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model has strong potential to indirect prediction of BB with 
high degree of accuracy. The R2 equal to 0.922 suggests 
the superiority of the PSO-ANFIS model in predicting BB, 
while this value was obtained as 0.857 for MLR model.
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1  Introduction

Blasting operation is one of the most widely methods to 
remove the rock mass in open-cast mines. Although, the main 
goal of blasting is rock fragmentation, only 20–30 % of the 
produced energy is applied for this goal and the remained 
energy is dissipated to create environmental side effects 
such as ground and air vibration, back-break (BB) and fly-
rock [1–6]. BB has several adverse effects such as rock mine 
wall instability, poor fragmentation and high dilution [7–9]. 
Therefore, precise prediction of BB is an important criterion 
for restricting the environmental effects of blasting. Based on 
literature, the effective parameters on the BB can be divided 
into two main groups: blast design parameters and rock mass 
properties. Blast design parameters or controllable param-
eters can be changed by the blasting engineers [10–13]. The 
burden, spacing, stemming, type of explosive material, blast-
hole diameter and depth, powder factor and sub-drilling are 
all controllable parameters. Some of the controllable param-
eters are displayed in Fig. 1. In the second group, rock mass 
properties or uncontrollable parameters, such as tensile and 
compressive strength of rock, cannot be changed by the 
blasting engineers [14, 15]. Based on previous relative sur-
veys, various models e.g., the genetic programing (GP), the 
artificial neural network (ANN), the support vector machine 
(SVM), the adaptive neuro-fuzzy inference system (ANFIS), 
the multiple regression (MR) and the Monte Carlo (MC) 
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simulation were developed to predict blast-induced BB. 
Esmaeili et al. [9] developed ANN, ANFIS and MR to pre-
dict blast-induced BB in Sangan iron mine, Iran. They indi-
cated that ANFIS can is a more precise model than ANN 
and MR. A comprehensive study for the prediction of BB in 
Soungun iron mine, Iran, was presented by Khandelwal and 
Monjezi [10] using SVM and multivariate regression analy-
sis (MVRA). Based on their results, the SVM with R2 = 0.98 
can predict BB better than MVRA with R2 =  0.89. In the 
other study, ANN and regression model were established to 
predict BB in the study conducted by Monjezi et  al. [11]. 
They used ten parameters, i.e., burden, spacing, bench height, 
uniaxial compressive strength, powder factor, water content, 
blast-hole diameter, charge per delay, stemming, and specific 
drilling as input parameters. Their results demonstrated capa-
bility of the ANN in predicting the BB compared to regres-
sion model. Also, they concluded that the burden was the 
most influencing parameter in the studied case. Ghasemi et al. 
[16] employed ANFIS and regression tree (RT) for BB pre-
diction. Their datasets were collected from Sungun Copper 
Mine (SCM), in Iran. Finally, it was found that the ANFIS 
can be performed for the BB prediction with greater degree 
of confidence in comparison with RT. In the other research at 

Sungun copper mine, Shirani Faradonbeh et al. [13] proposed 
GP and non-linear multiple regression to predict BB. Based 
on their results, GP can be introduced as a powerful tool in 
the field of BB prediction. Table 1 gives recently developed 
models and their input parameters for estimating BB. In this 
paper, a new combination of ANFIS and particle swarm opti-
mization (PSO) is proposed to develop a powerful model 
for prediction of BB at Shur river dam, Iran. To demonstrate 
applicability of the proposed PSO-ANFIS model, multiple 
linear regression (MLR) was also developed and then, a com-
parison was made between the obtained results. Note that, the 
PSO-ANFIS model has been proposed for predicting aims in 
several areas of research (e.g. [17, 18]). Nevertheless, as far 
as authors know, the PSO-ANFIS is a new predictor in the 
field of BB prediction.

