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propeller solitons and several many others; see [5–11] and 
references therein. These solutions are all indeed very use-
ful in various areas of applied mathematics and theoretical 
physics to study the evolution and behavior of the associ-
ated solutions (where the exact solution is unlikely to find). 
In fact, these show up sporadically in plasma physics, non-
linear optics, nuclear physics, fluid dynamics, telecommu-
nications engineering, mathematical biology, mathematical 
chemistry, mathematical physics just to name a few (see for 
example [1–11] and references therein).

The Korteweg–de Vries (K-dV) equation is one of the 
most important problems in nonlinear evolution equations, 
which models the plane waves with unidirectional propaga-
tion in several nonlinear dispersive media. Since the K-dV 
equation is modelled to describe a unidirectional propaga-
tion of waves, it does not treat well wave–wave, wave–wall 
interactions. Furthermore, because it is derived under the 
assumption of weakly anharmonic discrete lattice, it may 
not predict the behavior of high-amplitude waves. To over-
come these shortcomings, Rosenau [12, 13] has devel-
oped a model called the Rosenau equation, to describe the 
dynamics of dense discrete systems which leads to a con-
tinuum. The equation is expressed as

with boundary conditions

and an initial condition

here Ω̄ = [0, 1] and T is a positive real number. The theoret-
ical results on existence, uniqueness and regularity of solu-
tions to this equation have been investigated by Park [14] 
for more general functions f ∈ C2(ℝ). A lot of work has 

ut + uxxxxt = f (u)x, (x, t) ∈ Ω × [0, T],

u(x, t) = ux(x, t) = 0, (x, t) ∈ �Ω × [0, T],

u(x, 0) = u0(x), x ∈ Ω̄,

Abstract  In this paper, we discuss a numerical method 
for solving an inverse Rosenau equation with Dirichlet’s 
boundary conditions. The approach used is based on col-
location of a quintic B-spline over finite elements so that 
we have continuity of dependent variable and it first four 
derivatives throughout the solution range. We apply quin-
tic B-spline for spatial variable and derivatives which pro-
duce an ill-posed system. We solve this system using Tik-
honov regularization method. The accuracy of the proposed 
method is demonstrated by applying it on a test problem. 
Figures and comparisons have been presented for clar-
ity. The main advantage of the resulting scheme is that the 
algorithm is very simple, so it is very easy to implement.
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1  Introduction

There has been an overwhelming amount of solutions to the 
nonlinear evolution equations (NLEEs) obtained in the past 
few decades using several and newly developed techniques 
of integration [1–4]. Some of these nonlinear wave solu-
tions are the cnoidal waves, solitons, solitary waves, shock 
waves, compactons, stumpons, covatons, cuspons, peakons 
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been done on the numerical method for the Rosenau equa-
tion [15–17].

Driven by the needs from applications both in industry and 
other sciences, the field of inverse problems has undergone a 
tremendous growth within the last two decades, where recent 
emphasis has been laid more than before on nonlinear prob-
lems. This is documented by the wide current literature on 
regularization methods for the solution of nonlinear ill-posed 
problems. Advances in this theory and the development of 
sophisticated numerical techniques for treating the direct 
problems allow to address and solve industrial inverse prob-
lems on a level of high complexity. Generally these problems 
belong to the class of problems called the ill-posed problems, 
i.e., small errors in the measured data can lead to large deri-
vations in the estimated quantities. As a consequence, their 
solution does not satisfy the general requirement of existence, 
uniqueness, and stability under small changes to the input 
data. To overcome such difficulties, a variety of techniques 
for solving inverse problems have been proposed [18]-[24] 
and among the most versatile methods the following can be 
mentioned: Tikhonov regularization [25], iterative regulari-
zation [26], mollification [27], base function method (BFM) 
[28], semi finite difference method (SFDM) [29] and the 
function specification method (FSM) [30].

Zhou et  al. [31] investigated the inverse heat conduction 
problem in a one-dimensional composite slab with rate-
dependent pyrolysis chemical reaction and outgassing flow 
effects using the iterative regularization approach. They con-
sidered the thermal properties of the temperature-dependent 
composites.

Huang et  al. [32] applied an iterative regularization 
method based inverse algorithm in this study in simulta-
neously determining the unknown temperature and con-
centration-dependent heat and mass production rates for a 
chemically reacting fluid using interior measurements of tem-
perature and concentration.

The theory of spline functions is very active field of 
approximation theory, boundary value problems and partial 
differential equations, when numerical aspects are consid-
ered. In a series of papers by Caglar et  al. [33, 34] bound-
ary value problems are solved using B-splines. In addition, 
Caglar et al. [35] have used third-degree B-spline functions 
for the solution of heat equation and Mittal and Jain [36] have 
used quintic B-spline functions for the solution of Rosenau 
equation.

