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mean square error (RMSE), variance account for (VAF) 
and coefficient correlation (R2). The results indicate that 
the proposed PSO-ANN model is able to predict MSS 
with a higher degree of accuracy in comparison with the 
ANN results. In addition, the results of sensitivity anal-
ysis show that the horizontal to vertical stress ratio has 
slightly higher effect of MSS compared to other model 
inputs.

Keywords  Tunneling · Surface settlement · PSO-ANN · 
Hybrid model

1  Introduction

With the increasing population and urbanization in urban 
areas, as well as the growing demand for public transpor-
tation, the requirement for metro tunnels has been signifi-
cantly increased. In subway tunnel excavations, it is neces-
sary to estimate and control surface settlements observed 
after excavation that may cause damages to the surface 
structures [1]. Based on previous researches [2, 3], many 
geotechnical and geometrical parameters, such as cohesion, 
Poisson’s ratio, Young’s modulus, angle of internal friction 
and face support pressure, have been considered in predict-
ing the values of the MSS.

Surface settlements are influenced by three main groups 
of factors, i.e., excavation and support method, tunnel 
geometry and ground properties. In the first group, the 
excavation and support methods are including Excava-
tion, such as NATM and TBM, excavation type (full face 
or sequential mining) and Support, such as anchoring, 
shotcrete, steel sets and lining. In the second group, tunnel 
geometry factors are including worksite conditions, depth, 
diameter, number of tunnels and distance between tunnels. 

Abstract  The potential surface settlement, especially in 
urban areas, is one of the most hazardous factors in sub-
way and other infrastructure tunnel excavations. There-
fore, accurate prediction of maximum surface settlement 
(MSS) is essential to minimize the possible risk of dam-
age. This paper presents a new hybrid model of artificial 
neural network (ANN) optimized by particle swarm opti-
mization (PSO) for prediction of MSS. Here, this com-
bination is abbreviated using PSO-ANN. To indicate the 
performance capacity of the PSO-ANN model in predict-
ing MSS, a pre-developed ANN model was also devel-
oped. To construct the mentioned models, horizontal to 
vertical stress ratio, cohesion and Young’s modulus were 
set as input parameters, whereas MSS was considered as 
system output. A database consisting of 143 data sets, 
obtained from the line No. 2 of Karaj subway, in Iran, 
was used to develop the predictive models. The perfor-
mance of the predictive models was evaluated by com-
paring performance prediction parameters, including root 
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In the third group, ground properties are including elastic-
ity modulus, unit weight, cohesion, friction angle, Pois-
son’s ratio, groundwater and permeability [4].

Previously, empirical and analytical methods as well as 
numerical analysis by finite difference (FD) and finite ele-
ment (FE) methods were developed to predict the values of 
MSS [5, 6]. For instance, a method for estimating surface 
settlement above tunnels constructed in soft ground was 
developed in the study conducted by Schmidt [7]. Attewell 
and Farmer [8] evaluated ground disturbance caused by 
shield tunneling in a stiff, over-consolidated clay. In the 
other study, Ocak [9] proposed a new equation for esti-
mating the transverse settlement curve of twin tunnels. 
He demonstrated that the proposed equation can estimate 
the transverse settlement with degree of confidence in the 
Otogar–Kirazli metro case studies. Atkinson and Potts [10] 
investigated the influence of the depth of burial and crown 
settlement on the surface settlement above shallow tunnels 
driven in soft ground. Hamza et al. [11] studied the ground 
movements due to construction of cut-and-cover structures 
and slurry shield tunnel of the Cairo Metro. Chi et al. [12] 
indicated the application of the conjugate gradient method 
for the back-analysis of tunneling-induced ground move-
ment. They established semi-empirical equations to pre-
dict the tunneling-induced ground movement in the silty 
clay and silty sand of Taipei basin. Chou and Bobet [13] 
used twenty-eight tunnels to evaluate predictions from an 
analytical solution for shallow tunnels in saturated ground. 
As a result, comparisons between predictions and observa-
tions from actual tunnels indicated good agreement, gener-
ally within 15 % difference. In the other study of analytical 
solutions, Park [14] applied elastic solutions to predict the 
tunneling-induced undrained ground movements for shal-
low and deep circular tunnels in soft ground. He showed 
a good agreement of the predicted ground deformations 
with field observations for tunnels in uniform clay. Short-
term surface settlements for twin tunnels, located between 
the Esenler and Kirazlı stations on the Istanbul Metro line, 
were predicted by Ercelebi et  al. [15]. For this purpose, 
they used three different methods, including FE, semi-the-
oretical (semi-empirical) and analytical methods to predict 
surface settlement caused by tunneling. Their results indi-
cated that the FE method can be used as a reliable method 
to predict short-term settlement.