2 � Materials and methods

2.1 � ANFIS model

The ANFIS, as a unified prediction model, was first introduced 
by Jang [19] and utilizes benefits of both ANN and fuzzy 

Fig. 1   Several controllable 
parameters of blasting
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inference system (FIS) techniques in a hybrid model. The 
advantage of FIS are capability of decision-making, despite 
the dominant uncertainty, incomplete and inaccuracy of real-
world problems [20, 21]. Also, ANN algorithm is capable to 
adapt its abilities of learning. The ANFIS applies a hybrid 
learning model including gradient descent and least-squares 
algorithms. The application of ANFIS model to estimate the 
environmental side effects induced by mine blasting, is inves-
tigated in some studies [22–27]. The results demonstrated that 
the ANFIS is an acceptable and reliable model in this field.

Figure 2 shows the ANFIS architecture with two inputs 
and five layers. In this structure, the Sugeno fuzzy type is 
used as FIS. Two rules of fuzzy “if–then” can be presented 
as follows [28]:

where p1, q1, r1, p2, q2, r2 are the function parameters 
of output (f). Also, A and B are specified as the member-
ship functions for inputs (x and y). As it can be seen that in 
Fig. 2, a five-layer ANFIS with one output and two inputs 
can be explained in the following lines [29–31]:
Layer 1 (fuzzification layer) all nodes are considered as an 
adaptive node.
Layer 2 (product layer) calculation of the firing strength.
Layer 3 (normalized layer) the normalization is done 
according to Eq. 3.

(1)Rule 1 : If x is A1 and yis B1 then f1 = p1x + q1y + r1

(2)Rule 2 : If x is A2 and y is B2 then f2 = p2x + q2y + r2

Table 1   Recently-developed models and their input parameters for estimating BB

HL hole length, S spacing, B burden, ST stemming, SC specific charge, SD specific drilling, SVM support vector machine, C charge per delay, D 
hole diameter, HD hole depth, RD rock density, B/S burden to spacing, N number of row, GA genetic algorithm, RMR rock mass rating, SD sub-
drilling, FIS fuzzy interface system, GP genetic programming

References Technique Input parameter No. of dataset R2

Monjezi et al. [48] GA-ANN D, L, B, S, ST, SC, SD, C, RMR 195 0.96

Esmaeili et al. [9] ANN, ANFIS SR, ST, SC, RD, N, CLR, S/B 42 ANN = 0.92
ANFIS = 0.96

Mohammadnejad et al. [8] SVM B, S, L, SD, ST, SC 193 0.92

Sayadi et al. [49] ANN B, S, L, ST, SC, SD 103 0.87

Ebrahimi et al. [8] ANN B, S, ST, L, SC 34 0.77

Shirani Faradonbeh et al. [13] GP B, S, ST, SC, SR 175 0.98

Fig. 2   An ANFIS architecture (Jang et al. [30])
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Layer 4 (defuzzification layer) each node is an adjustable 
node with the following node function:

In Eq. 4, wi is output of the third layer. Also, {pi, qi, ri} 
are the parameter sets of w̄i’s node.
Layer 5 (output layer): system output is generated through 
sum of the incoming signals (see Eq.  5). As shown in 
Fig. 1, there is only one node in this structure.

2.2 � Particle swarm optimization (PSO)

Particle swarm optimization as a population based algo-
rithm, was introduced by Kennedy and Eberhart [32]. The 
principal of the PSO are the social behavior and cognitive 
of swarm. The PSO has some advantages, namely the fol-
lowing [33–37].

1.	 Particle swarm optimization is a fast and easy algo-
rithm to understand and implement.

2.	 Particle swarm optimization is an efficient optimiza-
tion technique to maintain the diversity of the swarm.

3.	 In PSO, there are fewer parameters to adjust.

The PSO consists of a swarm of particles that search 
for the best position, including the best personal (pbest) 
and global (gbest) positions, based on its best solution [38, 
39]. In the other words, during each iteration, each particle 
moves in the direction of its best pbest and gbest positions.

The velocity and position of a particle during its moving 
process can be formulated as follow:

•	 V  and X represent current velocity and position of parti-
cles, respectively.

