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1  Introduction

Failure mechanisms in rock have been studied since 1960s and 
still continue to be a fascinating topic. Owing to the complex-
ity observed in rock masses due to discontinuities, textural 
distribution and grain size, strength varies drastically. Various 
failure modes have been observed when these complex mate-
rials are used as a construction material. The most commonly 
observed failures result either solely from compression, ten-
sion and shear mode or a combination of any of them due to 
load imposed by the engineering structures [8]. Determination 
of mode of failure provides useful information for the eco-
nomic and safe design of engineering structures [43].

Most of the construction materials have to undergo rigor-
ous testing following certain standards, before being used in 
any design purpose. The need to cater to the specification of 
the standards often makes it very difficult for the engineers 
to obtain the strength parameters in the initial stages of con-
struction. Moreover, these tests are very costly and require 
great precaution and mechanical precision while testing, not 
to mention the time involved from preparation of samples to 
testing [9, 19]. Often, lack of availability of high end instru-
ments and inability to prepare standard samples or even una-
vailability of samples itself can delay the construction activi-
ties. Therefore, an alternate and equally significant method 
has to be used in such cases to determine the strength param-
eters effectively. Previously, several researchers have opined 
the use of various simple and indirect tests like point load 
tests, sound velocity, density, impact strength, hardness, 
slake durability, rebound number and others to determine 
commonly used strength parameters which are difficult to 
determine through standard tests [29, 39, 56].

P-wave velocity is known to show very good correlation 
with a number of intact rock properties such as compressive 
strength, tensile strength, point load index, elastic modulus, 
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density as well as porosity [12, 29, 33, 40, 55, 56, 66]. Sub-
sequently, a number of researchers have investigated the 
effect of different parameters such as specimen length, rock 
fabric, joint roughness, saturation, pH of water, weather-
ing, distribution of micro-cracks, temperature, porosity and 
clay content on P-wave velocity [5–7, 21, 23, 30, 35, 49, 
50, 63]. The advent of new technology in the field of rock 
physics has made the onsite measurement of P-wave veloc-
ity very easy. Therefore, P-wave can be considered as a 
reliable parameter for the estimation of strength parameters 
of intact rocks. Point load index of rocks can be determined 
on any shape of sample which saves us from the toil of 
preparing standard complying samples unlike UCS. Simi-
larly, determination of tensile strength involves small disc 
shaped samples which is easier as compared to UCS, and 
unit weight employs the Archimedes principle for its deter-
mination which is also fairly easy. Considering the ease of 
determination of these parameters (P-wave velocity, Ten-
sile strength, Point load index and Unit weight) over oth-
ers, these are used as the predictors in this study. These four 
easy to determine and simple parameters were considered 
as input parameters to indirectly calculate the compres-
sive and shear strength of the rocks. Moreover, these are 
well-established parameters and well correlated with other 
rock strength parameters. Mishra and Basu [44] performed 
a series of tests on granite, schist and sandstone to obtain 
several parameters like PLI, Schmidt rebound hardness, 
density, VP and block punch index and were able to obtain 
very good correlation with each other.

The increasing use of statistical methods and artificial 
neural network (ANN) in rock mechanics to correlate and 
estimate various parameters in a fast, reliable and economi-
cal way has made them extremely popular among rock 
engineers. Huang and Wanstedt [25] suggest that a neu-
ral network is a good approach for complex mechanisms 
such as those encountered in rock engineering problems, in 
which many factors have their influence on the process as 
well as the result. Most of the rock parameters cannot be 
determined in the field, thus posing an immediate need for 
their reliable prediction from easily determinable param-
eters. In such conditions, indirect methods like ANN and 
statistical methods come handy which are also considered 
as very reliable and accurate tools for prediction of rock 
quality parameters [11, 36, 45, 47, 54].