Apart from empirical models, in recent years, artificial 
intelligence (AI) methods, such as artificial neural network 
(ANN), fuzzy inference system and support vector machine 
(SVM), have been developed for solving problems of rock 
and geotechnical engineering [16–19]. In the field of MSS 
prediction, these models have been widely used and devel-
oped. Ocak and Seker [1] used three different methods, 
including ANN, SVM and Gaussian processes (GP) to esti-
mate surface settlement. They concluded that the GP is a 

more precise method than the ANN and SVM models. In 
addition, a comprehensive study for prediction of MSS by 
ANN and multiple regression was presented by Moham-
madi et al. [3]. The results of their research demonstrated 
that the ANN method can be regarded as a more reasonable 
predictive technique in predicting MSS.

Recently, the use of combination of evolutionary algo-
rithms, such as particle swarm optimization (PSO) and 
imperialist competitive algorithm (ICA) with ANN has 
been highlighted in the field of rock engineering [20, 21]. 
The results indicated that such algorithms are useful to 
design the ANN. Nevertheless, as long as author’s knowl-
edge, evolutionary algorithms have not been used and pro-
posed for MSS prediction. In this research, a combination 
of PSO and ANN was proposed to predict MSS induced by 
tunneling along the line 2 of Karaj subway. In fact, PSO 
algorithm is utilized to incorporate ANN for its optimiza-
tion propose.

2 � Theory and methods

2.1 � Artificial neural network (ANN)

One of the subsystems of AI systems is an ANN. The ANN 
model has been developed since the 1960s. Generally, the 
structure of an ANN, which is inspired by the human brain, 
consists of a group of computational units called neurons 
or nodes. These neurons are highly interconnected with 
each other. In addition, the capability of these neurons for 
performing mass parallel distributed processing is proved 
by many researches [22–24]. A typical ANN consists of 
three layers, namely input, hidden and output layers. The 
mentioned neurons are placed in these layers and linked to 
each other by weights. On the other hand, problem effec-
tive and objective variables are placed in the input and 
output layers, respectively [25]. Theoretically, there are no 
restrictions on the No. of hidden layers and No. of neurons 
in the hidden layers and can be determined based on trial-
and-error procedure [26]. To construct an ANN model, in 
the first step, ANNs require training to learn and conse-
quently map a relationship from the data. There are many 
algorithms to train the network, such as Levenberg–Mar-
quardt (LM), conjugate gradient and scaled conjugate gra-
dient algorithms [27]. The selection of the best algorithm 
depends on the given problem, the purposes of the per-
formed network such as classification and prediction, the 
number of datasets and so on. In the second step, to check 
the performance capacity of the constructed model, the rest 
of datasets are used for testing [28]. Although, ANN is used 
as a quick solution for engineering problems, it has a num-
ber of disadvantages: slow learning rate and getting trapped 
in local minima [29, 30].
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2.2 � Particle swarm optimization (PSO)

PSO which was first introduced by Kennedy and Eber-
hart [31] is a simple and powerful optimization technique 
inspired by social behavior of bird flocking or fish school-
ing. In the PSO algorithm, a number of simple particles 
are placed in the search space of n-dimensional problem or 
function [32, 33]. A potential solution can be represented 
by each particle and the particles evaluate the objective 
function at their current position. The next location of each 
particle is determined by combining some aspects of their 
own current and best position with those of other swarm 
particles, with some random perturbations [34]. Eventually, 
the swarm can be expected to move close to the optimum 
of fitness function [35].

