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obtained results demonstrated that the CART technique is 
more reliable for predicting the peak particle velocity than 
the MR and empirical models and it can be introduced as a 
new technique in this field.
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1 Introduction

Rock breakage through blasting is one of the most impor-
tant activities widely applied in mines, civil and construc-
tion engineering, tunneling and subway construction 
activities because of its economies of scale and higher 
efficiencies. The overall costs of mining, quarrying and 
construction activities are significantly influenced by the 
degree of fragmentation, displacement and looseness of 
the muckpile that has to be transported. In the blasting 
operations, a large amount of explosive energy is utilised 
in creating undesirable environmental impacts like generat-
ing flyrock, blast-induced ground vibrations, air-overpres-
sure, and back-break which can affect the surrounding area 
[1–5]. Among these, the blast-induced ground vibrations 
are recognized as the most undesirable phenomenon which 
may lead to damage the surrounding structures, adjacent 
rock masses, roads, underground workings, slopes, rail-
roads, the existing ground water conduits, and may cause 
irreparable damage to the ecology of the surrounding area 
[6–10].

Upon detonation, the chemical substances in the explo-
sive will undergo transformation into an enormous volume 
of gases having high temperature, heat and pressure. The 
created high-pressure gas travels in an outward direction 
(circular pattern) to the blast hole, crushing and shattering 
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a rule-based method was used to predict the peak particle 
velocity through a database comprising of 51 datasets with 
results of maximum charge per delay and distance from 
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everything in its path. The detonation pressure decays or 
dissipates quickly as the wave front propagates within the 
rock. In the ground adjoining the blast hole, a wave motion 
is produced by the strain waves, propagated as elastic 
waves when the stress wave intensity reduces to the ground 
level and manifests in ground vibrations [6]. 

In this paper, CART approach has been used to predict 
the PPV. In addition, an empirical model proposed by the 
erstwhile United States Bureau of Mines (USBM) [now 
the US Geological Survey (USGS) or National Institute for 
Occupational Safety and Health (NIOSH)] and a multiple 
regression models were proposed to estimate the PPV and 
the obtained results were evaluated in accordance with sev-
eral performance prediction indices.

2  Literature review

Generally, blast-induced ground vibrations can be quanti-
fied through two main factors, namely the frequency and 
peak particle velocity (PPV). Many researchers [6, 11–14] 
have observed that the PPV is used as an index for meas-
uring the ground vibrations as it is an important indicator 
for controlling the structural damage. During past few dec-
ades, many empirical vibration predictor equations have 
been proposed to calculate the PPV produced by a blast 
(e.g., [15–19]) using two factors, namely maximum charge 
per delay and distance from the blast face. As a result, 
these empirical approaches prove inadequate to determine 
blasting safety zones or areas in a mine where high level of 
precision in PPV estimation is required. This might be due 
to incorporating a limited numbers of influential parame-
ters in estimating the PPV (maximum charge per delay and 
distance from the blast face) in these predictors, whereas 
the PPV could also be influenced by numerous other con-
trollable or non-controllable parameters like burden, spac-
ing, stemming and powder factor [2, 6]. 

Apart from empirical predictors, statistical techniques 
have been widely used for PPV predictions (e.g., [8, 20, 
21]). In these techniques, several other input parameters 
related to blast design, rock mass and explosive properties 
were utilized for ground vibration prediction (e.g., [6, 10, 
22, 23]). However, the application of statistical techniques 
is limited to a specific site and/or data and are not generic 
(or universal) in nature [22, 24, 25].

In recent years, soft computing techniques have been 
extensively applied and developed to predict ground vibra-
tions due to blasting operations. Many researchers high-
light the successful use of these techniques in the field of 
ground vibration predictions (1–6; 22–33). For example, 
Khandelwal and Singh [1] examined the empirical predic-
tors and artificial neural network (ANN) model to predict 
the PPV and frequency values obtained from 150 blasting 

events and observed that the ANN results were more accu-
rate compared to many other empirical predictors.  

