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1  Introduction

The application of finite elements for reliable numerical 
simulations requires that the simulations are executed in an 
automated manner with explicit control of the approxima-
tions made. Since there are no a priori methods to control 
the approximation errors for complex problems, a poste-
riori methods along with adaptive discretization proce-
dures must be applied  [2, 6, 24, 62]. Adaptive meshing is 
therefore an important component for reliable simulation of 
complex problems, such as for flow problems that exhibit 
highly anisotropic solutions which can only be located and 
resolved through a posteriori anisotropic adaptivity (e.g., 
see  [9–11, 21, 49, 51, 54]). Furthermore, in a number of 
problem cases it is desirable to use highly anisotropic ele-
ments (e.g., with aspect ratio above 1000) in specific loca-
tions and for these elements to have a semi-structured 
nature which must be maintained during mesh adapta-
tion [34, 53]. Of particular interest in this study are viscous 
flows with boundary layers that form near solid surfaces, 
e.g., in a wall-bounded flow.

The two major classes of mesh adaptation techniques are 
adaptive re-meshing methods and methods that use local 
mesh modification. Re-meshing methods  [19, 21, 23, 26, 
51] construct the desired mesh by regenerating the entire 
mesh through the application of automatic mesh generation 
algorithms governed by specified element size and shape 
information while accounting for curved domains. This 
comes at the cost of re-meshing the entire domain along 
with global transfer of the solution fields to the new mesh. 
On the other hand, methods based on local mesh modifica-
tion retriangulate local subdomains (or cavities) until the 
specified mesh size field is satisfied (e.g., see  [7, 37, 49]). 
Effectiveness of local methods depends on the richness of 
the underlying local mesh modification operations that are 
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employed. Some local mesh modification methods strictly 
use subdivision operations which can be limited in the 
amount of coarsening and anisotropy that can be achieved. 
For example, in  [5, 31, 40] the coarsening or merging of 
child elements to recover parent elements is done by revers-
ing the previous subdivision operations at desired locations 
(i.e., by applying a derefinement step). Thus, in such meth-
ods coarsening cannot be applied to create elements larger 
than those in the initial mesh. This aspect also limits the 
amount of anisotropy that can be achieved in elements. Sim-
ilarly, some local mesh modification schemes only adapt to 
the faceted geometry (e.g., based on the initial mesh) and 
do not improve the geometric approximation of the curved 
domains as the mesh is refined. In contrast, other research 
work has shown that a richer set of local mesh modification 
operations [7, 20, 29, 37, 49] can be utilized to support gen-
eral (local) coarsening, reconnection and anisotropy in the 
mesh as well as to account for curved domains [38]. These 
local operations also support a localized transfer of solution 
fields [5, 44] at the cavity level as the mesh is incrementally 
modified to attain the desired mesh.

In viscous flows with boundary layers, hybrid or semi-
structured mesh generation methods have been used exten-
sively [8, 15, 22, 25, 27, 28, 33, 41–43, 52]. For such prob-
lems, local mesh modification operations have been extended 
to account for mixed topology elements [30, 34, 53], wherein 
the semi-structured nature of the mesh is taken into consider-
ation. Specifically the layers or stacks of wedges (triangular 
prisms) or hexes are modified to attain the desired local mesh 
resolution while the overall layered structure is maintained. 
In  [34], subdivision of mixed elements is employed along 
with mesh movement to improve the geometric approxima-
tion of the curved domains. In [30], derefinement is also car-
ried out for transient problems, whereas in [53] a richer set 
of local mesh modification operations are utilized for mixed 
element meshes. In these studies, layered mesh is modified 
in conjunction with the rest of the interior mesh consist-
ing of unstructured tetrahedral elements as well as pyrami-
dal elements. The latter are used when necessary to transi-
tion between the semi-structured/layered and unstructured 
portions of the mesh. These studies have focused on serial 
boundary layer meshes, i.e., where the mesh is not parti-
tioned or distributed over multiple parts.

Mesh adaptation techniques must operate in parallel on 
distributed meshes. This is because most problems of inter-
est involve complicated geometries and complex physics, 
that even with adaptivity, the resulting meshes are very 
large. Adaptive simulations for such problems, where only 
the analysis or solve step is parallelized (see, for exam-
ple,  [65]), face a limitation in terms of the problem size 
and/or time-to-solution due to the serial mesh adaptation 
step. The serial mesh adaptation step may take as much 

time, or even more, as compared to the analysis step and 
thus, becomes a bottleneck. Therefore, to efficiently exe-
cute parallel adaptive simulations, both the analysis and 
mesh adaptation steps must be parallelized and executed on 
distributed or partitioned meshes (e.g., see [13, 59, 66]).

Performing mesh adaptation in parallel requires that 
all mesh operations are carried out in such a way that the 
resulting distributed mesh properly fits together, i.e., at the 
inter-part boundaries. Subdivision or refinement operations 
can be understood at the level of a single element and there-
fore, can be performed in parallel on each processor includ-
ing for lower-order mesh entities that reside on inter-part 
boundaries. This must be followed by a communication step 
between processors to update the inter-part links based on 
new mesh entities introduced at the inter-part boundaries 
(e.g., see [16, 47]). In [47, 50], parallel refinement and dere-
finement steps are used for unsteady problems, where child 
elements of a given parent element always reside on the 
same processor. This makes the merging of child elements 
straightforward in which a communication step is required 
to delete the necessary vertices at inter-part boundaries due 
to derefinement. As in the serial case, this parallel approach 
is limited in terms of the amount of coarsening and anisot-
ropy that can be achieved. In contrast to a parallel scheme 
that is based on refinement and derefinement steps, parallel 
re-meshing is used in [26]. In such an approach, mesh ele-
ments marked for adaptation (based on a selection criterion) 
are removed from the distributed mesh leading to cavities 
or holes in the mesh that are re-meshed. This intermediate 
mesh is repartitioned with the constraint that every hole 
to be re-meshed resides solely on a single part or proces-
sor in the re-distributed mesh. This scheme is more flexible 
in terms of shape and orientation of the resulting elements, 
however, the overall process can be time consuming. For 
example, a global repartitioning of the mesh, or a re-mesh-
ing of a relatively large hole due to concentrated adaptation 
in a contiguous portion of the domain, leads to significant 
work and memory imbalances between processors. On the 
other hand, in an adaptation approach that is based on local 
mesh modifications only small portions of the mesh are 
affected at any given time. Therefore, mesh operations for 
which the associated cavity resides solely on one part can be 
carried out in a similar fashion to the serial case while for a 
cavity which spans multiple parts a migration of associated 
mesh elements is needed. A naive sequence of steps, which 
intermingles on-part mesh modification and mesh migra-
tion steps at a low level, will be ineffective due to significant 
wait times between these steps. However, with a proper con-
trol of the on-part mesh modification and mesh migration 
steps, parallel mesh adaptation based on local mesh modi-
fications has been shown to be efficient [3, 16]. So far such 
parallel mesh adaptation methods have focused on fully 
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unstructured/tetrahedral meshes and do not take boundary 
layer meshes into consideration.

A parallel mesh adaptation scheme for distributed 
boundary layer meshes has been presented in  [32], where 
refinement and derefinement steps are employed for mixed 
elements. Similar to refinement and derefinement of fully 
unstructured distributed meshes discussed above, the tech-
nique in [32] requires the child elements of a given parent 
element to always reside on the same processor such that 
mesh derefinement step is completed with minimal com-
munication. As mentioned before, such a scheme limits the 
amount of coarsening and anisotropy that can be achieved 
for hybrid meshes. Whereas an approach that is based on 
a richer set of local mesh modification operations for dis-
tributed boundary layer meshes can overcome these limita-
tions, but to the best of our knowledge so far there has been 
no study on such an approach. The current work presents 
such an approach based on parallelization of a richer set of 
local mesh modification operations for distributed bound-
ary layer meshes, i.e., this paper presents parallel proce-
dures for boundary layer mesh adaptation and builds on our 
prior work on serial boundary layer meshes [53].

