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Abstract
In the civil and mining projects, blasting operation is important from technical and economical point of view. There are 
several parameters which affect the result of operation such as desired fragmentation and undesired phenomena, e.g., ground 
vibration, fly rock, etc. From these parameters, rock mass characterizations can be considered as more influential as compared 
to the blasting pattern. In other words, it can be said that pattern specifications should primarily be designed according to the 
rock mass properties to reach the main objective of the operation, i.e., rock fragmentation. Complex nature of the problem 
needs to implement robust approaches such as artificial intelligence-based techniques. In this paper, an attempt has been made 
to develop some models by which the impact of each and every parameter influencing the result of blasting operation can be 
evaluated. For this research work, 432 datasets from 14 mines situated in the different parts of the world has been collected. 
In developing of the models, 19 parameters such as uniaxial compressive strength, tensile strength, brittleness, Point Load 
Index, Young’s modulus, Poisson’s ratio, rock quality designation, cohesion, friction angle, burden, spacing and stemming 
were incorporated. Regression analysis, decision tree and artificial neural network methods were employed for developing 
the models for predicting fragmentation. Determination coefficient  (R2) for artificial neural network modeling, multivariate 
linear regression and decision tree was computed 0.98, 0.83 and 0.45, respectively, showing accuracy of network modeling 
over the other applied methods. In addition, it was revealed that the most influential parameters on fragmentation are Point 
Load Index, uniaxial compressive strength, Poisson’s ratio, cohesion and rock quality designation, respectively, and the least 
effective ones are stemming, spacing and hole diameter, respectively.
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1 Introduction

Blasting is a dominant practice for fragmenting rocks in min-
ing and civil projects. In this operation, only a small portion 
of the explosives’ energy is really consumed in the process 
of rock fragmentation [1, 2] and the rest of it is exhausted 
in the form of unwanted events such as ground vibration, 
air overpressure, fly rock and back break [3–6]. Since, in 
the open pit mines, destination of the blasted rock is the 
primary crusher for which size distribution of the feed is 
very important, therefore, blast design should be managed in 
such a way that crusher performance be reasonable to main-
tain the whole process economical from mine to mill [7, 8]. 

However, it should be mentioned that getting a specific size 
distribution normally is not an easy task because there are 
some effective factors that not in the hand of blast engineer. 
Broadly, the most relevant factors affecting the result of a 
blast can be divided in two categories: uncontrollable (rock 
mass properties) and controllable (blast geometry and explo-
sive specifications) [9, 10]. Nowadays, Artificial Intelligence 
(AI) such as artificial neural network (ANN) is utilized for 
solving complicated problems in various fields of science 
and engineering [11–14]. Specifically, many research works 
are available regarding implementation of AI in prediction of 
rock fragmentation [15]. In this paper, it was tried to recog-
nize the most effective parameters on rock fragmentation by 
using various approaches of conventional (regression analy-
sis) and machine learning (ANN and decision tree) methods. * Masoud Monjezi 
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2  Artificial neural network

Artificial neural network is actually an imitation of the 
human brain [16]. It contains several interconnected lay-
ers. In each layer there exist computational components 
known as neurons. ANN can be applied for solving prob-
lems with high non-linearity. Robustness of the ANN can be 
highlighted in its capability of function approximation and 
feature selection [17–22]. The first step in applying ANN is 
training which require datasets including inputs and outputs. 
There are several tactics that can be considered in the train-
ing process of the multi-layer perception (MLP), however, 
back propagation algorithm has more benefits comparing 
to the other available approaches. MLP network contains at 
least three main parts known as input, transitional and output 
layers. Number of the neurons in the transitional layer is 
determined according to the nature of the problem in hand. 
In the training, a weight is primarily given to each of the 
connections between the existing nodes in each of the lay-
ers. This initial weight should be modified to examine the 
efficiency of the network [23–25].

The model accuracy is studied by considering the model 
outputs and the actual measured outputs. Coefficient of 
determination (R2), root-mean-square error (RMSE), mean 
absolute error (MAE) and variance account for (VAF) 
(Eqs. 1–4), are normally used to observe the model perfor-
mance [26]: 

where y, y′and yare the measured, predicted and mean of 
the y values, respectively, and N is the total number of data.

3  Case studies

In this research, the blast database is taken from previous 
study results collected in various mines and rock formation 
in the world [27–38] that were combined with blast data 

collected from the open pit mines of Iran to create the blast 
database as given in Table 1.

4  Collection of datasets

Descriptive statistics of the input and output variables are 
given in Table 2. Parameters such as burden, spacing, stem-
ming, height of bench, hole diameter, powder factor, UCS, 
UTS, brittleness,  Is50, Density, Young’s Modulus, P-wave 
velocity, Schmidt hardness value, Poisson’s ratio, RQD, 
Cohesion and friction angles were used as inputs and  X50 
was selected as output.

