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well-balanced algorithm and to a good speed-up. Also, the 
meshes generated in parallel have very good quality, simi-
lar to the that of a serially generated mesh.
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1  Introduction

This work presents a parallel technique for generating 
three-dimensional tetrahedral meshes by the advancing 
front method. The technique was designed to meet eight 
requirements: to respect the input front, discretized in trian-
gular faces, i.e., no boundary refinement can be employed; 
to produce well-shaped elements, avoiding elements with 
poor aspect ratios; to provide good transitions from refined 
to coarse regions of the mesh; to respect cracks given as 
input; to be independent of the multiprocessing memory 
architecture (shared or distributed) and of the domain’s 
dimension (2 or 3); to present a good estimation of the 
number of elements generated in each subdomain; to pre-
sent a good load balancing, distributing the subdomains 
among the processing entities uniformly; to present a good 
speed-up, as a consequence of the two previous require-
ments. The algorithm is based on a serial 3D advancing 
front strategy developed by some of the authors [1–3].

The first four requirements were taken into account in 
the development of the serial algorithm and, therefore, 
must be satisfied by the parallel algorithm as well. The first 
requirement is very important in many problems, such as 
those encountered in simulations in which the domain con-
tains regions with different materials and holes. In those 
situations, it is often desirable that the mesh conform to 
the region’s existing boundary discretization. Regarding 

Abstract  This work describes a technique to generate tet-
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ber of elements in each subdomain is accurate, leading to a 
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the second requirement, although the technique does not 
guarantee bounds on element aspect ratios, care is taken 
at each step to generate elements with the best possible 
shapes. Concerning the third requirement, in many appli-
cations, the size difference between elements in a refined 
region and those in a coarse region is larger than two orders 
of magnitude. Thus, to provide good transition capabili-
ties is an important requirement in practice. The fourth 
requirement is important in crack propagation simulations, 
because elements on one side of a crack cannot be directly 
connected to the elements on the other side. In this method, 
the crack surface is represented as a null area region, made 
of input faces geometrically coincident, but whose nor-
mals have opposite directions. Thus, no preprocessing 
step is needed to identify which faces or vertices belong to 
cracks. An existing crack belongs to an individual region 
to be meshed. The crack is either completely inside the 
region or it is in contact with the region’s boundary surface. 
Although the main focus of this paper is on a parallel mesh 
generation method, which was designed to deal trivially 
with crack faces and vertices, it does work on models with-
out cracks as well, with no modifications.

The last four requirements concern only the parallel 
algorithm. It is desirable that it runs on several types of 
current parallel platforms, ranging from multi-core desk-
tops to cluster computers. Therefore, the algorithm must be 
generic to encompass shared and distributed-memory archi-
tectures, and the implementation must reflect this issue. 
Although the results shown in this work were obtained with 
a distributed-memory machine, the algorithm is really inde-
pendent of the multiprocessing memory architecture. This 
is an advantage of this technique, since many of the paral-
lel techniques presented in the literature work only for one 
specific type of multiprocessing memory architecture. Also, 
the algorithm works for both two and three dimensions, 
i.e., it can be used to generate triangular as well as tetrahe-
dral meshes, even though the 3D version is the focus of this 
work. The last three requirements are closely related to one 
another. The amount of work (called load in high perfor-
mance computing) is well estimated and the partitioning is 
appropriate to decompose the domain in subdomains with 
approximately the same load, resulting in good speedup.

The remainder of this work is divided into four sections. 
Sect.  2 describes the related work. Sect.  3 describes the 
devised parallel technique. Section  4 shows the tests and 
results. Section  5 presents the conclusions and some rec-
ommendations for future work.

2 � Related work

Several works in the literature use the parallel algorithm 
model of recurrently subdividing the subdomains in half 

as much as possible [4–12]. That model is also used in our 
work. The main differences among those works consist in: 
how to position the decomposing plane (or line, in 2D); 
how to generate the mesh in this decomposing plane, which 
is usually done prior to the generation of the mesh inside 
the subdomains; and how to generate the mesh in each 
subdomain, usually done by an advancing front technique 
(AFT) or by a Delaunay mesh generator.

Most ideas on how to divide the subdomains try to bal-
ance the physical or geometrical properties on both sides of 
the dividing plane. In  [4, 5], lines, based on inertial axes, 
decompose the 2D subdomains. In [6–10], planes are used 
to decompose the 3D domain, according to the number of 
faces, length of edges, global axes or inertial axes. When 
a subdomain is cut by a plane, a 2D intersection region is 
the common interface between the two halves located on 
each side of the plane. One possible idea of ensuring con-
formity of the meshes that are generated on both sides of 
the plane is to generate, a priori, a mesh in the interface 
region. In [6–10], the interfacing mesh is constructed based 
on a Delaunay triangulation. In [11], the plane decompos-
ing the domain is placed on the center of density, given by 
an octree. The interfacing mesh is composed of tetrahedra, 
generated by advancing the faces that cross the decompos-
ing plane. In [12], a kd-tree is built on blocks that decom-
pose the domain. Delaunay meshes are generated in each 
block, and the interfacing meshes are generated as the algo-
rithm climbs up the tree structure.

The same idea of subdividing the domain in half is used 
in several graph/mesh partitioning techniques for finite ele-
ment meshes  [13–15]. Those techniques are also used in 
mesh generation when a background mesh is available for 
decomposition, such as in [4, 9, 16–22]. Other works con-
sider each element of the background mesh as a subdomain 
for mesh generation, such as [22–25]. The techniques that 
use elements or groupings of elements of a background 
mesh to decompose the domain are classified as discrete 
domain decomposition (DDD) techniques in [26]. In those 
techniques, after determining the subdomains, their inter-
facing meshes, as well as the original surface mesh, are 
refined and each subdomain is meshed independently.

