
1 3

Engineering with Computers (2017) 33:767–795
DOI 10.1007/s00366-016-0437-2

ORIGINAL ARTICLE

Parallel anisotropic mesh adaptation with boundary layers
for automated viscous flow simulations

Onkar Sahni1 · Aleksandr Ovcharenko1 · Kedar C. Chitale1 · Kenneth E. Jansen2 ·
Mark S. Shephard1

Received: 14 January 2014 / Accepted: 22 January 2016 / Published online: 1 April 2016
© Springer-Verlag London 2016

1  Introduction

The application of finite elements for reliable numerical
simulations requires that the simulations are executed in an
automated manner with explicit control of the approxima-
tions made. Since there are no a priori methods to control
the approximation errors for complex problems, a poste-
riori methods along with adaptive discretization proce-
dures must be applied [2, 6, 24, 62]. Adaptive meshing is
therefore an important component for reliable simulation of
complex problems, such as for flow problems that exhibit
highly anisotropic solutions which can only be located and
resolved through a posteriori anisotropic adaptivity (e.g.,
see [9–11, 21, 49, 51, 54]). Furthermore, in a number of
problem cases it is desirable to use highly anisotropic ele-
ments (e.g., with aspect ratio above 1000) in specific loca-
tions and for these elements to have a semi-structured
nature which must be maintained during mesh adapta-
tion [34, 53]. Of particular interest in this study are viscous
flows with boundary layers that form near solid surfaces,
e.g., in a wall-bounded flow.

The two major classes of mesh adaptation techniques are
adaptive re-meshing methods and methods that use local
mesh modification. Re-meshing methods [19, 21, 23, 26,
51] construct the desired mesh by regenerating the entire
mesh through the application of automatic mesh generation
algorithms governed by specified element size and shape
information while accounting for curved domains. This
comes at the cost of re-meshing the entire domain along
with global transfer of the solution fields to the new mesh.
On the other hand, methods based on local mesh modifica-
tion retriangulate local subdomains (or cavities) until the
specified mesh size field is satisfied (e.g., see [7, 37, 49]).
Effectiveness of local methods depends on the richness of
the underlying local mesh modification operations that are

Abstract  This paper presents a set of parallel procedures
for anisotropic mesh adaptation accounting for mixed ele-
ment types used in boundary layer meshes, i.e., the current
procedures operate in parallel on distributed boundary layer
meshes. The procedures accept anisotropic mesh metric
field as an input for the desired mesh size field and apply
local mesh modifications to adapt the mesh to match/satisfy
the specified mesh size field. The procedures fully account
for the parametric geometry of curved domains and main-
tain the semi-structured nature of the boundary layer ele-
ments. The effectiveness of the procedures is demonstrated
on three viscous flow examples that include the ONERA
M6 wing, a heat transfer manifold, and a scramjet engine.

Keywords  Parallel mesh adaptation · Boundary layer
mesh · Semi-structured mesh · Parallel adaptive viscous
flow simulations

 *	 Onkar Sahni
	 sahni@rpi.edu

	 Aleksandr Ovcharenko
	 shurik@scorec.rpi.edu

	 Kedar C. Chitale
	 chitak2@rpi.edu

	 Kenneth E. Jansen
	 kenneth.jansen@colorado.edu

	 Mark S. Shephard
	 shephard@rpi.edu

1	 Scientific Computation Research Center, Rensselaer
Polytechnic Institute, Troy, NY 12180, USA

2	 University of Colorado at Boulder, Boulder, CO 80309, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-016-0437-2&domain=pdf

768	 Engineering with Computers (2017) 33:767–795

1 3

employed. Some local mesh modification methods strictly
use subdivision operations which can be limited in the
amount of coarsening and anisotropy that can be achieved.
For example, in [5, 31, 40] the coarsening or merging of
child elements to recover parent elements is done by revers-
ing the previous subdivision operations at desired locations
(i.e., by applying a derefinement step). Thus, in such meth-
ods coarsening cannot be applied to create elements larger
than those in the initial mesh. This aspect also limits the
amount of anisotropy that can be achieved in elements. Sim-
ilarly, some local mesh modification schemes only adapt to
the faceted geometry (e.g., based on the initial mesh) and
do not improve the geometric approximation of the curved
domains as the mesh is refined. In contrast, other research
work has shown that a richer set of local mesh modification
operations [7, 20, 29, 37, 49] can be utilized to support gen-
eral (local) coarsening, reconnection and anisotropy in the
mesh as well as to account for curved domains [38]. These
local operations also support a localized transfer of solution
fields [5, 44] at the cavity level as the mesh is incrementally
modified to attain the desired mesh.

In viscous flows with boundary layers, hybrid or semi-
structured mesh generation methods have been used exten-
sively [8, 15, 22, 25, 27, 28, 33, 41–43, 52]. For such prob-
lems, local mesh modification operations have been extended
to account for mixed topology elements [30, 34, 53], wherein
the semi-structured nature of the mesh is taken into consider-
ation. Specifically the layers or stacks of wedges (triangular
prisms) or hexes are modified to attain the desired local mesh
resolution while the overall layered structure is maintained.
In [34], subdivision of mixed elements is employed along
with mesh movement to improve the geometric approxima-
tion of the curved domains. In [30], derefinement is also car-
ried out for transient problems, whereas in [53] a richer set
of local mesh modification operations are utilized for mixed
element meshes. In these studies, layered mesh is modified
in conjunction with the rest of the interior mesh consist-
ing of unstructured tetrahedral elements as well as pyrami-
dal elements. The latter are used when necessary to transi-
tion between the semi-structured/layered and unstructured
portions of the mesh. These studies have focused on serial
boundary layer meshes, i.e., where the mesh is not parti-
tioned or distributed over multiple parts.