Using Eqs. (1) and (2), the position and velocity of the 
particles can be determined and updated.

where Xi
k is the n-dimensional vector that represents the 

position of particle i in the search space at iteration k. Vi 
denotes the velocity of this particle. The velocity vec-
tor derives the optimization process by reflecting both the 
experimental knowledge of the particle and socially shared 
information from the particle’s neighborhood [36] by intro-
ducing distance of the particle from its own best position 
and swarm best position. The best position the particle has 
visited and found by the swarm so far are represented by 
pbest,i and gbest, respectively, in Eq. (2). Furthermore, r1 and 
r2 are random values in the range of zero to one, c1 and 
c2 are positive acceleration constants. The fitness function 
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f measures how close the corresponding solution is to the 
optimum by calculating pbest,i and gbest. Due to this fact, 
objective function plays an integral role in this problem. 
Considering the minimization problem, the personal and 
global best positions at the next iteration are defined as:

where ns denotes the total number of particles in the swarm. 
The particles continue to move in the search space, with 
their position being updated at each iteration until the stop-
ping condition is met.

3 � Case study and data collection

In this research, datasets were collected from Karaj Sub-
way (line No. 2), in Iran. Karaj is one of the large cities 
in Iran with 1.4 million inhabitants. Due to the increasing 
population and urbanization in this city, construction of a 
new subway system is necessary and crucial. Constructing 
of the operational line No. 2 of Karaj Subway was started 
in February 2007 with a total length of 27  km. Shape of 
tunnel is horseshoe and tunnel has 7.8 m height and 8.4 m 
width. Tunnel depth change 7–14  m. This project con-
nects the Kamal-Shahr and Malaard, in northwestern and 
south of Karaj city, respectively (see Fig.  1). Based on 
many parameters, i.e., geotechnical analysis and economic 

(3)pk+1
best,i =















X
k+1
i , f

�

X
k+1
i

�

< f
�

pk
best,i

�

P
k
best,i, f

�

X
k+1
i

�

≥ f
�

pk
best,i

�

(4)
gk
best ∈

{

pk
best,0, · · · ,

pk
best,ns

}∣

∣

∣
f
(

gk
best

)

= min

{

f
(

pk
best,0

)

, · · · , f
(

pk
best,ns

)}

Fig. 1   Location of the line 2 of 
Karaj Subway
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studies, the tunnels have been designed and built in two 
phases, i.e., first and second, 14.5 and 12.5  km, respec-
tively (see Fig. 1). According to Fig. 1, AB and BC are the 
first and second phases, respectively. Both the first and sec-
ond phases are excavated using New Austria tunnel method 
(NATM). According to NATM, the tunnel excavation, 
in this project, was designed in three sections, as shown 
in Fig.  2. Based on Fig.  2, the heading was excavated in 
the step 1. Afterwards, the steps 2 and 3 were excavated, 
respectively. Moreover, it is observed that the tunnel has a 
horseshoe shape with 7.8 m height and 8.4 m width with 
the lining. After excavating the step 1, the exposed area is 
supported using steel fiber–reinforced shotcrete.

In this research, a group of datasets, including 143 data-
sets, was collected from the laboratory and in situ tests. In 
this regard, the values of horizontal to vertical stress ratio 
(coefficient of earth pressure), cohesion and Young’s modu-
lus were measured and considered as input parameters. To 
determine the coefficient of earth pressure, in situ horizon-
tal stress and in situ vertical stress tests were conducted. In 
addition, the values of MSS were carefully measured and 
considered as output parameter. The range of the mentioned 
parameters to construct the predictive models, for all of 143 
data sets, is given in Table 1. To measure MSS, the settle-
ment markers were installed, grouted about 100 cm into the 
ground, placed approximately at intervals of 25 m along the 

tunnel alignment, and the surface settlements were meas-
ured. In addition, in each transverse section, three or five 
surface settlement markers, which are arranged approxi-
mately at intervals of 5–7.5 m, were installed, as depicted 
in Fig. 3.

4 � Prediction of MSS

In this section, the modeling procedures of ANN and hybrid 
PSO-ANN models for MSS prediction are described. These 
models are constructed with the MatLab environment using 
MatLab2013b. To develop the models, the datasets have 
been divided into two groups: training and testing datasets. 
Previous researchers have recommended various percent-
ages for the testing datasets [37–39]. In the present study, 
80 and 20 % of whole datasets were used for model devel-
opments and checking the performance of the developed 
models, respectively. Selection of the random training and 
testing data was carried out by a MatLab code written by 
authors.