Techniques that do not use a background mesh are 
classified as continuous domain decomposition (CDD) 
techniques in the same work, and can use any method to 
decompose the domain. Therefore, in addition to recur-
sive binary subdivision  [4–12], as mentioned before, 
blocks [27–30], recursive spatial decompositions (quadtrees 
or octrees) [31–34], spatial sorting [35], and data structure 
partitioning  [36] are also among the possible choices. As 
pointed out in  [26], techniques that generate the interfac-
ing mesh a priori might create artifacts in the interior of the 
mesh that degrade its final quality. This can happen both 
with CDD as well as with DDD techniques.
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Several parallel meshing techniques have been pro-
posed in the literature: 2D Delaunay techniques  [27–29, 
31, 35, 36]; 3D Delaunay technique [30]; combination of 
AFT with template meshing [32]; AFT [21, 33, 34]. Those 
AFT-based parallel techniques advance faces so that they 
do not cross the subdomain’s limits, defined by either the 
leaf-cells of a quadtree [34], the leaf-cells of an octree [32, 
33], or the partitioning of a mesh [21]. After that, to gen-
erate the interfacing meshes, several strategies have been 
proposed: hierarchical front repartitioning  [32]; subdo-
main shifts [33, 34]; and graph-coloring scheme to deter-
mine the communication patterns  [21]. Since the inter-
facing meshes are generated after the generation of the 
meshes in the subdomains, these techniques are called a 
posteriori.

The work presented here shares similarities with some 
of the aforementioned works. It subdivides the domain in 
half, such as in [4–12]. While the work in [12] uses a kd-
tree, the work presented here uses a binary spatial partition-
ing (BSP) data structure, such as in [9], which can be seen 
as a generalization of a kd-tree. Similar to what is done 
in [11, 34], a quadtree/octree is used to estimated the load, 
but, in this work, the positioning of the decomposing plane 
is performed differently. Unlike the strategy used in [4–11], 
the interfacing meshes are generated a posteriori, similarly 
to what is done in [12, 21, 32–34]. Like in [12], the inter-
facing meshes are generated as the algorithm climbs up 
the tree. Unlike what is done in  [12] and similar to what 
is done in [11, 21, 33, 34], the meshes are generated using 
solely an advancing front technique. Additionally, none 
of the related works address all the requirements cited in 
Sect. 1, which is the main objective of this work, especially 
in effectively dealing with cracks.

3 � Description of the parallel technique

The technique presented here works for two- and three-
dimensional models. However, despite the focus being on 
3D cases, 2D illustrations are used only for the sake of clar-
ity. The technique receives as input a list of triangular faces 
describing one or more objects, which might have holes or 
cracks. This boundary representation, which is the initial 
advancing front, defines a domain that is decomposed by an 
axis-aligned binary spatial partitioning (BSP) tree, built in 
such a way that the amount of work (the load) in each sub-
domain (a leaf of the BSP tree) is approximately the same. 
The load is estimated using a fine octree that represents the 
density distribution over the domain.

The subdomains are meshed simultaneously, so that no 
tetrahedral element crosses the bounding limits of its sub-
domain. After that, meshes interfacing the subdomains are 
generated connecting two sibling leaves. This interface 

meshing is also performed connecting sibling internal 
nodes, as the BSP tree is traversed from the leaves to the 
root. When the root is reached, the mesh is completely 
generated, although it remains scattered among all the 
processes.

The use of a BSP can be justified by the combination 
of its simplicity with its flexibility. It is a binary tree, a 
data structure that is not very complex to implement, and 
the positioning of the plane that decomposes each internal 
node of the tree can be placed anywhere. In particular, this 
work shows how to position the plane such that the esti-
mated workload is approximately divided in two, instead of 
dividing a geometric size, such as length, width or depth, 
which happens in other geometrically-based space decom-
position data structures, such as an octree. One restriction 
of this work is that the planes decomposing the domain 
must be perpendicular to one of the global axes, due to 
the data structure used to estimate the workload. How-
ever, since any axis can be chosen in each step, even this 
restricted BSP implementation is still more flexible than a 
kd-tree data structure, which has a fixed order for choosing 
the axis.

3.1 � Load estimation

In high performance computing (HPC), the load is a value 
that tries to predict the amount of work to be performed 
on a subdomain. In practice, this amount of work should 
reflect the execution time of a subdomain. However, to 
predict the runtime is a very difficult problem, because 
it involves external factors, such as memory access time, 
communication time, and execution of other processes. 
Therefore, instead of calculating the runtime, the complex-
ity of the algorithm is taken into account.

Since the complexity of 3D mesh generation algorithms 
usually depends on the number of elements of the gener-
ated mesh, the load must be proportional to the number of 
generated elements. However, the number of elements will 
be known only after the mesh is fully generated and, thus, 
the load must be estimated using additional information. 
This work employs a fine octree as an additional structure 
to estimate the load. An octree is used because it can reflect 
the discretization level of the mesh inside the domain, as 
well as transitions between refined and coarse regions of 
the desired mesh. More details on how this octree is built 
can be found in [1–3].

