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is estimated by the reliability index (β), which corresponds 
to minimum distance to the origin on the limit state func-
tion (LSF) in the standard normal space [1, 2]. The reliabil-
ity index is computed based on most probable point (MPP, 
U

∗) as β = �U∗�, that the MPP is searched using the fol-
lowing optimization model [3, 4]:

where g(U) is the LSF in normal standard space, g(U) ≤ 0 
stands the failure region, U is the standard normal vari-
ables, which includes random variables with zero means, 
unit standard deviations, and independent components.

The optimization schemes such as: the gradient projec-
tion method, the augmented Lagrangian method, and the 
sequential quadratic programming method were studied by 
Liu and Der Kiureghian [2] to solve the above optimiza-
tion problem (Eq. 1). The conjugate optimization methods 
were applied to search MPP based on the Wolfe conditions 
by Keshtegar and Miri [5]. Computing reliability index by 
the optimization schemes are actually complex FROM for-
mulation [6]. Hasofer and Lind [1] -Rackwitz and Fiessler 
[7] (HL-RF) method is applied to approximate the reli-
ability index based on a general and simple formulation. 
However, the HL-RF scheme may provide unstable results 
such as periodic and chaotic solutions for highly non-
linear problems [8–11]. To improve the robustness of the 
FORM formula, several modified algorithm were suggested 
such as improved HL-RF method using a merit function 
[2], improved HL-RF based on the Armijo rule [4] and 
improved the HL-RF method by the Wolfe conditions and 
differentiable merit function [12]. Wang and Grandhi [13, 
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1 Introduction

First-order reliability method (FORM) is widely used for 
structural reliability analyses. In FORM, failure probability 
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14] improved the FORM formula based on the intervening 
variables and considering the adaptive nonlinear two-point 
approximation of the limit state function. The instabilities 
of the FORM formula were controlled based on the stability 
transformation method (STM) using chaos feedback con-
trol [10, 15–17]. The robustness of the FORM formula is 
improved using the finite-step length method (FSL)-based 
steepest descent search direction [6]. The relaxed approach 
for FORM [3, 18, 19] was proposed using a dynamic step 
size with sufficient decent condition [3] and a second-order 
polynomial fitness to obtain the relaxed factor [18, 19]. 
Recently, Meng et al. [17] proposed the directional stability 
transformation method (DSTM) using modified chaos con-
trol method to improve the efficiency of the STM. The Hao 
et al. proposed the enhanced chaos control (ECC) [20] and 
applied the adaptive chaos control [21] for reliability anal-
ysis of complex engineering aircraft stiffened shell. The 
ECC [20] is formulated using the dynamical adaptive chaos 
control while the ACC [21, 22] is established using chaos 
control factor which is adapted using convexity criterion 
between 1 and 0.1. The STM is slowly converged, when 
the chaos control factor is selected a small value for both 
concave and convex reliability problems [23] and the FSL 
scheme is slowly converged in highly nonlinear LSFs [9, 
24]. The modified FORM formulas-based steepest descent 
search direction were established using a step size less than 
1 thus the efficiency of the modified FORM formulas in 
STM [10, 11], FSL [6], RHL-RF [19], improved HL-RF [2, 
4, 12], and DSTM [17] is less than the HL-RF for moder-
ately nonlinear performance functions.

The conjugate methods such as conjugate HL-RF (CHL-
RF) using finite-step-length [25], chaotic conjugate search 
direction of chaos control approach [9, 24], the modified 
conjugate search direction using limited Fletcher-Reeves 
(LFR) [8] and hybrid conjugate search direction [23] can be 
applied to control the instabilities of FORM formula. The 
efficiency and robustness are important issues to develop 
the conjugate search direction in the reliability analyses. 
The steepest descent search direction may be produced 
unstable results as chaotic and periodic solutions for highly 
nonlinear problems [23, 24]. However, the conjugate search 
direction methods were applied to improve the robustness 
the FORM formula, more successfully [8, 23, 26, 27]. The 
conjugate method using FROM is particularly efficient for 
solving optimization problems due to its simplicity and low 
storage (it does not need the storage of any matrices i.e., the 
Hessian matrix of limit state functions) with good numeri-
cal performances [28–31]. These methods can be control 
the instabilities of FORM formula to search the MPP [8, 
23]. Nevertheless, the efficiency of these algorithms is a 
one of major challenges in the reliability problems. The 
evaluating convergence performance of the existing conju-
gate FORM to approximate the reliability index is a new 

interesting filed in structural reliability analysis as well as 
optimization problems.

