
Vol.:(0123456789)1 3

Engineering with Computers (2017) 33:885–895 
DOI 10.1007/s00366-017-0504-3

ORIGINAL ARTICLE

A 2D mechanical–thermal coupled model to simulate material 
mixing observed in friction stir welding process

S. Mesmoudi1 · A. Timesli2 · B. Braikat1 · H. Lahmam1 · H. Zahrouni3,4 

Received: 18 October 2016 / Accepted: 31 January 2017 / Published online: 23 March 2017 
© Springer-Verlag London 2017

Keywords  Friction stir welding · Material mixing · Large 
deformations · Mechanical–thermal behavior · Meshless 
method · Homotopy transformation · Taylor series

1  Introduction

Numerical simulation of friction stir welding (FSW) pro-
cess is a major challenge for researchers because of the 
complexity of the process and the coupled physical phe-
nomena [19]. Indeed, this process involves the coupling 
between mechanical, thermal and metallurgical problems. 
In recent literature, contributions concerning numerical 
modeling of FSW can be classified into two main classes. 
The first one uses Eulerian formulations and is based on 
fluid dynamics codes to study material flow around the 
welding tool. Usually these studies are conducted to search 
for stationary solution which excludes cases of welding 
tools with complex geometries. A second class uses the 
finite element method in Lagrangian formulation. It can 
deal with unsteady state problems considering more or less 
complex geometries of the tool. However, these methods 
suffer from the complexity of the formulation which has 
to manage the large deformations induced in the vicinity 
of the tool by re-meshing this area or using the arbitrary 
Lagrangian Eulerian formalism and also these methods 
require very large computation time making their use less 
convenient for the engineer. To overcome this drawback, 
some contributions proposed to address the problem using 
mesh-free methods. The aim is to avoid remeshing and then 
to reduce diffusion problems in the numerical solution [4, 
6, 21, 22]. Some works have been done for the 3D simula-
tion of friction stir welding using natural element method 
[1, 2], particle tracing method [16], finite element method 
[8] and particle method [9].
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In a previous paper [20], we have proposed a 2D 
mechanical formulation to model material mixing using 
a meshless method and a high order algorithm which is 
applied on a strongly formulation. Indeed, we have cho-
sen to use the moving least squares (MLS) approximation 
which has been used for the first time to construct smooth 
functions for a scatter. This method allows to build a 
local approximation of the solution using low degree of 
polynomials whose coefficients depend on spatial coordi-
nates. However, in the case of the element-free Galerkin 
method (EFG), the MLS approximation is used within a 
weak formulation [11, 18].

In the work [20], we have applied the algorithm on a 
strong form formulation of the mechanical problem to 
avoid difficulties related to numerical integration. As the 
problem is temporal, the classical implicit Euler scheme 
is used for the time discretization. During material mix-
ing, the deformations are important. We therefore used 
a nonlinear constitutive law dependent on the strain 
rate. To reduce the computation time and the number 
of tangent matrix decompositions, we have proposed a 
high order algorithm. After the time discretization, the 
obtained nonlinear problem is transformed using the 
homotopy technique which consists in introducing an 
arbitrary matrix and a scalar parameter. If this homotopy 
parameter is set to zero, we obtain an easy problem to 
solve and when this parameter is equal to one we recover 
the initial problem before homotopy transformation. The 
solution of the modified nonlinear problem is sought by 
expanding the unknowns in the form of Taylor series with 
respect to homotopy parameter. Our experience shows 
that when the arbitrary matrix introduced in the modified 
problem is chosen judiciously, only one tangent matrix 
decomposition is required to compute tens of time steps 
which allows one to reduce significantly the total compu-
tation time.

In the present work, we propose to extend the application 
field of the model used in [20] to the case of 2D mechani-
cal–thermal material mixing observed in friction stir weld-
ing process. We present the thermo-mechanical problem 
under a strong formulation. The coupling between the 
mechanical and thermal problem is due to the heat source 
and the law giving the viscosity depending on the tem-
perature and the equivalent strain rate. According to these 
relations, the considered problem is strongly nonlinear. For 
the spatial discretization, we use the MLS approximation 
which will be applied directly to the strong form formula-
tion. Each collocation point holds mechanical and thermal 
unknowns. The high order algorithm and the homotopy 
transformation used in [20] allow reducing the number of 
tangent matrices to decompose and to avoid iterative pro-
cedure. Let us recall that in the used algorithm, we did not 
need any iterative corrections.