After the load-estimation octree of a model is built, its 
leaf-cells are classified as inside, outside, or on the bound-
ary of the model. The cells on the boundary are those that 
cross any of the model’s faces. Once the “on the bound-
ary” cells are found, their neighbors are classified using the 
unit normal vectors to the model’s boundary faces, which 
point to the interior of the model by convention. Next, an 
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algorithm similar to a flood-fill [37] is employed to classify 
the remaining cells.

The total load estimation of the model is the num-
ber of cells classified as inside or on the boundary of the 
model domain, called full cells. In Fig.  1, a load-estima-
tion quadtree is illustrated. Full cells, the ones considered 
for load estimation, are those inside the domain (cells with 
dark lines) and the ones on the boundary (filled cells). Dur-
ing the decomposition of the domain, full cells inside a 
subdomain are the ones used in its load estimation.

3.2 � Domain decomposition

The idea for constructing the BSP is to perform a recursive 
binary search, over the octree, for the best location of the 
decomposing plane to subdivide a BSP cell, i.e., the loca-
tion where the two new subdomains have approximately 
the same load estimation. This is performed for the three 
global axes, and the best one is chosen. To break ties, for 
each axis, the load of the interface connecting the two sub-
domains is also estimated, and the axis with the lightest 
interface is chosen.

3.2.1 � Decomposition on an axis

Initially, a cube, equal to the root of the octree, is built as 
the root of the BSP. To subdivide this cell in two, an attempt 
is made to place the decomposing plane on the center of 
this cell, on the X axis. This plane splits the children of the 
octree’s root, leaving 4 children on the left and the other 

four on the right in 3D (two children on each side, in 2D). 
Thus, each BSP cell corresponds to 4 children of the root of 
the octree.

If the loads of these BSP cells have the same value, this 
position is the best for the X axis. Otherwise, the heavier 
child is detected and the decomposition plane is moved to 
its center, on the same axis (Fig. 2, top). This new subdi-
vision transfers some of the octree’s cells from one BSP 
child to the other, thus decreasing the load estimation of 

Fig. 1   Example of a load-estimation quadtree

Fig. 2   Domain decompositions performed by the BSP, on the X axis 
(top) and on the Y axis (bottom). Dashed lines represent previous 
locations of the decomposition plane, which are displaced according 
to the arrows. The continuous line represents its final position
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the heavier cell and increasing the load estimation of the 
lighter cell.

That procedure is performed recursively, and has two 
stopping criteria: the loads of the two subdomains are 
equal; or a leaf of the octree is reached, i.e., it is no longer 
possible to subdivide. Among the several tested locations, 
the one that best distributes the load estimation between the 
subdomains is chosen, i.e., the one that minimizes the abso-
lute difference between the two load estimations.

Figure 2 (top) depicts the procedure on a quadtree, con-
sidering that all its cells are classified as full cells. In the 
figure, the dashed lines represent previous locations of the 
decomposition plane, the continuous line represents its 
final position, and the arrows and the numbering show its 
displacement as the binary search descends the quadtree. 
The same procedure is also performed for the other axes 
(Fig. 2, bottom). In the same figure, on the Y axis, the ini-
tial position of the plane decomposes the domain in equal 
parts, due to its symmetry. Therefore, no displacement was 
required in that direction.

Notice that, if the decomposing plane is initially placed 
on the geometric center of a BSP cell, it is possible that its 
location does not match an octree division, and thus a full 
cell might be crossed. For example, in Fig. 2 (top), if the 
BSP cell on the left is further subdivided, the initial posi-
tion would lie inside the second column of quadtree cells, 
not on their edges. To avoid such cases, the largest octree 
cells inside the BSP cell are found, their extreme coordi-
nates in that axis are uniquely determined, and their median 
value is taken as initial position for the decomposing plane.

Furthermore, during the selection of the best decomposi-
tion among the axes, ties are broken using the load estima-
tion of the interfaces. This load estimation is performed by 
finding one layer of octree cells adjacent to the decompo-
sition plane, in each side of the plane, removing the load 
corresponding to these layers from the subdomains, and 
assigning those layers to the interface. Therefore, the load 
estimation in a subdomain is calculated as the number 
of full octree cells inside the domain minus one layer of 
octree cells adjacent to the partitioning planes around the 
subdomain. For example, in Fig. 2 (top), the load estima-
tion for the left subdomain is 104, for the right subdomain, 
84, and, for the interface, 128; in Fig. 2 (bottom), the load 
estimations for the top and bottom subdomains and for the 
interface are, respectively, 145, 145 and 26.

3.2.2 � Best decomposition among the axes

One of the main purposes of this work is to balance the 
estimation of the load among the subdomains, using the 
estimation of the load on interfaces as tie breakers. How-
ever, since the interfacing mesh is generated a posteriori, 
the time to generate them can be crucial for the whole 

parallel technique. Therefore, a balance between minimiz-
ing the absolute difference between the load estimations of 
the subdomains and minimizing the load estimations of the 
interfaces must exist.

That balance, which, in a certain way, is analogous to 
balancing communication and computation in parallel algo-
rithms in general, is controlled by a threshold t ∈ [0, 1] in 
this work. That threshold controls the acceptance of a small 
imbalance between subdomains, as long as their interface is 
small. The balance between subdomains regards only one 
axis, while testing the size of the interface requires com-
parisons between two axes.