In this paper, we consider the mathematical model of non-
linear inverse higher order evolution equation

where f (u)x is some nonlinear expression in terms of u, ux 
with boundary conditions

(1.1)ut + �uxxxxt = f (u)x, (x, t) ∈ Ω × [0, T],

(1.2)u(0, t) = f1(t), ux(0, t) = f2(t), t ∈ [0, T],

and initial condition

here Ω = (0, 1), Ω̄ = [0, 1], 𝜇 > 0 and the overspecified 
conditions

where 0 < 𝛼 < 1 is a fixed point, g1(x), g2(x) are continu-
ous known functions, p1(t), p2(t) and u0(x) are known func-
tions and T represents the final time, while the functions 
f1(t), f2(t) are unknown which remains to be determined 
from some interior measurements.

This paper is arranged as follows. In Sect. 2, description 
of the quintic B-splines collocation method is explained. In 
Sect.  3, procedure for implementation of present method 
for Eqs. (1.1–1.5) is described. In Sect.  4, procedure 
to obtain an initial vector which is required to start our 
method is explained. To regularize the resultant ill-posed 
linear system of equations, in Sect.  5, we apply the Tik-
honov regularization (of second order) method to obtain 
the stable numerical approximation of our solution and the 
uniform convergence of the method is provided in Sect. 6. 
Finally in Sect.  7 numerical experiment is conducted to 
demonstrate the viability and the efficiency of the proposed 
method computationally.

2 � Description of method

In quintic B-splines collocation method, the approximate 
solution can be written as a linear combination of basic 
functions which constitute a basis for the approximation 
space under consideration.

Let be a uniform partition of interval [0,  1] as fol-
lows 0 = x0 < x1 < … < xN−1 < xN = 1 where 
h = xj+1 − xj, j = 0,… ,N − 1. Our numerical treatment for 
Rosenau equation using the collocation method with quin-
tic B-spline is to find an approximate solution UN(x, t) to 
the exact solution u(x, t) in the form

where cj, j = −2,… ,N + 2 are unknown time-depend-
ent quantities to be determined from boundary conditions 
g1(t), g2(t) and the initial condition u0(x) and overspecified 
conditions p1(t), p2(t).

The set of quintic B-spline {B−2,B−1,… ,BN+2} 
form a basis over the problem domain [0,  1] [37]. Let 
Bj, j = −2,… ,N + 2,

(1.3)u(1, t) = g1(t), ux(1, t) = g2(t), t ∈ [0, T],

(1.4)u(x, 0) = u0(x), x ∈ Ω̄,

(1.5)u(�, t) = p1(t), ux(�, t) = p2(t), t ∈ [0, T],

(2.1)UN(x, t) =

N+2∑
j=−2

cj(t)Bj(x),
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be quintic B-splines, which vanish outside interval. Each 
quintic B-spline covers six elements so that an element is 
covered by six quintic B-splines.

Using approximate function (2.1) and quintic spline 
(2.2), the approximate values at the knots of U(x) and its 
derivatives up to fourth order are determined in terms of 
the time parameters cj as

where Uj = U(xj, t).
The values of Bj(x) and its derivatives may be tabulated 

as in Table 1.
Using (2.1) and the boundary conditions (1.3), we get 

the approximate solution at the boundary point as

(2.2)Bj(x) =
1

h5

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(x − xj−3)
5, x ∈ [xj−3, xj−2),

(x − xj−3)
5 − 6(x − xj−2)

5, x ∈ [xj−2, xj−1),

(x − xj−3)
5 − 6(x − xj−2)

5 + 15(x − xj−1)
5, x ∈ [xj−1, xj),

(xj+3 − x)5 − 6(xj+2 − x)5 + 15(xj+1 − x)5, x ∈ [xj, xj+1),

(xj+3 − x)5 − 6(xj+2 − x)5, x ∈ [xj+1, xj+2),

(xj+3 − x)5, x ∈ [xj+2, xj+3),

0, elsewhere,

(2.3)Uj = cj−2 + 26cj−1 + 66cj + 26cj+1 + cj+2,

(2.4)hU�
j
= 5(cj+2 + 10cj+1 − 10cj−1 − cj−2),

(2.5)h2U��
j
= 20(cj−2 + 2cj−1 − 6cj + 2cj+1 + cj+2),

(2.6)h3U���
j

= 60(cj+2 − 2cj+1 + 2cj−1 − cj−2),

(2.7)h4Uiv
j
= 120(cj−2 − 4cj−1 + 6cj − 4cj+1 + cj+2),

(2.8)