5  ANN architecture

In this study, a total of 432 datasets were randomly split 
into training and testing groups. Training of the model 
was accomplished by back propagation procedure using 
342 datasets. The entire datasets were normalized to val-
ues between −  1 and 1 to improve the efficiency of the 
training process. Afterwards, several models with dif-
ferent network elements (number of neurons in hidden 
layer, transfer function, etc.) were constructed to find 
out the most appropriate configuration with lowest error. 
MAE, RMSE, VAF and  R2 were determined for the vari-
ous network structures (Table 3). From this table, it is 
seen that the best case is a back propagation network with 
an architecture 19-28-1 having the hyperbolic-tangent 
transfer function in hidden layer and exponential transfer 
function in output layer (No.12). Figure 1 shows the opti-
mum architecture of ANN model. An illustrative plot of 
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,

(2)VAF =

[

1 −
VAR

(
y − y�

)

VAR(y)

]

× 100,

(3)RMSE =

√√√
√ 1

N

N∑

i=1

(y − y�)2,

(4)MAE =
1

N

N∑

i=1

(
y − y�

)
,

Table 1  Various mines and rock formation of case studies

Row Case study Rock type Location

1 Akdaglar Blocky sandstone Turkey-Istanbul
2 Bealton Diabase USA-Virginia
3 Chadormaloo Magnetite, hematite, 

rhyolite
Iran-Yazd

4 Dongri-Buzurg Quartzite muscovite gneiss India-Nagpur
5 Golegohar Magnetite Iran-Sirjan
6 Mrica Andesite Indonesia
7 Murgul Dacite Turkey-Istanbul
8 Ozmert Blocky sandstone Turkey-Istanbul
9 Pittsboro Basalt USA-Virginia
10 Reocin Massive dolomite Spain-Cantabria
11 Sarcheshme Porphyry Sarcheshmeh, 

andesite
Iran-Kerman

12 Soma Lignite with calcite-filled 
joints

Turkey-Istanbul

13 Songun Monzonite Iran-Tabriz
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measured versus predicted fragmentation using the ANN 
model is reported in Fig. 2. The result showed that the 
training  R2 was 0.99, which indicates that the designed 
ANN was capable to predict the fragmentation with the 
least error.

6  Multivariate linear regression (MLR)

Multivariate linear regression analysis was used to assess 
the mapping between the input and output parameters. 

Table 2  Variables used for developing models

Parameter Controllability Symbol Mean Min Max Std. Dev

Inputs Burden (m) Controllable B 4.69 1.90 7.50 1.45
Spacing (m) S 5.65 2.20 10.00 1.84
Height of bench (m) H 12.81 5.00 21.00 2.88
Hole diameter (mm) D 171.11 76.00 250.80 63.43
Stemming (m) T 4.77 1.50 8.00 1.66
Powder factor (Kg/m3) PF 0.58 0.20 1.48 0.28
Point load strength Uncontrollable Is50 4.88 1.00 8.00 2.14
Uniaxial compressive strength (MPa) UCS 106.97 30.00 200.00 50.19
Uniaxial tensile strength (MPa) UTS 10.30 1.50 23.00 6.44
Brittleness BT 11.90 8.18 20.00 2.94
Density (t/m3) ρ 3.28 1.90 4.80 0.81
Young’s modulus (GPa) E 43.12 13.30 70.00 17.51
P-Wave velocity (Km/s) Vp 3.81 2.20 4.80 0.66
Schmidt hardness value SHV 39.32 10.00 57.00 13.21
Poisson’s ratio υ 0.23 0.20 0.31 0.03
Rock quality designation RQD 71.91 35.00 95.00 17.86
Cohesion (MPa) C 0.27 0.05 0.40 0.09
Friction angle φ 34.46 22.00 46.00 6.88
Mean in-situ block size (m) XB 0.69 0.36 1.90 0.32

Output Mean-blasted particle size (m) X50 0.27 0.04 0.51 0.11

Table 3  MAE, RMSE, VAF and 
R2 for some of the models

No Architecture Hidden activation Output activation MAE RMSE VAF R2

1 19-27-1 Exponential Sine 0.001 0.034 81.138 0.818
2 19-2-1 Sine Sine 0.055 0.090 18.532 0.259
3 19-6-1 Exponential Tanh 0.001 0.017 95.296 0.953
4 19-22-1 Logistic Tanh 0.000 0.018 94.849 0.949
5 19-13-1 Sine Sine 0.014 0.077 6.345 0.128
6 19-11-1 Sine Logistic 0.029 0.096 37.352 0.247
7 19-3-1 Tanh Sine 0.002 0.025 89.501 0.899
8 19-30-1 Sine Exponential 0.023 0.057 55.605 0.559
9 19-2-1 Logistic Exponential 0.002 0.023 91.721 0.922
10 19-30-1 Tanh Sine 0.002 0.034 81.273 0.823
11 19-22-1 Tanh Sine 0.001 0.037 78.211 0.790
12 19-28-1 Tanh Exponential 0.0003 0.010 98.516 0.986
13 19-5-1 Tanh Tanh 0.002 0.020 93.344 0.934
14 19-3-1 Tanh Tanh 0.003 0.025 90.139 0.905
15 19-10-1 Sine Exponential 0.003 0.063 34.792 0.350
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MLR is widely used in various branches of science and 
technology [39, 40]. Equation 5 shows the results obtained 
from the regression analysis. Correlation between meas-
ured and predicted fragmentation using the MLR model 
is shown in Fig. 3. 