The balance (or unbalance) between the subdomains of 
an α-axis is calculated as

where (bij)α is the balance factor between subdomains i and 
j defined by the α-axis, α is either X, Y or Z, and (LEi)α and 
(LEj)α are their respective load estimations for that axis. 
A perfect balance occurs when both subdomains have the 
same work load and the worst unbalance happens when one 
subdomain gets all the work load. Thus, if (bij)α ≤ t, where 
t is the given threshold, the α-axis is said to be relatively 
well-balanced:

The comparison between interfaces is calculated as

where the subscript ij indicates the interface between sub-
domains i and j, (bij)αβ is the balance factor between the α-
axis and the β-axis, α and β are either X, Y or Z, and (LEij)α 
and (LEij)β are the load estimations for the interfaces in the 
α-axis and in the β-axis, respectively. Thus, the following 
cases occur:

(bij)α =
|(LEi)α − (LEj)α|

max{(LEi)α , (LEj)α}
,

(bij)α







= 0 (perfectly balanced)

= 1 (completely unbalanced)

≤ t (relatively well-balanced).

(bij)αβ =
(LEij)α

(LEij)β
,

(bij)αβ















→ 0 if (LEij)α ≪ (LEij)β
→ ∞ if (LEij)α ≫ (LEij)β
= 1 if (LEij)α = (LEij)β
≤ t α is said do be much lighter than β.

Table 1   Balance factors of decompositions in Fig. 2

Axis Subdomains Interfaces

X |104− 84|

max{104, 84}
∼= 0.1923

128

26
∼= 4.9230

Y |145− 145|

max{145, 145}
= 0.0000

26

128
∼= 0.2031
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Table 1 shows the balance factors for the decompositions 
shown in Fig. 2.

When comparing two axes to select which one is bet-
ter, three main tests are performed, one that considers the 
balancing factors and the threshold, one that considers only 
the balancing between the load estimations in the subdo-
mains, and one that considers only the load estimations of 
the interfaces. Algorithm 1 describes this selection proce-
dure. Notice that, if both axes are equally balanced, both 
are selected and kept for further consideration. In the exam-
ple of Fig. 2, for a threshold of t = 0.20, none of the axes 
would be discarded in the first test, but for a threshold of 
t = 0.21, for example, the Y axis would be selected. In this 
work, the threshold is set as t = 0.50, based on empirical 
tests and observations.

Algorithm 1 Axis selection.
Input: Subdomains i and j for α and β -axes, load estimations for each

subdomain and each interface, threshold t .
Output: Axis or axes selected.

Calculation of the balance factors
dα ← |(LEi)α − (LEj)α |
dβ ← |(LEi)β − (LEj)β |
(bi j)α ← dα/max{(LEi)α , (LEj)α}
(bi j)β ← dβ /max{(LEi)β , (LEj)β}
(bi j)αβ ← (LEi j)α/(LEi j)β
(bi j)βα ← (LEi j)β/(LEi j)α
Tests using balance factors and threshold

if (bi j)α ≤ t and (bi j)αβ ≤ t then return α
if (bi j)β ≤ t and (bi j)βα ≤ t then return β
Tests using the balance between the subdomains

if dα < dβ then return α
if dβ < dα then return β
Tests using the interfaces

if (LEi j)α < (LEi j)β then return α
if (LEi j)β < (LEi j)α then return β
Return of the equally balanced axes

return α and β

In two dimensions, the axis selection algorithm is per-
formed only once, with the X and the Y axes. In three 
dimensions, it is performed twice, in the first pass, with 
the X and the Y axes, and in the second pass, with the axis 
selected in the first pass (notice that, in case both axes are 
selected, either X or Y can be used) and the Z axis.

After the tests, two, one or none of the axes is discarded. 
Thus, one, two or three axes are kept, but only one must be 
chosen. If two or three axes are kept, the chosen axis is the 
next available after the one that divided the parent node in 
the BSP tree structure. For example, if the parent node is 
decomposed on the X axis, and the Y axis is among the ones 
kept, it will be chosen; otherwise, the Z axis will be chosen. 
If the parent node does not exist, i.e., the decomposition is 

being performed for the root of the BSP, the first available 
axis is the chosen one.

3.2.3 � Parallel domain decomposition

The decomposition procedure described in the previous 
section is performed until the number of subdomains is 
equal to the number of processes, in parallel, and in such 
a way that each process builds only the branch of the BSP 
necessary to reach its own subdomain. This can be done 
using the identifier of the process and the number of total 
processes, or the identifier of the thread and the number of 
threads in a process.

Figure  3 shows a global view of the BSP built on a 
domain (thick line) and the subdomains of each process 
(thin line). The parallel architecture in the example has 
eight processes. Figure 4 shows the BSP built in each pro-
cess for the same example. Figure 5 shows the decompo-
sition given by a BSP on the didactic example of a circle 
with uniform discretization, for eight subdomains. It can 
be seen that the two leftmost and the two rightmost sub-
domains have larger width than the four innermost subdo-
mains, to make them have approximately the same load.

3.2.4 � Proportionality factor

To enable the use of a number of processes different than 
a power of two, a proportionality factor is used during the 
construction of the BSP. If this proportionality factor is not 
used, when the number of processes is not a power of two, 
some of the generated subdomains will have approximately 
only half of the load estimations of the other subdomains. 
This could cause imbalances on the work distribution and, 
occasionally, lead to a poor speed-up.

With the proportionality factor, whenever the load esti-
mations of two subdomains are compared to each other, 
their values are multiplied by a scalar that specifies how 
heavy one subdomain must be with respect to the other. 
This implies that, when a BSP cell is subdivided with a 
factor of m  :  M, one of its children will generate m sub-
domains while the other will generate M subdomains. 
The proportionality factor for a total of N subdomains is 
⌊N/2⌋ : ⌈N/2⌉, for each child to generate approximately 
half of the final subdomains.