The organization of the paper is as follows. Section  2 
briefly provides the terminology used for boundary layer 
meshes. Section  3 discusses the local mesh modification 
operators that are used for the layered portion of the mesh 
and its interface with the rest of the unstructured interior 
mesh. Section 4 describes the procedures that are currently 
used to parallelize different local mesh modification opera-
tions for hybrid or boundary layer meshes. Section 5 dem-
onstrates the effectiveness of the current procedures based 
on three viscous flow problems.

1.1 � Nomenclature

2 � Boundary layer mesh terminology

A common method to construct boundary layer meshes 
with layered elements on walls is the advancing layers 
method  [8, 15, 22, 25, 27, 28, 33, 41–43, 52]. It inflates 
the unstructured surface mesh on no-slip surfaces, where 
the boundary layer flow forms. This inflation into the vol-
ume is performed along the local surface normals in the 
form of stack or layers of elements in a graded fashion up 

{

Md
}

the set of topological mesh entities

of dimension d. d = 0 : vertex,
d = 1 : edge, d = 2 : face, d = 3 : region.

Md
i the ith mesh entity of dimension d.

{

∂Md
i

}

the entities on the boundary of Md
i .

{

Md
i

{

MD
}}

the set of mesh entities of dimension

D adjacent to Md
i .

to a specified distance. Rest of the domain is filled with 
unstructured tetrahedral elements while pyramids are used 
when necessary. An example of a boundary layer mesh for 
a pipe geometry is shown in Fig. 1. In addition to the lay-
ers of prismatic elements and interior tetrahedral elements, 
this example includes a few pyramids. Note that pyramids 
are used to transition into the unstructured tetrahedral mesh 
when quadrilateral faces of the layered mesh are exposed, 
for example, when the number of prisms in neighboring 
stacks change due to a difference in the number of layers in 
those stacks.

The layered portion of the boundary layer mesh has a 
structure that can be decomposed into a tensor product of 
a layer surface (2D) mesh and a thickness (1D) mesh [53]. 
The mesh composed of triangles located at the top or bottom 
end of any layer is referred to as a layer surface, while the 
lines normal to the wall composed of mesh edges are called 
growth curves, see Fig.  2. The mesh edges that belong to 
layer surfaces are referred to as layer edges and ones that 

Fig. 1   Cut of the boundary layer mesh for a pipe geometry

Fig. 2   Boundary layer mesh terminology
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reside on growth curves are called growth edges as depicted 
in the figure. Each layer of elements is formed with the 
help of two layer surfaces, one above and one below, while 
the in-between growth edges join these layer surfaces. The 
height of each layer is referred to as layer thickness whereas 
the collective height of all the layers is the total thickness 
of a layered stack of elements. The number of total vertices 
(or edges) on growth curves determine its level. The vertices 
on walls from which growth curves originate are referred 
to as the originating vertices. The top most layer in a lay-
ered stack shares an interface with the unstructured interior 
mesh. The interior tetrahedral or pyramidal elements, shar-
ing lower-order mesh entities with layered portion of the 
mesh, are referred to as the interface elements.

3 � Mesh modifications in the layered portion of the 
mesh

The goal of mesh modification operations for boundary 
layer meshes is to maintain the overall layered structure in 
the mesh. To do this, the mesh modification operations are 
decomposed such that operations that affect the layer trian-
gulation of the layers are applied consistently throughout 
the stack. It is also necessary to apply modification to the 
corresponding unstructured mesh at the top of the stack. 
This section describes the control of mesh modifications 
for the layered and unstructured portions of the mesh.

3.1 � Mesh metric tensor

A mesh metric field is used to specify the anisotropic mesh 
size distribution over the problem domain (e.g., see [37, 49, 
51]). In an adaptive process, the error estimator or indica-
tor information is used to specify the desired mesh size or 
metric field. This specification at any given point P is done 
by a symmetric positive definite tensor T(P), referred to as 
the mesh metric tensor. A mesh metric tensor contains the 
desired directional mesh resolution at a point and geomet-
rically follows an ellipsoidal surface. Specifically, a mesh 
metric tensor transforms an ellipsoid into a unit sphere. The 
transformation: eTTe = 1 (where e denotes the edge vec-
tor), defines a mapping of the edge in the physical space 
into a unit edge in the metric or transformed space. Any 
tetrahedron that perfectly satisfies the mesh metric field 
should be a unit equilateral tetrahedron in the metric space 
as depicted in Fig. 3. However, in an unstructured mesh it is 
often not possible to exactly satisfy the specified mesh met-
ric field. Therefore, mesh modification algorithms constrain 
edge lengths in the metric space to be within an interval 
around unity: [Lmin, Lmax] (e.g., [1/

√
2,
√
2]), while elements 

are desired to achieve a mean ratio in the metric space to be 
close to 1 (with 1 being the ideal value). Mean ratio for a 

tetrahedron was defined in [39]. In the metric space, mean 
ratio is defined as [37]: η = 12(3VT )

2/3/(
∑6

i=1 l
2
T ,i), where 

VT is the volume of the tetrahedron and lT ,i is the length of 
the ith edge of the tetrahedron in the metric space. As dis-
cussed later, we employ the cube of the mean ratio as the 
measure for element shape quality (e.g., see [37]).

In the layered part of the mesh, the mesh metric tensor 
can be decomposed into an ellipse as the planar (2D) part 
along a layer surface, which dictates the local in-plane mesh 
resolution, and a normal (1D) component that controls the 
local layer thickness [53]. Note that layer thickness can also 
be based on flow physics, for example, in turbulent bound-
ary layer flows [14]. Figure 4 illustrates the decomposition 
of a mesh metric tensor in layered part of the mesh.

3.2 � Local mesh modification cavity

With the input of mesh metric field, the local mesh modi-
fications are carried out to adapt the mesh to match the 
specified size field. As discussed before, a richer set of local 
mesh modification operations [7, 37, 49] is needed for fully 
unstructured anisotropic meshes. Each modification opera-
tion involves a local cavity or subdomain which is retri-
angulated. The cavity for a given operation is defined as 
the union of sets of mesh entities that are changed by the 
application of the modification operation with the restric-
tion that the triangulation of the cavity’s boundary remains 
unchanged. This means that the boundary of the cavity can 
be shared with unchanged mesh entities outside of the cavity 
or in unaffected portion of the mesh (under this operation).

Fig. 3   Transformation of a tetrahedral element based on a mesh met-
ric tensor

Fig. 4   Decomposition of a mesh metric tensor in layered part of the 
mesh
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In 3D, the cavity is defined as the set of mesh regions 
along with its closure (i.e., lower-order mesh entities), 
which will be modified by the modification associated with 
entity Md

k  and is denoted as:

The cavity’s boundary is defined as:

Equation 2 states that the cavity’s boundary contains the set 
of lower-order entities 

{

Md
j

}

 (d = 0, 1, 2) that are located 
on the outer boundary of the closed set of regions com-
prising cavity 

{

C(Md
k )
}

. This way the cavity’s boundary 
is shared with adjacent mesh regions that are outside and 
thus, not part of the cavity.

The application of a local mesh modification opera-
tion then is a retriangulation of the cavity, 

{

C(Md
k )
}

 , 
which changes the mesh topology and results into a set of 
mesh entities contained in the set {S} with the following 
conditions:

There can be situations when an entity Md
k  which requests 

modification is (only) repositioned within the cavity with 
no change in local mesh topology (for example, in case of 
a vertex motion as considered in Sect. 3.3). In this scenario, 
Eq. 3 will have the equality.

