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has been the main concern of environmentalists. In fact, 
ground vibration is acoustic waves that propagate through 
the ground [1–3]. When an explosive charge detonates in 
the blasthole, intense dynamic stresses are set up around it 
due to sudden acceleration of the rock mass by detonating 
gas pressure on blasthole wall. The strain waves transmit-
ted to the surrounding rock set up a wave motion in the 
ground [4, 5]. The strain energy carried out by these strain 
waves fragments the rock mass due to different breakage 
mechanisms such as crushing, radial cracking, and reflec-
tion breakage in the presence of a free face. The crushed 
zone and radial fracture zone encompass a volume of per-
manently deformed rock. When the stress wave intensity 
diminishes to the level where no permanent deformation 
occurs in the rock mass (i.e., beyond the fragmentation 
zone), strain waves propagate through the medium as the 
elastic waves, oscillating the particles through which they 
travel. These waves in the elastic zone are known as ground 
vibration, which closely conform to the visco-elastic 
behavior. The wave motion spreads concentrically from the 
blast site in all directions and gets attenuated due to spread-
ing of fixed energy over a greater mass of material and 
away from its origin [6]. Even though, the ground vibra-
tion attenuates exponentially with distance but due to large 
quantity of explosive, it can still be high enough to threaten 
the safety and stability of surrounding structures because 
of dynamic stresses that exceed material strength [7]. This 
phenomenon can create great socioeconomic problems for 
the mine management as well as for people residing in the 
vicinity of the mine. High level of ground vibration has 
harmful effects on the structural integrity, ground water, 
and ecology of the nearby area. To minimize these harm-
ful effects, mining and blasting engineers should monitor 
and assess the ground vibration phenomenon, carefully. 
Peak particle velocity (PPV) is the most practical indicator 
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1  Introduction

Although blasting is one of the important basic opera-
tions for production cycle in mines, this operation has 
always been accompanied by some undesirable effects. 
Ground vibration is one of these destructive effects, which 
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for assessment of this phenomenon. Many researchers have 
suggested several criteria for evaluation of blast-induced 
damage based on this indicator [5–12].

During past years, several empirical equations have been 
presented for PPV prediction (Table 1). The most widely used 
predictor equation for PPV is square-root scaling proposed by 
the United States Bureau of Mines (USBM equation). Two 
main disadvantages of these equations are: (1) the empirical 
equations are site specific and are not suitable for other sites, 
and (2) these equations are based on only two parameters, 
maximum charge per delay and distance from blast location, 
and do not include other effective parameters [22].

Recently, new approaches have attracted the attention 
of researchers for prediction of PPV, which are based on 
soft computing techniques. The studies indicate that the 
efficiency and accuracy of these approaches is more than 
empirical methods by a wide margin. Thus, nowadays these 
approaches are applied extensively for PPV prediction. 
For example, artificial neural network (ANN) [4, 23–40], 
fuzzy logic (FL) [22, 28, 41], adaptive neuro-fuzzy infer-
ence system (ANFIS) [42–47], support vector regression 
(SVR) [48–54], genetic algorithm (GA) [55], hybrid arti-
ficial neural network and imperialist competitive algorithm 
(ANN-ICA) [56], and hybrid artificial neural network and 
particle swarm optimization (ANN-PSO) [57, 58] have 
been applied for this purpose successfully.

The study presented herein aims to predict the PPV 
based on two soft computing techniques; hybrid adaptive 
neuro-fuzzy inference system and particle swarm optimiza-
tion (ANFIS–PSO) and support vector regression (SVR). 
For this purpose, a database compiled from Sarcheshmeh 
copper mine was used and the models were developed 
based on major blasting parameters.

In spite of being applied in various fields widely, the 
literature surveys show that there is no study about the 
application of ANFIS–PSO in the field of mining [59–64]. 
Hence, an effort has been made in this paper to make use 
of ANFIS–PSO for PPV prediction. As mentioned before, 
recently some models have been developed for PPV predic-
tion due to bench blasting based on SVR approach [48–54]. 
In most of these models, the PPV value is estimated con-
sidering only two parameters, i.e., charge weight per delay 
and distance from blast location, whereas this study not 
only considers these two parameters but also other effective 
parameters on ground vibration, such as burden, spacing, 
stemming and number of blastholes per delay.

To assess the performances of ANFIS–PSO and SVR 
models, the prediction capacity of these models is com-
pared with USBM empirical equation developed based on 
Sarcheshmeh copper mine database.

This paper is organized as follows: the mine description 
and the structure of database are explained in Sect.  2. In 
Sects. 3, 4, and 5, ANFIS–PSO, SVR and USBM models 
are constructed for PPV prediction in Sarcheshmeh copper 
mine, respectively. The performances of proposed models 
are examined and compared with each other in Sect. 6 and 
finally, the paper is concluded in Sect. 7.