•	 Vnew and Xnew represent new velocity and position of 
particles, respectively.

•	 C1 and C2 are two positive acceleration constants.
•	 w represents the inertial weight
•	 r1 and r2 represent the random numbers in (0, 1)

Learn more about the PSO can be found in many studies 
(e.g. [40, 41]). In the past few years, many attempts have been 
done to highlight the application of PSO for solving problems 

(3)O3,i = w̄i =
wi

w1 + w2
i = 1, 2.

(4)O4,i = w̄ifi = w̄i(pix + qiy+ ri).

(5)O5,i = overall output =
∑

i

w̄ifi =

∑

i wifi
∑

i wi

; i = 1, 2

(6)
Vnew = w× V + C1 × r1(pbest − X)+ C2 × r2(gbest − X)

(7)Xnew = X + Vnew

of rock and geotechnical engineering. Day by day the num-
ber of researches being interested in PSO increases rapidly. 
For instance, Kalatehjari et  al. [42] used PSO and conven-
tional methods to predict slope stability. They concluded that 
the PSO could perform better than the conventional methods 
individually. A combination of PSO and ANN for prediction 
of the ultimate bearing capacity (Qu) was proposed by Jahed 
Armaghani et  al. [43]. They indicated the proposed PSO-
ANN model can be used successfully for prediction of Qu. 
Tonnizam Mohamad et al. [44] developed PSO-ANN model 
to predict the unconfined compressive strength (UCS) of soft 
rocks. Their result showed that the PSO can be used as a pow-
erful algorithm to optimize the ANN.

3 � Case study

The field study was conducted at Shur river dam region in 
Iran which situated near Sarcheshmeh copper mine. The 
Shur river dam is situated in the south of province Ker-
man, between 30°1′48″ latitudes and 55°51′47″ longitudes 
(see Fig. 3). Two mines, i.e., main and second mines were 
extracted to construct the Shur river dam. The mentioned 
mines were in the vicinity of the dam and drilling and blast-
ing method was used in the extracting process. Wagon Drill 
Machine and ammonium nitrate fuel oil (ANFO) were used 
for drilling and blasting processes, respectively. In addition, 
the blast-holes were stemmed with fine gravels. As sug-
gested above, BB is one of the most undesirable by-products 
of blasting. So, an extensive research program was carried 
out to predict blast-induced BB in the Shur river dam. In 
this regard, a total number of 80 blasting events were con-
sidered and the values of BB were measured. IN addition, 
the values of several influential parameters on the BB, i.e., 
burden (B), spacing (S), stemming (ST) and powder factor 
(PF) were measured. In this regard, B, S and ST were meas-
ured by a tape meter. The PF was also obtained by division 
of the mean charge per blast-hole on the blast volume (bur-
den ×  spacing ×  bench height) [12, 14]. To measure the 
BB, the horizontal distance between the pre-blast surveyed 
position of the last row of blast-holes and the crack with the 
maximum separation (critical crack) was considered as the 
BB, as suggested by Sari et al. [12]. Table 2 summarizes the 
range of measured parameters in this study. Furthermore, 
Figs. 4, 5, 6, 7 and 8 depict the frequency distributions of 
the B, S, ST, PF and BB, respectively.

4 � Prediction of BB

To develop the PSO-ANIFS and MLR models, the data-
sets have been divided into the following two groups: (1) 
training datasets. This is used to develop the mentioned 
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models. In this study, 80  % of whole datasets (64 of 80 
datasets) were used as training dataset; (2) testing dataset. 
This is used to verify the developed models. The remain-
ing 16 datasets have used as testing dataset. Using 80 and 

20 % of whole datasets was recommended by Swingler [45] 
for training and testing purposes, respectively. In modeling, 
four effective parameters on the BB i.e., B, S, ST and PF 
were set as model inputs, while BB was set as model output.