3.3 � Boundary layer stack modification

To preserve the layered nature of the boundary layer stacks, 
the mesh adaptation process for layer surfaces utilizes layer 

(1)

{

C(Md
k )
}

= {M3
i

⋃
{

∂M3
i

}

|M3
i

is affected by mesh modification

operation applied to Md
k }.

(2)

{

∂C(Md
k )
}

= {M2
j

⋃

{

∂M2
j

}

∈ C(Md
k )|

M2
j /∈

{

∂M3
i

}
⋂

{

∂M3
j

}

∀M3
i ,M

3
j ∈

{

C(Md
k )
}

}.

(3){S} �=
{

C(Md
k )

}

,

(4){∂S} =
{

∂C(Md
k )

}

.

edge split, collapse and swap operations  [53], while adjust-
ment of layer thicknesses and movement of newly cre-
ated originating vertices to the curved domain boundary are 
accomplished through vertex movement (that may involve 
direct repositioning or local mesh modification operations as 
discussed later).

The layer edge split operation splits edges in the bound-
ary layer stack and applies the appropriate subdivisions to 
the unstructured interior mesh at the interface. When edge 
split is requested for a single layer edge, all edges in the 
stack are subdivided. This scheme is conservative in nature 
in that it may provide a finer mesh than desired for some 
layer surfaces. Namely, if M1

i , where i ∈ [1..N], is the layer 
edge to be split in a stack of N layer edges, then the cav-
ity associated with it consists of a set of unique regions 
{

C
{

M1
i

}}

=
{

⋃N
i=1

{

M1
i

{

M3
}}

}

. Figure 5 illustrates the 
layer edge split operation. The subdivision of pyramids and 
tetrahedra at the interface follows the stack split.

The layer edge collapse operation is performed on stacks 
that contain all short edges in the metric space. It is carried out 
under this condition to avoid any oscillation between collapse 
and split operations  [53]. The edge collapse operations can 
only be applied when the affected unstructured mesh entities 
at the top of the stack also remain valid after the collapse oper-
ation. Let 

{

(M1
i ,M

0
i )
}

 (with i ∈ [1..N]) be N pairs of layer 
edges (to be collapsed) and their corresponding vertices (to be 
deleted) in a stack. Then the cavity associated with the layer 
edge collapse operator is 

{

C
{

M0
i

}}

=
{

⋃N
i=1

{

M0
i

{

M3
}}

}

 

in which regions 
{

⋃N
i=1

{

M1
i

{

M3
}}

}

 are deleted. Figure 6 

shows the local mesh cavity before and after the layer edge 
collapse operation.

The layer edge swap operation changes the connectivity 
of neighboring boundary layer stacks. In comparison to an 
edge swap operation for tetrahedra, which are reconfigured 
based on the equatorial plane, there is only one other pos-
sible configuration for layer faces in case of a layer edge 
swap operation [53]. If 

{

M1
i

}

 (with i ∈ [1..N]) are the layer 
edges to be swapped, then the layer edge swap operation 
retriangulates the cavity 

{

C
{

M1
i

}}

=
{

⋃N
i=1

{

M1
i

{

M3
}}

}

 
and new layer edges are introduced inside the cavity while 

Fig. 5   Example of a layer edge 
split operation
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old layer edges 
{

M1
i

}

 are deleted. The unstructured interior 
regions at the interface are also retriangulated and in gen-
eral are not guaranteed to be in a valid configuration after 
the swap operation. Thus, appropriate checks are required 
to ensure that the layer edge swap operation results in a 
valid mesh after its completion. Figure 7 gives an example 
of the layer edge swap operation.

When edge split operations are applied to layer edges 
on curved wall surfaces, the newly introduced originat-
ing vertices must be moved to the curved boundary to 
maintain the proper geometric approximation. All the 
vertices on a growth curve should gradually be moved 
to follow the originating vertex, i.e., based on a move-
ment vector [53]. The movement vector is determined for 
each stack of vertices based on the target location of the 
originating vertex on the curved domain boundary. This is 
given as: m = v

t

0
− v0 , where vt0 is the target location of 

the new originating vertex on the curved boundary (super-
script t is used to denote target) and v0 is the location of 
the new originating vertex on the original layer edge. The 
movement vector m is then applied to all the vertices on 
that growth curve. The procedure first evaluates the target 
location of every vertex on all new growth curves, with 
each vertex’s target location calculated as: vti = vi +m, 
where vi is the current or original location of the ith vertex 

on a growth curve and vti is its target location. The pro-
cedure then moves the vertices to their computed target 
locations. An example is depicted in Fig. 8. Similar to the 
repositioning of a newly created vertex in the unstruc-
tured mesh to the curved boundary, direct repositioning 
of a new originating vertex is not always possible with-
out additional local mesh modification. Specifically for 
the top most vertices, as it may introduce inverted ele-
ments. In this case local mesh modification operations are 
applied to the unstructured interior mesh for it to allow 
in a successful repositioning of the top most vertex. This 
step is followed by repositioning the rest of vertices on 
the growth curve.

3.4 � Subdivision of transition pyramids

For pyramids we consider more subdivision templates than 
those presented in our previous work on serial boundary 
layer meshes [53]. This is done to achieve more flexibility 
in parallel mesh adaptation of boundary layer meshes. Pyr-
amids are subdivided during the refinement of the unstruc-
tured part of the mesh.

There are three ways the quadrilateral face of a pyramid, 
which caps an exposed side of a stack, can be subdivided, 
see Fig. 9. While a refinement in the lateral direction splits 

Fig. 6   Example of a layer edge 
collapse operation

Fig. 7   Example of a layer edge 
swap operation
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the quadrilateral face using layer edges only (see the left 
image in Fig. 9), the request to change the number of lay-
ers or the resolution along the normal or thickness direc-
tion can be achieved with bisection of the quadrilateral face 
along the growth edges (see the middle image in Fig.  9). 
Additionally, subdivision can be performed in both direc-
tions with the split of both layer and growth edges (see the 
right image in Fig. 9).

In this study templates subdividing growth edges are not 
exploited. The reason for this is not due to any limitation in 
the ability to split the elements, but rather because thick-
ness adjustment based on vertex repositioning was found to 
be sufficient for the problem cases considered in this work.

The rest of triangular faces of a pyramid is subdivided 
by counting the number of layer edges that are marked or 
tagged to be split, see Fig.  10. The triangular face tem-
plates are the same for the subdivision of layer faces and 
unstructured interior faces, and thus, do not introduce any 
additional ambiguity associated with the refinement of tri-
angular faces.

The templates for a pyramid depend on the number of 
marked edges and the selection of the diagonal edge on a 
triangular face when two of its edges are marked [37]. This 
leads to a total of twenty-five subdivision templates for a 
pyramid. The most frequently used templates for subdivid-
ing pyramids are shown in Fig. 11.

3.5 � Unstructured decomposition of boundary layers

Figure 12 shows a close-up of an adapted mesh on a pipe 
geometry without unstructured decomposition of prisms 
(on the left) and with prisms divided into tetrahedra and 
pyramids (on the right). One can observe that on the left 
part of the figure there are boundary layer regions with 
low aspect ratio. It includes some layered regions that 
have growth edges that are longer than the layer edges 
which is counterintuitive in a boundary layer mesh and 
are not desirable. To satisfy the desired mesh resolution 
in such cases the corresponding regions in top portion of 
the stacks are converted into unstructured part of the mesh 

Fig. 8   Repositioning of 
boundary layer vertices due to 
movement of the newly created 
originating vertex to the curved 
domain boundary

Fig. 9   Subdivision of a quadrilateral face based on different edge splits

Fig. 10   Subdivision templates 
for a triangular face
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Fig. 11   Subdivision templates for a pyramid

Fig. 12   Mesh adaptation without and with unstructured decomposition of regions with relatively low aspect ratio in the top portion of the stacks
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and subsequently more flexible unstructured mesh modifi-
cation operations can be applied to achieve the appropriate 
level of mesh resolution and anisotropy. This is an addi-
tional feature to our previous work on serial boundary layer 
meshes [53].