2 � Description of database

As mentioned before, a database compiled from Sarchesh-
meh copper mine is used in this study. Sarcheshmeh copper 
mine is the biggest open pit porphyry copper mine in Iran 
which is located 160 km southwest of Kerman [22, 29]. In 
this mine, blasting operation is performed for rock exca-
vation. ANFO is used as the main explosive material and 
dynamite cartridges are used as primer with bottom hole 
positioning. The blasting system is non-electric and deto-
nating cord is applied for initiation. Blastholes are drilled 
vertically in a staggered pattern and drilling cuttings are 
used as stemming materials. The diameter and depth of 
blastholes are 215 mm and 15 m, respectively.

The database is composed of 120 blast events and 
includes 8 parameters (see Table 2). Burden, spacing, stem-
ming, number of blastholes per delay, maximum charge per 
delay, distance from blast location to monitoring point, and 
PPV were recorded in each blast event. Burden, spacing 
and stemming were measured by a tape meter and number 
of blastholes per delay by controlling each blasting pattern. 
The distance from the blasting location to the monitoring 
point was measured carefully by means of a hand-held 
GPS (global positioning system) and the amount of maxi-
mum charge per delay was recorded for each blast by con-
trolling the blasthole charge. Furthermore, the amount of 
dynamite used as priming was considered for determining 

Table 1   Most common empirical equations for PPV prediction

PPV is peak particle velocity (mm/s), Q is maximum charge per 
delay (kg), D is distance between the blasting source and vibration 
monitoring point (m), and K, A, B, α, n are site constants

Name Equation References

USBM PPV = K ·
[

D/Q1/2
]−B [13]

Langefors–Kihlstrom PPV = K ·
[

Q1/2/D3/4
]B [14]

General predictor PPV = K · D−B
· QA [15]

Ambraseys–Hendorn PPV = K ·
[

D/Q1/3
]−B [16]

Indian standard PPV = K ·
[

Q/D2/3
]B [17]

Ghosh–Daemen 1 PPV = K ·
[

D/Q1/2
]−B

· e
−αD [18]

Ghosh–Daemen 2 PPV = K ·
[

D/Q1/3
]−B

· e
−αD [18]

Gupta et al. PPV = K ·
[

D/Q1/2
]−B

· e
−α(D/Q) [19]

CMRI predictor PPV = n+ K ·
[

D/Q1/2
]−1 [20]

Rai–Singh PPV = K · D−B
· QA

· e
−αD [21]
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the maximum charge per delay. PPV was measured by digi-
tal seismograph of PDAS-100 (Portable Data Acquisition 
System), which measures PPV in three orthogonal direc-
tions. The dynamic range of this seismograph is more than 
96 dB, with frequency range between 2 and 250 Hz, sam-
pling rate of 300 sample per second, and trigger levels of 
0.1–250 mm/s.

It should be mentioned that in all of recorded blasts, 
diameter of blastholes, depth of blastholes and delay time 
between blastholes are constant and equal to 152 mm, 15 m 
and 50 ms, respectively. The range of collected data is sum-
marized in Table 2.

For developing the proposed models, the database was 
divided into two groups randomly: one group for develop-
ing predictive models including 80 % of the cases (i.e., 96 
blasts) and the other group including the rest of the cases 
(i.e., 24 blasts) for testing the models’ performances.

3 � Development of ANFIS–PSO model

The adaptive neuro-fuzzy inference system (ANFIS) is a 
learning algorithm which was first introduced by Jang [65]. 
Furthermore, particle swarm optimization (PSO) is a heu-
ristic global optimization method developed originally by 
Kennedy and Eberhart [66] based on the research of bird 
and fish flock movement behavior. Since the details about 
the algorithm and mathematical of ANFIS and PSO can 
be found in numerous literatures [65–69], they are not 
explained in this paper.

In this section, a PPV estimation model is developed 
using a novel hybrid approach. In this model, the ANFIS 
framework is optimized by PSO to improve the perfor-
mance of ANFIS. In fact, ANFIS provides the search space 
and employs PSO for finding the best solution by tuning 

Table 2   Basic descriptive 
statistics for Sarcheshmeh 
copper mine database

Parameters Unit Min. Max. Mean Standard deviation

Burden m 3.00 7.50 7.01 1.13

Spacing m 4.00 11.00 9.29 1.75

Stemming m 2.40 6.00 5.51 0.95

No. of holes per delay – 6.00 32.00 14.08 5.33

Charge per delay kg 1332.00 9812.00 5595.21 2079.04

Distance from blast location m 133.00 2845.00 1037.47 591.04

PPV mm/s 0.49 53.55 9.31 9.00

Table 3   Main parameters of the PSO

Parameters Value

Number of particles 20

Number of iterations 200

Cognitive acceleration (c1) 2

Social acceleration (c2) 2

Initial inertia weight (ωmin) 0.9

Final inertia weight (ωmax) 0.4
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Fig. 1   Comparison of measured and predicted PPV values by different models



610	 Engineering with Computers (2016) 32:607–614

1 3

the membership functions required to achieve lower error 
rates. The error between the model output and the actual 
training data can reach a minimum value through the itera-
tion of the PSO algorithm.