For example, if the number of processes is five (Fig. 6), 
the proportionality factor used for the root of the BSP is 
2 : 3. That factor specifies that, when the load estimations 
for the root’s children are compared, the load of the lighter 
child is multiplied by three and the load of the heavier child 
is multiplied by two. During the decomposition on an axis, 
if these scaled load estimations are equal, the recursive 
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procedure stops; otherwise, the originally heavier child is 
taken and the decomposition plane is moved towards its 
direction. In the end, the decomposition plane’s position is 
the one that minimizes the absolute difference of the scaled 
load estimations. That same idea used for deciding the best 
decomposition axis.

In the example of Fig.  6, the heavier child of the BSP 
root is subdivided with a proportionality factor of 1:2, 
while the lighter child has a proportionality factor of 1:1. 
Finally, the heavier child of the heavier child of the BSP 
root is further subdivided, with a proportionality factor of 
1:1. Using the proportionality factor results in five subdo-
mains with approximately identical load estimations.

3.3 � Mesh generation

3.3.1 � Mesh generation on a subdomain

Since the algorithm used in each subdomain is based on an 
advancing front technique (AFT), an initial front is needed 
in all subdomains. However, when the BSP is created, it is 

Processes 0 to 7

Processes 0 to 3 Processes 4 to 7

Process 0

Processes 0, 1 Processes 6, 7Processes 2, 3 Processes 4, 5

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Fig. 3   Global view of the BSP
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P6
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Fig. 4   Local BSP as seen in each process. A label indicates the process responsible for a branch

Fig. 5   Decomposition performed by a BSP
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possible that some subdomains remain completely inter-
nal to the domain. In those cases, some auxiliary faces are 
generated near the center of the subdomain, with sizes that 
respect the sizing function given as input to the AFT. That 
can be done because the auxiliary front lies near the center 
of a subdomain that does not cross the initial front and, 
therefore, the auxiliary front is far from the boundary of the 
domain.

Each subdomain, defined by a part of the front and a 
bounding box, generates an independent sub-mesh using 
a serial AFT developed by some of the coauthors of this 
work [1–3]. To ensure that no element is generated outside 
the limits of a subdomain, the following conditions were 
added to that serial AFT:

1.	 A face crossing the bounding box of the subdomain is 
not advanced (Fig. 7, left).

2.	 A face that is strictly inside the bounding box of the 
subdomain is not advanced if any valid well-shaped 
element formed with it would cross the bounding 
box. In other words, consider the search region that 
is defined for placing a new vertex, which, when con-

nected to the given face, would form a valid, well-
shaped element. Then, if that region crosses the bound-
ing box, the face is not advanced (Fig. 7, right).

If the second condition were modified just to test 
whether or not the ideal vertex for a given face is outside 
the bounding box, there would be too little empty space left 
for generating the interface mesh a posteriori (see discus-
sion in Sect. 3.3.2). Therefore, the whole search region is 
tested.

No special treatment is necessary for crack faces, as they 
follow the same conditions. This is an advantage of this 
technique, since crack faces take no extra processing time, 
and are treated as any other face on the boundary. Figure 8 
depicts both conditions, for the case of 2D crack segments: 
according to the first condition, the leftmost segments can-
not advance, because they cross the subdomain’s bounding 
box; and, according to the second condition, the segments 
facing down also cannot advance, because their geometric 
search regions cross the subdomain’s bounding box.

In cracks, due to the existence of vertices with identical 
coordinates, the advancing front algorithm must know how 

2:3

1:11:2

1:1

Fig. 6   Example of a BSP tree with five subdomains. The proportionality factors are indicated in each internal node of the BSP

Fig. 7   Advancing front modifications (2D case): segments crossing 
the bounding box (left) and search region crossing the bounding box 
(right)

Fig. 8   Crack and conditions applied to the AFT
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to distinguish between them and choose the appropriate ver-
tex for the generation of a new element, avoiding topological 
inconsistencies (Fig. 9). For that purpose, the algorithm uses 
the faces of the input front that are adjacent to those verti-
ces. When two candidate vertices on the crack are selected to 
generate a new element, the one on the same side of the base 
face, with respect to the crack, is chosen. The normals of the 
faces adjacent to the vertices are used to perform that test.

Each process advances the front as much as possi-
ble, respecting the two previous conditions. For example, 
the top left picture of Fig. 10 shows a 2D initial front of a 
subdomain. The same figure also shows its updated front, 
i.e., the remaining front after the sub-mesh was generated, 
along with its sub-mesh. An improvement is applied to the 
sub-mesh, as a combination of Laplacian smoothing, face 
swapping and edge swapping procedures. More details 
about those algorithms can be found in  [1–3]. Notice that 
the updated front cannot change when smoothing or any 
other optimization technique is performed, since some of 
its adjacent elements have not been generated yet.

3.3.2 � Mesh generation on the interfaces

The meshes on the interfaces of the subdomains are gener-
ated as the BSP tree is ascended. After generating the mesh 
on a leaf of the BSP, its parent cell is determined and the 
identifiers of the processes that own each of its two chil-
dren are retrieved. The process with the smaller identifier 
will be responsible for the parent cell. Then, through local 

synchronization, the process combines the updated fronts 
of the two children. Figure 11 shows the sub-meshes for the 
circle’s example.