U(xN ,t) =

N+2∑
j=N−2

cj(t)Bj(xN) = cN−2 + 26cN−1 + 66cN

+ 26cN+1 + cN+2 = g1(t),

(2.9)

Ux(xN ,t) =

N+2∑
j=N−2

cj(t)Bj(xN) =
(
5

h

)
(cN+2 + 10cN+1

− 10cN−1 − cN−2) = g2(t),

and using overspecified conditions (1.5) where 
� = xs, 1 ≤ s ≤ N − 1 and (2.1) we have

3 � Implementation of method

Our numerical treatment for solving Eqs. (1.1–1.5) using 
the collocation method with quintic B-splines is to find an 
approximate solution UN(x, t) and UN(0, t), UNx

(0, t) to the 
exact solution u(x, t) and f1(t), f2(t) is given in (2.1), where 
cj(t) are time-dependent quantities to be determined from the 
boundary and overspecific conditions and collocation from 
the differential equation.

From Eq. (1.1), we get

using (2.1) in (3.1), we have

using (2.3), (2.4) in (3.2) then is obtained as follows

(2.10)

U(xs,t) =

s+2∑
j=s−2

cj(t)Bj(xs) = cs−2 + 26cs−1 + 66cs

+ 26cs+1 + cs+2 = p1(t),

(2.11)

Ux(xs,t) =

s+2∑
j=s−2

cj(t)Bj(xs) =
(
5

h

)
(cs+2 + 10cs+1

− 10cs−1 − cs−2) = p2(t),

(3.1)ut + �uxxxxt = �(xj, t, u, ux), v(x, t) ∈ Ω × [0, T],

(3.2)Ut + �Uxxxxt = �

(
xj, t,

N+2∑
j=−2

cj(t)Bj(x),

N+2∑
j=−2

cj(t)B
�
j
(x)

)
,

(3.3)

Ut + �Uxxxxt = �(xj, t, (cj−2 + 26cj−1 + 66cj + 26cj+1 + cj+2)

(5∕h)(cj+2 + 10cj+1 − 10cj−1 − cj−2)), 0 ≤ j ≤ N.

Table 1   Coefficient of quintic 
B-spline and its derivative at 
knots xj

x xj−3 xj−2 xj−1 xj xj+1 xj+2 xj+3

Bj(x) 0 1 26 66 26 1 0
B�
j
(x) 0 5

h

50

h
0 −

50

h
−

5

h
0

B��
j
(x) 0 20

h2
40

h2
−

120

h2
40

h2
20

h2
0

B���
j
(x) 0 60

h3
−

120

h3
0 120

h3
−

60

h3
0

Biv
j
(x) 0 120

h4
−

480

h4
720

h4
−

480

h4
120

h4
0



338	 Engineering with Computers (2017) 33:335–348

1 3

The time derivative is discretized in a forward finite differ-
ence fashion

where k = t(n+1) − t(n). In addition, we consider U = U(n), 
then (3.3) become as

Introducing (2.3–2.7) into (3.4) yields

where

where k is time step and the superscripts n and n+1 denote 
the adjacent time levels.

Therefore, we have a system as follows

where

by (2.8–2.11).
Thus

(Ut)j =
Uj

(n+1) − Uj
(n)

k
,

(Uxxxxt)j =
(Uxxxx)j

(n+1) − (Uxxxx)j
(n)

k
,

(3.4)

U
(n+1)

j
+ �(Uxxxx)

(n+1)

j

= k�
(
xj,t

(n),

(
c
(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2

)
,

(5∕h)
(
c
(n)

j+2
+ 10c

(n)

j+1
− 10c

(n)

j−1
− c

(n)

j−2

))

+ U
(n)

j
+ �(Uxxxx)

(n)

j
, 0 ≤ j ≤ N.

(3.5)�c
(n+1)

j−2
+ �c

(n+1)

j−1
+ �c

(n+1)

j
+ �c

(n+1)

j+1
+ �c

(n+1)

j+2
= �

(n)

j
,

� = (h4 + 120�),

� = (26h4 − 480�),

� = (66h4 + 720�),

�
(n)

j
= kh4

[
�(xj, t

(n),

(
c
(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2

)
,

(5∕h)
(
c
(n)

j+2
+ 10c

(n)

j+1
− 10c

(n)

j−1
− c

(n)

j−2

)]

+ (h4)
(
c
(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2

)