The ANFIS–PSO approach was coded with Matlab 
software package. ANFIS–PSO approach is developed to 
estimate PPV based on major blasting parameters; burden, 
spacing, stemming, number of blastholes per delay, maxi-
mum charge per delay, and distance from blast location to 
monitoring point. The membership functions considered in 
this study are Gaussian shaped. Furthermore, the main PSO 
parameters are given in Table  3. These parameters repre-
sent number of particles, maximum number of iterations, 
initial inertia weight, final inertia weight, personal learning 

coefficient and global learning coefficient. These parame-
ters are determined by trial and error procedure and are the 
optimum values for this case study.

4 � Development of SVR model

Support vector regression (SVR) is a universal learn-
ing algorithm proposed by Vapnik et al. [70] and has been 
regarded as one of the most significant achievements in 
machine learning in the last decades. SVR has a strong abil-
ity to address nonlinear issues and has been successfully 
used in a wide range of fields [71–75]. More details about 
the SVR and its mathematics are given in Vanpik [76].

The SVR model, like ANFIS–PSO model, includes six 
inputs (burden, spacing, stemming, number of blastholes per 
delay, maximum charge per delay, and distance from blast 
location to monitoring point) and one output (PPV). LIB-
SVM toolbox developed by Chang and Lin [77] was used for 
constructing the SVR model. The LIBSVM, an integrated 
software tool for SVR, was run in the Matlab environment. 
Gaussian radial basis function kernel was selected as the 

Table 4   Measured and predicted PPV values by ANFIS–PSO, SVR and USBM models for testing datasets

Blast no. Measured PPV (mm/s) ANFIS–PSO model SVR model USBM model

Predicted PPV (mm/s) Error Predicted PPV (mm/s) Error Predicted PPV (mm/s) Error

1 3.80 3.00 0.8 2.12 1.68 4.44 −0.64

2 21.05 26.22 −5.17 23.99 −2.94 12.64 8.41

3 3.03 4.50 −1.47 4.84 −1.81 11.80 −8.77

4 0.66 1.30 −0.64 0.50 0.16 3.00 −2.34

5 2.27 1.26 1.01 1.34 0.93 6.33 −4.06

6 5.02 4.60 0.42 9.88 −4.86 11.56 −6.54

7 4.50 6.80 −2.3 4.66 −0.16 5.62 −1.12

8 0.49 1.90 −1.41 1.35 −0.86 2.53 −2.04

9 5.74 4.90 0.84 6.01 −0.27 13.74 −8.00

10 5.34 2.70 2.64 2.91 2.43 6.23 −0.89

11 5.57 5.00 0.57 8.06 −2.49 8.88 −3.31

12 34.10 36.56 −2.46 38.48 −4.38 32.79 1.31

13 3.45 3.61 −0.16 9.06 −5.61 7.38 −3.93

14 2.00 1.59 0.41 3.61 −1.61 8.79 −6.79

15 5.91 4.14 1.77 4.97 0.94 5.74 0.17

16 3.44 6.70 −3.26 2.39 1.05 7.82 −4.38

17 8.37 9.83 −1.46 4.81 3.56 7.20 1.17

18 7.75 8.20 −0.45 6.79 0.96 7.29 0.46

19 9.55 9.50 0.05 7.14 2.41 9.07 0.48

20 8.20 5.24 2.96 9.44 −1.24 6.84 1.36

21 1.76 2.10 −0.34 3.29 −1.53 4.78 −3.02

22 2.19 1.03 1.16 4.36 −2.17 5.24 −3.05

23 8.50 8.33 0.17 8.61 −0.11 9.93 −1.43

24 6.98 5.91 1.07 8.54 −1.56 4.64 2.34

Table 5   Performance indices (RMSE and VAF) for various models

Model RMSE VAF

ANFIS–PSO 1.83 93.37

SVR 2.40 89.49

USBM 4.11 73.00
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kernel function because of its superiority over the other ker-
nel functions. The form of this kernel function is as follows:

where g is the deviation (width) of the RBF kernel.