In another study, Monjezi et al. [26] developed the ANN, 
empirical and statistical-based models for predicting blast-
induced ground vibrations in Siahbisheh pumped storage 
dam, Iran. They used a database comprising 182 datasets 
to predict PPV and concluded that ANN can implement 
better in predicting PPV compared to other proposed mod-
els. Iphar et al. [27] and Jahed Armaghani et al. [28] devel-
oped the adaptive neuro-fuzzy inference system (ANFIS) 
for estimating PPV induced by blasting. A fuzzy inference 
system (FIS) model was proposed by Fisne et al. [29] for 
evaluation and prediction of 33 PPV values obtained from 
the Akdaglar quarry, Turkey. A study by Ghasemi et al. [30] 
proposed  yet another fuzzy model for indirect determina-
tion of PPV using six different controllable input param-
eters. They highlighted the high-performance prediction of 
the fuzzy model in estimating PPV.

Mohamed [24] proposed both ANN and FIS models for 
estimating PPV and reported that FIS approach can pro-
vide slightly higher performance capacity in approximat-
ing the PPV. Based on the blast parameters obtained from 
Bakhtiari Dam, Iran, Hasanipanah et al. [31] introduced 
a support vector machine (SVM) model to estimate PPV. 
Dindarloo [32] developed an SVM model for estimating 
100 PPV values collected from Golegohar iron ore mine in 
Iran. They used 12 model input parameters, both control-
lable and non-controllable, to predict the PPV and found 
that the developed model is a versatile tool for predicting 
PPV. Two hybrid intelligent techniques, namely particle 
swarm optimization (PSO)-ANN and imperialism competi-
tive algorithm (ICA)-ANN, were developed in the studies 
carried out by Hajihassani et al. [33] and Hajihassani et al. 
[23], respectively.

Classification and regression tree (CART) analysis tech-
nique is considered as an innovative, powerful and accu-
rate approach for approximating science and engineering 
problems [34]. CART technique can be defined according 
to a decision tree where several parameters are consid-
ered as inputs of the system to determine the influence of 
them on output(s) of the system. CART is non-parametric 
in nature and is able to handle data with high skew value. 
Additionally, CART technique can be employed using a 
less number of model inputs. This fact makes CART as an 
interesting method for simulation purposes specifically, in 
cases where there are only two or three predictors. This 
approach has successfully been utilized in numerous areas 
of rock mechanics and geotechnical engineering [35–37]. 
Tiryaki [35] and Liang et al. [34] used this method for pre-
dicting strength of the rock and observed that CART is a 
powerful tool for solving rock strength problem. Rock cut-
tability values were simulated using CART approach in an 
investigation carried out by Tiryaki [36]. Henderson et al. 
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[37] developed a CART model for better estimation of soil 
properties. Gandomi et al. [38] suggested this technique for 
assessing post-earthquake soil liquefaction using a compre-
hensive database comprising seismic parameters and soil 
properties.

3  Classification and regression tree (CART)

One of the non-parametric methods that is widely used in 
data mining is the decision trees analyses. The main pur-
pose of decision trees is to create a predictive model using 
independent variable(s) to predict dependent variable(s). 
The decision trees, known as a hierarchical model, is a 
rule-based method that splits the independent variables into 
homogenous domains [39–41], is formed by root, leaves, 
branches and nodes that mimic the natural trees (Fig. 1). 
The scholarly literature suggests that this method has been 
successfully used in decision making, pattern recognition, 
classification and prediction purposes in tandem with other 
complex methods such as ANNs [35]. There are three main 
components in decision trees, namely node, condition and 
production. The nodes comprised decision, chance and end 
nodes. As shown in Fig. 1, ‘A’ represents the decision node, 
‘B, C, D, E, F’ and ‘G’ describe the chance nodes and ‘H, I, 
J’ and ‘K’ signify the end nodes. In the decision tree, each 
node represents a definite characteristic or independent 
input variable. The nodes can be connected quantitative or 
qualitative variables to each other. If the target variable is 
categorical and the tree is used to identify the “class” within 
a target variable, it will be named as classification tree (CT). 
If the target variable is continuous and the tree is used to 
predict target value, it is called as regression tree (RT).