2 � Methodology

2.1 � Sample preparation

Several rock cores were collected from different parts of 
India, representing a total of eight different rock types, 
namely quartz mica schist, weathered basalt, limestone, 

gneiss, quartzite, dolomite, shale and sandstone. The rocks 
belong to different formations and have been collected from 
surficial level, not more than 20 m depth. Core specimens 
of equal diameter (NX size) and length (2.5 × D) were pre-
pared for all the rock types, corresponding to each test fol-
lowing ASTM standards (Table 1). To remove the effect of 
natural moisture in rocks, all the rock samples were oven 
dried at 105o ± 2 for 24 h. Samples were prepared for the 
laboratory determination of intact properties of uniaxial 
compressive strength (UCS), tensile strength (TS), shear 
strength (SS), point load index (PLI) and density (D) for all 
the rock types following appropriate standards (Table  1). 
Shear strength was determined from the methodology 
adopted by Protodyaknov [52], using cylindrical samples.

2.2 � Failure modes

Several samples of eight different rock types were tested 
under uniaxial compression mode to observe their failure 
patterns. Basu et  al. [8] have studied failure behavior for 
three different rock types under varying failure modes and 
grouped them under six different categories (axial splitting, 
shearing along a single plane, double shear, multiple frac-
turing, along foliation, and Y-shaped). In this study, axial 
splitting is mostly observed for different rock types; how-
ever, multiple fracturing and shearing along a single plane 
are also observed in a few samples like shale and quartz 
mica schist (Fig. 1). Higher strength rocks like gneiss and 
quartzite show multiple fracturing as has also been reported 
in Basu et  al. [8]. In the absence of any predefined weak 
planes in limestones and weathered basalts, axial splitting 
is very common. Failure in quartz mica schist and gneiss 
develops as a function of local foliation planes and fails 
partly along them and partly in other modes. Most of the 
samples obtained are tested in such a manner that they 
are free of any predefined weak planes to reduce the het-
erogeneity. According to Wong et al. [64], failure by axial 
splitting is very common in cylindrical specimens which 
has also been reported by other researchers for different 
rock types like marble [51] and quartzite [18]. Jaeger and 
Cook [27] suggest that shear and wedge-shaped fragments 
under uniaxial compression are a result of end effects of 

Table 1   Procedure used for sample preparation and estimation of test 
results

Parameters Procedure

UCS ASTM D7012 [3]

Tensile strength ASTM D3967 [1]

Shear strength Protodyaknov [52]

Point load Index ASTM D5731 [2]

Unit weight ASTM D7263 [4]
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specimen. Holzhausen and Johnson [24] have analyzed a 
series of mechanism responsible for axial splitting under 
uniaxially loaded cylindrical specimens. Buckling of 
rocks away from internal surface and interaction of open 

fractures with free surface of the specimen are two of the 
common causes for axial splitting in rocks.

2.3 � Ultrasonic velocity measurement

It is a non-destructive technique often used to study 
dynamic properties of rocks. Since this test is easy to 
perform in the field and gives good result in less time, 
it has become one of the most useful tests in geotechni-
cal engineering. The ultrasonic velocity traveling through 
solids depends on the density and elastic characteristics 
of the material. A coupling gel was used to avoid the 
presence of air gaps between contact surface of rock and 

Fig. 1   Common failure modes observed in different rock types

Fig. 2   Set up for ultrasonic wave velocity measurement

Fig. 3   A three-layered ANN structure implemented in this study
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transducers. The factors which influence seismic veloci-
ties in solids vary with lithology, density, shape, size, 
porosity, anisotropy as well as the presence of discon-
tinuities like joints, fractures and bedding planes [31]. 
Sub-axial splitting observed in most rocks suggests that 
the cylindrical specimens were free of any directional 
anisotropies. This helps in obtaining better control and 
reliable values of ultrasonic velocity to be used as an 
input parameter. The P-wave velocities were determined 
by Portable Ultrasonic Non-destructive Digital Indicating 
Tester (PUNDIT) on a cylindrical sample of NX (54 mm) 
size diameter (Fig. 2).