The updated fronts of the two neighboring subdomains, 
along with one layer of elements adjacent to those fronts, 
are gathered, and they are the starting point of the AFT 
applied to the interfacing region. That layer of elements is 
necessary for the mesh improvement to be performed on the 
updated fronts of the neighboring subdomains, which were 
not allowed to change during the improvement of the two 
sub-meshes. The AFT and the mesh improvement proce-
dures applied to the interface are the same ones applied to 
the subdomains. Figure 12 shows the interface between the 
two bottom left subdomains of the circle’s example.

Crack vertices
Normal vertices

Fig. 9   Geometrical (top) and topological (bottom) views of a base 
segment advancing to a 2D crack vertex. The distance between crack 
vertices in the topological view is only schematic

Fig. 10   Advancing front on a subdomain. Top row, from left to right 
initial front and bounding box of the subdomain, and updated front; 
bottom row, from left to right mesh before improvement, and mesh 
after improvement



664	 Engineering with Computers (2016) 32:655–674

1 3

This procedure is repeated until the root of the BSP is 
reached, in which case the process with identifier 0, which 
can be seen as the master process, finalizes the mesh’s 
generation. In the end, the generated mesh remains scat-
tered among all the processes. Figure  13 shows the final 
mesh for the example of a uniform disk. Processes 0–7 
are represented by the colors light red, light green, blue, 

yellow, magenta, cyan, dark red and dark green, respec-
tively. Figure 14 depicts a global view of the mesh genera-
tion on the interfaces of the subdomains.

4 � Results

The parallel technique was developed in C++ with MPI 
for interprocess communication. It was executed in the 
cluster computer Stampede, maintained by the Texas 
Advanced Computing Center, and it used the GNU Com-
piler Collection version 4.7.1 and the MPI implementation 
MVAPICH version 1.9a2.

The tests presented in this section consist in generat-
ing meshes for four models: A prismatic beam with an 
extremely refined boundary mesh; a rotor; a cracked gear; 
and a gear with no crack. The first test is a didactic test 
devised to assess whether our technique would be able to 
deliver a linear or even super-linear speed-up as expected 
for such models. All the other three models are real engi-
neering models. The third and fourth models are identical, 
except for the presence of a crack in the third model and for 
the higher boundary mesh refinement in the fourth model. 
The existence of a crack in the gear forces the generation of 
a high number of elements in the 3D mesh. To have compa-
rable number of elements in the third and fourth models the 
input boundary mesh for the gear without crack was highly 
refined.

The models can be seen in Fig. 15, and their decompo-
sition with 16 processes can be seen in Fig 16. Figure 17 

Fig. 11   Sub-meshes in the BSP leaves

Fig. 12   Interface region where a mesh will be generated with one 
layer of elements from each BSP child (bottom)

Fig. 13   Final mesh
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Fig. 14   Global view of the mesh generation on the interfaces

Fig. 15   Test models: beam, rotor, cracked gear, and gear

Fig. 16   Frontal view of the decomposition of the test models: beam, rotor, cracked gear, and gear

Fig. 17   Zoomed view of the crack in the cracked gear model



666	 Engineering with Computers (2016) 32:655–674

1 3

shows the crack in the cracked gear model and Fig.  18 
shows how it is affected by the decomposition. Figure 19 
shows the size of the meshes generated by the serial 
implementation.

4.1 � Runtime and speed‑up

Figure  20 shows the runtime and the speed-up obtained 
with the parallel implementation. Figure  20 (top) shows 
that the runtime of the serial implementation varies with 
the size of the generated mesh. The meshes for the rotor 
and the cracked gear models had approximately the same 
size and, thus, they took approximately the same time to be 
generated. The mesh for the gear was a little larger because 
its boundary is more refined, and, therefore, its generation 
took longer. The mesh generated for the beam model was 
the largest mesh, and, therefore, took the longest time to 

compute. However, notice that, due to the simplicity of the 
geometry, the difference between its runtime and the one 

Fig. 18   Decomposition of the crack in the cracked gear model, viewed from above the crack (top) and from under it (bottom)

Fig. 19   Mesh sizes for each model

Fig. 20   Runtime and speed-up of each model
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for the gear model was not very large, even though the 
mesh of the beam model has approximately twice the size 
of the mesh of the gear model.

Figure 20 (bottom) shows that the parallel implementa-
tion, in general, delivered a good speed-up in all the models 
for up to 16 processes. Using 2 and 4 processes, a super-lin-
ear speed-up was delivered. Using 8 processes, the speed-up 
obtained was linear and, using 16 processes, the speed-up 
decreased, although the worst speed-up was of almost 12, 
for the cracked gear model, which is still a very good result. 
This drop was caused by some imbalance due to the exist-
ence of the crack. The speed-up for the gear model without 
crack, in comparison, was the same as for the rotor model. 
The case of the beam model maintained the linear speed-up, 
which attests that this implementation is fine tuned.

4.2 � Runtime in detail

Figure 21 shows a profile of the master process that indi-
cates the time spent in each activity of the parallel mesh 
generation algorithm: initialization; boundary building, 
which creates the data structures of the input front; gen-
eration of the load estimation octree, which generates the 
octree and classifies its cells (detailed in Sect. 3.1); Com-
putation of the load, which counts the number of full cells 
(also in Sect.  3.1); Generation of the BSP data structure 
(Sect.  3.2); Decomposition of the front, which distributes 
the input front’s faces among the subdomains; Generation 
of the meshes in the subdomains (Sect. 3.3.1); Communica-
tion, which synchronizes the master process with its neigh-
boring processes; Merging of parts of the meshes gener-
ated by the processes; Generation of the interface meshes 
(Sect. 3.3.2); and Overhead, which accounts for any wasted 
time not associated with any of the activities. Figure  22 
is analogous to Fig.  21, but expresses the time spent in a 
given activity as a percentage of the total time.