+ 120�

(
c
(n)

j−2
− 4c

(n)

j−1
+ 6c

(n)

j
− 4c

(n)

j+1
+ c

(n)

j+2

)
, 0 ≤ j ≤ N,

(3.6)AC = �,

A[1, s − 2] = A[1, s + 2] = A[N + 5,N + 1] = A[N + 5,N + 5] = 1,

A[1, s − 1] = A[1, s + 1] = A[N + 5,N + 2] = A[N + 5,N + 4] = 26,

A[1, s] = A[N + 5,N + 3] = 66,

A[2, s − 2] = −A[2, s + 2] = A[N + 4,N + 1] = −A[N + 4,N + 5] = −(5∕h),

A[2, s − 1] = −A[2, s + 1] = A[N + 4,N + 2] = −A[N + 4,N + 4] = −(50∕h),

A[2, s] = A[N + 4,N + 3] = 0,

that � = 1, � = 26, � = 66, � =
5

h
, � =

50

h
,

where

here A is (N + 5) × (N + 5) matrix, C and � are (N + 5) 
order vectors, which depend on the overspecified and 

boundary conditions (1.5), (1.3). Now we solve (3.6) for 
vector C and finally

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 … � � � � � … … 0

0 … − � − � 0 � � … … 0

� � � � � ⋮

� � � � �

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

� � � � �

⋮ − � − � 0 � �

0 ⋯ � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(n+1)

−2

c
(n+1)

−1

c
(n+1)

0

c
(n+1)

1

⋮

c
(n+1)

N−1

c
(n+1)

N

c
(n+1)

N+1

c
(n+1)

N+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, � =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
(n)

−2

�
(n)

−1

�
(n)

0

�
(n)

1

⋮

�
(n)

N−1

�
(n)

N

�
(n)

N+1

�
(n)

N+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�
(n)

−2
= p1(t

(n)),

�
(n)

−1
= p2(t

(n)),

�
(n)

j
= kh4

[
�(xj, t

(n),

(
c
(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2

)
,

(5∕h)
(
c
(n)

j+2
+ 10c

(n)

j+1
− 10c

(n)

j−1
− c

(n)

j−2

)]

+ (h4)
(
c
(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2

)

+ 120�

(
c
(n)

j−2
− 4c

(n)

j−1
+ 6c

(n)

j
− 4c

(n)

j+1
+ c

(n)

j+2

)
, 0 ≤ j ≤ N,

�
(n)

N+1
= g2(t

(n)),

�
(n)

N+2
= g1(t

(n)),
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For start we need an initial vector C0 which can be obtained 
to follow the procedure of section.

4 � The initial vector C0

The initial vector C0 can be obtained from the initial condi-
tion (1.4) and boundary and overspecified conditions (1.3, 
1.5) as the following expression

This yield a (N + 5) × (N + 5) system of equations, of the 
form

where

by (2.8–2.11).
Thus

that � = 1, � = 26, � = 66, � =
5

h
, � = −

50

h
,

f1(t
(n)) = c

(n)

−2
+ 26c

(n)

−1
+ 66c

(n)

0
+ 26c

(n)

1
+ c

(n)

2
, n = 0,1,… ,

f2(t
(n)) =

(
5

h

)
(c

(n)

2
+ 10c

(n)

1
− 10c

(n)

−1
− c

(n)

−2
, n = 0,1,… ,

U(xj,t
(n)) = c

(n)

j−2
+ 26c

(n)

j−1
+ 66c

(n)

j
+ 26c

(n)

j+1
+ c

(n)

j+2
,

n = 0,1,… , j = 0,1,… ,N.

u(xs,0) =c
(0)

s−2
+ 26c

(0)

s−1
+ 66c(0)

s
+ 26c

(0)

s+1
+ c

(0)

s+2
= p1(0),

ux(xs,0) =(
5

h
)(c

(0)

s+2
+ 10c

(0)

s+1
− 10c

(0)

s−1
− c

(0)

s−2
, = p2(0),

u(xj,0) =c
(0)

j−2
+ 26c

(0)

j−1
+ 66c

(0)

j
+ 26c

(0)

j+1
+ c

(0)

j+2
= u0(xj), 0 ≤ j ≤ N,

ux(xN ,0) =(
5

h
)(c

(0)

N+2
+ 10c

(0)

N+1
− 10c

(0)

N−1
− c

(0)

N−2
, = g2(0),

u(xN ,0) =c
(0)

N−2
+ 26c

(0)

N−1
+ 66c

(0)

N
+ 26c

(0)

N+1
+ c

(0)

N+2
= g1(0).