There are several algorithms used to develop a decision 
tree model, namely Chi-square automatic interaction detec-
tion (CHAID) [42], quick, unbiased and efficient statisti-
cal tree (QUEST) [43], classification and regression tree 

(CART) [44], ID3 [45], exhaustive CHAID [46], and C4.5 
[47]. The review of studies carried out by other scholars 
demonstrate that the CART method is one of the most pop-
ular methods in predicting engineering problems. 

Introduced by Breiman et al. [44], CART is a non-par-
ametric method that does not need any initial assumptions 
about the variables and their relationships and it can self 
identify the most significant variables and eliminate non-
significant ones. Another advantage of CART is the ease 
of dealing with the outliers. Outliers can have a negative 
effect on the results of some statistical models such as prin-
cipal component analysis and linear regression. But the 
CART algorithm will easily handle noisy data by isolating 
them in a separate node. In addition, a procedure can be 
applied to remove outliers or using mean, mode or nearest 
neighbor methods in the CART algorithm, to overcome this 
problem. The main features of CART and any decision tree 
algorithm can be described as follows:

•	 application of some rules for splitting data at a node 
based on the value of one variable,

•	 existence of criteria to stop the system which is known 
as production node, and

•	 calculation of predicted values for final nodes.

The process of CART algorithm starts with the selection 
of a variable as root (the node No. 1) of a tree. The pro-
cess is continued by asking a question about the range of 
this variable (having answers of yes or no). According to 
the selected answer, the process is divided by branches into 
sub-nodes. This procedure is continued until stopping crite-
ria (i.e., the maximum tree depth or the minimum values of 
root mean square error for each leaf) is met. At the end, the 
final nodes show the predicted values by the CART model 
[39, 44, 45].

4  Site investigation and data source

The field study was conducted at one of the opencast coal 
mine of Sinagreni Collieries Company Limited (SCCL), 
Telangana, India. The SCCL area geographically lies 
between the north latitude 17°55′50″ to 17°56′25″ and east 
longitude 80°44′45″ to 80°45′30″. The area is mostly cov-
ered by limestone of Pakhals in the western and southern 
parts and slowly grades into the sandstone of Gondwana 
series in northeasterly direction. The other geological units 
found within the project area are Talcher and Barakars. 
Kamthis are observed away from the project area in north-
ern and eastern directions.

The limestone is massive, flaggy and at places striking 
in NW–SE direction, dipping towards NE with dip amount 
varying from 35° to 40°. At the contact zone between 

Fig. 1  Architecture of a simple regression tree
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limestone and sandstone, calaceous beds are observed 
within grades into sandstone. The sandstone is soft and 
coarse grained. The various units of lower Gondwana are 
abutting each other in different directions due to structural 
disturbances in that area.

In general, this area consists of soft soil up to 2 m depth 
followed by medium- to coarse-grained gray sandstone 
overburden along with shale and thick coal bands of vary-
ing thickness of 17–50 m. Thickness of top seam is varying 
from 1.4 to 4.4 m and the bottom seam thickness is vary-
ing from 2.75 to 5.07 m. The partition thickness consists 
of mostly medium-grained gray sandstone and it is varying 
from 4.87 to 13.0 m.

A review of previous studies of ground vibration predic-
tions show that the effects of maximum charge per delay 
(MC) and distance from the blast face (D) on PPV are 
higher than the other controllable and uncontrollable blast-
ing parameters [11, 15–19]. The results of MC and D of 51 
blasting operations were considered as predictors to esti-
mate PPV. Summary of the utilized data with their ranges 
can be seen in Table 1.

5  Model developments for PPV estimation

In this section, model developments of PPV prediction 
using CART, empirical, and multiple regression (MR) 
methods are described. In proposing empirical equation, a 
model recommended by USBM was considered and used. 
In these models, MC (kg) and D (m) were fixed as input 
parameters to estimate PPV resulting from mine blasting.