2.4 � Regression analysis

Regression analysis is a statistical tool for estimating 
relationship between variables and predicting unknown 
from known parameters [60, 65]. Depending on the 
complexity and number of data sets, simple or multiple 
regression analysis is chosen. A scatterplot is prepared 
for entire dataset which is very helpful in knowing the 
trend of the variables. Subsequently, curve fitting is 
done which provides two important data. The first is the 
equation of the curve for which linear regression is in 
the form of Y = mX + C, where Y is dependent and X 
is independent variable and m is the slope of the curve. 
The other valuable number is correlation coefficient 
which measures the degree of association of the two 
variables.

2.5 � Frequency distribution

The distribution of data sets can be properly represented 
through frequency distribution plots. This statistical tech-
nique allows users to quantify the data in a more organized 
manner. Normal distribution was used for curve fitting as 
it is the most important and commonly used distribution 
function in geotechnical engineering. It has been observed 
that most natural phenomenon involving many accumulat-
ing factors tends to show normal distribution [20]. A ran-
dom variable X follows a normal distribution if its prob-
ability density function has the form

2.6 � Artificial neural network

ANN is a very intelligent soft computing tool that has 
been used to predict various complex parameters in the 
recent past. It is a neuron-based system that uses its 
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previous learnings from a set of data to assign a reason-
able value to the output parameters for a similar kind of 
new data set. The structure and data processing technique 
of ANN is inspired by the human brain. The configura-
tion of ANN is composed of a highly layered structure 
that constitutes many simple processing elements (called 
neurons) capable of performing highly complex compu-
tations for data processing and knowledge representation 
[38]. The layered structures of the neurons are connected 
to each other and each connection is called as weight [42, 
62]. Many researchers have discussed the working and 
principles of ANN earlier and can be referred [37, 41, 46, 
54].

In the current study, feed-forward back propagation 
network is used which is a multi-layered perception 
network. The back propagation algorithm is selected 
over other algorithm because of its versatility and ease 
of use. A back propagation neural network has at least 
three-layered structure which contains, an input layer, 
one or more hidden layers and an output layer. Such kind 
of network compares the predicted output value with 
the assigned target value and estimates the error associ-
ated with it. With each iteration, it reduces the associ-
ated error and produces a more accurate prediction. De 
Villiers and Barnard [15] concluded that there is no sig-
nificant difference in the performance of three- and four-
layered nets and that the three layered nets are capable 
of better classification. Therefore, the network structure 
employed in the present study consists of three layers. 
Depending on the complexity of the problem, the number 
of neurons in the hidden layer can be varied. The hidden 
layer was assigned a logarithmic sigmoid transfer func-
tion with eight neurons, chosen on the basis of minimum 
root mean square error and the output layer was assigned 
tangent sigmoid transfer function. Gradient Descent 
(TRAINGDX) is employed as the training function. An 
adaptive learning function LEARNGDM is used for the 
learning task. Tensile strength, point load index, unit 
weight and P-wave velocity are taken as the inputs and 
accordingly four input neurons are considered. UCS and 
shear strength are taken as two output parameters and 
two neurons are assigned to them in the output layer. The 
network structure employed is shown in Fig. 3.

The data set is subjected to normalization to get good 
convergence of data. The normalization function used is 
shown in Rafiq et al. [53].

Xnorm =
Xactual − Xmin

Xmax − Xmin
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Fig. 4   Scatter plot of rock quality parameters with their respective sonic velocities
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Table 2   Regression equations obtained from linear curve fitting on 
the scatter plot

Equation Correlation coefficient (R2) RMSE

UCS = 0.0372x − 45.499 0.88 10.81

TS = 0.0054x − 8.3622 0.84 2.03

SS = 0.0097x − 15.099 0.89 2.98

PLI = 0.0015x − 2.0449 0.87 0.51

UW = 6.0858x0.1755 0.53

where Xnorm is the normalized value, Xactual is the actual 
value, Xmax is the maximum value of X in the data set and 
Xmin is the minimum value of X in the data set.