(4.1)ΔC0 = b,

Δ[1, s − 2] = Δ[1, s + 2] = Δ[N + 5,N + 1] = Δ[N + 5,N + 5] = 1,

Δ[1, s − 1] = Δ[1, s + 1] = Δ[N + 5,N + 2] = Δ[N + 5,N + 4] = 26,

Δ[1, s] = Δ[N + 5,N + 3] = 66,

Δ[2, s − 2] = −Δ[2, s + 2] = Δ[N + 4,N + 1] = −Δ[N + 4,N + 5] = −(5∕h),

Δ[2, s − 1] = −Δ[2, s + 1] = Δ[N + 4,N + 2] = −Δ[N + 4,N + 4] = −(50∕h),

Δ[2, s] = Δ[N + 4,N + 3] = 0,

Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 … � � � � � … … 0

0 … − � − � 0 � � … … 0

1 26 66 26 1 ⋮

1 26 66 26 1

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

1 26 26 1

⋮ − � − � 0 � �

0 ⋯ � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the solution of (4.1) can be found by Tikhonov regulariza-
tion method.

5 � Tikhonov regularization method

The singular matrix Δ is ill-posed and the estimate of C0 by 
(4.1) will be unstable so that the Tikhonov regularization 
method must be used to control this singularity. The Tik-
honov regularized solution ([38, 39] and [40]) to the system 
of linear algebraic equations (3.6) and (4.1) is given by

On the case of M = N + 5 the second-order Tikhonov regu-
larization method, the matrix R(2) is given by, see e.g. [41]

Therefore, we obtain the Tikhonov regularized solution of 
the regularized equation as

in our computation, we use gcv scheme to determine a suit-
able value of � [42, 43].

6 � Convergence analysis

Let u(x) be the exact solution of the Eq. (1.1) with the bound-
ary conditions (1.3) and initial condition (1.4) and over-
specific conditions (1.5) and also U(x) =

∑N+2

j=−2
cj(t)Bj(x) 

be the B-splines collocation approximation to u(x). Due to 

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
−2

c0
−1

c0
0

c1
0

⋮

cN−1
0

cN
0

cN+1
0

cN+2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(0)

p2(0)

u0(x0)

u0(x1)

⋮

u0(xN−1)

u0(xN)

g2(0)

g1(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ϝ�(C
0) = ‖ΔC0 − b‖2

2
+ �‖R(2)C0‖2

2
.

R(2) =

⎛
⎜⎜⎜⎜⎝

1 − 2 1 0 … 0 0

0 1 − 2 1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 … 1 − 2 1 0

0 0 … 0 1 − 2 1

⎞
⎟⎟⎟⎟⎠
∈ ℝ

(M−2)×M .

(5.1)C0
� =

[
ΔTΔ + �(R(2))TR(2)

]−1
ΔTb,
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round off errors in computations we assume that Û(x) be 
the computed spline for U(x) so that Û(x) =

∑N+2

j=−2
ĉj(t)Bj(x) 

where Ĉ = (ĉ−2, ĉ−1, ĉ0,… , ĉN , ĉN+1, ĉN+2). To estimate 
the error ‖u(x) − U(x)‖∞ we must estimate the errors 
‖u(x) − Û(x)‖∞ and ‖Û(x) − U(x)‖∞ separately.

Following (3.6) for Û we have

where

and

by subtracting (6.1) and (3.6) we have

Now, first we need to recall some theorems.

Theorem  6.1  Suppose that  f (x) ∈ C6 [0, 1] and  
|f 6(x)| ≤ L,∀x ∈ [0, 1] and  Υ = {0 = x0 < x1 < ⋯

< x
N
= 1} be the equality spaced partition of [0,  1] 

with step size h. If  SΥ(x) be the unique spline function 
interpolate  f(x) at nodes  , then there exist a constant 
x0, x1,… , xN ∈ Υ �j such that  ∀x ∈ [0, 1], where

 ‖ ⋅ ‖ represents the  ∞-norm.

Proof  For the proof see [44, 45].�  □

Now we want to find a bound on ‖𝜌 − 𝜌̂‖∞, we have

by following theorem (6.1) and [46] (p. 218), we obtain

where ‖��(z)‖∞ ≤ M. Thus, we can rewrite (6.4) as follows

where M1 = MkL�0h
8 +MkL�1h

7 + �0Lh
8 + 120��4L.

(6.1)AĈ = 𝜌̂,

𝜌̂ = (p1(t), p2(t),𝜙0,𝜙1,… ,𝜙N , g2(t), g1(t)),

𝜙̂j = kh4[𝜙(xj, t, (ĉj−2 + 26ĉcj−1 + 66ĉj + 26ĉj+1 + ĉj+2),

× (5∕h)(ĉj+2 + 10ĉj+1 − 10ĉj−1 − ĉj−2)]

+ h4(ĉj−2 + 26ĉj−1 + 66ĉj + 26ĉj+1 + ĉj+2)

+ 120𝜇(ĉj−2 − 4ĉj−1 + 6ĉj − 4ĉj+1 + ĉj+2), 0 ≤ j ≤ N,

(6.2)A(C − Ĉ) = (𝜌 − 𝜌̂).