The layout of this paper is as follows. In Sect. 2, we pre-
sent the governing equations of the mechanical–thermal 
problem. We consider sticking conditions for the contact 
interface between welding tool and piece. In Sect.  3, we 
give details of the used algorithm. To search the solution in 
the form of power series, the different equations of the non-
linear problem are transformed in a quadratic framework. 
This allows the algorithm to be optimal. After that a time 
discretization is applied and the obtained nonlinear prob-
lem is discretized using MLS approximation. Thereafter the 
homotopy technique and the development in Taylor series 
are used in continuation procedure. In Sect.  4, numerical 
application is proposed and a comparison with an implicit 
iterative algorithm [10] based on the MLS approximation is 
performed to assess the validity of our algorithm. Finally, 
some conclusions are presented in Sect. 5.

2 � Governing equations

The general laws of physics, especially the mechanics of 
deformable media, are based on the principle of conser-
vation laws. This principle expresses stock of influences 
affecting the physical quantities such as quantity of motion, 
mass and energy to establish equations to solve. The result-
ing problem is described by the two first conservation laws 
for an incompressible material including:

where � is the material density, V is the velocity vector of 
components u and v, V̇ = 𝜕V∕𝜕t, � is the stress tensor and 
the gravity is neglected. The constitutive law is given by 
the deviatoric stress tensor under the following form:

where � is the material dynamic viscosity and 𝜖̇ is the strain 
rate tensor defined as:

The equation of energy conservation, in our case, is written 
as follows:

where T is the temperature, Ṫ = 𝜕T∕𝜕t, Cp is the coefficient 
of specific heat, kc is the thermal conductivity of the mate-
rial and qv denotes the volume source. This volume source 
qv in the heat equation corresponding to the mechanical 
power dissipated per unit volume. It can be written from 
the velocity field of the mechanical problem as follows:

(1)
{

𝜌V̇ = div(𝜎)

div(V) = 0
,

(2)S = 2𝜇𝜖̇,

(3)𝜖̇ =
1

2
(t∇V + ∇V)

(4)𝜌CpṪ = div(kc∇T) + qv

(5)qv = 𝛽S:𝜖̇
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where � is a coefficient taken equal to 0.9. Taking into 
account the relation (2), the Eq. (5) can be written as 
follows:

where ̄̇𝜖 is the equivalent strain rate given by:

For the dynamic viscosity, we choose a power law as in [3] 
given by:

where K, A and n are the material properties. To satisfy the 
condition of incompressibility numerically in the Eq. (1), 
we introduce, in general, a pressure term penalized by a 
large factor noted �. This means that the incompressibility 
condition (1) is replaced by a viscous law [17]:

where Tr(.) denotes the trace. The stress tensor �, under this 
assumption, is given by:

where I is the unity tensor. Finally, the mechanical–ther-
mal equations and the constitutive laws can be written as 
follows:

The Eq. (11) will be completed by the boundary and initial 
conditions of mechanical and thermal type.

3 � The proposed algorithm

To solve the problem (11), we propose, in this work, a high 
order implicit algorithm which combines: a temporal implicit 
scheme, a meshless approach, a homotopy transformation, a 
development in Taylor series and a continuation procedure. 
With the aim to write the problem (11) in quadratic form, we 
introduce the following changes of variables and the differen-
tial forms:

(6)qv = 3𝛽𝜇 ̄̇𝜖2

(7)̄̇𝜖 =

√
2

3
𝜖̇:𝜖̇

(8)𝜇 =
1

3
KTA ̄̇𝜖

n−1

(9)p = −𝜆Tr(𝜖̇)

(10)𝜎 = 𝜆Tr(𝜖̇)I + 2𝜇𝜖̇

(11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌V̇ = div(𝜎)

𝜌CpṪ = div(kc∇T) + qv
𝜎 = 𝜆Tr(𝜖̇)I + 2𝜇𝜖̇

𝜖̇ =
1

2
(t∇V + ∇V)

̄̇𝜖 =
�

2

3
𝜖̇:𝜖̇

𝜇 =
1

3
KTA ̄̇𝜖

n−1

qv = 3𝛽𝜇 ̄̇𝜖
2

Once the strongly nonlinear relationships of the problem 
(11) have been transformed into quadratic equations, it is 
easy to develop the unknown in Taylor series and to cal-
culate numerically these series to a high order. Thus, the 
quadratic problem is written as:

3.1 � Temporal implicit scheme

For solving the nonlinear unsteady problem (13), we use here 
the Euler implicit scheme widely used in the resolution of this 
problems. Using the Euler implicit scheme, the time discre-
tization of the problem (13) leads to the following nonlinear 
system in terms of the new unknown at time tk+1 = (k + 1)Δt:

where (.)k+1 represent the unknowns at time tk+1 = (k + 1)Δt 
with Δt is the time step. We introduce the increments ΔV , 
ΔT , Δ�, Δ𝜖̇, Δ ̄̇𝜖, Δ�, Δqv, Δ�, Δ� and Δ� as new unknowns 
of the problem (14) given by:

(12)

⎧
⎪⎪⎨⎪⎪⎩

𝛼 = TA

𝛾 = ̄̇𝜖
n−1

𝜑 = ̄̇𝜖
2

Td𝛼 = A𝛼dT
̄̇𝜖d𝛾 = (n − 1)𝛾d ̄̇𝜖

(13)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜌V̇ = div(𝜎)

𝜌CpṪ = div(kc∇T) + qv
𝜎 = 𝜆Tr(𝜖̇)I + 2𝜇𝜖̇

𝜖̇ =
1

2
(t∇V + ∇V)

̄̇𝜖2 =
2

3
𝜖̇:𝜖̇

𝜇 =
K

3
𝛼𝛾

Td𝛼 = A𝛼dT
̄̇𝜖d𝛾 = (n − 1)𝛾d ̄̇𝜖

qv = 3𝛽𝜇𝜑

𝜑 = ̄̇𝜖2

(14)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜌(Vk+1 − Vk) = Δtdiv(𝜎k+1)

𝜌Cp(T
k+1 − Tk) = Δtdiv(kc∇T

k+1) + Δtqk+1
v

𝜎k+1 = 𝜆Tr(𝜖̇k+1)I + 2𝜇k+1𝜖̇k+1

𝜖̇k+1 =
1

2
(t∇Vk+1 + ∇Vk+1)

( ̄̇𝜖k+1)2 =
2

3
𝜖̇k+1:𝜖̇k+1

𝜇k+1 =
K

3
𝛼k+1𝛾k+1

Tk+1d𝛼k+1 = A𝛼k+1dTk+1

̄̇𝜖
k+1

d𝛾k+1 = (n − 1)𝛾k+1d ̄̇𝜖
k+1

qk+1
v

= 3
𝛽

Cp

𝜇k+1𝜑k+1

𝜑k+1 = ( ̄̇𝜖k+1)2
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Taking account of the Eq. (15), the problem verified by 
new unknowns can be written as:

In the resolution, we precede to write the equations (16)
a and (16)b in a single equation. Then we combine the 
unknowns Δu, Δv and ΔT  at point x into a single vector 
{ΔXx} given by:

3.2 � Moving least squares (MLS) approximation

The MLS approximation was devised by mathematicians in 
data fitting and surface construction [11]. It can be catego-
rized as a method of series representation of functions. An 
excellent description of the MLS approximation can be 

(15)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔV = Vk+1 − Vk

ΔT = Tk+1 − Tk

Δ𝜎 = 𝜎k+1 − 𝜎k

Δ𝜖̇ = 𝜖̇k+1 − 𝜖̇k

Δ ̄̇𝜖 = ̄̇𝜖k+1 − ̄̇𝜖k

Δ𝜇 = 𝜇k+1 − 𝜇k

Δqv = qk+1
v

− qk
v

Δ𝛼 = 𝛼k+1
v

− 𝛼k

Δ𝛾 = 𝛾k+1 − 𝛾k

Δ𝜑 = 𝜑k+1 − 𝜑k

(16)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜌ΔV = Δtdiv(𝜎k) + Δtdiv(Δ𝜎)

𝜌CpΔT = Δtdiv(kc∇T
k) + Δtdiv(kc∇ΔT) + Δtqk

v
+ ΔtΔqv

Δ𝜎 = 𝜆Tr(Δ𝜖̇)I + 2𝜇kΔ𝜖̇ + 2𝜖̇kΔ𝜇 + 2Δ𝜇Δ𝜖̇

Δ𝜖̇ =
1

2
(t∇ΔV + ∇ΔV)

2 ̄̇𝜖kΔ ̄̇𝜖 =
2

3
(2𝜖̇k:Δ𝜖̇ + Δ𝜖̇:Δ𝜖̇) − Δ ̄̇𝜖2

Δ𝜇 =
K

3
(𝛼kΔ𝛾 + 𝛾kΔ𝛼 + Δ𝛼Δ𝛾)