In this paper, three conjugate search directions using 
Fletcher-Reeves (FR) method [32] including improved FR 
(IFR), modified FR (MFR) and spectral-variant FR (SVFR) 
are proposed to approximate the reliability index. The FR 
method is improved with a limited scalar conjugate factor 
and an adaptive finite-step length in IFR. The IFR, MFR, 
and SVFR ensured the sufficient descent property to con-
trol the instability of FORM. The adaptive finite step length 
is computed using the new and pervious iterations. Finally, 
the convergence performances of proposed IFR, MFR and 
SVFR methods are compared with FR, LFR [8], CHL-RF 
[25], HL-RF, and FSL [6] through five nonlinear LSFs. 
Numerical results show that the FORM formulas using 
conjugate search direction are provided stable results com-
pared to HL-RF and FSL methods. The proposed modified 
FR methods are effective approaches as well as the FSL, 
but are more robust and efficient. The adaptive finite-step 
length can be controlled the instabilities of the FORM 
using the FSL method.

2  First‑order reliability methods

The main effort of the reliability analysis is to estimate fail-
ure probability, which is computed by the following inte-
gral [33, 34]:

where fX(x1, . . . , xn) is the joint probability density func-
tion for the basic random variables X and Φ is the stand-
ard normal cumulative distribution function. A closed form 
solution of the above integral is not available for general 
cases in nonlinear limit state functions with many basic 
random variables. The FORM can be provided good bal-
ance between accuracy and efficiency for engineering reli-
ability analysis [11]. In FORM, failure probability is esti-
mated based on the reliability index (β) using three steps as 
follows:

Step 1 Transfer the random variables in X-space (the 
original space), into U-space (standard normal space) based 
on the Rosenblatt transformation i.e., u = Φ−1{FX(x)}. 
Using first-order Taylor’s series expansion and Rosenblatt 
transformation, the random variable can be defined at MPP 
(x*) in the U-space as follows:

It can be conducted that

(2)
Pf =

∫

g(X)≤0

· · ·

∫

fX(x1, . . . , xn)dx1 . . . dxn ≈ Φ(−β),

(3)u = Φ−1{FX(x
∗)} +

∂

∂x
(Φ−1{FX(x

∗)})|x∗ (x − x∗).
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By Substituting Eq. (4) in Eq. (3) and rearranging, it is 
obtained

According to Eq. (5), the equivalent mean (µe
x) and the 

standard deviation (σ e
x ) at point x for non-normal random 

variables are given as [4]:

where fX(x) and FX(x) are the probability and cumulative 
distribution function of random variable x, respectively. 
Φ−1 is the inverse standard normal cumulative distribu-
tion function and ϕ is the standard normal probability 
density function.

Step 2 Find the most probable point (MPP) 
U

∗ = (u∗1, u
∗
2, . . . u

∗
n)

T using an iterative process as

where ∇g(Uk) is gradient vector of the LSF in the 
standard normal space at the design point Uk i.e. 
∇g(U) = [∂g/∂u1, ∂g/∂u2, . . . , ∂g/∂un]

T and αk is nega-
tive unit normal vector, which is computed in some itera-
tive schemes as

2.1  The HL‑RF method [8]

2.2  The finite‑step‑length (FSL) method [6]

in which point U�
k+1 is along the direction of the negative 

gradient vector, which is determined as follows:

(4)
∂

∂x
(Φ−1{FX(x

∗)}) =
fX(x

∗)

φ(�−1{FX(x∗)})
.

(5)u =
x − x∗ + [Φ−1{FX(x

∗)}]ϕ(Φ−1{FX(x
∗)})/fX(x

∗)

ϕ(Φ−1{FX(x∗)})/fX(x∗)
.

(6)σ e
x =

1

fX(x)
ϕ

[

Φ−1{FX(x)}
]

,

(7)µe
x = x − σ e

xΦ
−1[FX(x)],

(8)Uk+1 =

(

U
T
k ∇g(Uk)− g(Uk)

α
T
k ∇g(Uk)

)

αk ,

(9)αk = −
∇g(Uk)

�∇g(Uk)�
.

(10)αk =
U

�
k+1

∥

∥U
�
k+1

∥

∥

,

(11)U
�
k+1 = Uk − �∇g(Uk),

where � >> 0 is the finite-step-length. The FSL itera-
tive algorithm is adjusted to the HL-RF method when 
� → ∞ .

2.3  Conjugate HL‑RF method [25]

where point UC�
k+1 is along the direction of the negative con-

jugate gradient vector at design point Uk which is deter-
mined by the following relation

where dk is conjugate search direction, which is computed 
as

The CHL-RF approach is more robust than the HL-RF and 
is more efficient than the FSL scheme [8, 24] but, it may be 
converged computationally inefficient for highly nonlinear 
LSFs [9, 23].

Step 3 Calculate the reliability index based on the MPP 
(U∗) i.e. β = �U∗�.