( 6.3)‖f j(x) − S
j

Υ
(x)‖ ≤ �jLh

6−j, j = 0, 1,… , 5,

|𝜌(xj) − 𝜌̂(xj)| = |kh4[𝜙(xj,U(xj),U
�(xj)) − 𝜙(xj,Û(xj),Û

�(xj))]

+ h4[U(xj) − Û(xj)] + 120𝜇[Uiv(xj) − Ûiv(xj)]|,

(6.4)

‖𝜌 − 𝜌̂‖∞ ≤ Mkh
4(�U(x) − Û(x)� + �U�(x) − Û

�(x)�)
+ h

4(𝜆0Lh
6) + 120𝜇𝜆4Lh

2 ≤ MkL𝜆0h
10 +MkL𝜆1h

9

+ 𝜆0Lh
10 + 120𝜇𝜆4Lh

2,

(6.5)‖𝜌 − 𝜌̂‖∞ ≤ M1h
2,

It is obvious that the matrix A in (6.2) is a nonsingular 
matrix, thus we have

taking the infinity norm and then using (6.5), we find

where M2 = M1‖ A−1‖∞. Now we will be able to prove the 
convergence of our present method. Therefore, we recall a 
following lemma first

Lemma 6.1  The B-splines  {B−2,B−1,… ,BN+2} satisfies 
the following inequality 

Proof  We know that

At any node xi, we have

Also, we have

Similarly,

Now for any point xj−1 ≤ x < xj, we have

Hence, this proves the lemma.�  □

Now observe that we have

thus taking the infinity norm and using (6.7) and (6.8), we 
get

(6.6)(C − Ĉ) = A−1(𝜌 − 𝜌̂),

(6.7)‖C − Ĉ‖∞ ≤ ‖A−1‖∞‖𝜌 − 𝜌̂‖∞ ≤ M2h
2,

(6.8)
|||||

N+2∑
j=−2

Bj(x)
|||||
≤ 186, (0 ≤ x ≤ 1).

|||||

N+2∑
j=−2

Bj(x)| ≤
N+2∑
j=−2

|Bj(x)
|||||
.

N+2∑
j=−2

|Bj| = |Bj−2| + |Bj−1| + |Bj| + |Bj+1| + |Bj+2| = 120 < 186.

|Bj(x)| ≤ 66 and |Bj−1(x)| ≤ 66, xj−1 ≤ x < xj.

|Bj−2(x)| ≤ 26 and |Bj+1(x)| ≤ 26, xj−1 ≤ x < xj,

|Bj−3(x)| < 1 and |Bj+2(x)| ≤ 1, xj−1 ≤ x < xj.

N+2∑
j=−2

|Bj(x)| = |Bj−3| + |Bj−2| + |Bj−1| + |Bj| + |Bj+1| + |Bj+2| ≤ 186.

U(x) − Û(x) =

N+2∑
j=−2

(cj − ĉj)Bj(x),
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Theorem  6.2  Let u(x) be the exact solution of the Eq. 
(1.1) with the boundary conditions  (1.3) and initial condi-
tion (1.4) and overspecific conditions (1.5) and also U(x) 
be the B-spline collocation approximation to  u(x) then the 
method has second order convergence

where Γ = �0Lh
4 + 186M2 is some finite constant.

Proof  From theorem (6.1), we have

(6.9)

‖U(x) − Û(x)‖∞ =
���

N+2�
j=−2

(cj − ĉj)Bj(x)
���∞ ≤

���(cj − ĉj)
���∞

×
���
N+2�
j=−2

Bj(x)
��� ≤ 186M2h

2.

‖u(x) − U(x)‖ ≤ Γh2,

(6.10)‖u(x) − Û(x)‖ ≤ 𝜆0Lh
6,

Table 2   The comparison between exact solution and numerical solu-
tions for f1(t) with the noisy data using quintic B-spline method when 
� = 0.4

t f1(t)Exact f1(t)Numerical Error

0.100000 0.995021 0.994825 0.000196
0.200000 0.980328 0.980085 0.000243
0.300000 0.956628 0.956301 0.000327
0.400000 0.925007 0.924606 0.000402
0.500000 0.886819 0.886432 0.000387
0.600000 0.843551 0.843174 0.000377
0.700000 0.796705 0.796444 0.000261
0.800000 0.747700 0.747511 0.000189
0.900000 0.697795 0.697665 0.000130
1.000000 0.648054 0.648017 0.000037
L2 2.8717e−004
L∞ 4.9286e−004
Execution time (s) 4.21
(Δ) Condition number 1.0362e+020
Regularization parameter (�) 9.5394e−010