TkdΔ𝛼 = A𝛼kdΔT + AΔ𝛼dΔT − ΔTdΔ𝛼

̄̇𝜖
k
dΔ𝛾 = (n − 1)𝛾kdΔ ̄̇𝜖 + (n − 1)Δ𝛾dΔ ̄̇𝜖 − Δ ̄̇𝜖dΔ𝛾

Δqv = 3𝛽(𝜇kΔ𝜑 + 𝜑kΔ𝜇 + Δ𝜇Δ𝜑)

Δ𝜑 = 2 ̄̇𝜖kΔ ̄̇𝜖 + Δ ̄̇𝜖
2

(17)
{
ΔXx = t < Δu, Δv, ΔT >

}

found in a paper by Lancaster and Salkauskas [11]. The MLS 
approximation is now widely used in MFree methods for con-
structing MFree shape functions. The MLS approximation of 
unknown vector {ΔXx} is defined at point x as:

where [�(x)] is the matrix of MLS shape functions corre-
sponding to m nodes in the support domain of the point x 
and {ΔXm} is the vector that collects the nodal unknowns 
for all the nodes in the support domain. The quantities 
{ΔXm} and [�(x)] are given by:

with �i; i = 1…m are the MLS shape functions. Taking 
account of the approximation (18) and after substitution 
and assembly techniques, the problem (16) is written in the 
following condensed form:

where [Kk
T
] is the tangent matrix that depends on the solu-

tion at time tk = kΔt, {ΔX} is the unknown global vector 
containing 3Np components; with Np is the total number 
of points, {FQ({ΔX}, {ΔX})} is a quadratic form and {Fk} 
is the right-hand side that depends on the solution at time 
tk = kΔt and ̄̇𝜖nl

x
, �nl

x
, �nl

x
, �nl

x
, �nl

x
, {�nl

x
} and qnl

v
 are the quad-

ratic terms, the vectorial quantities are given by:

(18){ΔXx} = [�(x)]{ΔXm}

(19)

⎧
⎪⎨⎪⎩

t{ΔXm} = ⟨⟨ΔX1⟩, ⟨ΔX2⟩,… , ⟨ΔXm⟩⟩
�
�(x)(3×3m)

�
=

⎡⎢⎢⎣

�1 0 0 … �m 0 0

0 �1 0 … 0 �m 0

0 0 �1 … 0 0 �m

⎤
⎥⎥⎦

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[Kk
T
]{ΔX} + Δt{Fq({ΔX}, {ΔX})} = Δt{Fk}

{Δ𝜖̇x} = [B]{ΔXm}

2 ̄̇𝜖k
x
Δ ̄̇𝜖x =

2

3
(2t{𝜖̇k

x
}[R]{Δ𝜖̇x}) + ̄̇𝜖nl

x

Tk
x
dΔ𝛼x = A𝛼k

x
dΔTx + 𝛼nl

x

̄̇𝜖x
k
dΔ𝛾x = (n − 1)𝛾k

x
dΔ ̄̇𝜖x + 𝛾nl

x

Δ𝜑x = 2 ̄̇𝜖k
x
Δ ̄̇𝜖x + 𝜑nl

x

Δ𝜇x =
K

3
(𝛼k

x
Δ𝛾x + 𝛾k

x
Δ𝛼x) + 𝜇nl

x

{Δ𝜎x} = [Ck]{Δ𝜖̇x} + {𝜎nl
x
}

Δqv = 3
𝛽

Cp

(𝜇k
x
Δ𝜑x + 𝜑k

x
Δ𝜇x) + qnl

v

(21)

{Δ𝜖̇x} =

⎧
⎪⎨⎪⎩

Δ𝜖̇11
Δ𝜖̇22
2Δ𝜖̇12

⎫
⎪⎬⎪⎭
;

�
B(3×3m)

�
=

⎡
⎢⎢⎢⎣

𝜕𝛷1

𝜕x
0 0 …

𝜕𝛷m

𝜕x
0 0

0
𝜕𝛷1

𝜕y
0 … 0

𝜕𝛷m

𝜕y
0

𝜕𝛷1

𝜕y

𝜕𝛷1

𝜕x
0 …

𝜕𝛷m

𝜕y

𝜕𝛷m

𝜕x
0

⎤
⎥⎥⎥⎦

{Δ𝜎x} =

⎧⎪⎨⎪⎩

Δ𝜎11
Δ𝜎22
Δ𝜎12

⎫⎪⎬⎪⎭
;