4.1 � Prediction of MSS by ANN model

In this part, an attempt has been made to estimate MSS 
using ANN procedure. In the first stage of this modeling 
procedure, the prepared database was normalized to sim-
plify the design procedure as follows:

where X and Xnorm are the measured and normalized values, 
respectively. Xmax and Xmin are the maximum and minimum 
values of the X. Note that, to achieve a reasonable solution, 

(5)Xnorm =
(

X −Xmin

)

/
(

Xmax − Xmin

)

Fig. 2   The steps of tunnel excavation in the line 2 of Karaj Subway 
using NATM

Table 1   The range of measured parameters for MSS prediction

Variable category Parameter Unit Min Max

Input Horizontal to vertical stress  
ratio

– 0.3 0.6

Cohesion kPa 10 45

Young’s modulus MPa 50 200

Output Max surface settlement mm 3.7 7

Fig. 3   Schematic diagram of settlement marker location in the line 2 
of Karaj Subway
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it is recommended that the numeric values of input and out-
put parameters be normalized [17–21].

In the next stage of ANN modeling, the prepared data-
base should be divided into training and testing datasets 
for model developments and also model evaluations. Here, 
testing datasets are utilized to evaluate the performance 
capacity of the developed models. In ANN modeling, selec-
tion of the ANN training algorithm and also the determina-
tion of the network architecture are the most difficult tasks 
[40, 41]. Among all ANN training algorithms, as mentioned 
before, LM was selected and utilized to train the ANN sys-
tems. Many researchers highlighted the efficiency of the 
LM algorithm, among other training algorithms, in solving 
engineering problems (e.g., [42–44]). On the other hand, as 
mentioned by many scholars (e.g., [45–47]) an ANN net-
work with only one hidden layer can estimate almost all 
problems. In addition, developing an ANN model with one 
hidden layer is of attention because of its beneficial effect 
on decreasing the complexity of a model and as a conse-
quence the likelihood of model overfitting. Hence, in this 
study, all proposed artificial intelligent (AI) models were 
designed using one hidden layer.

In the next stage of ANN design, number of hidden 
nodes (Nh) in a hidden layer should be determined. Son-
mez et al. [48] and Sonmez and Gokceoglu [49] stated that 
the number of hidden node(s) has a deep impact on the 
performance prediction of an ANN model. In this regard, 
previous researchers proposed several equations for deter-
mining the Nh as shown in Table 2. Based on this table, the 
upper limit for the Nh is 2Ni + 1, where Ni is the number 
of input parameters. Considering the presented equations in 
Table 2 and the prepared datasets, in this study, a range of 
1–7 for the number of hidden nodes can solve MSS prob-
lem. It seems that the proper Nh should be obtained using 
the trial-and-error procedure. For this purpose, a series of 
ANN models were designed using the mentioned parame-
ters. The performance prediction of the constructed models 
was checked using both coefficient of determination (R2) 
and root mean square error (RMSE) criteria as presented 

Table 2   Several equations for determination of the no. of hidden 
node by previous investigators

Ni number of input neuron, N0 number of output neuron

Heuristic References

≤2 ×  Ni + 1 Hecht-Nielsen [45]

(Ni + N0)/2 Ripley [50]

2+N0×Ni+0.5N0×
(

N
2

0
+Ni

)

−3

Ni+N0

Paola [51]

2Ni/3 Wang [52]
√
Ni × N0 Masters [53]

2Ni Kaastra and Boyd [54]
Kannellopoulas and Wilkinson [41]
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in Table 3. In this table, each hidden node is run five times. 
It is well established that a constructed model with lower 
RMSE and higher R2 values is of advantage. Based on 
the obtained results, run 2 of the ANN model No. 4 with 
Nh = 4 indicates higher R2 and lower RMSE values com-
pared to other constructed models. So, an architecture of 
(3 ×  4 ×  1) was selected and introduced for solving an 
MSS problem by ANN model. More discussions regarding 
the evaluation of the ANN model will be given later.

4.2 � Prediction of MSS by PSO‑ANN model

As mentioned in Sect. 1, in this study, an attempt has been 
made to increase the performance prediction of the ANN 
model by incorporating PSO algorithm to develop a predic-
tive model with a higher degree of accuracy for MSS pre-
diction. In this system, PSO is performed for minimization 
of a cost function by adjusting the weights and biases. The 
followings are the modeling procedure of the hybrid PSO-
ANN model in predicting MSS.