3 � Results and discussion

In this study, simple regression analysis was done to cor-
relate some intact rock parameters with their respective 
ultrasonic velocity. Data from eight different rock types 
were plotted for UCS, tensile strength, shear strength, 
point load index and unit weight to develop a set of 
empirical equations with VP. The rock quality parame-
ters except unit weight show reliable correlation with VP 
indicated by high correlation coefficients. The range of 
ultrasonic velocity encountered in this study varies from 
2000 to 5000  m/s. Gupta and Seshagiri [22] conducted 
a series of tests on three crystalline rocks, viz. granite, 
basalt and quartzite and observed about 98 % reduction 
in strength (both UCS and PLI) and 97  % reduction in 
ultrasonic velocity due to weathering. In this study, four 
rock types of sedimentary origin were used which are 
only slightly weathered. Rocks like shale and few lime-
stone samples showed very low strength possibly due to 
complex diagenetic history and porosity. In addition to 
diagenetic history and porosity, another important factor 
responsible for significant change in the sonic velocity 
in sedimentary rocks is clay content [13, 23, 61]. Pre-
viously, a number of researchers have correlated rock 
strength parameters with VP and suggested linear [28, 
44, 55, 56, 66] as well as non-linear correlation [17, 29, 
34, 39, 48] for different rock types. Inoue and Ohomi 
[26] observed a poor correlation of velocity against den-
sity and UCS for poor strength rocks. However, a lin-
ear correlation showed relatively high reliability in this 
study, notwithstanding the fact that the data were more 
scattered towards higher strength rock. Although other 
curve fitting methods were also checked for the data 
sets, the best correlation was obtained in the case of lin-
ear curve fit (Fig. 4). Dolomite along with few samples 

of quartzite and basalt shows high strength together with 
high VP in this study. Individually, rock strength param-
eters vs VP of dolomitic rocks do not display linear rela-
tionship, probably because of the post-metamorphic 
alteration. The presence of micro-cracks also has a large 
bearing in velocity reduction in hard rocks, especially 
at shallow depth where crack initiation and propaga-
tion are not influenced much by low confinement. Con-
trary to this, Nur and Simmons [50] conducted a series 
of experiments on the effect of saturation and pressure 
on low porous rocks and observed a strong depend-
ency of VP on saturation as well as pressure until very 
low confining pressures of less than 2 kbar. Weathering 
and alteration, bedding planes, texture, density, anisot-
ropy, grain size and shape are identified as important 
parameters known to significantly affect porosity in non-
sedimentary rocks [31]. Except, weathered basalt, all 
non-sedimentary rocks have relatively high strength and 
are also very dense. Clearly, two trends can be seen in 
density vs VP, both linear, but the overall trend deviates 
from linearity (Fig. 4). The regression equation obtained 
by linear curve fitting for different rock quality param-
eters is shown in Table 2, except for unit weight which 
is non-linear.

The frequency distribution of UCS and point load 
index data shows symmetrical nature, which means a 
range of equally well-distributed data is found for these 
parameters (Fig.  5). A near normal distribution was 
also obtained by Yilmaz [68] with data slightly skewed 
towards left for several rock types, while Yesiloglu-
Gultekin et  al. [67] also showed normal distribution 
for UCS with a standard deviation of 25 and a mean 
of 114  MPa for granitic rocks. A number of research-
ers have correlated compressive strength and point 
load index of rocks and noted a linear relationship with 
high correlation coefficient [57, 59]. Bieniawski [10] 
suggested a factor of 24 for the conversion of index to 
strength values for tests conducted on NX size samples. 
However, Chau and Wong [14] suggested that index to 
strength conversion factor depends on compressive to 
tensile strength ratio, Poisson’s ratio, length and diam-
eter of the specimen and the factor 24 is not universal. 
The shear strength, tensile strength and unit weight 
are skewed either towards left or right. Both shear and 
tensile strength have a tendency to show lower val-
ues irrespective of higher values observed in compres-
sion. This also correlates well with the fact that rocks 
have the tendency to fail in tension or shear more easily 
than compression as a result of which tensile and shear 
strength values are on lower side. Most rocks gener-
ally show high density, unless weathered, which results 
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Fig. 5   Frequency distribution plot for the rock quality parameters
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in high observed values of unit weight mostly in the 
range of 24–27 kN/m3. The statistical values like mean, 
median and standard deviation of all the parameters are 
also shown in the Table  3. A large standard deviation 
also indicates a range in the values observed for all the  
parameters.  