In highly nonlinear performance functions, the unit 
normal vector-based steepest descent search direction at 
the point Uk+1 (αk) may be paralleled to the previous unit 
normal vector e.g., αk−2. This means that αk is equal to 
αk−2. Therefore, Uk+1 = Uk−1, which indicates that Uk−1 
and Uk+1 are located in fixed position. Consequently, the 
FORM formula using steepest descent search direction 
may be captured the periodic oscillating points. To reduce 
the parallel risk of the unit normal vectors in the steepest 
descent search direction methods, the conjugate search 
direction can be used for reliability analysis using FROM. 
This idea is generally applied to control instabilities of 
FORM formula for searching the MPP.

3  Enriched conjugate FR methods

The conjugate gradient method can avoid the computation 
of the Hessian matrix of limit state function in reliability 
analyses [29]. The search direction vector is determined in 
conjugate gradient optimization methods as follows [28, 
31]:

(12)αk =
U

C�
k+1

∥

∥

∥
U

C�
k+1

∥

∥

∥

,

(13)U
C�
k+1 = Uk + �dk ,

(14)dk = −∇g(Uk)−

∣

∣

∣

∣∇g(Uk)
∣

∣

∣

∣

2

∥

∥∇g(Uk−1)
∥

∥

2
dk−1.
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where θk is a scalar. One of the well-known conjugate 
gradient method is the Fletcher-Reeves approach [32], in 
which θk is defined as

The FR method is applied to improve the HL-RF method 
based on the conjugate HL-RF (CHL-RF) for evaluat-
ing the failure probabilities of corroded pipeline [25]. 
Recently, Keshtegar [8, 9, 23, 24] showed that the CHL-
RF using FR approach is converged to stable results 
with more computational efforts compared to modified 
versions of conjugate FORM. The simple approach is 
applied using limited FR (LFR) by Keshtegar [8] that the 
LFR can be provided stable results using the modified 
search direction which is satisfied the sufficient descent 
condition. The improved versions of FR approaches can 
be applied for reliability analysis using the conjugate 
FORM formula based on the sufficient descent condition. 
The conjugate search direction of MFR is generated as 
follows:

The variant spectral-type FR (VSFR) method is defined 
as follows:

(15)dk =

{

−∇g(Uk) k = 0

−∇g(Uk)+ θkdk−1 k ≥ 1
,

(16)θFRk =
||∇g(Uk)||

2

�∇g(Uk−1)�
2
.

(17)d
MFR
k = −ηk∇g(Uk)+ θFRk dk−1.

A simple conjugate method is applied based on the limited 
conjugate search direction (Eq. 15), which is proposed by 
Keshtegar [8] in IFR as below:

where

and δ is limited scale factor i.e., 0.5 < δ ≤ 1.0. The limited 
scalar factor of FR method in Eq. (19) θ IFRk  satisfies as

Inspired by the idea of conjugate gradient search 
direction, three iterative formulas are proposed to search 
the MPP based on the Eqs. (17)–(19). The reliability 
index, LSF, and iterative points and the conjugate search 
directions in the two-dimensional standard normal space 
are shown in Fig. 1 as (a) FR, (b)IFR, (c) MFR and (d) 
VSFR methods. It is obvious that the conjugate vector 
(dk) at point (Uk) is not along direction −∇g(Uk). There-
fore, αk is not parallel to the normalized conjugate search 

(18)d
VSFR
k = −ηk∇g(Uk)+ θVFRk dk−1.

(19)θ IFRk = min{δ, θFRk },

(20)ηk =
d
T
k−1[∇g(Uk)−∇g(Uk−1)]

�∇g(Uk−1)�
2

,

(21)θVFRk =
||∇g(Uk)|| .

∣

∣∇Tg(Uk−1)∇g(Uk)
∣

∣

�∇g(Uk−1)�
3

,

(22)θ IFRk ≤ θFRk ≤ δ.

Fig. 1  An iterative procedure 
of the different conjugate algo-
rithms a FR, b IFR, c MFR and 
d VSFR
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direction vector (αc
k) at point (UC�

k+1). This implies that the 
conjugate search direction vector can be provided stable 
results compared to the FORM formulas-based steepest 
descent search direction for highly nonlinear problems. 
The conjugate search direction for modified FR meth-
ods is obtained different. Two parameters θk and ηk are 
affected on the participation of the new gradient (∇g(Uk) ) 
and previous conjugate (dk−1) vectors to compute the 
search direction in various modified FR approaches.