�
Ck

�
=

⎡⎢⎢⎢⎣

2𝜇k + 𝜆

�
1 −

𝜆

2𝜇k+𝜆

�
𝜆

�
1 −

𝜆

2𝜇k+𝜆

�
0

𝜆

�
1 −

𝜆

2𝜇k+𝜆

�
2𝜇k + 𝜆

�
1 −

𝜆

2𝜇k+𝜆

�
0

0 0 𝜇k

⎤⎥⎥⎥⎦

[R] =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0
1

2

⎤
⎥⎥⎦
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3.3 � Homotopy transformation

To avoid the decomposition of the tangent matrix to each 
time step, we use an homotopy transformation by introduc-
ing, in the problem (20), an arbitrary matrix [K∗] and an arti-
ficial parameter “a” under the following form:

where {Δ�(a)} and the others are new unknowns of the 
problem (22) such that if a = 0 it is null and if a = 1 it coin-
cides with the solution of the problem (20), the quantities 
̄̇Enl
x
(a), �nl

x
(a), � nl

x
(a), �nl

x
(a), MUnl

x
(a), {�nl

x
(a)} and Qvnl

x
(a) 

are the quadratic forms.

3.4 � Development in Taylor series

The unknown of artificial problem (22) is sought here as 
developments in Taylor series truncated at order p with 
respect to homotopy parameter “a” in the following form:

The developments in Taylor series (23) are introduced 
into the equations to be solved and by equating like pow-
ers of “a”, the nonlinear problem (22) is transformed into 
a sequence of linear ones. When the problem contains 
soft nonlinearity which is quadratic with respect to the 

(22)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[K∗]{Δ𝜒(a)} + a([Kk
T
] − [K∗]){Δ𝜒(a)} + aΔt{FQ({Δ𝜒(a)}, {Δ𝜒(a)})} = aΔt{Fk}

{ΔĖx(a)} = [B]{Δ𝜒m(a)}

2 ̄̇𝜖k
x
Δ ̄̇Ex(a) =

4

3

t{𝜖̇k
x
}[R]{ΔĖx(a)} +

̄̇Enl
x
(a)

Tk
x
dΔ𝛬x(a) = A𝛼k

x
dΔTx(a) + 𝛬nl

x
(a)

̄̇𝜖k
x
dΔ𝛤x(a) = (n − 1)𝛾k

x
dΔ ̄̇Ex + 𝛤 nl

x
(a)

Δ𝜙x(a) = 2 ̄̇𝜖k
x
Δ ̄̇Ex(a) + 𝜙nl

x
(a)

ΔMUx(a) =
K

3
(𝛼k

x
Δ𝛤x(a) + 𝛾k

x
Δ𝛬x(a)) +MUnl

x
(a)

{Δ𝛴x(a)} = [Ck]{ΔĖx(a)} + 2ΔMUx{𝜖̇
k
x
} + {𝛴nl

x
(a)}

ΔQv
x
(a) =

3𝛽

Cp

(𝜇k
x
Δ𝜙x(a) + 𝜑k

x
ΔMUx(a)) + Qvnl

x
(a)

(23)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{Δ𝜒} = a{Δ𝜒1} + a2{Δ𝜒2} +… + ap{Δ𝜒p}

{ΔĖx} = a{ΔĖ1} + a2{ΔĖ2} +… + ap{ΔĖp}

Δ ̄̇Ex = aΔ ̄̇E1 + a2Δ ̄̇E2 +…+ apΔ ̄̇Ep

Δ𝛬x = aΔ𝛬1 + a2Δ𝛬2 +⋯ + apΔ𝛬p

Δ𝛤x = aΔ𝛤1 + a2Δ𝛤2 +⋯ + apΔ𝛤p

Δ𝜙x = aΔ𝜙1 + a2Δ𝜙2 +⋯ + apΔ𝜙p

ΔMUx = aΔMU1 + a2ΔMU2 +⋯ + apΔMUp

{Δ𝛴x} = a{Δ𝛴1} + a2{Δ𝛴2} +⋯ + ap{Δ𝛴p}

ΔQv
x
= aΔQ1 + a2ΔQ2 +⋯ + apΔQp

unknown {�(a)}, the use of developments is relatively sim-
ple and easy. The linear problems obtained at each order of 
truncation can be written:

where {(.)nl
j
} are the second member vectors depending of 

terms of the lower orders of Taylor series. The previous lin-
ear problems have all the same tangent matrix which is 
defined by the arbitrary matrix [K∗]. With this technique a 
part of the nonlinear solution branch can be computed.