For ANN, a total of 79 data were used for the analysis 
out of which 60 data were taken for training and valida-
tion and rest of the data were used to check the accuracy 
of the model. The validation plot shows a gradual fall in 
mean square error with increasing epoch (Fig. 6). The best 
performance is observed at 998 epoch and the validation 
line remains close to the best representing line. Regres-
sion plots for training, testing and validation are shown in 
Fig. 7. All the graphs show a high correlation coefficient 
exhibiting a better predictability of the desired output in 
this study.

The predicted data from ANN were plotted against 
the measured data sets for both the output parameters 
(Fig. 8). It is interesting to note that the results predicted 
through ANN is superior to the linear regression analy-
sis. This has also been reported by a number of research-
ers in the past [16, 32, 57, 58]. Sarkar et  al. [54] con-
ducted a similar study with four different rock types to 
predict UCS and shear strength through ANN by taking 
point load index, VP, slake durability index and density 

as inputs. The results were very promising, showing high 
value of correlation coefficient and very less percentage 
error. Similarly, in this study, correlation coefficient of 
0.98 and 0.97 for both UCS and shear strength, respec-
tively, also shows a better reliability of these strength 
parameters in comparison to statistical analysis. The root 
mean square error (RMSE) for UCS and shear strength 
is 4.16 and 1.52, respectively, which is very insignificant 
and is in agreement with previous studies. A better pre-
diction from ANN gives the confidence that the results 
from this analysis can be applied in different rock engi-
neering problems.

Fig. 7   Plots showing the degree of unity among target and output

Fig. 6   Performance plot of the 
neural network

Table 3   Statistical data for the analyzed data for all the rock quality 
parameters

Strength parameters Mean Median Standard deviation

UCS (MPa) 67.93 68.43 35.33

Tensile strength (MPa) 8.29 7.67 5.26

Shear strength (MPa) 14.62 14.25 9.15

P-wave velocity (m/s) 3061.70 2716.00 887.04

Unit weight (kN/m3) 24.79 25.28 1.59



9Engineering with Computers (2017) 33:1–11	

1 3

4 � Conclusion

In this study, two of the most commonly used rock strength 
parameters, viz. UCS and shear strength were determined 
from simple index tests like PLI, unit weight, tensile 
strength and VP. Regression analysis was used to correlate 
the rock quality parameters with their sonic velocities and 
subsequently develop empirical relations. This was fol-
lowed by application of ANN to predict UCS and shear 
strength by taking other index parameters as input. The fol-
lowing results were obtained:

•	 A series of failure mode is observed under uniaxial 
compression, axial splitting being the most common. 
Failure along single shear plane and multiple fracturing 
is also observed in various specimens of different rock 
types.

•	 A linear correlation is obtained between rock quality 
parameters with VP, except unit weight. The data points 
are more scattered towards the higher strength values 
suggesting poor relationship with sonic velocity. Lin-
ear correlation seems reasonable because of the absence 
of any weak planes like foliation/bedding planes, etc. 
along the loading direction.

•	 Two different trends are observed in unit weight vs VP, 
both linear, but the overall trend is clearly non-linear.

•	 Overall, high correlation coefficients of 0.88, 0.84, 0.89 
and 0.87 for UCS, tensile strength, shear strength and 
PLI, respectively, show good reliability for regression 
analysis.

•	 Frequency distribution plot for all the data sets properly 
fits with normal distribution function with slight skew-
ness. A large standard deviation is observed for almost 

all the parameters suggesting a wide range of strength 
data.

•	 The prediction capability of ANN is better than regres-
sion analysis, also in accordance with previous research-
ers. The relatively high correlation coefficient of 0.98 and 
0.97 for UCS and shear strength, respectively, shows the 
effectiveness of ANN over simple regression analysis.

•	 Overall low RMSE values for both the output param-
eters also suggest that these values can be effectively 
applied in various rock engineering problems with reli-
able confidence.