The process of unstructured decomposition of prisms 
or reducing the numbers of layers in selected stacks, also 
referred to as trimming, leads to introduction of additional 
quadrilateral faces that must be capped with pyramids so 
that the mesh can be transitioned into tetrahedral elements 
in the unstructured interior mesh. This step can be reversed 
when a thicker boundary layer or more layers are desired. It 
can be done by splitting growth edges that will reintroduce 
more layers (locally). However, as mentioned before, split 
of growth edges is not considered currently since it was not 
necessary for the problems cases considered in this work.

The current algorithm for stack decomposition relies on 
adjacent stacks of regions that share a face to differ in the 
number of layers (or prisms) by only one, in which case the 
top prism on the higher stack must be connected to a pyra-
mid. This is done to transition between different number of 
layers in face-neighbor stacks of regions. This condition 
can be enforced by controlling the number of vertices in 
neighboring growth curves in a preprocessing step before 
executing the trimming step.

Figure  13 shows boundary layer stacks with differ-
ent number of layers where any two face-neighbor stacks 
have no more than one layer difference. Note that with this 
condition the corresponding number of vertices between 
growth curves of a given stack can vary by as much as 
two. In the trimming step, the number of layers for a given 
growth curve is dictated by the lowest level regions being 
decomposed. The lowest level boundary layer vertices are 
given a priority to bisect the quadrilateral faces adjacent 
to it. If vertices next to each other are of the same level, 
the priority is granted to the one having the smallest local 

vertex identifier (ID) which eliminates any possible ambi-
guity in selecting the diagonal edge of the quadrilateral 
face.

The application of this restriction during trimming of 
the stacks yields a favorable situation in which all prisms 
subdivided into tetrahedra can be triangulated without the 
introduction of an interior vertex  [60]. Avoiding an inte-
rior vertex eliminates certain algorithmic complexities and 
typically results in a better control of the element shape 
quality [35].

A prism can be subdivided into a pyramid and a tetra-
hedron when two of its quadrilateral faces are split and the 
two diagonal edges share a common vertex, or into three 
tetrahedra when all quadrilateral faces are subdivided and 
there is at least a common vertex between any two diagonal 
edges. This is depicted in Fig. 14. This logic eliminates the 
possibility for a prism being subdivided to have only one 
quadrilateral face that is split, or that there is no common 
vertex between diagonal edges.

Fig. 13   Different number of layers in neighboring boundary layer 
stacks. The number of vertices on growth curves is indicated by the 
count shown at originating vertices. Bold solid and dashed lines at the 
bottom represent edges on the wall
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The algorithm for unstructured decomposition of the 
appropriate portions of a boundary layer mesh consists of 
three parts. The first part is responsible for determining the 
layers in each stack that need to be decomposed based on 
the allowed minimum value of the aspect ratio. The second 
part adjusts the number of layers for any two face-neighbor 
stacks of regions such that they have difference of no more 
than one after the unstructured decomposition is accom-
plished. The third step assigns each quadrilateral face with 
an appropriate diagonal edge using the rules described 
above. Algorithm  1 presents the overall process of the 
unstructured decomposition of boundary layers.

3.6 � Overall boundary layer mesh adaptation algorithm

Before we present our approach for parallel boundary 
layer mesh adaptation, the overall adaptation procedure is 
described. It is executed in three stages: mesh coarsening, 
iterative mesh refinement and shape improvement [53]. The 
first two stages are controlled by analysis of mesh edge 
length in the metric or transformed space, whereas the third 
stage is dictated by both mesh edge length and element 
shape or quality control. The layered part of the mesh is 
given a priority in applying mesh modification operations 
of a specific type followed by the same operation for the 
unstructured entities. This is done because size requests for 
entities in boundary layer stacks are more involved (e.g., 
layer edge split is applied throughout the stack) and thus, 
resolved first.

The overall procedure is given in Algorithm 2. It starts 
with the coarsening stage. The coarsening stage applies 
local mesh modification operations to eliminate the major-
ity of edges shorter than that requested by the local mesh 
size field. A mesh edge is considered to be short if its 
length in the transformed space is smaller than the speci-
fied value Lmin [37]. An advantage to coarsening first is that 
it will make the traversals required during mesh adaptation 
faster and limit the peak memory used during the adapta-
tion process. Thickness adjustment is applied on the coars-
ened mesh so that it is only applied to entities that will 
remain in the mesh.

The second stage refines mesh regions using refinement 
templates that split the mesh edges longer than Lmax in the 
transformed space. Lmin and Lmax are typically selected to be 
1/
√
2 and 

√
2, respectively [37]. The procedure ensures that 

the refinement is applied to stacks of prisms along with inte-
rior elements located at the interface. This stage also places 
newly created boundary vertices onto the domain boundary 
(e.g., as defined by the CAD model). It also coarsens any new 
short mesh edges introduced by refinement templates. At the 
end of an iteration in this stage, any elements in the stack that 
have relatively low aspect are tetrahedralized and made part 
of the unstructured interior mesh. Thus, removing them from 
the stack by applying unstructured decomposition of boundary 
layers. The refinement iterations terminate when no long layer 
or interior edges are left.

The third stage applies shape improvement operations to 
improve the quality of poorly shaped entities in the trans-
formed space. We use mean ratio  [39] as the measure for 
element shape quality, specifically the cube of the mean 
ratio in the transformed space  [37, 53]. This is done for 

Fig. 14   Subdivision of a prism based on bisection of quadrilateral 
faces with diagonal edges sharing a common vertex
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both layer faces (in layered part of the mesh) and tetrahedra 
(in unstructured interior part of the mesh).

Poorly shaped entities (i.e., those below a certain value of 
quality measure) are modified using sets of swap and compound 
operators  [37, 53] to obtain the best possible element quality 
while preserving the desired edge length in the transformed 
space [4, 17, 39]. Again, the shape correction operations are first 
carried out in the layered part of the mesh and then followed by 
mesh optimization in the unstructured interior part [53].

4 � Parallel implementation

The execution of parallel mesh adaptation is based on the 
fact that the mesh is distributed  [3, 57] into a number of 
parts, where each part consists of a set of mesh entities and 
is treated as a partitioned mesh with the addition of inter-
part boundaries within the mesh. A partitioned mesh is 
managed by the parallel mesh database that tracks the mesh 
entities residing on inter-part boundaries.

The application of a local mesh modification in parallel 
involves a cavity of mesh entities that are all on one part or 
are on multiple parts. In the case where the entities associ-
ated with a cavity are on a single part, the mesh modifica-
tion can be carried out on that part and thus making the par-
allel execution straightforward. However, in cases where the 
entities in the cavity are distributed on multiple parts, some 
form of inter-part or inter-processor coordination is needed.

4.1 � Distributed mesh infrastructure

The effective implementation of parallel mesh modifica-
tion requires a parallel mesh infrastructure and associated 
parallel mesh control tools. The parallel mesh representa-
tion [57] employed maintains the information on mesh enti-
ties on inter-part boundaries such that all parts sharing an 
entity maintain an on-part copy as well as remote copies 
corresponding to other parts. It supports the ability to update 
mesh entities on inter-part boundaries if they are modified 
(e.g., due to an edge split). It also supports the movement or 
migration of mesh entities from one part to another, which 
is referred to as a mesh migration step and in which the 
inter-part boundaries are automatically updated.