The time to generate and classify the octree is constant, 
it does not depend on the number of processes. The domi-
nant time is the mesh generation procedure. As the num-
ber of subdomains increases, the number of interfaces also 
increases, but only a minor growth of time to mesh them is 
observed, especially from 4 to 16 processes.

Figure 22 shows that, as the number of processes increases, 
the total runtime decreases and, therefore, constant or nearly-
constant times become proportionally high. For example, 
with 16 processes, the octree generation and classification 
step takes 15–25 % of the runtime, and the generation of the 
interface mesh ranges from 15 to 45 % of the total runtime.

In a simple best-case scenario, if only the generation 
and classification of the octree were parallelized in an ideal 
manner, the overall speed-up for 16 processes would be 
almost linear, as shown in Table 2. This indicates that the 
method would scale well for a higher number of processors.

Fig. 21   Detailed runtime
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4.3 � Load balancing

Figure 23 shows the runtimes of subdomains and interfaces 
in each process for the four models when 16 processes 
were used. The first task of a process is executed in the sub-
domain assigned to it, and its subsequent tasks are directed 
to the mesh generation in the interfaces. However, the task 
of generating mesh in the interfaces is assigned to just a 
subset of the processes.

In the beam model, the amount of work in each pro-
cess was well balanced due to its regular decomposition. 
The rotor model has well-balanced subdomains and well-
balanced interfaces in each level of the BSP tree. How-
ever, from level to level, there was some imbalance, which 
caused a small speed-up loss. The cracked gear model had 
the worst load balance, because the load estimations for 
the subdomains near the crack were poor. The removal 
of the crack improved the distribution of the load among 
the processes considerably. In both gear models, the loads 
assigned to meshing most interfaces were small.

Load balance is closely correlated to runtime. In fact, 
when the number of elements generated in each process is 
well-balanced, the runtime in each process is also well-bal-
anced. That can be seen in the charts presented in Fig. 23 
(runtimes) and Fig. 24 (number of elements).

4.4 � Load estimation

The load estimation given by the octree in Section  3.1, 
for either a subdomain or an interface, is a dimensionless 
parameter that, when divided by the sum of all the load 
estimation parameters, indicates the percentage of the total 
number of elements of the mesh that will be generated in 
that subdomain.

That percentage can be applied to estimate, roughly, the 
number of vertices or the runtime associated with the mesh 
generation in a subdomain. However, since the exact per-
centage could only be computed after the whole mesh is 
generated, what is actually computed is an estimated per-
centage. Figure 25 shows the estimated number of elements 
and the number of elements generated in each subdomain 
when 16 processes were used.

Fig. 22   Detailed runtime in percentage

Table 2   Speed-up for 16 processes with an ideally parallelized 
octree.

Model Speed-up

Beam 17.9

Rotor 15.0

Cracked gear 14.7

Gear 15.9
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Fig. 23   Runtime of the mesh generation tasks in each process Fig. 24   Number of elements of the mesh generation tasks in each 
process
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Fig. 25   Estimation of the number of elements for the 16 subdomains 
and for the 15 interfaces

Fig. 26   Error in the estimation of the number of elements for the 16 
subdomains and for the 15 interfaces



671Engineering with Computers (2016) 32:655–674	

1 3

The didactic test with a beam model showed good esti-
mation of the number of elements, as can be seen in the 
first chart. The rotor model also showed some uniformity. 
The cracked gear model showed that the estimation was not 
very good, because of the crack. Its removal, in the gear 
model, led to a better uniformity, except for one subdo-
main. The crack itself is not the problem, but it would pos-
sibly induce the generation of many small elements in the 
interior of the model, which might cause difficulty in the 
estimation of the load by the octree. However, although the 
load estimation for the example with crack is not as good 
as those for the cases without crack, as shown in Fig. 25, 
the estimation is still reasonable.

The error of the estimation of the number of elements 
can be calculated as the relative error between the esti-
mation and the actual number of elements, as depicted in 
Fig. 26. A positive error means that the number of elements 
was overestimated, while a negative error means that the 
number of elements was underestimated. Figure  26 also 
shows the average error and the standard deviation of the 
error. If the standard deviation approaches zero, most of the 
individual errors approach the average error. If the average 
error also approaches zero, most of the individual errors 
approach zero, which indicates that the estimated number 
of elements approaches the actual number of elements, 
and, therefore, the load is well estimated. As expected, 
the cracked gear model showed the worst error of the four 
models, when 16 processes were used.

Figure  27 shows the average error and the standard 
deviation of the error for the subdomains for all the runs 
of the parallel implementation. It can be seen that, as the 
number of processes increases, thus increasing the num-
ber of decomposition planes, the error increases. However, 

except for the cracked gear model, the average error 
remained small, only the standard deviation was increased. 
Notice that this error, for most cases, was not larger than 
10 %.

4.5 � Mesh quality

The main purpose of the parallel mesh generator is not 
to generate a better mesh, but to generate more rapidly 
a mesh whose quality is not too far from the mesh that 
would be generated by the serial mesh generator. In this 
work, the quality of an element was calculated as the ratio 
between the radii of its inscribed and its circumscribed 
spheres, multiplied by 3. This ratio varies from 0 to 1, and 
small values (less than 0.1) indicate elements of low qual-
ity, while large values (larger than 0.7) indicate elements 
of good quality. The value of 1 indicates that the tetrahe-
dron is equilateral.