(24)
Order 1:

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[K∗]{Δ𝜒1} = Δt{Fk}

{ΔĖ1} = [B]{𝜒1}

Δ ̄̇E1 =
2

3 ̄̇𝜖k
x

2t{𝜖̇k
x
}[R]{ΔĖ1}

Δ𝛬1 =
1

Tk
x

A𝛼k
x
ΔT1

Δ𝛤1 =
1

̄̇𝜖k
x

(n − 1)𝛾k
x
Δ ̄̇

1E

Δ𝜙1 = 2 ̄̇𝜖k
x
Δ ̄̇E1

ΔMU1 =
K

3
(𝛼k

x
Δ𝛤1 + 𝛾k

x
Δ𝛬1)

{Δ𝛴1} = [Ck]{ΔĖ1} + 2ΔMU1{𝜖̇
k
x
}

ΔQ1 =
3𝛽

Cp

(𝜇k
x
Δ𝜙1 + 𝜑k

x
ΔMU1)

(25)

Order j, 2 ≤ j ≤ p:

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[K∗]{Δ𝜒j} =
�
[K∗] − [Kk

T
]
�
{Δ𝜒j−1} + Δt{Fnl

j
}

{ΔĖj} = [B]{Δ𝜒j}

Δ ̄̇Ej =
2

3 ̄̇𝜖k
t{𝜖̇k

x
}[R]{ΔĖj} +

̄̇Enl
j

Δ𝛬j =
A

Tk
x

𝛼k
x
ΔTj + 𝛬nl

j

Δ𝛤j =
1

̄̇𝜖k
x

(n − 1)𝛾k
x
Δ ̄̇Ej + 𝛤 nl

j

Δ𝜙j = 2 ̄̇𝜖k
x
Δ ̄̇Ej + 𝜙nl

j

ΔMUj =
K

3
(𝛼k

x
Δ𝛤j + 𝛾kΔ𝛬j) +MUnl

j

{Δ𝛴j} = [Ck]{ΔĖj} + 2ΔMUj{𝜖̇
k
x
} + {𝛴nl

j
}

ΔQj =
3𝛽

Cp

(𝜇k
x
Δ𝜙j + 𝜑k

x
ΔMUj) + Qnl

j
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3.5 � Continuation procedure

To determine the whole nonlinear solution, a continuation 
procedure based on the developments in Taylor series has 
been proposed in [5]. The key point is to define the validity 
range of the developments in Taylor series (23). The defini-
tion of the validity range of the Eq. (23) is easily obtained 
by requiring that the difference between two developments 
in Taylor series solutions (23) at consecutive orders remains 
smaller at the end of the step than a chosen parameter toler-
ance “�”. Hence, the maximum value “amax of a homotopy 
parameter “a” can be defined with the following equation [5, 
12–15]:

For unsteady problems, the parameter “amax” which 
depends of time allows us to determine the maximum time 
“tmax” of validity of the series which is defined by the fol-
lowing inequality:

The solution of the problem (14) is obtained by writing:

This maximum time will be considered later as an initial 
condition for the next step of the continuation procedure. 
The whole solution of the problem (20) is determined 
branch by branch [20].

4 � Numerical application

In this section, we present a numerical analysis to dem-
onstrate the efficiency of the algorithm derived from our 
numerical modeling for the simulation of friction stir weld-
ing. The area affected thermo-mechanically is assumed 
small compared to the area occupied by the welded plates. 
This area is considered as an assembly of two holed plates 
which have the shape of a half-disc (see Fig.  1a). These 
circular plates of interior radius R1 = 1.5 mm and exterior 
radius R2 = 6 mm, respectively, are made of a visco-plastic 
material of aluminum alloy AA7075. The interior radius 

(26)amax =

⎛⎜⎜⎝
�
��{Δ�1}

��
���{Δ�p}

���

⎞
⎟⎟⎠

�
1

p−1

�

(27)amax ≥ 1

(28)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{Xk+1} = {Xk} + {Δ𝜒(a = 1)}

{𝜖̇k+1
x

} = {𝜖̇k
x
} + {ΔĖx(a = 1)}

̄̇𝜖k+1
x

= ̄̇𝜖k
x
+ Δ ̄̇Ex(a = 1)

𝛼k+1
x

= 𝛼k
x
+ Δ𝛬x(a = 1)