Mesh migration is needed to localize a cavity associated 
with a mesh modification operator. For certain mesh modi-
fication operations, such as collapse and swap, the direct 
consideration of cavities spanning multiple parts leads to a 
complex and expensive procedure since it requires a num-
ber of communication steps to properly carry out the mesh 
modification operation and update the local mesh in each 
part. Thus, before applying the mesh modification opera-
tion, such cavities are localized on one part or processor 
such that the cavity retriangulation can be carried out as in 

the serial case. In cavity localization, all regions and stacks 
of regions involved in the mesh modification operation are 
migrated onto a single part [3, 57].

Note that during mesh adaptation, mesh migration is also 
needed to control the memory usage since the adaptive mesh 
modification process will alter the numbers of entities on a 
part (e.g., due to concentrated refinement in a part) and thus 
the mesh must be dynamically repartitioned. The Zoltan 
library [56] is used to perform the dynamic repartitioning.

For a boundary layer mesh, the mesh modifications in 
the layered part of the mesh are applied to the entire stack, 
and therefore, maintaining the knowledge of the stack is 
critical. In parallel, managing this information would be 
difficult if the mesh regions in a stack were distributed over 
multiple parts. Thus, the implementation of parallel bound-
ary layer mesh adaptation requires all the mesh regions in 
a boundary layer stack to be placed in a mesh set [64] and 
each such mesh set is required to reside on a single part 
along with the ability to migrate such a set to another part.

Additionally, mesh modification and migration involve many 
irregular or unstructured messages of relatively small sizes. 
Thus, the parallel efficiency and scalability depend on effec-
tively controlling the underlying message-passing processes. 
The Inter-Processor Communication Manager (IPComMan) is 
used [48] for efficient parallel communications between proces-
sors. It is a general-purpose communication package built on 
top of MPI [1] which significantly improves the inter-processor 
communications by exploiting mesh neighborhood of a given 
part and by packing small messages into larger messages.
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4.2 � Refinement and boundary vertex repositioning

Subdivision of mesh edges and their adjacent mesh faces 
on inter-part boundaries happens the same way as it is done 
in serial [3, 16]. The duplicate faces on inter-part bounda-
ries maintain the bounding edges and vertices in the same 
order on each part to ensure the triangulations are consist-
ent across face neighbors. Note that triangular faces can be 
split using any combination of edges tagged for refinement 
whereas quadrilateral faces (which are part of the bound-
ary layer stacks) are subdivided using opposite edges, 
see Figs.  9 and  10. When a quadrilateral face is bisected 
for unstructured decomposition of boundary layers (see 
Fig. 14), then the procedure ensures that the diagonal edge 
of the face is created in the same way on both parts sharing 
the face. This way no invalidity is introduced during mesh 
triangulation and matching of the newly created entities on 
inter-part boundaries.

The inter-part links between newly created mesh enti-
ties are updated across the parts in a communication step 
such that the distributed mesh is correctly connected. In the 
execution of the refinement step, the corresponding old-to-
new entity mapping is formed such that the links for newly 
created entities can be effectively set during the communi-
cation step. The communication step is carried out after all 
tagged edges and faces have been split. The mesh regions 
are subdivided using the same templates as in serial with-
out any communication (i.e., only lower-order entities on 
inter-part boundaries require a communication step). The 
pseudo code of the parallel refinement algorithm is given 
in Algorithm 3.

The algorithm for updating the inter-part links involves 
the same logic for both layered and unstructured parts of 
the mesh. The only difference for the layered part is that 
the update for any stack involves the entire subdivided por-
tion of that stack.

Figure  15 demonstrates an example of the paral-
lel refinement procedure. The initial distributed mesh is 
depicted in Fig. 15a, where thick lines indicate edges and 

adjacent faces which are going to be split and communi-
cated during the refinement step. One of those edges is rep-
resented as M1

0 on P0 and M1
1 on P1 (Fig. 15a). Consider top 

view of the stack (Fig. 15b, c) showing refinement of edges 
M1

0 and M1
1 on each part. Figure  15b shows the introduc-

tion of the vertex M0
0 splitting the edge M1

0, and Fig.  15c 
shows M0

1 splitting the edge M1
1. On each part, the newly 

created vertex and two edges are the child entities and 
attached to the parent edge on inter-part boundary, namely: 
M1

0 → {M0
0 ,M

1
2 ,M

1
3 } on P0 and M1

1 → {M0
1 ,M

1
4 ,M

1
5 } on 

P1 . To set up the correct inter-part links between the new 
entities, a communication step is carried out for remote 
copies between {M0

0 ,M
1
2 ,M

1
3 } on P0 and {M0

1 ,M
1
4 ,M

1
5 } on 

P1. On P0, M1
0 has a link to M1

1 and using this link it sends 
to P1 the list of child entities, whereas on P1, M1

1 has a link 
to M1

0 and using this link it sends the list of child entities to 
P0. This way P1 receives the message for M1

1 containing the 
list of remote copies of its children on P0 and vice-versa. 
Then on P1, the old-to-new mapping is used to update the 
links such that M0

0 corresponds to M0
1, M1

2 corresponds to 
M1

4, and M1
3 corresponds to M1

5. Same is done on P0. This 
is depicted in Fig. 15c. After all edges and faces are split 
on the inter-part boundaries and the links are updated, the 
regions are subdivided with no further communication. The 
resulting mesh is depicted in Fig. 15d.

In the process of refinement, each part maintains a list 
of new mesh vertices that reside on curved domain bound-
ary and need to be projected [3]. For the layered part of the 
mesh, the newly created originating vertices are projected 
onto to the curved surfaces with the help of the movement 
vector as described in Sect.  3.3. In cases where a direct 
repositioning will introduce invalidities in the unstructured 
part of mesh (i.e., at the top of the stack), a more extensive 
set of local mesh modification operations, which includes 
collapses, swaps and/or splits, is used. This is done in par-
allel which involves mesh migration (as discussed above). 
Algorithm  4 describes vertex repositioning procedure for 
the parallel boundary layer mesh.
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Fig. 15   Example of layer edge split in parallel



780	 Engineering with Computers (2017) 33:767–795

1 3

4.3 � Coarsening and swapping

Layer edge collapse operation is always performed on 
a localized or on-part cavity  [3, 16]. For applying a layer 
edge collapse operation on a growth curve, the boundary 
layer stacks adjacent to the growth curve are checked. In 
this step, all the layer edges that are adjacent to the vertices 
on the growth curve, starting at the originating vertex M0

jorgn
 

and ending at the top most vertex M0
jtop

, are considered. If 

no surrounding stack of short layer edges can be collapsed 
locally, then the boundary layer coarsening procedure 
migrates all the layered and interface regions adjacent to 
growth-curve vertices (from M0

jorgn
 to M0

jtop
) onto a single 

part. The procedure then checks for the validity of the layer 
edge collapse operation for the given growth curve and pro-
ceeds with it.

Figure 16 shows the example of an layer edge collapse 
operation requiring migration. It can be seen from the fig-
ure that growth-curve vertices [M0

jorgn
, . . . ,M0

jtop
] reside on 

the inter-part boundary and the collapse operation cannot 
be carried out. Thus, all the adjacent layered and interface 
regions are migrated to one part P2 to perform the layer 
edge collapse operation.

Algorithm  5 presents the procedure for coarsening of 
the parallel boundary layer mesh. It starts with a (dynamic) 
list on each part which consists of originating vertices that 
are connected to atleast a stack of layer edges with all short 
edges in the metric space and must be collapsed. This list is 
repeatedly traversed until it is empty.