5.1  CART model

In developing CART model for predicting PPV the 
XLSTAT V.15 software was used. At first, data were 
divided into training and testing datasets. Training datasets 
were used for the purpose of model development whilst 
testing datasets were applied for the purpose of evaluation 
of the developed model. In this study, 70 % (36 datasets) 
and 30 % (15 datasets) of whole datasets were utilized ran-
domly for training and testing purposes, respectively, as 
suggested by Nelson and Illingworth [48].

In the next step, training datasets were introduced to the 
software. To obtain CART parameters and subsequently an 
optimal regression tree with high degree accuracy, a trial-
and-error procedure was used. The minimum number of 

parent size is the minimum number of objects that a node 
must contain to split. Moreover, the minimum number of 
son size is the minimum number of objects. Each created 
node must be able to be split into two different nodes, so 
the minimum number of parent size and son size was fixed 
as 2 and 1, respectively. There are also two other control-
ler parameters, namely number of intervals and maximum 
tree depth. For the first controller parameter, the maximum 
number of intervals generated during the discretization 
of the quantitative explanatory variables is selected using 
univariate partitioning by the Fisher’s method. The param-
eter related to the maximum depth of regression tree can 
control redundancy and complexity of the problem. The 
XLASTAT software suggests ranges of (1–10) and (2–10) 
for number of intervals and maximum tree depth, respec-
tively. According to the trial-and-error procedure, the dif-
ferent combinations of these parameters were examined 
and finally, a CART model with the values of 9 and 4 were 
obtained for number of intervals and maximum tree depth, 
respectively.

To evaluate performance of the constructed CART mod-
els, coefficient of correlation (R2) and root mean square 
error (RMSE) were used. A predictive model is excellent 
if values of 1 and 0 are obtained for R2 and RMSE, respec-
tively. Tree structure of the proposed CART model is shown 
in Fig. 2. This tree has 19 nodes. The process of calculating 
PPV by this regression tree is very simple. For example, 
suppose a dataset with values of 160, 760 and 0.851 for 
MC, D and PPV, respectively, the tree starts with select-
ing D as the root node. By considering above assumptions, 
with following routes of D ≥ 245, D ≤ 420, D ≥ 622.5 and 
MC ≥ 86.9, and eventually, the system reaches to node No. 
19 with predicted PPV value of 1.002 mm/s. Some of the 
constructed rules for the developed CART model in pre-
dicting PPV values are presented in Table 2. More discus-
sions and details regarding the developed CART model will 
be given later in this paper. 

5.2  Empirical model

As mentioned earlier, many researchers have developed 
empirical predictor equations for estimating peak particle 
velocity due to blasting (e.g., [15, 18, 19]). The most popu-
lar one is the model proposed by USBM [15]. In this study, 
USBM model was used to propose a PPV empirical model. 
In the USBM model, a scaled distance (SD) factor was cal-
culated based on the following equation:

Table 1  Summary of the data 
used in the modeling and their 
categories

Parameter Unit Symbol Category Min Max Mean

Maximum charge per delay kg MC Input 68.8 253.1 167.6

Distance from the blast face m D Input 105 880 618.9

Peak particle velocity mm/s PPV Output 0.58 15.7 2.07
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where D and MC are distance (m) and maximum charge 
per delay (kg).

Accordingly, the PPV can be calculated using the fol-
lowing equation:

where B and K are site constants and PPV is peak particle 
velocity (mm/s), PPV values can be computed.