4.2.1 � Swarm size

The number of particle or swarm size has a significant 
impact on the performance capacity of the hybrid PSO-
ANN technique. Considering the results of previous stud-
ies, there is no any specific way to determine proper swarm 
size. Therefore, it is well known to obtain swarm size 
considering parametric study using trial-and-error method 
(e.g., [55, 56]). Table 4 presents the results of PSO-ANN 
models for various numbers of particles together with their 
RMSE and R2 values. In these analyses, iteration number 
of 100 and architecture of 2 × 5 × 1 were considered. In 
addition, based on literature’s suggestions [55, 56], velocity 

coefficients of 2 (C1 = C2 = 2) and inertia weight of 0.25 
were utilized in all PSO-ANN models of this study.

As depicted in Table 4, selecting the best swarm size is 
very difficult. To overcome this problem, a ranking tech-
nique introduced by Zorlu et  al. [57] was used. Accord-
ing to the mentioned technique, each performance index 
(RMSE or R2) was ordered in its class and the best perfor-
mance index was assigned the highest rating. For example, 
values of 0.882, 0.887, 0.920, 0.928, 0.894, 0.898, 0.922, 
0.913, 0.918, 0.930, 0.902 and 0.938 were achieved for R2 
of training datasets of models 1–12, respectively, and val-
ues of 1, 2, 8, 10, 3, 4, 9, 6, 7, 11, 5 and 12 were assigned to 
their ranks, respectively. Additionally, in the case of RMSE 
and also testing datasets, this procedure was applied. After-
wards, for each PSO-ANN model, the ratings of the RMSE 
and R2 for both training and testing datasets were summed 
up (total rank). According to the total rank results, PSO-
ANN model No. 10 with a swarm size of 400 shows the 
highest total rank value. Hence, 400 was chosen as the opti-
mum number of particle or swarm size in predicting MSS.

4.2.2 � Termination criteria

The defined termination criteria in this study are considered 
as maximum number of iterations (IMax). An usual way 
for determining the IMax is to compare the network result 
in various iteration numbers. Previous researchers [32, 58] 
suggested various IMax values for solving different engi-
neering problems. For instance, IMax values of 400, 400 
and 450 were recommended for solving the problems in the 
studies conducted by Jahed Armaghani et al. [32], Gordan 
et al. [58] and Tonnizam Mohamad et al. [59], respectively. 
Therefore, another parametric study was conducted on the 
swarm size values used in the previous stage to find IMax 

Table 4   Results of PSO-ANN 
models for various number of 
particles in predicting MSS

Model No. No. of particle PSO-ANN result Rank value Total Rank

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 25 0.882 0.091 0.845 0.091 1 1 3 3 8

2 50 0.887 0.086 0.891 0.087 2 2 6 4 14

3 75 0.920 0.075 0.881 0.081 8 7 5 6 26

4 100 0.928 0.066 0.862 0.106 10 11 4 2 27

5 150 0.894 0.085 0.927 0.068 3 3 11 10 27

6 200 0.898 0.082 0.945 0.057 4 4 12 12 32

7 250 0.922 0.074 0.915 0.068 9 8 7 10 34

8 300 0.913 0.076 0.924 0.065 6 6 10 11 33

9 350 0.918 0.073 0.917 0.077 7 9 8 7 31

10 400 0.930 0.069 0.920 0.071 11 10 9 8 38

11 450 0.902 0.080 0.927 0.070 5 5 11 9 30

12 500 0.938 0.060 0.917 0.082 12 12 8 5 37
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as displayed in Fig.  4. Here, performance prediction of 
the network was checked using RMSE results. In obtain-
ing IMax, iteration number of 1000, C1 =  C2 =  2, inertia 
weight of 0.25 and architecture of 2 × 5 × 1 was applied. 
As shown in Fig. 4, after iteration No. of 300, there are no 
significant changes in the network results for all swarm size 
values. Hence, IMax of 300 was chosen in the modeling pro-
cess of this study in predicting MSS.