The iterative formula of the conjugate FORM is rewrit-
ten using Eq. (8) as follows:

in which, αc
k is normalized conjugate search direction 

vector, which is given as

where

Step length (�) and the conjugate search direction (d) 
are two important factors in the FORM-based conjugate 
search direction. If � is well-defined then the modified 
FR algorithms using scalar factors in Eqs. (17), (18), 
and (19) can be converged, efficiently and robustly. An 
adaptive finite-step length � is suggested for conjugate 
FORM. The finite-step length is adapted based on the 
sufficient descent condition and Armijo-type rule as 
follows:

It is supposed that the finite-step length implies the 
sufficient descent condition i.e., ∇Tg(Uk+1

) dk+1
< −c1 

∥

∥∇g(Uk+1
)
∥

∥

2, in which 0 < c1 < 1. Therefore, � ≤ c1�max 
and M >> 1. If 

∥

∥Uk+1 − Uk

∥

∥ >
∥

∥Uk − Uk−1

∥

∥ 
(
∥

∥∇g(Uk+1)
∥

∥ >
∥

∥∇g(Uk)
∥

∥ ) then �k = ck�k−1 and ck is 
dynamical adjusting coefficient. This step length holds 
the sufficient descent condition as follows:

The sufficient descent condition is satisfied based on 
dynamic adjusting coefficient and maximum step length. 
The maximum step length is given based on the Eq. (28) 
as below:

(23)Uk+1 =

(

U
T
k ∇g(Uk)− g(Uk)

α
cT
k ∇g(Uk)

)

α
c
k ,

(24)α
c
k =

U
c�
k+1

∥

∥

∥
U

c�
k+1

∥

∥

∥

,

(25)U
c�
k+1 = Uk + �kdk .

(26)�max ≤ M
�dk�

2

�∇g(Uk)�
2
.

(27)�k =

{

�k−1 �Uk−1 − Uk� < �Uk − Uk−1�

ck�k−1 �Uk−1 − Uk� ≥ �Uk − Uk−1�
.

in which ∇g
(

U|U=µ

)

 is gradient vector at the mean point 
in normal standard space, and �0 is the initial step length. 
The dynamic adjusting coefficient for finite-step length is 
proposed as below:

The adaptive finite-step length is computed using initial 
step length (Eq. 28) and adjusting coefficient (Eq. 29) 
without merit function or Wolfe condition. The maximum 
finite-step length and adjusting factor in adaptive finite-
step length are two major differences between the pro-
posed modified FR methods and LFR method. The initial 
step size in the LFR method is selected a constant value 
in the range from 5 to 100, while the initial step size is 
dynamically adapted using Armijo rule based on Eq. (28) 
in the modified FR methods. However, the scalar factor 
in the IFR is limited between 0 and 1 that this scalar fac-
tor holds as well as the LFR the sufficient descent condi-
tion, theoretically. Consequently, the IFR can be provided 
sable results for reliability analysis. The steps of the IFR 
method for reliability analysis are summarized as follows:

Step 0 Given probability parameters of 
random variables, constants 
stopping criterion ε = 10−6 and 
δ ∈ [0.5, 1.0] for IFR, let k = 0,  
and choose an initial point 
X0 = µ d

0
= 0

Step 1 Normalize random variable based 
on Eqs. (5) to Eq. (7)

Compute the performance function 
and gradient vector at point Uk

If k = 0 then compute the initial 
step length using Eq. (28)

Step 2 Compute θ
FR
k  using Eq. (16), ηk by 

Eq. (20), θ
VFR
k  using Eq. (21).

Determine dk using Eqs. (15) and 
(19) for IFR, by Eq. (17) for 
MFR and Eq. (18) for VSFR

Determine new point in terms of 
Eqs. (23)–(25)

If k ≥ 3 then adjust the new step 
length based on Eqs. (27) and 
(29)

Let the next iterate be 
Xk+1 = µ

e
X + σ

e
XUk+1 and 

k = k + 1

Step 3 If 
∥

∥Uk+1 − Uk

∥

∥ < ε then stop and 
compute the reliability index 
(

β =
∥

∥Uk+1

∥

∥

)

, else Go to Step 1

(28)
�0 =

100
∥

∥∇g
(

U|U=µ

)∥

∥

,

(29)ck = min

{

0.95,
3

10

�∇g(Uk)�
2

∣

∣∇Tg(Uk) dk
∣

∣

}

.
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The formwork of the modified versions of FR is plot-
ted in Fig. 2. As seen, this approach (IFR) is as simple as 
the LFR but the adaptive finite-step length may improve the 
efficiency and robustness of FORM compared to the FSL 
and HL-RF methods.

4  Results of numerical examples

Five numerical experiments with the nonlinear math-
ematical and the complex structural/mechanical perfor-
mance functions are used to demonstrate the robustness 
and efficiency of the proposed VSFR, MFR, and IFR 
methods compared with FR method for each example. 
The same stopping criterion (ε = 10−6) is used and, the 
initial step size and adaptive adjusting coefficient are 

computed based on Eqs. (27) and (29) in all conjugate 
reliability methods. The limited scalar factor is selected 
as δ = 0.75 in IFR method. The number of gradient vec-
tor evaluations ∇g(U) (Iter) and the reliability index (β ) 
are used to compare the robustness and efficiency of 
these algorithms.