(1)SD =
(

D√
MC

)

,

(2)PPV = K(SD)B

Considering the PPV method suggested by USBM and 
using the same training datasets used in the CART technique, 
a formula was developed for estimating PPV as follows:

The PPV model development was achieved using Eq. 1 
which exhibited high correlation with an R2 value equal to 
0.835. In addition, R2 = 0.89 was obtained for testing data-
sets in predicting PPV. These results demonstrate the ability 
of the developed empirical model for PPV estimation. The 
logarithmic relationship between SD and measured PPV 

(3)PPV = 143.28(SD)−1.213

Fig. 2  Tree structure of the pro-
posed CART model to estimate 
PPV

Table 2  Some of the constructed rules for the developed CART model in predicting PPV

Node Predicted PPV Frequency Split variable Rules

Node1 2.07 51

Node2 8.17 6 D If D in [105, 245[then PPV = 8.172 in 11.8 % of cases

Node3 1.25 45 D If D in [245, 880[then PPV = 1.254 in 88.2 % of cases

Node4 2.65 1 MC If MC in [68.8, 104.7[and D in [105, 245[then PPV = 2.650 in 2.0 % of cases

Node5 9.28 5 MC If MC in [104.7, 253.1[and D in [105, 245[then PPV = 9.276 in 9.8 % of cases

Node6 6.77 1 MC If MC in [104.7, 155.8[and D in [105, 245[then PPV = 6.770 in 2.0 % of cases

Node7 9.90 4 MC If MC in [155.8, 253.1[and D in [105, 245[then PPV = 9.903 in 7.8 % of cases

Node8 10.48 3 D If D in [105, 200[and MC in [155.8, 253.1[then PPV = 10.483 in 5.9 % of cases

Node9 8.16 1 D If D in [200, 245[and MC in [155.8, 253.1[then PPV = 8.160 in 2.0 % of cases

Node10 2.79 4 D If D in [245, 420[then PPV = 2.785 in 7.8 % of cases

Node11 1.11 41 D If D in [420, 880[then PPV = 1.105 in 80.4 % of cases

Node12 2.29 2 MC If MC in [68.8, 120[and D in [245, 420[then PPV = 2.290 in 3.9 % of cases

Node13 3.28 2 MC If MC in [120, 225[and D in [245, 420[then PPV = 3.280 in 3.9 % of cases

Node14 1.60 9 D If D in [420, 622.5[then PPV = 1.604 in 17.6 % of cases

Node15 0.97 32 D If D in [622.5, 880[then PPV = 0.965 in 62.7 % of cases

Node16 1.11 4 MC If MC in [68.8, 166[and D in [420, 622.5[then PPV = 1.107 in 7.8 % of cases

Node17 2.00 5 MC If MC in [166, 225[and D in [420, 622.5[then PPV = 2.002 in 9.8 % of cases

Node18 0.609 3 MC If MC in [68.8, 86.9[and D in [622.5, 880[then PPV = 0.609 in 5.9 % of cases

Node19 1.002 29 MC If MC in [86.9, 253.1[and D in [622.5, 880[then PPV = 1.002 in 56.9 % of cases
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values together with their developed equation is shown in 
Fig. 3.

5.3  Multiple regression model

The regression analysis is a statistical tool that is used to 
identify the relationships between variables. Typically, 
researchers attempt to ascertain the causal effect of one var-
iable on another. In multiple regression (MR) techniques, 
the relationship between independent variables or predic-
tors and dependent variable or output is systematically 
determined in the form of a function [49]. This technique 
has been widely applied for approximating many objectives 
in the field of geotechnical engineering [50, 51]. In this 
study, MR was also applied to propose a new equation for 
PPV prediction using the same training and testing data-
sets. In constructing the MR model, the results of MC and 
D were used as model inputs to estimate PPV. The analysis 
of MR equation was conducted with help of statistical soft-
ware package of SPSS version 16 [52]. The developed MR 
equation for estimating PPV is presented as following:

R2 values of 0.580 and 0.870 for model development and 
evaluation, respectively, indicate suitable applicability of 
the proposed MR equation in estimating PPV.