In each traversal, the adjacent boundary layer stacks 
are checked for the layer edge collapse operation based on 
the shortest adjacent edges to a given growth curve. If all 
layered and interface regions are on one part, then the col-
lapse operation is checked for validity and applied as in the 
serial case and the dynamic list of originating vertices to 
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Fig. 16   Example of layer edge 
collapse in parallel involving 
mesh migration

Fig. 17   A schematic of the 
adaptive loop with different 
simulation components
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be collapsed is updated. Otherwise, the corresponding layer 
vertices on inter-part boundaries are added to the list of 
vertices to be migrated. After each traversal, the migration 
list is used to request migration of surrounding layered and 
interior regions. These requests then drive the mesh migra-
tion step and also updating of the on-part list of originating 

vertices to be collapsed.
Parallelization of the layer edge swap operation follows 

the same overall logic as the layer edge collapse operation. 
Layer edge swaps are applied at the end of the boundary 
layer mesh adaptation procedure, i.e., within the mesh 
optimization step for the layered part of the mesh  [53]. 
The only difference in such an optimization step is that it 
is driven by a traversal process focused on improving the 
shape quality of the layer faces. Algorithm 6 describes the 
surface optimization procedure for the parallel boundary 
layer mesh.

5 � Results and discussions

5.1 � Adaptive loops and applications

An adaptive loop is constructed using a set of interoperable 
components that includes analysis code along with librar-
ies for geometry-based problem specification, automatic 
mesh generation, error estimation and generalized mesh 
modification (e.g., see  [12, 58]). The adaptive loop links 

the analysis and adaptation components needed for the suc-
cessful simulation of the problem on the domain of inter-
est. The solution obtained by the analysis code is evalu-
ated to provide information for mesh adaptation, which 
in-turn results in an adapted mesh that enriches the solution 
approximation. In this step, the error distribution is deter-
mined on the current mesh and is converted into a mesh 
metric or size field that is used to drive the adaptation pro-
cedure. In the adaptation procedure as the mesh is locally 
modified, the necessary solution fields are transferred onto 
the modified mesh. The resulting adapted mesh and asso-
ciated solution fields are sent back to the analysis code to 
perform the next step of analysis and adaptation within the 
adaptive loop. The overall structure of the adaptive loop is 
shown in Fig. 17.

The current capabilities of the parallel anisotropic mesh 
adaptation with boundary layers are demonstrated on three 
flow applications. The first case involves the ONERA M6 
wing  [61] for which the FUN3D flow solver  [46] was 
used. In the second case, the simulation of a heat transfer 
manifold was executed. The analysis for this case was per-
formed using the PHASTA flow solver [63]. The third test 
case involves a scramjet engine (of the NASA CIAM con-
figuration  [45]), where the analysis was performed using 
the FUN3D flow solver.

The parallel boundary layer mesh adaptation proce-
dure for these cases has been executed on Hopper Cray 
XE6 [18] at the National Energy Research Scientific Com-
puting Center. It is configured with 2 twelve-core AMD 
2.1 GHz processors per node, with separate L3 caches and 
memory controllers, 32 GB or 64 GB DDR3 SDRAM per 
node. Hopper has a Gemini interconnect with a 3D torus 
topology. Note that all available processors or cores on a 
node were used in this work.

In this work, both strong and weak scalings are studied. 
The strong scaling (for a fixed size mesh in an aggregate 
sense) is computed based on the execution time on base 
processors and is defined as:

where npbase is the base number of processors or cores, tbase 
is the execution time on base processors, npi is the num-
ber of processors on which strong scaling is tested, and ti is 
the execution time on test processors. A scaling factor of 1 
indicates a perfect linear scaling (i.e., 100 % parallel effi-
ciency) and a value below or above 1 denotes a sub-linear 
scaling (or below 100 % parallel efficiency) or super-linear 
scaling (or above 100 % parallel efficiency), respectively.

On the other hand, the weak scaling (with a fixed load 
per part) is computed using a correction factor. This is done 
to account for (slightly) different loads in an aggregate and 
average sense between different meshes considered under 
weak scaling. It is computed as:

(5)Ssi = (npbase × tbase)/(npi × ti),
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where Mincr is the mesh increase factor defined by the ratio 
of the number of regions from input to adapted meshes for 
a test case and Mincr−i and Mincr−base are the mesh increase 
factors for the test and base cases, respectively. f is a factor 
which is the ratio of the mesh increase factors of the test 
and base cases.

5.2 � ONERA M6 wing

The ONERA M6 wing is a classic validation case [61]. Air 
enters the wind tunnel at transonic speed and is acceler-
ated over the wing to a supersonic speed causing a shock 
to appear on the wing. The free-stream Mach number is 
0.84 and the angle of attack is 3.06o. The free-stream pres-
sure and temperature are 42.89  psi and 255.5 K, respec-
tively. The Reynolds number is 11.72 million based on the 
mean aerodynamic chord. This flow marks a strong need 
for mesh adaptivity since the location and structure of the 
complex lambda shock is unknown a priori. The reference 
experimental data are from Schmitt and Charpin in  [61]. 
We used FUN3D flow solver for this case.

Three cycles of mesh adaptation were applied for this 
case, where Hessian of pressure was used to compute the 
mesh metric field. Initial mesh contained 0.28M regions 
with pre-defined boundary layers (where M denotes a 

(6)f = Mincr−i/Mincr−base,

(7)Swi = f × tbase/ti,

million). The first adapted mesh had 0.37M regions, the 
second adapted mesh had 1.24M regions while the third 
and finest adapted mesh had 3.8M regions. Figure 18 shows 
the surface mesh on the upper side of the wing for the ini-
tial and three adapt meshes. The imprint of the lambda 
shock on the adapted mesh can be clearly seen.

Figure 19 presents the pressure coefficient for the initial 
and three adapted meshes. The surface pressure contours 
(along with surface meshes in Fig. 18) show that the mesh 
is refined in the shock region and the shape of the lambda 
shock is clearly captured. The mesh away from the shock is 
coarsened, due to a low variation in pressure in those regions. 
The surface pressure contours become sharper and more reg-
ular with adaptivity. One thing to notice is that the elements 
start to align with the shock in the first adapted mesh.

To perform a more quantitative comparison, we look at 
the pressure coefficient profiles along the chord at certain 
spanwise locations on the wing. Figure 20 shows pressure 
coefficient along the local chord at two spanwise locations. 
In this figure, experimental data are also included  [61]. 
These plots show that as the mesh is adapted, the pres-
sure coefficient becomes more accurate. To establish this 
aspect further we look at a zoomed view near the suction 
peak in Fig.  21. The zoomed view clearly shows that the 
agreement between experimental and numerical results 
are improved as the mesh is adapted further. The finest or 
third adapted mesh shows the best agreement among all 
meshes. For example, at non-dimensional span location of 
y/b = 0.9 , the peak pressure value is captured far better 

Fig. 18   ONERA M6 wing: initial (top left) and three adapted meshes (first and third adapted meshes are shown in the right column)
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on the finest adapted mesh as compared to other adapted 
meshes. Results on the initial mesh are the least accurate 
among all meshes. 

To evaluate the parallel performance of boundary mesh 
adaptivity, a strong scaling study was conducted. In this 
study we consider a refined mesh of the third adapted 
mesh resulting in 160M regions. Strong scaling study was 
executed on cores ranging from 512 (base) to 8192, which 
spans 4 doublings in core counts.

Table 1 shows that the execution time for mesh adapta-
tion procedure decreases with an increase in the number of 
processors. As the given mesh is distributed to more pro-
cessors, there is little computation performed during mesh 
modifications relative to the substantial increase in com-
munications, and thus, the scaling decreases on high core 
counts.

5.3 � Heat transfer manifold

The heat transfer manifold test case consists of a large 
diameter cylindrical pipe as the inlet, a relatively thin and 
flat manifold section, and twenty outlet pipes. Flow simula-
tions for this case were performed using the incompress-
ible Reynolds-averaged Navier-Stokes (RANS) simulations 
with the Spalart-Allmaras turbulence model. A turbulent 
velocity profile with a Reynolds number of 1 million was 
used at the inlet pipe. No-slip boundary conditions were 
assumed at walls and a homogeneous natural pressure was 
prescribed at the outlet. In this case, the Hessian-based 
error indicator used the static pressure combined with a 
scaled dynamic pressure. This was defined as: p+ αρu2/2 , 

where the factor α = 0.2 was chosen to attain an appropri-
ate balance of static and dynamic pressure.