Example 1 A highly non-linear limit state function is 
given as [14]

where x1 and x2 are normal random variables whose 
means and standard deviations are µ1 = 10, µ2 = 9.9 and 
σ1 = σ2 = 5, respectively. The reliability index is extracted 
from Wang and Grandhi [14] and Keshtegar and Miri [5] 
as 2.2983 and 2.29825, respectively. Table 1 gives the con-
vergence results of the FR, MFR, VSFR, and IFR algo-
rithms. The results show that the IFR converges with the 
same number of iterations as VSFR and MFR. IFR, VSFR, 
and MFR are much more efficient than the FR method with 
convergence rate four-times faster than FR.

Example 2 A vehicle side-impact performance function, 
which is given as follows [35]:

where i = 1 ∼ 7 x
i
∼ N(1, 0.005), i = 8 ∼ 9 x

i
∼ N  

(0.3, 0.006), i = 9 ∼ 10 x
i
∼ N(0, 10.0)  . Table 2 gives 

the reliability index, iterations, and the MPP (X∗) obtained 
from the conjugate methods i.e., FR, MFR, VSFR, and IFR. 
It can be conducted the IFR and VSFR iterative algorithms 
are more efficient than MFR and FR methods. The IFR and 
VSFR are converged to stable results about twice faster 
than the FR algorithm. The MFR is also converged faster 

(30)g(X) = x31 + x21x2 + x32 − 18,

(31)

g(X) = 0.489x
3
x
7
+ 0.843x

5
x
6
− 0.0432x

9
x
10

+ 0.0556x
9
x
11

+ 0.000786x
2

11
− 0.75,

Fig. 2  Framework of the conjugate first-order reliability method

Table 1  Convergent results of 
the conjugate algorithms for 
Example 1

Method FR MFR VSFR IFR

β (Iter) 2.283895 (57) 2.298009 (14) 2.297892 (11) 2.298247 (13)

U
∗ (−1.6535, −1.5755) (−1.6628, −1.5862) (−1.6627, −1.5861) (−1.6629, −1.5863)

Table 2  Convergence results of the conjugate algorithms for Example 2

Method FR MFR VSFR IFR

β (Iter) 3.472649 (31) 3.511264 (21) 3.497487 (16) 3.497464 (17)

X
∗ (0.9726, 0.9536, 0.9536, 

0.9726, 0.3014, 30.0172, 
−8.3662)

(0.9723, 0.9532, 0.9532, 
0.9723, 0.3015, 30.3430, 
−8.3685)

(0.9724, 0.9533, 0.9533, 
0.9724, 0.3014, 30.2012, 
−8.3653)

(0.9654, 0.9434, 0.9434, 0.9654, 
0.3021, 30.7313, −8.4658)
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than the FR method. Therefore, the proposed methods are 
more efficient than the FR algorithm for this example.

Example 3 A automobile front axle to carry the weight 
of the automobile that the front axle beam is schematically 
shown Fig. 3, is studied by the following LSF based on 
bending moment and torque loads [36].

where σs is the limit stress of yielding which is consid-
ered as 460 Mpa. σm and τ are, respectively, the maxi-
mum normal stress and shear stress subjected to the 
bending moment and torque loads, which are expressed 
as follows:

in which M and T  are the bending moment and torque, Wx 
and Wρ are section factor and polar section factor, which 
are given as

(32)g = σs −

√

σ 2
m + 3τ 2,

(33)

σm =
M

Wx

τ =
T

Wρ

,

where a, b, t, and h are the geometry parameters of 
I-beam (see in Fig. 3) distribution parameters of six nor-
mal variables are listed in Table 3 for automobile front 
axle.

Table 4 summarizes the convergence results of MPP 
and reliability index obtained from FR, MFR, VSFR, and 
IFR schemes. As seen, the proposed algorithms are as 
robust as the FR but the IFR is more efficient than the FR 
method. The IFR scheme is converged to stable results 
of β = 2.064536 which is very close to the safety index 
obtained by Zhang et al. [37].