(5)

X50 = 0.009(B) + 0.004(S) − 0.003(H) − 0.0002(D)

− 0.001(ST) − 0.33(PF) + 0.165(XB) − 0.002(IS50)

+ 0.004(UCS) − 0.014(UTS) − 0.006(BT)

− 0.024(�) − 0.0008(E) − 0.12(Vp) + 0.006(SHV)

+ 0.035(�) − 0.003(RQD) + 0.68(C) + 0.005(�).

As shown in Eq. 5, parameters including burden, spacing, 
mean in-situ block size (XB), uniaxial compressive strength 
(UCS), Schmidt hardness value (SHV), Poisson’s ration (υ), 
cohesion (C) and friction angle (φ) have a direct relationship 
with X50. Whereas, bench height, hole diameter, stemming, 
powder factor, UTS, brittleness,  Is50, density, Young’s mod-
ulus, P-wave velocity and RQD have an inverse relationship 
with X50.

7  Classification and regression tree (CART)

The decision tree is one of the hierarchical techniques exten-
sively used for classification and regression because of its 
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Fig. 1  Architecture of ANN model
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Fig. 2  Correlation between measured and predicted  X50 in ANN 
model (Training accuracy)
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interpretability and efficacy [41]. There are several deci-
sion tree algorithms that can be applied to regression prob-
lems, however, CART (classification and regression tree) 
has substantial advantages comparing to the other existing 
approaches [42–45]. In this paper, MatLab software was 
used to predict rock fragmentation using CART model. Fig-
ure 4 shows the appropriate tree built for predicting the  X50. 
The correlation between measured and predicted  X50 using 
CART model is shown in Fig. 5.

8  Performance evaluation of the models

Model evaluation of the obtained MLR, CART and 
ANN models was performed applying 90 test datasets 
which were not used in the model development. Table 4 
shows the calculated values of validation indexes for all 
three models. According to Table 4, it can be seen that 

the developed ANN model with the obtained values of 
0.00009, 0.0095, 98.6% and 0.986 in the validation phase 
for MAE, RMSE, VAF and R2, respectively, is superior 
compared to MLR model with these values of 0.001, 
0.033, 83.41% and 0.836, respectively. Furthermore, com-
paring the obtained results from CART model showed the 
low competence of it to predict rock fragmentation pre-
cisely. The correlation between predicted and measured 
 X50 using all three models are shown in Figs. 6, 7, 8, 9, 
10 and 11. Altogether, these figures demonstrate that the 
ANN model has the best performance in prediction of X50 
in comparison to the other models.
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Fig. 5  Correlation between measured and predicted X50 in CART 
model

Table 4  Calculated validation indices for the ANN, MLR and DT 
models

Model MAE RMSE VAF (%) R2

MLR 0.001084 0.0331 83.41 0.836
CART 0.007254 0.064 38.69 0.453
ANN 0.000093 0.0095 98.607 0.986
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9  Sensitivity analysis

To evaluate the influence degrees of uncontrollable and 
controllable parameters on rock fragmentation, a sensitiv-
ity analysis using the ANN model based on the relevancy 

factor (RF) was carried out [46]. The RF values can be 
calculated by Eq. 6: 

Where xl,i and 
−
xl are the  ith value and the average value of 

the  lth input variable, respectively, yi and 
−
y are the  ith value 

and the average value of the predicted output, respectively.
As it is observed in the Fig. 12, it was concluded that 

in comparison of controllable parameters, uncontrollable 
parameters are more effective on rock fragmentation. In 
this regard, from the prior group, Point Load Index, uni-
axial compressive strength, Poisson’s ratio, cohesion and 
rock quality designation, respectively, are the most impor-
tant parameters on rock fragmentation and from the second 
group, stemming, spacing and hole diameter are the least 
important parameters on the quality of rock fragmentation.

10  Conclusions

In this paper, artificial neural network, decision tree and 
regression analysis was implemented to investigate the effect 
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of uncontrollable and controllable parameters on the frag-
mentation quality in the blasting operation. For this study, a 
database was prepared from several mines situated in differ-
ent parts of the world. In the first step, superiority of the dif-
ferent models was inspected from which competence of the 
neural network modeling was explored. The values of MAE, 
RMSE, VAF and  R2 for ANN model were 0.00009, 0.0095, 
98.6% and 0.986, respectively. According to outcomes of 
the network modeling, it was generally concluded that com-
pared to controllable parameters, uncontrollable parameters 
are more effective regarding fragmentation. In this respect, 
from the uncontrollable parameters, Point Load Index, uni-
axial compressive strength, Poisson’s ratio, cohesion and 
rock quality designation, respectively, are the most effective 
factors on fragmentation quality and from the controllable 
parameters, stemming, spacing and hole diameter are the 
least effective factors in this regard.
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