Fig. 3   A view of Shur river dam region

Table 2   The range of measured 
parameters in this research

Parameter Symbol Unit Min Max Mean SD

Burden B m 2.7 4.1 3.5 0.35

Spacing S m 3.4 5.3 4.3 0.46

Stemming ST m 1.8 3.4 2.7 0.4

Powder factor PF gr/cm3 152 217 183 16.36

Back-break BB m 3.8 5.6 4.5 0.35

Fig. 4   Frequency histogram of 
the measured burden
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4.1 � Prediction of BB using PSO‑ANFIS

In this section, a new soft computing-based predictive 
model for predicting the BB is proposed. The proposed 
model is based on PSO and ANFIS models. In fact, the PSO 
optimizes values of ANFIS parameters using a population-
based search. Hence, PSO was applied to train ANFIS for 
determining the optimal values of the ANFIS parameters. 
In the other words, the ANFIS provides the search space 
and employs PSO for finding the best solution by tuning 
the membership functions required to achieve lower error. 
For this goal, root mean square error (RMSE) is utilized as 
fitness function. The proposed PSO-ANFIS model was per-
formed by writing a MATLAB code. In the modeling, B, S, 

ST and PF were set as model inputs, while BB was set as 
model output. Also, 64 and 16 datasets were used for train-
ing and testing aims. One of the most important tasks in 
the PSO-ANFIS modeling is to select the type of member-
ship functions. In the current paper, the Gaussian member-
ship function which has been widely used in many studies, 
was employed. As suggested by many researchers, the main 
PSO parameters include maximum number of particles and 
iterations, initial (Wmin) and final (Wmax) inertia weight, 
Cognitive (C1) and Social (C2) acceleration. To determine 
the optimum values for the mentioned parameters, trial 
and error method was performed in this study. Based on 
the obtained results of trial and error method, the values 
of 50, 1000, 2, 2, 0.9 and 0.5 for the maximum number of 

Fig. 5   Frequency histogram of 
the measured spacing

Fig. 6   Frequency histogram of 
the measured stemming
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particles, maximum number of iterations, C1, C2, Wmin and 
Wmax, respectively, were the best among other utilized val-
ues. More discussions regarding the proposed PSO-ANFIS 
model is given in the Sect. 5.

4.2 � Prediction of BB using MLR

The MLR is one of the most well-known methods to fit a 
linear equation between one or more independent variables 
and one dependent variable. The MLR is widely utilized 
to predict some problems in the field of mining [46, 47]. 
For instance, the application of MLR for BB prediction was 
investigated by Esmaeili et  al. [9]. Based on their results, 
the coefficient of determination (R2) between measured and 

predicted values of BB by MLR was 0.798 that indicated 
an acceptable performance for the MLR. Generally, the 
MLR model can be formulated as follows:

where, Xi(i = 1, . . . , n) and Y denote independ-
ent and dependent variables, respectively. In addition, 
Pi(i = 0, 1, . . . , n) denote regression coefficients. In the 
present paper, MLR was developed to predict BB using 
the same training and testing datasets considering in PSO-
ANFIS model. The developed MLR for BB prediction is 
shown in Eq.  9. It is worth mentioning that the presented 
Eq. 9 was developed using training datasets. Afterwards, the 

(8)Y = P0 + P1X1 + . . .+ PnXn

Fig. 7   Frequency histogram of 
the measured powder factor

Fig. 8   Frequency histogram of 
the measured Back-break



356	 Engineering with Computers (2017) 33:349–359

1 3

performance of the developed equation can be determined 
using testing datasets.

where PF is in terms of gr/cm3. Also, B, S and ST are in 
terms of m. Additionally, Table  3 summarizes statistical 
information regarding the constructed MLR model. More 
discussions regarding the developed MLR equation is given 
in the next section. Note that, MLR was performed using 
statistical software package, Microsoft Excel 2013.