Example 4 A conical structure as indicated in Fig. 4 is 
used by the following the buckling failure mode for the 
LSF [9]:

(34)

Wx =
a(h− 2t)3

6h
+

b

6h

[

h3 − (h− 2t)3
]

Wρ = 0.8bt2 + 0.4
a3(h− 2t)

t
,

(35)g = 1−

√

3(1− v2)

π E t2 cos2 α
×

(

P

0.66
+

M

0.41 r1

)

,

Fig. 3  The schematic view of 
automobile front axle [36]

Table 3  Distribution 
parameters of random variables 
for automobile front axle

Random variable a (mm) b (mm) t (mm) h (mm) M (Nmm) T (Nmm)

Mean 12 65 14 85 3.5 × 106 3.1 × 106

Standard deviation 0.060 0.325 0.070 0.425 1.75 × 105 1.55 × 105

Table 4  The convergent results 
of conjugate methods for 
Example 3

Methods a (mm) b (mm) t (mm) h (mm) M (Nmm) T (Nmm) β (Iter)

FR 11.9914 64.9426 13.9806 84.9671 3506759 3415029 2.065667 (7)

MFR 11.9914 64.9426 13.9806 84.9672 3506759 3415028 2.065660 (7)

VSFR 11.9914 64.9426 13.9806 84.9672 3506759 3415028 2.065660 (7)

IFR 11.9913 64.9419 13.9804 84.9668 3506658 3414731 2.064536 (4)



124 Engineering with Computers (2018) 34:117–128

1 3

in which P and M are the compressive axial load and 
bending moment, and v = 0.3 [9].

Table 5 gives the random variables of conical example.
After 17 iterations, the proposed method (IFR) 

obtained the reliability index as 4.627765 and the MPP 
as X* = [65378.078, 0.002096, 0.52747, 0.88874, 
108411.745, 72707.579]. Based on the reliability anal-
ysis undertaken using the conjugate search direction 
algorithms using FR, MFR and SVFR, the safety index 
are obtained as 4.723984 (FR method after 101 itera-
tions), 4.635483 (MFR method after 30 iterations), and 
4.635342 (VSFR method after 30 iterations). The con-
verged results of this example show that the IFR is more 
efficient than the other proposed conjugate gradient 
methods but the MFR and VSFR methods are more effi-
cient than IF, more remarkably.

Example 5 A two degree of freedom primary-secondary 
dynamic system as shown in Fig. 5 is employed by the LSF 
as follows [23, 24]:

where Fs denotes force capacity, P is the peak factor as 
P = 3, and E[x2s ] is mean-square relative displacement 
response of the secondary spring which is given by

in which γ =
Ms

Mp
 is mass ratio, ωa =

ωp+ωs

2
 and ξa =

ξp+ξs
2

 
are average frequency and damping ratio of the two sys-
tems, respectively. θ =

ωp−ωs

ωa
 is a tuning parameter and S0 

is intensity of the white noise and subscripts p and s are 
the primary and secondary oscillators. Table 6 gives the 
mean and standard deviation of eight Lognormal random 
variables.

Based on reliability analysis using FORM extracted 
from Keshtegar [24], the converged results are as reliabil-
ity index of β = 2.016348 and the MPP of X* = [1.00191, 
0.01009, 1.10209, 0.01115, 0.02799, 0.01211, 103.7171, 
13.7360]. The reliability index and MPP are obtained 
as β = 2.014604 and X* = [1.00184, 0.01009, 1.10186, 
0.01115, 0.0280, 0.01212, 103.7115, 13.7343] after 23 iter-
ations using the IFR method. As seen, these stable results 
from IFR are very close agreement with the results from 
Refs [23, 24, 27].

Figure 6 shows the iteration histories of the FR, MFR, 
VSFR and IFR algorithms. It can be seen that the FR, 
MFR, and IFR algorithms accurately converged to the 
same reliability index i.e., β = 2.014604 and the MFR 

(36)g = Fs − Ks × P(E[x2s ])
1/2,

(37)

E[x2
s
] =

πS0

4ξsωs

[

ξaξs

ξpξs(4ξ2a + θ2)+ γ ξ2
a

×
(ξpω

3
p
+ ξsω

3
s
)ωp

4ξaω4
a

]

,

t

M P

r1 r2

Fig. 4  The schematic view of conical structure [9]

Table 5  The random variables 
for conical structure

Variables Description Distribution Mean Coefficient of variation

E Young’s modulus (MPa) Lognormal 70,000 0.05

t Thickness (m) Normal 0.0025 0.05

α Slop angle (rad) Normal 0.524 0.02

r1 Internal radius (m) Normal 0.9 0.025

M Bending moment (N m) Gumbel 80,000 0.08

P Axial load (N) Gumbel 70,000 0.08

Fig. 5  Two-degree of freedom 
dynamic system
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scheme more efficient than the other algorithms. The 
VSFR method is converged to reliability index (i.e., 
β = 2.869749) that this reliability index is more differ-
ent with the reliability index obtained using the MFR and 
IFR methods. Based on schematic iterative view for dif-
ferent reliability methods in Fig. 1, the conjugate search 
direction in Eq. (18) for SVFR is developed using the 
scalar factor θVFRk  while the FR, IFR and MFR is formu-
lated based on the FR conjugate scalar factor in Eq. (16). 
Consequently, the conjugate search direction using sca-
lar factor θVFRk  provides an inaccurate FORM reliability 
index, while scalar factor θFRk  is a suitable conjugate sca-
lar factor for evaluating the conjugate search direction for 
this nonlinear problem. It illustrates that the MFR method 
is the most efficient than the other methods and it is con-
verged about twice faster than the FR, more robustly.