•	 Limitation: the analysis results are applicable only for 
rocks under very low confinement and free of moisture.

References

	 1.	 ASTM D3967 (2008) Standard test method for splitting tensile 
strength of intact rock core specimens 1. ASTM 20–23

	 2.	 ASTM D5731 (2008) Standard test method for determination 
of the point load strength index of rock and application to rock 
strength classifications. ASTM Int. doi:10.1520/D5731-08.2

	 3.	 ASTM D7012 (2010) Standard test method for compres-
sive strength and elastic moduli of intact rock core specimens 
under varying states of stress and temperatures. ASTM Int. doi: 
10.1520/D7012-10.1

	 4.	 ASTM D7263 (2009) Standard test methods for laboratory deter-
mination of density (unit weight) of soil specimens. ASTM Int. 
doi:10.1520/D7263-09.2

	 5.	 Babuska V, Pros Z (1984) Velocity anisotropy in granodiorite 
and quartzite due to the distribution of microcracks. Geophys J R 
Astr Soc 76:121–127

	 6.	 Balakrishna S (1954) Effect of temperature on ultrasonic velocities in 
some Indian rocks. Proc Indian Acad Sci Sect A 40:125–131

	 7.	 Basu A, Celestino TB, Bortolucci AA (2009) Evaluation of rock 
mechanical behaviors under uniaxial compression with reference 
to assessed weathering grades. Rock Mech Rock Eng 42:73–93

Fig. 8   Observed vs. predicted values of compressive and shear strength obtained from ANN

http://dx.doi.org/10.1520/D5731-08.2
http://dx.doi.org/10.1520/D7012-10.1
http://dx.doi.org/10.1520/D7263-09.2


10	 Engineering with Computers (2017) 33:1–11

1 3

	 8.	 Basu A, Mishra DA, Roychowdhury K (2013) Rock failure 
modes under uniaxial compression, Brazilian, and point load 
tests. Bull Eng Geol Environ 72:457–475

	 9.	 Baykasoǧlu A, Güllü H, Çanakçi H, Özbakir L (2008) Prediction 
of compressive and tensile strength of limestone via genetic pro-
gramming. Expert Syst Appl 35(1–2):111–123

	10.	 Bieniawski ZT (1975) The point-load test in geotechnical prac-
tice. Eng Geol 9:1–11

	11.	 Bilgehan M, Turgut P (2010) The use of neural networks in con-
crete compressive strength estimation. Comput Concr 7:271–283

	12.	 Binal A (2009) Prediction of mechanical properties of non-
welded and moderately welded ignimbrite using physical proper-
ties, ultrasonic pulse velocity and point load index tests. Q J Eng 
Geol Hydrogeol 42:107–122

	13.	 Castagna JP, Batzle ML, Eastwood RL (1985) Relationships 
between compressional-wave in elastic silicate rocks and shear-
wave velocities. Geophysics 50(4):571–581

	14.	 Chau KT, Wong RHC (1996) Uniaxial compressive strength and 
point load strength. Int J Rock Mech Min Sci 33:183–188

	15.	 De Villiers J, Barnard E (1993) Backpropagation neural nets with 
one and two hidden layers. IEEE Trans Neural Netw 4:136–141

	16.	 Dehghan S, Sattari G, Chehreh CS, Aliabadi M (2010) Predic-
tion of uniaxial compressive strength and modulus of elasticity 
for Travertine samples using regression and artificial neural net-
works. Min Sci Technol 20:41–46

	17.	 Entwisle DC, Hobbs PRN, Jones LD, Gunn D, Raines MG 
(2005) The relationships between effective porosity, uniaxial 
compressive strength and sonic velocity of intact borrowdale 
volcanic group core samples from sellafield. Geotech Geol Eng 
23:793–809

	18.	 Fairhurst C, Cook NGW (1966) The phenomenon of rock split-
ting parallel to the direction of maximum compression in the 
neighbourhood of a surface. Proc First Congr Int Soc Rock Mech 
I:687–692