𝛾k+1
x

= 𝛾k
x
+ Δ𝛤x(a = 1)

𝜑k+1
x

= 𝜑k
x
+ Δ𝜙x(a = 1)

𝜇k+1
x

= 𝜇k
x
+ ΔMUx(a = 1)

{𝜎k+1
x

} = {𝜎k
x
} + {Δ𝛴x(a = 1)}

qk+1
v

= qk
v
+ ΔQv

x
(a = 1)

R1 corresponds here to the radius of the welding tool. The 
mechanical data used in this application are: for circular 
plates; k = 2.69 1010 N mm−2, A = −3.3155, n = 0.1324, 
� = 2780 kg∕m3, Cp = 920 J∕kg K and kc = 140 W∕m K 
[3] and for welding tool; �t = 7800 kg∕m3,  

(a)

(b)

Fig. 1   Data of considered example

Table 1   Influence of the truncation order p on the average validity 
range t

max
 and number of steps of the proposed algorithm in the time 

range [0, 0.7 s].

Truncation order p 7 10 15 20

Average validity range t
max

 (s) 0.0175 0.0185 0.0209 0.0209
Number of steps 46 43 39 39



891Engineering with Computers (2017) 33:885–895	

1 3

Cpt
= 450 J∕kg K and kct = 36 W∕m K. The initial and 

boundary conditions adopted in this example (see Fig. 1a) 
are given by:

where � = 20 rad∕s is the rotational speed of the welding 
tool, N is the normal to the circular contour of radius R2,  
Ta is the ambient temperature taken equal to 300 K and 
h = 1000 W∕m2 K is the heat transfer coefficient.

The analysis is made in the time range [0, 0.7 s] with 
a time step Δt = 10−4 s for the Euler scheme. The size of 

(29)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(x, y, t) = −
√
x2 + y2𝜔 sin(𝜔t) for x2 + y2 ≤ R2

1
and ∀ t ≥ 0

v(x, y, t) =
√
x2 + y2𝜔 cos(𝜔t) for x2 + y2 ≤ R2

1
and ∀ t ≥ 0

u(x, y, t) = 0 for x2 + y2 = R2
2

and ∀ t ≥ 0

v(x, y, t) = 0 for x2 + y2 = R2
2

and ∀ t ≥ 0

−kc
𝜕T(x,y,t)

𝜕N
= h(T(x, y, t) − Ta) for x2 + y2 = R2

2
and ∀ t ≥ 0

u(x, y, t) = 0 for R2
1
< x2 + y2 < R2

2
and t = 0

v(x, y, t) = 0 for R2
1
< x2 + y2 < R2

2
and t = 0

T(x, y, t) = 300 K for 0 ≤ x2 + y2 ≤ R2
2

and t = 0

the influence domain hI is taken equal to 3dr with dr being 
the inter-point distance taken equal to 3.7510−4 m and the 
weight function is chosen as:
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Fig. 2   Evolution of u and v components of the velocity vector 
according to the time t at the registration points (1) and (2) presented 
in Fig. 1b
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Fig. 3   Temporal evolution of the temperature T at the registration 
points (1) and (3) presented in Fig. 1b

Fig. 4   Registration sections (A − A) and (B − B)
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where r =∥ x − xm ∥ ∕hI, c = 0.2 and q = 1. With these 
data, the area occupied by the plates which are represented 
by colors blue and red, respectively and the welding tool is 
replaced by 846 points (see Fig.  1b). The pre-conditioner 
matrix [K∗] is taken equal to the tangent matrix [Ktmax

T
] eval-

uated at the started time of each step.
In this application, we will discuss the influence of the 

truncation order p on the maximum time tmax during a step 
of the continuation technique. The Table 1 shows that when 
the truncation order p increases the size of the average 
validity range tmax increases and stabilizes from the trunca-
tion order p = 15 for a fixed tolerance parameter � = 10−6. 
Similarly, if we increase the order of truncation the number 
of steps of the proposed algorithm decreases and stabilizes 
from the order p = 15 (see Table 1).

After these numerical tests we choose thereafter 
the truncation order p = 7 and the tolerance parameter 
� = 10−6 for the proposed algorithm and the tolerance 

(30)w(r) =

{
e
−(

r

c
)2q

if r ≤ 1

0 if r > 1 parameter � = 10−6 for the iterative method. The obtained 
solution is compared with that obtained by the conventional 
method using the Euler scheme coupled with an iterative 
method [21] similar to that used in various areas of phys-
ics [7], it is described in [10]. In this iterative method,the 
convergence is evaluated by assuming that the relative dif-
ference between two consecutive iterations is less than a 
given tolerance parameter. The two plates are stained with 
the colors blue and red, respectively, to show the material 
mixing.