5  Discussions

This section involves three applications including the 
effects of search direction for MPP search in the first 
application, in second application; the adaptive finite-
step length is investigated to improve the robustness of 
FORM, and finally, proposed enriched FR methods are 
compared with several existing reliability methods. For 
all the studies, the limited scalar factor (δ) is selected as 
0.75 and ε = 10−6.

5.1  Effects of search direction

Effects of the search directions based on the HL-RF [2], 
FSL [6], CHL-RF [25], and proposed IFR methods are 
evaluated based on a constant finite-step length equal 
to 20 for all Examples 1–5. The FORM formula using 
IFR is similar to LFR when a constant finite-step length 
is selected. Consequently, the IFR iterative formula is 
equal to the LFR for this evaluation with λ = 20. The 
convergence results are tabulated in Table 7 to illustrate 
the effects of search direction vector in different FORM 
algorithms. The HL-RF method is failed in problems 1, 
2, 4, and 5 and the FSL approach in not converged to sta-
ble solutions in Examples 1, 2, and 5. The CHL-RF and 
IFR (LFR) is robustly converged in compression with 
the FORM-based steepest descent search direction i.e., 
HL-RF and FSL methods for all of examples.

The parallel risk of the unit vector at the new point 
with previous points is reduced using conjugate search 
direction in CHL-RF and IFR (LFR) methods. The IFR 
(LFR) method is as robust as the CHL-RF method but is 
more efficient for all examples.

Table 6  Random variables of 
Example 5

Random variable Mp Ms Kp Ks ξp ξs Fs S0

Mean 1 0.01 1 0.01 0.05 0.02 15 100

Standard deviation 0.1 0.001 0.2 0.001 0.02 0.01 1.5 10

Fig. 6  Iterative history comparison of reliability index for Example 5

Table 7  Result comparison of HL-RF, FSL, CHL-RF, and IFR (LFR)

Problems HL-RF (λ = ∞) β (Iter) FSL (λ = 20) β (Iter) CHL-RF (λ = 20) β (Iter) IFR (LFR) (λ = 20) β (Iter)

#1 Periodic-2 (1.5370, 1.5355) Periodic-2 (1.5370, 1.5355) 2.283895 (57) 2.297514 (18)

#2 Periodic-4 (3.1757, 2.0351, 1.9180, 1.2957) Periodic-2 (3.2556, 3.2681) 3.485290 (47) 3.495399 (18)

#3 2.064514 (5) 2.064514 (5) 2.065667 (7) 2.064536 (4)

#4 Chaos 4.627785 (52) 4.700608 (117) 4.627777 (34)

#5 Periodic-2 (4.2170, 4.9807) Periodic-2 (3.7343, 4.2447) 2.044173 (36) 2.001147 (34)
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Figure 7 shows the convergence histories of the 
HL-RF, FSL, CHL-RF, and IFR (LFR) methods for 
Example 2. The CHL-RF and IFR (LFR) schemes are 
converged to stable results but, the IFR is more effi-
cient. As it can be seen, the HL-RF and FSL methods are 
converged to the periodic-4 and periodic-2 solutions as 
(3.1757, 2.0351, 1.9180, 1.2957) and (3.2556, 3.2681), 
respectively. Moreover, the IFR is more robust than the 
HL-RF and FSL algorithms.

Figure 8 illustrates the iterative histories of reliability 
index for Example 5 based on the HL-RF, FSL, CHL-RF, 
and IFR (LFR) methods. It can be seen that the HL-RF and 
FSL methods did not converge and exhibited an unstable 
solutions as periodic-2 for the reliability index as (4.2170, 
4.9807) and (3.7343, 4.2447), respectively. However, the 
CHL-RF and IFR (LFR) method with step length � = 20 
are robustly converged. The direction vector is more impor-
tant factor to obtain stable results. As results of that, the 

HL-RF and FSL methods are yielded unstable solutions for 
highly nonlinear problems (Examples 1, 2, and 5) while the 
CHL-RF and IFR (LFR) are produced the stable results, 
more accurately.

5.2  Effect of step length

The effects of step length are investigated using adaptive 
finite-step length (Eq. 27). Table 8 gives the convergence 
results of the FSL, CHL-RF, and IFR methods. It is shown 
that the FSL method is converged to stable reliability index 
with the proposed finite-step length.

