 109.16) 3 22 1.9377 2.2464
STM (1.9803 × 105, 2.8002, 187.66, 109.11) 78 312 2.2436 2.2464
DSTM (1.9766 × 105, 2.8001, 188.94, 109.16) 4 20 2.2421 2.2464
LFR (1.9765 × 105, 2.8002, 188.96, 109.73) 41 205 2.2572 2.2464
ASTM (1.9766 × 105, 2.8002, 189.09, 109.16) 6 71 2.2462 2.2464
EASTM (1.9765 × 105, 2.7991, 187.75, 109.16) 10 50 2.2462 2.2464

Table 7   Different stopping criteria for all examples

Methods Example 1 Example 2 Example 3 Example 4

ε = 10− 3

 HL–RF – – – –
 iHL–RF 2.2982 (203) 2.8873 (226) 2.3610 (539) 1.0256 (237)
 STM 2.2980 (468) 2.8860 (468) 2.3652 (582) 1.0227 (240)
 DSTM 2.2982 (57) 2.8871 (111) 2.3654 (57) 1.0167 (70)
 LFR 2.2983 (48) 3.3283 (36) 2.3655 (93) 1.0256 (35)
 ASTM 2.2982(38) 2.8873 (37) 2.3655 (92) 1.0256 (44)
 EASTM 2.2983 (24) 2.8873 (33) 2.3655 (33) 1.0256 (35)

ε = 10− 5

 HL–RF – – – –
i HL–RF 2.2983 (301) 2.8873 (324) 2.3655 (850) 1.0256 (314)
 STM 2.2982 (741) 2.8873 (741) 2.3655 (858) 1.0256 (650)
 DSTM 2.2983 (93) 2.8873 (189) 2.3655 (66) 1.0256 (400)
 LFR 2.2983 (66) 3.3262 (54) 2.3655 (105) 1.0256 (70)
 ASTM 2.2983 (43) 2.8873 (57) 2.3655 (97) 1.0256 (65)
 EASTM 2.2983 (30) 2.8873 (45) 2.3655 (42) 1.0256 (55)

ε = 10− 7

 HL–RF – – – –
 iHL–RF 2.2983 (441) 2.8873 (349) 2.3655 (997) 1.0256 (1092)
 STM 2.2983 

(1011)
2.8873 

(1011)
2.3655 

(1123)
1.0256 (1105)

 DSTM 2.2983 (132) 2.8873 (270) 2.3655 (75) 1.0256 (885)
 LFR – – – 1.0256 (125)
 ASTM 2.2983 (43) 2.8873 (77) 2.3655 (102) 1.0256 (93)
 EASTM 2.2983 (51) 2.8873 (60) 2.3655 (48) 1.0256 (100)

ε = 10− 9

 HL–RF – – – –
i HL–RF 2.2983 (652) 2.8873 (374) 2.3655 

(1317)
1.0256 (2113)

 STM 2.2983 
(1281)

2.8873 
(1281)

2.3655 
(1395)

1.0256 (1585)

 DSTM 2.2983 (168) 2.8873 (351) 2.3655 (81) 1.0256 (1460)
 LFR – – – 1.0256 (185)
 ASTM 2.2983 (48) 2.8873 (102) 2.3655 (102) 1.0256 (135)
 EASTM 2.2983 (66) 2.8873 (75) 2.3655 (57) 1.0256 (150)
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than iHL–RF and STM using the directional chaos control 
strategy. EASTM and LFR are efficient than other advanced 
algorithms. Although the number of iterations of ASTM is 
less than that of EASTM, it needs to call the performance 
function 16 times to determine the chaos control factor, and 
thus the computational cost of EASTM is more than that of 
EASM.

Example 5  A tower crane.

A tower crane with 87 m × 1.52 m × 1.52 m is shown in 
Fig. 12, which is extensively used for lifting materials in 
construction sites. The entire tower cranes are composed 
by 29 standard components, and each component is com-
posed by 32 bars. The sectional dimension of vertical bar 
is 120 × 10 mm, while the sectional dimension of cross bar 
is 70 × 5 mm. Four random variables, including Young’s 
modulus, Poisson’s ratio, windward wind load and transverse 
wind load are considered. The means and coefficient of vari-
ations for these four random parameters are [206 Gpa, 2.8, 
172.29 kN, 109.16 kN] and [0.02, 0.02, 0.1, 0.1], respec-
tively. The maximum lifting weight is 7.6 t, and the perfor-
mance function is defined as follows:

  

 where Δ denotes the maximum displacement, which should 
be less than 0.75 m.

The results of different algorithms, including the values of 
MPFP, iterative numbers and the number of function calls, 
are given in Table 6. The MCS is performed with 1.5 × 104 
samples, and the reliability index is 2.2464. According to 
the results shown in Table 6, iHL–RF, STM, DSTM and 
LFR show inaccuracy, while other methods are converged 
accurately with reliability index 2.2462. ASTM is more 

g5 = 0.75 − Δ,

efficient than HL–RF and is more accurate than iHL–RF, 
STM, DSTM and LFR, and it calls the performance func-
tion 41 times to search the chaos control factor. Comparing 
with ASTM, the efficiency of EASTM is further enhanced 
in this example.

Since the convergence is also impacted by stopping cri-
terion, four different stopping criterion values, i.e., 10− 3, 
10− 5, 10− 7 and 10− 9, are used for all benchmark examples, 
and the computational results are listed in Table 7. HL–RF 
algorithm cannot find the correct reliability index. STM is 
very robust but inefficient. DSTM and LFR are very effi-
cient; however, LFR appears oscillatory and cannot converge 
when the stopping criterion is too small. ASTM and EASTM 
are more efficient and robust than other existing methods. 
To show this, the iterative histories of Examples 3 and 4 
with stopping criterion ε = 10− 7 are given in Fig. 13 as a 
representative. It is observed that HL–RF method generates 
periodic-2 solutions. For Example 3, the iterative points of 
LFR meet the convergence problem and oscillate slightly 
around the MPFP. ASTM and EASTM are more efficient 
than other methods. Since ASTM needs solving the opti-
mization model to determine the chaos control factor, the 
number of iterations of ASTM is less than that of EASTM.

8 � Conclusions

In this study, two effective iterative algorithms are devel-
oped to enhance the efficiency and robustness of most 
probable failure point (MPFP) search algorithm via trans-
forming it to solving a series of MPTPs. Adaptive stability 
transformation method (ASTM) is proposed to improve 
the performance of HL–RF algorithm. Then, the proposed 
method is enhanced using the most probable target point 
(MPTP) approximation, which is named as enhanced 

Fig. 13   Iterative history with stopping criterion ε = 10− 7. a Example 3, b Example 4
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adaptive stability transformation method (EASTM). The 
proposed ASTM and EASTM show high performance in 
terms of efficiency and robustness.

Moreover, the performances of two proposed algorithms 
are tested by five benchmark examples. The results of ASTM 
and EASTM are compared to five popular reliability algo-
rithms, including HL–RF iterative algorithm, iHL–RF itera-
tive algorithm, stability transformation algorithm (STM) and 
directional stability transformation algorithm (DSTM) and 
limited Fletcher–Reeves (LFR) algorithm. Results reveal 
that ASTM and EASTM can find the accurate MPFP with 
less computational cost. The application of ASTM and 
EASTM for other nonlinear engineering problems will be 
promising in future.
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