Two iterations or cycles of the adaptive loop (which con-
sists of a flow solve and mesh adaptation within each cycle) 
were carried out, and at each cycle, flow solver was started 
from the solution of the previous cycle. The initial compu-
tation used a mesh of 3M elements with pre-defined bound-
ary layers. The first adapted mesh had 16M regions and the 
second adapted boundary layer mesh had 81M regions. The 
initial mesh along with the first and second adapted meshes 
are shown in Fig. 22.

For this case we provide a qualitative assessment of the 
numerical results due to the lack of experimental or any 
reference data for comparison. The pressure distribution 
near the inlet pipe is provided in Fig.  23, whereas near 
the outlet pipe is presented in Fig.  24. The initial mesh 
is too coarse and these figures demonstrate its inability 
to capture the dominant flow features. Critical flow loca-
tions, including stagnation and turns around fillets of 
the pipes, get significantly refined. For example, see the 
smoother solution obtained on adapted meshes. The walls 
of the manifold, especially the wall closest to the inlet 
pipe, get refined to a higher degree. The fillets of the out-
let pipes also get more refinement. The central part of the 
flat manifold gets relatively lesser refinement because of a 
relatively small variation in the solution. Moreover, away 
from flow regions with stagnation and turns, highly aniso-
tropic mesh elements are created to effectively capture the 
anisotropy present in the flow. This results in significant 
computational savings over isotropic meshes of equiva-
lent resolution.

Fig. 19   ONERA M6 wing: pressure on initial (top left) and three adapted meshes (first and third adapted meshes are shown in the right column)
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Figure  25 shows the magnitude of wall shear stress. 
With adaptivity, smoothness of the wall shear stress field 
improves and its details are captured better. It has been 
shown in [53] that a wall shear stress field computed on an 
adapted boundary layer mesh is superior to that computed 
on a fully unstructured adapted mesh of a similar resolution.

In addition to these results, mesh statistics were also 
collected for this case. Specifically, this was done for three 
quantities in the metric or transformed space: layer edge 
length, interior edge length and mean ratio for interior 
regions (for further details on such mesh statistics for fully 
unstructured, anisotropically adapted meshes see [37, 49]). 
Currently mesh statistics were collected for the final adap-
tation cycle, where it was done for both the input mesh and 

the resulting adapted mesh. Figure  26 shows these statis-
tics. It can be seen that the input mesh has a large number of 
interior and layer edges whose lengths in the metric space 
are outside the desired interval of [1/

√
2,
√
2] , however, 

for the adapted mesh interior edges fall within this inter-
val indicating the satisfaction of the specified mesh metric 
field. Note that a large number of layer edges in the adapted 
mesh have a length (in the metric space) close to 0.5. This 
is due to the conservative nature of the split scheme used 
for layer edges (i.e., edge split of a single layer edge results 
in the split of all layer edges in that stack). Similarly, mean 
ratio plot shows that the shape quality measure of the ele-
ments in the adapted mesh is higher and respects the speci-
fied mesh metric field.

Fig. 20   Pressure coefficient profiles along the local chord on initial 
and three adapted meshes at two spanwise locations

Fig. 21   A zoomed view of the pressure coefficient profiles (near the 
suction peak) on initial and three adapted meshes at two spanwise 
locations
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As before, a strong scaling study was conducted to eval-
uate the parallel performance of boundary mesh adaptation 
procedure on this test case. In this case, mesh adaptation 
in the second cycle of the adaptive loop was executed on a 
range of processors from 256 (base) to 4096, which spans 
4 doublings in processor counts. Table 2 gives the scaling 
results for the input mesh with 16M regions and the final 

Table 1   Execution time and strong scaling of mesh adaptation for 
the ONERA M6 case

Num. cores (np) 512 (base) 1024 2048 4096 8192

Time (t in s) 1212.83 812.68 507.36 322.82 241.94

Scaling factor (Ss) 1 0.75 0.60 0.47 0.31

Fig. 22   Heat transfer manifold: initial (left), first adapted (middle) and second adapted (right) meshes

Fig. 23   Initial (left), first adapted (middle) and second adapted (right) meshes (in top row) and pressure distribution (in bottom row) for the heat 
transfer manifold test case. The cut is applied at the end of the inlet pipe near the flat section
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adapted mesh with 81M regions. In Table 2 the execution 
time for mesh adaptation decreases with an increase in the 
number of cores. Again, on high core counts there is little 
computation performed during mesh modifications relative 
to the substantial increase in communications, and thus, the 
scaling decreases on high core counts.

The flow solver has been shown to strongly scale  [55, 
66] on a large number of cores, i.e., for a fixed size prob-
lem in an aggregate sense. It is the analysis part of a simu-
lation which defines the number of processors on which 
the particular problem is being executed. The idea is to 
efficiently execute the mesh adaptation procedure on the 
same number of cores since repartitioning and migrating 
the mesh to a smaller number of cores for adaptation, and 
then again to a larger number after adaptation, will intro-
duce a substantial amount of additional work and data 
movement.

In this case, the mesh adaptation procedure took 0.7 % 
of the total simulation time on 256 cores and 3.2 % on 4096 
cores. In either case, mesh adaptation cost do not dominate 
as compared to the cost of the analysis step. Thus, even 
with some loss of strong scaling in the mesh adaptation 

step, it is reasonable to execute it on the same number of 
processors together with the flow solver.

A weak scaling study was also performed for this 
case on three uniformly refined meshes starting with the 
first mesh on 256 (base) cores. The second mesh was 
obtained by uniform refinement of the first mesh and 
the third mesh by uniform refinement of the second. The 
mesh metric field for the second and third meshes was 
constructed from that on the first mesh by multiplying 
it uniformly by a factor of 1  /  2 and 1  /  4, respectively. 
Due to the existence of the layered elements in the mesh 
the second and third meshes had roughly six times more 
regions than the first and second meshes, respectively. 
Thus, the numbers of processors used to adapt the sec-
ond and third meshes was set to 1536 and 9216, respec-
tively. This roughly spans a factor of 36 in the number of 
mesh regions and core counts. Considering the heuristics 
employed in the mesh adaptation procedure and the fact 
that the ratio of regions in the test and base meshes is not 
precisely six, the weak scaling factor is calculated using 
a correction factor as discussed above. The weak scaling 
results are presented in Table 3.

Fig. 24   Initial (left), first adapted (middle) and second adapted (right) meshes (in top row) and pressure distribution (in bottom row) for the heat 
transfer manifold test case. The cut is applied at an outlet pipe
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Table  3 shows that the weak scaling does not degrade 
substantially with the increase in the number of cores while 
having relatively the same amount of workload in each 
test. The scaling is affected not only by the growing data 
exchange between cores at larger core counts, but also by 
the asynchronous application of mesh modification opera-
tions. Note that although the average workload is approxi-
mately the same per part, it might be very different for each 
specific part depending on the amount of different types of 
mesh modification operations applied locally on any given 
part and its neighboring parts sharing inter-part boundaries.

5.4 � Scramjet engine

The NASA CIAM scramjet case [45] was setup with a free-
stream Mach number of 6.2 and temperature of 203.5 K. 
The initial mesh had 2.86M regions. A cut of it is shown in 
Fig. 27 along with a zoomed view near the tip of the nose 
cone. Hessian calculations were based on the Mach number 
to compute the mesh size field.