	19.	 Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uni-
axial compressive strength and the modulus of elasticity of a 
problematic rock. Eng Appl Artif Intell 17(1):61–72

	20.	 Griffiths DV, Fenton GA (2007) Probabilistic methods in geo-
technical engineering. Springer Science and Business Media. V 
491 of CISM International Centre for Mechanical Sciences, p 
346

	21.	 Gupta AS, Seshagiri RK (1998) Index properties of weathered 
rocks: inter-relationships and applicability. Bull Eng Geol Envi-
ron 57:161–172

	22.	 Gupta AS, Seshagiri RK (2016) Weathering effects on the 
strength and deformational behaviour of crystalline rocks under 
uniaxial compression state. Eng Geol 56(2000):257–274

	23.	 Han D, Nur A, Morgan D (1986) Effects of porosity and 
clay content on wave velocities in sandstones. Geophysics 
51:2093–2107

	24.	 Holzhausen GR, Johnson AM (1979) Analyses of longitudinal 
splitting of uniaxially compressed rock cylinders. Int J Rock 
Mech Min Sci Geomech Abs 16(3):163–177

	25.	 Huang Y, Wanstedt S (1998) The introduction of neural net-
work system and its applications in rock engineering. Eng Geol 
49:253–260

	26.	 Inoue M, Ohomi M (1981) Relation between uniaxial compressive 
strength and elastic wave velocity of soft rock. In: Proceedings of 
the international symposium on weak rock, Tokyo, pp 9–13

	27.	 Jaeger GC, Cook NGW (1976) Fundamentals of rock mechanics, 
2nd edn. Chapman and Hall, London 585

	28.	 Kainthola A, Singh PK, Verma D, Singh R, Sarkar K, Singh 
TN (2015) Prediction of strength parameters of Himalayan 
rocks: a statistical and ANFIS approach. Geotech Geol Eng 
33(5):1255–1278

	29.	 Kahraman S (2001) Evaluation of simple methods for assessing 
the uniaxial compressive strength of rock. Int J Rock Mech Min 
Sci 38:981–994

	30.	 Kahraman S (2002) The effects of fracture roughness on P-wave 
velocity. Eng Geol 63:347–350

	31.	 Kahraman S (2007) The correlations between the saturated and 
dry P-wave velocity of rocks. Ultrasonics 46:341–348

	32.	 Kahraman S, Alber M, Fener M, Gunaydin O (2010) The usabil-
ity of Cerchar abrasivity index for the prediction of UCS and E 
of Misis Fault Breccia: regression and artificial neural networks 
analysis. Expert Syst Appl 37:8750–8756

	33.	 Karakul H, Ulusay R (2013) Empirical correlations for predict-
ing strength properties of rocks from P-Wave velocity under dif-
ferent degrees of saturation. Rock Mech Rock Eng 46:981–999

	34.	 Karakul H, Ulusay R (2013) Empirical correlations for predict-
ing strength properties of rocks from P-wave velocity under dif-
ferent degrees of saturation. Rock Mech Rock Eng 46:981–999

	35.	 Karaman K, Kaya A, Kesimal A (2015) Effect of the specimen 
length on ultrasonic P-wave velocity in some volcanic rocks and 
limestones. J Afr Earth Sc 112:142–149

	36.	 Khandelwal M, Singh TN (2006) Prediction of blast induced 
ground vibrations and frequency in opencast mine: a neural net-
work approach. J Sound Vib 289:711–725

	37.	 Khandelwal M, Singh TN (2007) Evaluation of blast-induced 
ground vibration predictors. Soil Dyn Earthq Eng 27:116–125

	38.	 Khandelwal M, Singh TN (2009) Prediction of blast-induced 
ground vibration using artificial neural network. Int J Rock Mech 
Min Sci 46:1214–1222

	39.	 Kiliç A, Teymen A (2008) Determination of mechanical properties 
of rocks using simple methods. Bull Eng Geol Environ 67:237–244

	40.	 Lama RD, Vutukuri VS (1978) Handbook on mechanical proper-
ties of rocks, vol II. Trans Tech Publications, Clausthal