(4)PPV = 0.008×MC− 0.01× D+ 6.901

6  Evaluation of the proposed PPV models

This section presents the evaluation of the developed mod-
els in estimating PPV produced by blasting. In the CART 
modeling procedure, empirical and MR models, 70 and 
30 % of whole datasets (36 and 15 datasets) were assigned 
for model development and evaluation, respectively. In 
these models, both parameter, i.e., MC and D were set as 
inputs, while PPV was set as system output. Three statisti-
cal functions, namely RMSE, variance account for (VAF) 
and R2 were computed to control prediction performance of 
the proposed models:

where y, y′ and ỹ are the measured, predicted and mean of 
the y values, respectively, N is the total number of datasets 
and P is the number of predictors.

(5)R2 = 1−
∑N

i=1(y − y′)2
∑N

i=1(y − ỹ)2

(6)VAF = [1−
var(y − y′)

var(y)
] × 100

(7)RMSE =

√

√

√

√

1

N

N
∑

i=1

(y − y′)2

Fig. 3  Logarithmic relationship 
between SD and measured PPV 
values

Table 3  Performance 
prediction of the developed 
models in predicting PPV

Developed model Training Testing

R2 VAF (%) RMSE R2 VAF (%) RMSE

CART 0.90 88.08 0.99 0.92 91.89 0.97

Empirical 0.84 83.22 1.10 0.90 86.94 0.99

MR 0.58 58.01 1.85 0.87 86.94 0.98

Indian standard [11] 0.67 35.62 7.53 0.88 41.76 7.08

Langefors and Kihlstrom [16] 0.83 67.21 6.32 0.88 64.60 6.92
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Theoretically, a predictive model is considered as suita-
ble if the R2 = 1, VAF = 100 and RMSE = 0. The results of 
these statistical functions for the proposed models are given 
in Table 3 and the results summarized confirm that the per-
formance prediction of the CART model is better than MR 
and empirical models. Considering testing datasets, the 
values of R2 (0.92, 0.89 and 0.87), VAF (91.89, 86.94 and 
86.94), and the RMSE (0.97, 0.99 and 0.98) were obtained 
for CART, empirical and MR models, respectively, which 
demonstrate superiority of the developed CART approach 
in approximating PPV.

To validate the proposed models, the models’ per-
formance prediction results were compared with those 
obtained by two other empirical models proposed for esti-
mating the PPV using training and testing datasets [11, 16]. 
Based on the results, the developed models in this study 
(i.e., CART and empirical) work better when compared to 

the other two empirical models proposed by other research-
ers. The relationships between measured PPVs and pre-
dicted PPVs by Indian standard [11] and Langefors and 
Kihlstrom [16] models together with their R2 values for 
training and testing datasets are shown in Figs. 4 and 5, 
respectively. 

For a better comparison, the obtained PPV results (51 
sets) and the measured PPVs are illustrated in Fig. 6. It 
is observed that in most of cases, the values predicted by 
CART model are comparable to the measured and pre-
dicted values by MR and empirical models.

7  Summary and conclusions

In this paper, the application of CART model was used for 
predicting PPV induced by blasting operations in mines. 

Fig. 4  Relationships between predicted PPVs by Indian standard [11] model and measured PPVs for training and testing datasets

Fig. 5  Relationships between predicted PPVs by Langefors and Kihlstrom [16] model and measured PPVs for training and testing datasets
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The paper also examined two other models (i.e., MR and 
empirical) to compare the performance of the CART model. 
For this purpose, a database comprising 51 datasets was 
prepared. In the established database, results of MC and 
D were considered as model inputs for estimation of PPV. 
Using the available datasets, several predictive models with 
different parameters have been developed to predict the 
PPV. The accuracy of the predictive models was evaluated 
using magnitude of three statistical functions (RMSE, VAF 
and R2). Results of these statistical functions demonstrated 
that the CART is a more accurate and applicable model for 
prediction of ground vibration in comparison with the other 
predictive models. R2 equal to 0.89 and 0.92 for training 
and testing datasets, respectively, were obtained by CART 
model, while these values were achieved as 0.83 and 0.89, 
and 0.58 and 0.87 for the developed empirical and MR 
models, respectively. This paper also found that CART as 
a rule-based method can be used as a new tool to aid the 
engineers in PPV estimations in the field.
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