Two adaptation cycles were carried out for this case. 
The first adapted mesh had 7.2M regions and the second 
adapted mesh consisted of 16M regions. Figure 28 presents 

Fig. 25   Wall shear stress on the initial (left), first adapted (middle) and second adapted (right) meshes
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a cut of the first and second adapted meshes, whereas 
Fig. 29 shows a zoomed view near the nose cone. For this 
case also we provide a qualitative assessment of the numer-
ical results. Figure  30 presents the Mach number contour 
plots on the initial mesh and the first and second adapted 
meshes. In addition, Fig.  31 shows adapted meshes and 
contours of the computed Mach number near the cowl lip 
region of the inlet to the combustor region.

The solution resolution is greatly improved through the 
use of anisotropic mesh adaptation. The second adapted 
mesh captures the shocks far better than the initial mesh. In 
the far-field region upstream of the primary shock, where 
flow is uniform and parallel, the mesh was appropriately 
coarsened. Expected mesh refinement was obtained at the 
nose cone, at the cowl lip, within the combustor region, at 
the sharp edges of the combustor liner as well as behind the 
engine. Mesh anisotropy follows the shock emanating from 
the nose cone, i.e., elements are longer in the tangential 
directions to the shock than in the normal direction.

Changes in the mesh evidently reflect a sharper resolu-
tion of flow features in the relevant regions of the domain. 
The second adapted mesh captures the shocks better than the 
initial mesh, and a sharper resolution of the shocks can be 
seen in Fig. 30. The resolution of the shocks in the far field is 
limited since it is currently not of concern and far-field reso-
lution can easily be improved with more stringent adaptation 
criteria. Behind the engine also, the flow features are better 
resolved on the second adapted mesh. Finally, the flow solu-
tion in the combustor region is also better resolved which is 
important in proceeding forward to a combustion simulation.

In this case, an anisotropic mesh gradation proce-
dure [36] is also used to reduce high variations in the mesh 
size around the tip of the nose cone. Figure 32 illustrates 
the impact of anisotropic gradation near the tip of the nose 
cone. The requested sizes at the wall surface are over an 
order of magnitude smaller than those in the unstructured 
region directly at the top of the boundary layer stacks. As 
a result, the boundary layer stack at the tip is much more 
refined than in the adjacent unstructured interior mesh, 
leading to a so-called “spider web” behavior and poorly 
shaped elements locally. As shown in Fig. 32, gradation of 
the mesh size field alleviates this issue.

Mesh statistics were collected for this case too. The 
same three quantities were collected in the final adapta-
tion cycle. Figure 33 shows these statistics. It can be seen 

Fig. 26   Distribution of edge length (left plot for interior edges and 
middle plot for layer edges) and mean ratio (right plot) in the trans-
formed space from the final adaptation cycle of the heat transfer man-
ifold case

Table 2   Execution time and strong scaling of mesh adaptation for 
the heat transfer manifold case

Num. cores (np) 256 (base) 512 1024 2048 4096

Time (t in s) 1194.34 785.44 514.45 421.09 339.38

Scaling factor (Ss) 1 0.76 0.58 0.35 0.22
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that the input mesh has a large number of interior and 
layer edges whose lengths in the metric space are outside 
the desired interval whereas interior edges in the adapted 
mesh fall in this interval. As before, many layer edges in 
the adapted mesh are finer (or shorter) than desired, which 
is due to the conservative nature of the split scheme used 
for layer edges. The percentage of finer layer edges in the 
metric space is higher in this case because the computed 
mesh size field has more variation along the thickness of 
the layered mesh (e.g., in stacks near the tip region of the 
nose cone). As before, mean ratio plot shows that the shape 
quality measure of the elements in the adapted mesh is 
higher and respects the specified mesh metric field.

Table 3   Execution time and weak scaling of mesh adaptation for the 
heat transfer manifold case

Num. cores (np) 256 (base) 1536 9216

Initial mesh—number of 
regions

16,319,606 94,487,988 604,853,414

Adapted mesh—number of 
regions

80,890,803 527,501,893 3,702,376,095

Mesh increase factor 
(Mincr)

4.96 5.58 6.12

Time (t in s) 1194.34 1381.55 1716.23

Scaling factor (Sw) 1 0.97 0.86

Fig. 27   Cut of the initial mesh for the scramjet case: whole body 
(top) and a zoomed view near the tip of the nose cone (bottom)

Fig. 28   Cut of the first (top) and second (bottom) adapted meshes for 
the scramjet case

Fig. 29   Cut of the first (top) and second (bottom) meshes for the 
scramjet case near the nose
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Table  4 provides execution time and scalability of the 
mesh adaptation procedure based on the second adapted 
mesh. The strong scaling studies were performed on cores 
ranging from 128 (base) to 4096, which spans 5 doublings 
in core counts.

Table  4 shows that the execution time for mesh adap-
tation procedure is decreased on larger number of cores. 
Even though the mesh is relatively smaller for this case as 
compared to the heat transfer manifold case, the parallel 
scalability is better. Note that the mesh adaptation proce-
dure took 1.2 % of the total simulation time on 128 cores 
and 3.6  % on 4096 cores, which is not significant when 
compared to the analysis time. As in the previous cases, 
even for a fixed size problem, mesh adaptation procedure is 
able to perform effectively on high core counts.

Table  5 gives weak scaling results for the scramjet 
engine case, where the scaling factor is calculated the 
same way it was done for the heat transfer manifold case. 
It can be seen in Table 5, with a relatively equal amount 
of workload per part in each test, the drop in weak scal-
ing is modest as the core count is increased. In contrast 
to the strong scaling results, the weak scaling is better for 
the heat transfer manifold case as compared to the scram-
jet case. Note that the mesh increase factors are less in 
the scramjet case by roughly 2× as compared to the heat 
transfer manifold case. As noted earlier, the parallel per-
formance of the mesh adaptation procedure is specific to 
the types of mesh modification operations carried out on 
different parts and on the  communication-to-computation 
ratio.

6 � Closing remarks

In this paper, a parallel adaptive boundary layer meshing 
procedure is presented. The approach successfully works 
on distributed meshes and effectively supports layered 
structure in the mesh. It is based on local mesh modifica-
tion operations which are carried out in parallel and dic-
tated by the specified mesh size field. The current paral-
lelization paradigm allows the adaptation procedure to 
be applied on large and complex problem cases (e.g., on 
meshes with billions of regions).

The adaptation procedure was executed in parallel for 
three viscous flow problem cases, namely: the ONERA M6 
wing, a heat transfer manifold and a scramjet engine. It has 
been demonstrated that boundary layer mesh adaptation 
leads to an accurate prediction of flow quantities of interest 
(e.g., surface pressure and wall shear stress) and appropri-
ately resolves critical flow features (e.g., lambda shock). In 
the ONERA M6 wing case, numerical results on the fin-
est adapted mesh showed good agreement with the experi-
mental data. However, in the other two cases a qualitative 
assessment was made.

The parallel performance of the mesh adaptation pro-
cedure for these problems showed that the execution time 
decreases with an increase in the number of cores for a 
fixed size problem or under strong scaling (e.g., with 5 
doublings in core counts). Weak scaling was also presented 
showing that the procedure is capable to scale for larger 
meshes on high core counts (e.g., spanning a factor of 36 
in the number of mesh regions and core counts). With mesh 
adaptation taking a small fraction of the total simulation 
time within the adaptive loop, parallel boundary layer mesh 
adaptation can be effectively integrated into workflows to 
support large-scale automated flow simulations of complex 
problems on high core counts. In the future, we plan to 
include cases where change in number of layers is required 

Fig. 30   Mach contours on the initial (top), first adapted (middle) and 
second adapted (bottom) meshes
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Fig. 31   Initial (top), first adapted (middle) and second adapted (bottom) meshes (left column) and Mach number contours (right column) for the 
scramjet case near the cowl lip and at the inlet to the combustor region

Fig. 32   Anisotropic gradation near the nose cone for the scramjet case: without (left) and with (right) gradation
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and far-field solution features (e.g., far-field shocks) play 
an important role.
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