(1)K
(

xi, xj
)

= exp

(

−

∥

∥xi − xj
∥

∥

2
/2g2

)

The main parameters for model development are the 
penalty factor C, and the radial basis function kernel 
deviation g. The values of these two parameters greatly 
affect the training and generalization capability of the 
SVR. In LIBSVM software, C and g are obtained via a 
grid searching method coupled with cross validation [77].

5 � Development of USBM equation

As mentioned previously, the USBM equation is the most 
common empirical equation that is used in blasting opera-
tions to estimate PPV. As can be seen in Table 1, this equa-
tion contains two site constants, K and B, which can be 
determined by regression analysis. In this section, these 
constants for Sarcheshmeh copper mine are determined 
using regression analysis on training datasets in SPSS 16 
software. The final form of USBM equation for Sarchesh-
meh copper mine is shown below:

6 � Performance assessment of models

In this section, performances of constructed models 
(ANFIS–PSO, SVR, and USBM) are evaluated using 24 
blast events (testing datasets), which were not incorporated 
in the models. Figure 1 and Table 4 show the comparison 
of predicted PPV values using the ANFIS–PSO, SVR and 
USBM models and measured (actual) PPV values. It can be 
seen from Table 2 that the predicted PPV by ANFIS–PSO 
model is closer to the measured PPV in comparison to the 
SVR and USBM models. The error range of ANFIS–PSO 
varies between −5.17 and +2.96, for SVR varies between 
−5.61 and +3.56, and for USBM varies between −8.77 
and +8.41; this indicates that the prediction of PPV using 
ANFIS–PSO model is more accurate than that of the SVR 
and USBM models.

To evaluate the accuracy of the mentioned models, two 
criteria are used: root mean square error (RMSE; Eq.  (3)) 
and variance account for (VAF; Eq.  (4)). A predictive 
model is accepted as excellent when RMSE is 0 and VAF 
is 100 %.

where Ai and Pi are the measured (actual) and predicted 
values of PPV, respectively, and m is the number of blasting 
event.

(2)PPV = 81.078 ·

[

D/Q1/2
]

−0.906

(3)RMSE =

√

√

√

√

1

m

m
∑

i=1

(Ai − Pi)2

(4)VAF =

[

1−
var(Ai − Pi)

var(Ai)

]

× 100
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The values of performance indices (RMSE and VAF) for 
ANFIS–PSO, SVR and USBM models are listed in Table 5. 
As can be seen, the USBM shows the lowest prediction 
capacity, whereas two other models can predict PPV with 
acceptable error rates, but the ANFIS–PSO model exhibits 
lower error rates than the SVR model.

The coefficient of determination (R2) between the meas-
ured and predicted values is a good indicator to check the 
prediction performance of each model. R2 is a positive 
number that can only take values between zero and one. A 
value for R2 close to one shows a good fit of the forecasting 
model and a value close to zero presents a poor fit. Figure 2 
shows the relationship between measured and predicted 
values, with good determination coefficient, obtained from 
three predictive models. As can be seen, between developed 
models, the ANFIS–PSO model shows a higher prediction 
performance.

The findings of this section reveal that ANFIS–PSO and 
SVR are efficient and useful techniques for PPV prediction 
due to bench blasting. These two approaches have some 
advantages and disadvantages in comparison with each 
other. The main advantages and disadvantages of these 
techniques are presented in Table 6.

7 � Conclusions

This study proposes a novel hybrid approach based on 
ANFIS framework, optimized by PSO for estimation 
of PPV. Tuning parameters of ANFIS formulation were 
obtained through searching mechanism of PSO which 
results in an optimized ANFIS model. The application 
of the ANFIS–PSO model in field of mining and blasting 
engineering is both novel and effective. The ANFIS–PSO 
as a soft computing method showed acceptable predic-
tion capacity. The performance of the ANFIS–PSO and 
SVR models against the USBM model indicated that 
both intelligent models are suitable and practical tech-
niques and can be used effectively for PPV prediction 
with acceptable error rates. Furthermore, the comparison 
of two models revealed that the ANFIS–PSO model was 
more successful and produced more reliable predictions 

than the SVR model. Based on testing datasets, the error 
range of ANFIS–PSO varies between −5.17 and +2.96 
and for SVR varies between −5.61 and +3.56. The 
RMSE, VAF and R2 values were obtained as 1.83, 93.37 
and 0.957 for the ANFIS–PSO, respectively, whereas 
these values were obtained as 2.40, 89.49, and 0.924 for 
SVR model.

Finally, it should be noted that the developed models in 
this study are specific to Sarcheshmeh copper mine. The 
application of these models directly in other mines is not 
recommended and some modifications are necessary based 
on blasting and mining conditions.
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