5 � Discussion and conclusion

The aim of this study is to predict the BB induced by blast-
ing operations in the Shur river dam region, Iran, using 
PSO-ANFIS and MLR models. For this aim, 80 blasting 
events were considered and the values of B, S, ST and PF, 
as the most effective parameters on the BB, were measured. 
In the present paper, 80 and 20 % (64 and 16 datasets) of 

(9)
BB = 0.015+ (0.22× B)+ (0.16× S)+ (0.12× ST)

+ (0.015× PF),

the whole datasets were used as training and testing data-
sets, respectively. In the other words, 64 datasets were 
used to train/construct the predictive models, while, the 
remained 16 datasets were used to test the constructed 
models. In the PSO-ANFIS modeling, the ANFIS is opti-
mized by PSO to improve the performance of ANFIS. In 
the current study, the optimum values of PSO parameters 
were determined by trial and error method, as given in 
Table 4. The Gaussian shaped was also considered as the 
membership functions. Performance of models established 
was evaluated using RMSE, coefficient of determination 
(R2) and median absolute error (MEDAE).

where, n denotes number of datasets, xp and xi denote the 
predicted and measured PPV values, respectively. The 
RMSE, R2 and MEDAE equal to 0, 1 and 1 indicate the best 
approximation, respectively. The results of statistical indica-
tors for the MLR and PSO-ANFIS models are summarized 
in Table  5. According to Table  5, When considering the 
obtained results of the R2 for the MLR model, the values of 
0.88 and 0.85 were observed for training and testing data-
sets, respectively, while, the values of R2 for PSO-ANFIS 
model were 0.95 and 0.92 for training and testing datasets, 
respectively. These values demonstrate higher conformity 
of PSO-ANFIS model. On the other hand, when consider-
ing the obtained results of the RMSE for the MLR model, 
the values of 0.11 and 0.16 were observed for training and 
testing datasets, respectively, while, the values of RMSE 
for PSO-ANFIS model were 0.06 and 0.13 for training and 
testing datasets, respectively. These values reveal a higher 
accuracy of PSO-ANFIS model. In addition, Figs.  9 and 
10 show the scatter plots of BB predicted by the MLR and 
PSO-ANFIS models for both training and testing data sets. 
To have a better comparison, the values of predicted and 

(10)MEDAE = median
(

xi − xp
)

(11)R2
=

[
∑n

i=1 (xi − xmean)
2
]

−

[

∑n
i=1

(

xi − xp
)2
]

[
∑n

i=1 (xi − xmean)
2
]

(12)RMSE =

√

√

√

√

1

n
×

n
∑

i=1

[

(

xi − xp
)2
]

,

Table 3   Statistical information for the constructed MLR model

Predictor Coefficient SE t Stat P value

Intercept 0.015 0.17 0.084 0.93

B 0.22 0.06 3.493 0.0008

S 0.16 0.039 4.015 0.0001

ST 0.12 0.037 3.271 0.0016

PF 0.015 0.0009 16.715 5.27E−27

Table 4   The optimum values of PSO parameters

Parameter Value

Maximum number of particles 50

Maximum number of iterations 1000

Initial inertia weight (Wmin) 0.9

Final inertia weight (Wmax) 0.5

Cognitive acceleration (C1) 2

Social acceleration (C2) 2

Table 5   Statistical function 
results for the predictive models

Model Statistical function

R2 RMSE MEDAE

Train Test Train Test Train Test

MLR 0.883 0.857 0.11 0.17 0.1 0.12

PSO-ANFIS 0.958 0.922 0.06 0.13 0.05 0.06
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measured BB are also plotted for all 80 datasets, as shown 
in Fig. 11. From Table 5 and Figs. 9, 10, 11, it can be seen 
that the PSO-ANFIS model predict the blast-induced BB 
more reliably than MLR model. It is worth mentioning that 

developed models in the current paper are specific to Shur 
river dam. The application of these models directly in other 
surface mines is not recommended and some modifications 
are necessary based on blasting and mining conditions.

Fig. 9   Comparison of measured BB and predicted BB by MLR model

Fig. 10   Comparison of measured BB and predicted BB by PSO-ANFIS model

Fig. 11   Comparison of measured BB and predicted BB by MLR and PSO-ANFIS models
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