Fig. 1   The comparison 
between the exact and numeri-
cal results for f1(t) of the prob-
lem (7.1) with the noisy data 
using quintic B-spline method 
and Tikhonov 2nd when � = 0.4
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thus substituting from (6.9) and (6.10), we have

where Γ = �0Lh
4 + 186M2. � □

Theorem  6.3  The time discretization process (3.4) that 
we use to discretize equation  (1.1)  in time variable is of 
the one order convergence.

Proof  See [48]. � □

We suppose that u(x,  t) be the solution of Eq. (1.1) and 
U(x,  t) be the approximate solution by our present method, 
then we have

(� is some finite constant), thus the order of convergence of 
our process is O(k + h2).

(6.11)
‖u(x) − U(x)‖ ≤ ‖u(x) − Û(x)‖ + ‖Û(x) − U(x)‖

≤ 𝜆0Lh
6 + 186M2h

2 = Γh2,

‖u(x, t(n)) − U(x, t(n))‖ ≤ �(k + h2),

Table 3   The comparison between exact solution and numerical solu-
tions for f2(t) with the noisy data using quintic B-spline method when 
� = 0.4

t f2(t) Exact f2(t) Numerical Error

0.100000 0.099172 0.098452 0.000720
0.200000 0.193493 0.193520 0.000027
0.300000 0.278678 0.279066 0.000388
0.400000 0.351456 0.352061 0.000605
0.500000 0.409814 0.410509 0.000695
0.600000 0.453029 0.453424 0.000395
0.700000 0.481503 0.480821 0.000682
0.800000 0.496500 0.495345 0.001200
0.900000 0.499829 0.498749 0.001100
1.000000 0.493554 0.491704 0.001900
L2 9.4089e−004
L∞ 2.7956e−003
Execution time (s) 4.21
(Δ) Condition number 1.0362e+020
Regularization parameter (�) 9.5394e−010

Fig. 2   The comparison between 
the exact and numerical results 
for f2(t) of the problem (7.1) 
with the noisy data using quintic 
B-spline method and Tikhonov 
2nd  when � = 0.4
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7 � Numerical experiments and discussion

In this section, we are going to study numerically the 
inverse problems (1.1) with the unknown boundary con-
ditions. The main aim here is to show the applicability of 

the present method for solving the inverse problems (1.1). 
As expected the inverse problems are ill-posed and there-
fore it is necessary to investigate the stability of the present 
method by giving a test problem, thus we compute L∞ and 
L2 error norms, using following formula

Table 4   The comparison 
between exact solution and 
numerical solutions for u(0.7, t) 
with the noisy data using 
quintic B-spline method when 
� = 0.4

t u(0.7, t) Exact u(0.7, t) Numerical Error

0.100000 0.843551 0.843579 0.000028
0.200000 0.886819 0.886864 0.000045
0.300000 0.925007 0.925037 0.000030
0.400000 0.956628 0.956642 0.000014
0.500000 0.980328 0.980347 0.000019
0.600000 0.995021 0.995032 0.000011
0.700000 1.000000 0.999986 0.000014
0.800000 0.995021 0.995018 0.000003
0.900000 0.980328 0.980368 0.000040
1.000000 0.956628 0.956660 0.000033
L2 2.2683e−005
L∞ 5.3989e−005
Execution time (s) 4.21
(Δ) Condition number 1.0362e+020
Regularization parameter (�) 9.5394e−010

Fig. 3   The comparison 
between the exact and numeri-
cal results for u(x, t) of the 
problem (7.1) with the noisy 
data by using quintic B-spline 
method and Tikhonov 2nd   
when � = 0.4
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where ui = u(xj, ti), tn = T .