Figure  28 shows the percentage of the number of ele-
ments in each range, varying from 0 to 1, with inter-
vals of size 0.1, for all the generated meshes, including 
the serially generated meshes. It can be seen that, as the 
number of processes increases and, therefore, the num-
ber of decomposing planes also increases, the quality of 
the meshes worsens somewhat. However, this worsening 
is mostly caused by the loss of quality of a few elements 
from the high quality range (greater than 0.7) going down 
to the average quality range (between 0.4 and 0.7). This 
can be better seen in Fig.  29, which depicts the differ-
ence, in each range, between the quality, in percentage, of 
a mesh generated in parallel and the one generated seri-
ally. A positive value means that the parallel technique 
with that number of processes generated more elements in 
a range than the serial technique. A negative value means 
the opposite. It can also be seen that the largest difference, 
for the rotor model with 16 processes, was less than 3 %, 
in absolute value.

To better measure how different a mesh generated in 
parallel is from a mesh generated serially, the absolute val-
ues of the differences show in Fig. 29 for each range were 
summed, and the results were depicted in Fig.  30, i.e., 
the plots show the total difference for each mesh gener-
ated in parallel. The mesh generated with 16 processes for 
the rotor model presented the highest difference, which is 
approximately 10 %. For the other models, the total differ-
ence reached, at most, 5 %. Notice also that even though 
the speed-up and the load estimation for the cracked gear 
model could be better, the quality of the meshes generated 
in parallel are close to the quality of the mesh serially gen-
erated. This means that the quality of the mesh is independ-
ent of the speed-up and of the load estimation.

Fig. 27   Average error in estimation of the number of elements and 
standard deviation of the error
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Fig. 28   Percentage of the quality of the meshes Fig. 29   Difference in the percentage of the quality of the meshes 
(parallel vs. serial)
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5 � Conclusions

This work presented a technique for generating meshes 
in parallel for shared, distributed or hybrid-memory 
machines. The technique does not require any modifica-
tion to deal with models with cracks and models without 
cracks. The technique uses an axis-aligned binary spatial 
partition (BSP) tree to decompose the domain according 
to the number of processes or threads. That decomposition 
is based on a fine octree, that works as a density function 
for the interior of the domain, so that all the subdomains 
have approximately the same workload. Even though the 
binary behavior of the BSP tree suggests that the number 
of threads or processes be a power of two, a proportionality 
factor is used in this work. That factor ensures that, even if 
any other number of processes or threads is used, the gen-
erated subdomains have approximately the same workload, 
which is also another advantage of our technique.

The subdomains are meshed in parallel and the meshes 
interfacing them are generated as the tree structure is 
ascended, locally synchronizing only the two processes 
responsible for the two neighboring subdomains when nec-
essary. The serial mesh generator used in this work is based 
on an advancing front procedure capable of dealing with 
cracks. Thus, because the continuous domain decomposi-
tion technique does not restrict the input data, the parallel 
technique also can deal with cracks. This parallel technique 
is generic enough to be used in two or three-dimensions.

The results show that the technique delivered a good 
speed-up in all the models for up to 16 processes. Regard-
ing load balance, the main concern of this work was to bal-
ance the number of elements generated in each subdomain, 
and the results were very satisfactory. The load estima-
tion was very reasonable, with the average error remain-
ing small, for all models. Although the main purpose of a 

parallel mesh generator is not to generate a better mesh, but 
rather to generate more rapidly a mesh whose quality is not 
too far from the serially generated mesh, the quality of the 
meshes generated by the presented parallel technique was 
very good and very close to the serial version.

Furthermore, the results showed that the existence of the 
crack can lead to an imbalance, due to the existence of too 
many elements unaccounted by the load estimation tech-
nique. In all the other models, the load was well estimated, 
with errors below 10 %, leading to a good load balance. 
Even with the presence of some imbalance, the speed-up 
delivered by the implementation was good enough for its 
use, especially because the quality of most of the meshes 
generated in parallel was close to the quality of the serially 
generated one, within an error margin of 10 %.

Although results were shown only for distributed-mem-
ory computers, the technique does not impose restrictions 
on the type of memory, and it can be easily implemented 
using shared-memory constructions, such as lock mecha-
nisms for one thread to wait for another on the generation 
of interfacing meshes. The shared-memory implementation 
will be addressed in the future.

The main concern regarding this technique is that it 
is heavily dependent on a good load estimation, and the 
efforts in the future will be directed towards that issue. One 
way to improve the load estimation is to modify it in such 
a way that the contribution of each octree cell vary with its 
depth in the tree structure. Also, it is known that the octree 
might not be the best choice for models that are not aligned 
with the global axes. Therefore, it must be built in a local 
coordinate system, a matter that will be addressed in the 
future. Furthermore, substituting the time spent in gener-
ating the load-estimation octree sequentially by the time 
spent for generating that octree in an ideal parallel situa-
tion, the speed-up drop is nearly eliminated, which indi-
cates that the method would scale well for a higher number 
of processors. Finally, the technique can be further opti-
mized by the generation of the interfacing meshes prior to 
the generation of the meshes in the subdomains, although 
this can create artifacts on the final mesh that can degrade 
its overall quality.
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Fig. 30   Total difference in the quality of the elements (parallel vs. 
serial)
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