In Fig. 2, we plot the evolution of u and v components 
of the velocity along the time axis t at points (1) and (2) 
near the tool (see Fig. 1b), obtained by the proposed algo-
rithm and the iterative method. We remark that the two 
solutions are confounded. It is worth noting that the solu-
tion obtained by the proposed algorithm requires 46 steps 
of continuation (46 inversions of the matrix [K∗]), whereas 
that obtained by the iterative method requires 15,000 inver-
sions of matrix [K∗].
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Fig. 5   Evolution of u and v components of the velocity vector 
according to the registration sections (B − B) and (A − A), respectively

−6 −4 −2 0 2 4 6

x 10−3

330

332

334

336

338

340

x(m)

T
(
K
)

Iteratif algorithm
Proposed algorithm

(a)

(b)

Registration section (A−A) or (B −B)

Material mixing state

Fig. 6   Evolution of the temperature T along the registration section 
(A − A) and material mixing state at time t = 0.01 s.
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Also, the Fig.  3 represents the evolution of the tem-
perature T along the time axis t at points (1) and (3) (see 
Fig.  1b). The solutions obtained by the two algorithms 
are in good agreement. From this figure, we see that the 
temperature saved at point (1) is greater than that saved 
at point (3). This is due to the deformations which are 
stronger near the welding tool.

Thereafter, we proceed to make the registration sections 
of the components of the velocity and temperature on the 
lines y = 0, x ∈ [−R2,R2] (A − A) and x = 0, y ∈ [−R2,R2]

(B − B) (see Fig. 4).
The Fig. 5 shows the evolution of u and v along the hori-

zontal and vertical sections and the comparison between 
the proposed algorithm and the iterative algorithm at time 
t = 0.7s. One can observe that the two algorithms are in 
good agreement.

The Figs. 6, 7, 8 and 9 show the evolution of tempera-
ture T along the horizontal section or vertical section and 
the state of material mixing at times t = 0.01 s, t = 0.3 s

, t = 0.5 s and t = 0.7 s, respectively. From these figures, 

we remark that the material flow (deformation) is circu-
lar about the tool because the mixing process is controlled 
only by rotating speed.

The Fig. 10 shows the temperature distribution T at time 
t = 0.001 s and t = 0.7 s, respectively.

The Fig.  11 illustrates the temperature distribution 
in the welded plate and in the considered tool for times 
t = 0.05 s and t = 0.08 s. The temperature distribution is 
symmetric because the heat generation near the tool dur-
ing the mixing process is dominated by rotating speed of 
the tool.

5 � Conclusion

In this work, we have used the high order algorithm for 
the simulation of mechanical–thermal material mixing 
observed during the FSW process in the bi-dimensional 

−6 −4 −2 0 2 4 6

x 10−3

590

592

594

596

598

600

602

x(m)

T
(
K
)

Iteratif algorithm
Proposed algorithm

(a)

(b)

Registration section (A−A) or (B −B)

Material mixing state

Fig. 7   Evolution of the temperature T along the registration section 
(A − A) and material mixing state at time t = 0.3 s.
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case. This algorithm combines the high order implicit 
technique based on developments in Taylor series and 
meshless method based on MLS. A mechanical–thermal 
formulation is used under a strong form. The obtained 
results are convincing compared to the iterative method. 
The used algorithm requires no correction and one inver-
sion of the iteration matrix allows us to get a good part 
of the solution. The key points in this high order implicit 
algorithm are, first a high order solver based on develop-
ments in Taylor series, second the possibility of choos-
ing the tangent matrix [K∗] which limits the number of 
matrices to be triangulated. Let us recall that the used 
algorithm solves the nonlinear visco-plastic problem with 
a high order predictor without any correction. The used 
algorithm can easily be adapted to other nonlinear prob-
lems. This comparison confirms the robustness, accu-
racy and efficiency of the algorithm. Compared to the 
iterative method, the algorithm is found competitive in 
terms of computational cost versus accuracy, and benefit 
from a simple implementation. This work is currently in 
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Fig. 10   Temperature distribution at times t = 0.001 s and t = 0.7 s
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progress to other application fields as the three-dimen-
sional mixing process.
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