The self-adaptive step length improved the efficiency of 
CHL-RF in Examples 2, 4 and IFR methods in Examples 
1, 2, 4, and 5 compared to the IFR (LFR) with constant 
finite-step length. As seen, the step length can be enhanced 
the robustness of the FSL method and improved the effi-
ciency of CHL-RF. The results in Tables 7 and 8 show that 
IFR based on self-adaptive step length is converged about 
twice faster than the IFR (LFR) with constant step length 
(� = 20 ) in Examples 4 and 5. It is shown form Table 8 that 
the FSL algorithm is more efficient than CHL-RF method 
in Examples 1, 3, and 4 but, the CHL-RF is more efficient 
than FSL in Example 2 and 5.

It is clear from Tables 7 and 8 that the CHL-RF and IFR 
(LFR) algorithms are more robust than the HL-RF scheme. 
The adaptive finite-step length can be increased the conver-
gence rate of the FORM formula, adaptively. Thus, the search 
direction vector and step size are two important factors to 
improve instabilities and efficiency of FORM formula.

5.3  Comparative studies

Three proposed conjugate methods for structural reliability 
analyses including IFR, MFR and VSFR which are used 
the adaptive finite-step length in Eq. (27) are compared 
with the existing conjugate search direction methods such 
as CHL-RF [25] with parameters as �0 = 50 and c = 0.95, 
LFR [8] with parameters as �0 = 50 and δ = 0.75 and also 
the steepest descent search direction-based FSL [6] method 
with parameters as �0 = 50 and c = 0.95. The number of 
evaluating the gradient vector (Iter), CPU-run times (T) and 

Fig. 7  Iterative history of reliability index using FORM algorithms 
with λ = 20 for Example 2

Fig. 8  Iterative history of reliability index using FORM algorithms 
with λ = 20 for Example 5

Table 8  Comparing the self-adaptive step length (25) on conver-
gence results of FSL, CHL-RF and IFR

Problems FSL β (Iter) CHL-RF β (Iter) IFR β (Iter)

#1 2.298251 (36) 2.283895 (57) 2.298247 (13)

#2 3.497481 (161) 3.472649 (31) 3.497464 (17)

#3 2.064514 (5) 2.065667 (7) 2.064536 (4)

#4 4.627786 (25) 4.723984 (101) 4.627765 (17)

#5 2.016456 (61) 2.04508 (36) 2.015282 (23)
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the reliability index (β) are used to illustrate the conver-
gence performances of these reliability methods. The con-
vergence results of different reliability methods using and 
Monte Carol simulation (MCS) are tabulated in Table 9. 
The results of Table 9 showed that modified FORM formu-
las-based conjugate search direction are robustly converged 
as well as the FSL method but the conjugate search direc-
tions-based LFR, CHL-RF, MFR, IFR, and VSFR are more 
efficient than the FSL method for highly concave Exam-
ples 1, 2, and 5. The LFR is more efficient than the MFR 
and VSFR method for Examples 4, while the MFR is more 
efficient than the LFR for Examples 1 and 5. The IFR is 
remarkably more efficient than the LFR and it converges 
twice faster than the LFR for highly nonlinear examples 1 
and 5. This means that the adaptive finite-step length can be 
improved the efficiency of the FORM formula compared to 
the CHL-RF and LFR method with a constant initial step 
size �0 = 50. The conjugate search directions and the adap-
tive finite-step size can be provided stable results for non-
linear performance function, more efficiently.

6  Conclusion

Three modified versions of conjugate search direction 
using Fletcher-Reeves (FR) search direction scheme called 
as improved FR (IFR), modified FR (MFR), and spectral-
variant FR (SVFR) are proposed for first-order reliability 
method (FORM). A adaptive finite-step length is estab-
lished to control the instabilities of FORM formula. The 
IFR, MFR, and VSFR schemes are compared with the con-
jugate algorithms including FR, CHL-RF, and LFR and the 
FORM-based steepest search direction methods includ-
ing the HL-RF and FSL through five nonlinear structural/
mechanical reliability problems.

The IFR, MFR, and SVFR algorithms are successfully 
applied in reliability analysis and are more robust than the 
FORM-based HL-RF and FSL without adjustment for step 
size. The IFR is strongly more efficient among the existing 
conjugate gradient methods. The proposed search direc-
tion in IFR can be controlled the instabilities of the iterative 
FORM formula and can be improved its efficiency.

The adaptive finite-step length improves the efficiency 
of iterative FORM formula using CHL-RF and enhances 
the robustness of FSL scheme. The FSL method with adap-
tive finite- step length is more robust than the HL-RF and 
FSL with constant step length for highly nonlinear limit 
state functions.
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