4.2.3 � Network architecture

In this step of PSO-ANN design (which is the last step of 
that), using the obtained PSO parameters from the previous 
steps, 5 PSO-ANN models were trained like ANN design 
section. The performance prediction of these models was 
also considered based on RMSE and R2 results as presented 
in Table 5. As a result, the best PSO-ANN model for the 
MSS prediction is obtained as run No. 3 considering both 
results of RMSE and R2. Model details about the evaluation 
of the developed PSO-ANN model are discussed in the fol-
lowing section.

5 � Results and discussion

In this study, two non-linear AI models, i.e., ANN and 
PSO-ANN were developed to predict MSS caused by 

tunneling. To evaluate the accuracy level of the aforemen-
tioned models, results of training (114 datasets) and testing 
(29 datasets) datasets, based on 80 % and 20 % of whole 
datasets, were considered and these results were compared 
to the measured MSS values. Three of the most well-
known performance indices, namely RMSE, R2 and vari-
ance account for (VAF) were used/computed to check the 
performance of the predictive models:

where xi is the measured value, xp is the predicted value, 
xmean is mean of the measured value, ‘var’ is the sign for the 
variance and n is the number of data sets. If RMSE is zero, 
VAF is 100 (%) and R2 is one, the model will be excellent. 
Results of models performance indices for developed mod-
els are presented in Table 6. Based on Table 6, the lowest 
values of RMSE and the highest value of VAF and R2 are 

(6)RMSE =
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1

n
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[

(
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]
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Fig. 4   Results of PSO-ANN network for determining the IMax
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obtained from the PSO-ANN model. For instance, RMSE 
equal to 0.04 and 0.05, for training and testing datasets, 
respectively, reveal that PSO-ANN model can predict MSS 
with high accuracy level. Furthermore, the relationships 
between the best datasets of ANN and PSO-ANN models 
in predicting MSS and the measured MSS for training and 
testing datasets are displayed in Figs. 5 and 6, respectively. 
Results of developed ANN model based on R2 values are 
obtained at 0.939 and 0.940 for training and testing data-
sets, respectively, whereas values of 0.973 and 0.968 are 
achieved for R2 of the selected PSO-ANN model. This 
indicates the superiority of the predictive PSO-ANN model 
compared to the proposed ANN predictive model. Note that 
the mentioned comparison was performed using normal-
ized datasets for both measured and predicted values.

6 � Sensitivity analysis

To determine the relative influence of the each input param-
eter on the output parameter, sensitivity analysis was per-
formed using the cosine amplitude method [60]. This 
method is formulated in the following equation:

where xi and xj represent input and output parameters, 
respectively, and n is the number of all data sets. Rij is in 
the range of [0–1] and for the most influential parameter, 
Rij will be equal 1. In the present paper, horizontal to ver-
tical stress ratio, cohesion and Young’s modulus were 
selected as input parameters, while, output parameter is 
MSS. The strengths of the relations between input and out-
put parameters are given in Table 7. As can be seen from 
Table 7, horizontal to vertical stress ratio is the most influ-
ential parameter on MSS in this research.

7 � Conclusion

Especially in urban areas, MSS prediction with a high 
degree of accuracy is very necessary. For this purpose, a 
new application of PSO-ANN model was proposed for pre-
dicting MSS caused by tunneling along the line 2 of Karaj 
subway. To check the performance capacity of PSO-ANN 
model, a pre-developed ANN model was applied. In this 
regard, 143 groups of datasets were prepared in 114 and 29 
datasets for training and testing datasets, respectively. The 
values of horizontal to vertical stress ratio, cohesion and 
Young’s modulus were taken as input parameters, while 
MSS was considered as an output parameter. To evaluate 
the authenticity and accuracy of the developed models, 

(9)Rij =

∑n
k=1(xik × xjk)

√

∑n
k=1 x

2
ik
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three performance indices, namely RMSE, VAF and R2 
were applied. The results revealed that PSO-ANN model 
can perform better than the ANN model for prediction of 
MSS. The R2 equal to 0.9725 and 0.968 for training and 
testing datasets, respectively, indicate the high conformity 
of the PSO-ANN model in predicting MSS, while these 
values were obtained at 0.939 and 0.94 for ANN model, for 
training and testing datasets, respectively. Moreover, sensi-
tivity analysis was carried out with input and output param-
eters and it was found that horizontal to vertical stress ratio 
has the strongest effect, based on considered datasets in this 
case study, on the MSS.
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