	41.	 Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and 
application of the weights for landslide susceptibility mapping 
using an artificial neural network. Eng Geol 71:289–302

	42.	 Looney CG (1996) Advances in feedforward neural networks: 
demystifying knowledge acquiring black boxes. IEEE Trans 
Knowl Data Eng 8:211–226

	43.	 Maji VB (2011) Understanding failure mode in uniaxial and tri-
axial compression for a hard brittle rock. 12th ISRM Congress, 
Beijing, China, pp 723–726

	44.	 Mishra DA, Basu A (2013) Estimation of uniaxial compressive 
strength of rock materials by index tests using regression analy-
sis and fuzzy inference system. Eng Geol 160:54–68

	45.	 Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic 
network for predicting uniaxial compressive strength of rocks. 
Geotech Geol Eng 30(4):1053–1062

	46.	 Monjezi M, Rezaei M (2011) Developing a new fuzzy model to 
predict burden from rock geomechanical properties. Expert Syst 
Appl 38(8):9266–9273

	47.	 Monjezi M, Amiri H, Farrokhi A, Goshtasbi K (2010) Prediction 
of rock fragmentation due to blasting in sarcheshmeh copper mine 
using artificial neural networks. Geotech Geol Eng 28:423–430

	48.	 Moradian ZA, Behnia M (2009) Predicting the uniaxial com-
pressive strength and static young’s modulus of intact sedimen-
tary rocks using the ultrasonic test. Int J Geomech 9:14–19

	49.	 Nicholson PHF, Bouxsein ML (2002) Effect of temperature on 
ultrasonic properties of the calcaneus in  situ. Osteoporos Int 
13:888–892

	50.	 Nur A, Simmons G (1969) The effect of saturation on velocity in 
low porosity rocks. Earth Planet Sci Lett 7:183–193

	51.	 Paterson MS (1958) Experimental deformation and faulting in 
Wombeyan marble. Geol Soc Am Bull 69(4):465–476

	52.	 Protodyanokov MM (1969) Methods of determining the shear-
ing strength of rocks. In: Protodyaknov MM, Koifman MI (eds) 



11Engineering with Computers (2017) 33:1–11	

1 3

mechanical properties of rocks. Israel program for scientific 
translation, Jerusalem, pp 15–27

	53.	 Rafiq MY, Bugmann G, Easterbrook DJ (2001) Neural net-
work design for engineering applications. Comput Struct 
79:1541–1552

	54.	 Sarkar K, Tiwary A, Singh TN (2010) Estimation of strength 
parameters of rock using artificial neural networks. Bull Eng 
Geol Environ 69:599–606

	55.	 Sarkar K, Vishal V, Singh TN (2012) An empirical correlation of 
index geomechanical parameters with the compressional wave 
velocity. Geotech Geol Eng 30(2):469–479

	56.	 Sharma PK, Singh TN (2008) A correlation between P-wave 
velocity, impact strength index, slake durability index and uni-
axial strength. Bull Eng Geol Environ 67:17–22

	57.	 Singh TN, Kainthola A, Venkatesh A (2011) Correlation between 
point load index and uniaxial compressive strength for different 
rock types. Rock Mech Rock Eng 45:259–264

	58.	 Singh TN, Sinha S, Singh VK (2007) Prediction of thermal con-
ductivity of rock through physico-mechanical properties. Build 
Environ 42:146–155

	59.	 Singh VK, Singh DP (1993) Correlation between point load 
index and compressive strength for quartzite rocks. Geotech 
Geol Eng 11:269–272

	60.	 Sykes AO (1993) An introduction to regression analysis. Coase-
Sandor Institute for Law & Economics Working Paper No. 20

	61.	 Tosaya C, Nur A (1982) Effects of diagenesis and clays on com-
pressional velocities in rocks. Geophys Res Lett 9:5–8

	62.	 Tripathy A, Singh TN, Kundu J (2015) Prediction of abrasive-
ness index of some Indian rocks using soft computing methods. 
Measurement 68:302–309
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