Example 7.1  We consider the following generalized 
Rosenau equation given in [49]

with the boundary conditions

and initial condition

L∞ = max|(uexact)i − (Unum)i|, i = 0, 1, ..., n,

L2 =

√√√√k

(
n∑
i=0

|(uexact)i − (Unum)i|2
)
,

(7.1)
2ut + uxxxxt + 3ux − 60u2ux + 120u4ux = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,

u(1, t) = sech(1 − t), 0 ≤ t ≤ T ,

ux(1, t) = −sinh(1 − t)∕cosh(1 − t)2, 0 ≤ t ≤ T ,

Table 5   The comparison between exact solution and numerical solu-
tions for f1(t) with the noisy data using quintic B-spline method when 
� = 0.2

t f1(t)Exact f1(t)Numerical Error

0.300000 0.956628 0.956601 0.000027
0.600000 0.843551 0.843526 0.000025
0.900000 0.697795 0.697822 0.000028
1.200000 0.552286 0.552342 0.000056
1.500000 0.425096 0.425142 0.000045
1.800000 0.321805 0.321816 0.000011
2.100000 0.241295 0.241308 0.000014
2.400000 0.179955 0.179975 0.000020
2.700000 0.133807 0.133810 0.000003
3.000000 0.099328 0.099344 0.000016
L2 8.1003e−005
L∞ 1.2726e−004
Execution time (s) 5.67
(Δ) Condition number 1.5970e+019
Regularization parameter (�) 9.2308e−012

Fig. 4   The comparison 
between the exact and numeri-
cal results for f1(t) of the prob-
lem (7.1) with the noisy data 
using quintic B-spline method 
and Tikhonov 2nd when � = 0.2
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The exact solution for the Rosenau equation (7.1) is known 
to be a soliton-type solution u(x, t) = sech(x − t) (see also 
[5–11]). The Eq. (7.1) can be rewritten as

where f (u) = 10u3 − 12u5 − 1.5u.

For numerical computation, we take T = 1, 3 with 
k = 0.002, and h = 0.1 for estimate u(0, t) = f1(t), 
ux(0, t) = f2(t), u(x,  t) with noisy data and results are 
reported in Tables 2, 3, 4, 5, 6, 7 and Figs. 1, 2, 3, 4, 5, 6.

8 � Conclusion

The following results are obtained:

u(x, 0) = sech(x), 0 ≤ x ≤ 1.

ut + 0.5uxxxxt = f (u)x,

Table 6   The comparison between exact solution and numerical solu-
tions for f2(t) with the noisy data using quintic B-spline method when 
� = 0.2

t f2(t)Exact f2(t)Numerical Error

0.300000 0.278678 0.277463 0.0012
0.600000 0.453029 0.451381 0.0016
0.900000 0.499829 0.497515 0.0023
1.200000 0.460416 0.458010 0.0024
1.500000 0.384775 0.382591 0.0022
1.800000 0.304687 0.302660 0.0020
2.100000 0.234165 0.232314 0.0019
2.400000 0.177017 0.175207 0.0018
2.700000 0.132603 0.130502 0.0021
3.000000 0.098837 0.096958 0.0019
L2 3 .3676e−003
L∞ 2.7568e−003
Execution time (s) 5.67
(Δ) Condition number 1.5970e+019
Regularization parameter (�) 9.2308e−012

Fig. 5   The comparison 
between the exact and numeri-
cal results for f2(t) of the prob-
lem (7.1) with the noisy data 
using quintic B-spline method 
and Tikhonov 2nd when � = 0.2
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1.	 The present study, successfully applies the numerical 
method to inverse problems.

2.	 Unlike some previous techniques using various trans-
formations to reduce the equation in to more simple 
equation, the current method does not require extra 

effort to deal with the nonlinear terms. Therefore, the 
equations are solved easily and elegantly using the pre-
sent method.

3.	 Numerical results show that our approximations of 
unknown functions using the quintic B-spline method 

Table 7   The comparison 
between exact solution and 
numerical solutions for u(0.5, t) 
with the noisy data using 
quintic B-spline method when 
� = 0.2

t u(0.5, t) Exact u(0.5, t) Numerical Error

0.300000 0.980328 0.980336 0.000008
0.600000 0.995021 0.994989 0.000031
0.900000 0.925007 0.925024 0.000017
1.200000 0.796705 0.796763 0.000057
1.500000 0.648054 0.648096 0.000042
1.800000 0.507379 0.507389 0.000011
2.100000 0.387978 0.388004 0.000026
2.400000 0.292592 0.292629 0.000037
2.700000 0.218919 0.218915 0.000004
3.000000 0.163071 0.163104 0.000033
L2  7.3373e−005
L∞ 9.9314e−005
Execution time (s) 5.67
(Δ) Condition number 1.5970e+019
Regularization parameter (�) 9.2308e−012

Fig. 6   The comparison 
between the exact and numeri-
cal results for u(x, t) of the prob-
lem (7.1) with the noisy data 
using quintic B-spline method 
and Tikhonov 2nd when � = 0.2
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combined with second order Tikhonov regularization, 
are almost accurate with noisy data.

4.	 Numerical results show that an excellent estimation 
can be obtained within a couple of minutes CPU time 
at pentium(R) 4 CPU 2.10 GHz.
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