Mesh adaptation techniques must operate in parallel on
distributed meshes. This is because most problems of inter-
est involve complicated geometries and complex physics,
that even with adaptivity, the resulting meshes are very
large. Adaptive simulations for such problems, where only
the analysis or solve step is parallelized (see, for exam-
ple, [65]), face a limitation in terms of the problem size
and/or time-to-solution due to the serial mesh adaptation
step. The serial mesh adaptation step may take as much

time, or even more, as compared to the analysis step and
thus, becomes a bottleneck. Therefore, to efficiently exe-
cute parallel adaptive simulations, both the analysis and
mesh adaptation steps must be parallelized and executed on
distributed or partitioned meshes (e.g., see [13, 59, 66]).

Performing mesh adaptation in parallel requires that
all mesh operations are carried out in such a way that the
resulting distributed mesh properly fits together, i.e., at the
inter-part boundaries. Subdivision or refinement operations
can be understood at the level of a single element and there-
fore, can be performed in parallel on each processor includ-
ing for lower-order mesh entities that reside on inter-part
boundaries. This must be followed by a communication step
between processors to update the inter-part links based on
new mesh entities introduced at the inter-part boundaries
(e.g., see [16, 47]). In [47, 50], parallel refinement and dere-
finement steps are used for unsteady problems, where child
elements of a given parent element always reside on the
same processor. This makes the merging of child elements
straightforward in which a communication step is required
to delete the necessary vertices at inter-part boundaries due
to derefinement. As in the serial case, this parallel approach
is limited in terms of the amount of coarsening and anisot-
ropy that can be achieved. In contrast to a parallel scheme
that is based on refinement and derefinement steps, parallel
re-meshing is used in [26]. In such an approach, mesh ele-
ments marked for adaptation (based on a selection criterion)
are removed from the distributed mesh leading to cavities
or holes in the mesh that are re-meshed. This intermediate
mesh is repartitioned with the constraint that every hole
to be re-meshed resides solely on a single part or proces-
sor in the re-distributed mesh. This scheme is more flexible
in terms of shape and orientation of the resulting elements,
however, the overall process can be time consuming. For
example, a global repartitioning of the mesh, or a re-mesh-
ing of a relatively large hole due to concentrated adaptation
in a contiguous portion of the domain, leads to significant
work and memory imbalances between processors. On the
other hand, in an adaptation approach that is based on local
mesh modifications only small portions of the mesh are
affected at any given time. Therefore, mesh operations for
which the associated cavity resides solely on one part can be
carried out in a similar fashion to the serial case while for a
cavity which spans multiple parts a migration of associated
mesh elements is needed. A naive sequence of steps, which
intermingles on-part mesh modification and mesh migra-
tion steps at a low level, will be ineffective due to significant
wait times between these steps. However, with a proper con-
trol of the on-part mesh modification and mesh migration
steps, parallel mesh adaptation based on local mesh modi-
fications has been shown to be efficient [3, 16]. So far such
parallel mesh adaptation methods have focused on fully

769Engineering with Computers (2017) 33:767–795	

1 3

unstructured/tetrahedral meshes and do not take boundary
layer meshes into consideration.

A parallel mesh adaptation scheme for distributed
boundary layer meshes has been presented in [32], where
refinement and derefinement steps are employed for mixed
elements. Similar to refinement and derefinement of fully
unstructured distributed meshes discussed above, the tech-
nique in [32] requires the child elements of a given parent
element to always reside on the same processor such that
mesh derefinement step is completed with minimal com-
munication. As mentioned before, such a scheme limits the
amount of coarsening and anisotropy that can be achieved
for hybrid meshes. Whereas an approach that is based on
a richer set of local mesh modification operations for dis-
tributed boundary layer meshes can overcome these limita-
tions, but to the best of our knowledge so far there has been
no study on such an approach. The current work presents
such an approach based on parallelization of a richer set of
local mesh modification operations for distributed bound-
ary layer meshes, i.e., this paper presents parallel proce-
dures for boundary layer mesh adaptation and builds on our
prior work on serial boundary layer meshes [53].

The organization of the paper is as follows. Section 2
briefly provides the terminology used for boundary layer
meshes. Section 3 discusses the local mesh modification
operators that are used for the layered portion of the mesh
and its interface with the rest of the unstructured interior
mesh. Section 4 describes the procedures that are currently
used to parallelize different local mesh modification opera-
tions for hybrid or boundary layer meshes. Section 5 dem-
onstrates the effectiveness of the current procedures based
on three viscous flow problems.

1.1 � Nomenclature

2 � Boundary layer mesh terminology

A common method to construct boundary layer meshes
with layered elements on walls is the advancing layers
method [8, 15, 22, 25, 27, 28, 33, 41–43, 52]. It inflates
the unstructured surface mesh on no-slip surfaces, where
the boundary layer flow forms. This inflation into the vol-
ume is performed along the local surface normals in the
form of stack or layers of elements in a graded fashion up

{

Md
}

the set of topological mesh entities

of dimension d. d = 0 : vertex,
d = 1 : edge, d = 2 : face, d = 3 : region.

Md
i the ith mesh entity of dimension d.

{

∂Md
i

}

the entities on the boundary of Md
i .

{

Md
i

{

MD
}}

the set of mesh entities of dimension

D adjacent to Md
i .

to a specified distance. Rest of the domain is filled with
unstructured tetrahedral elements while pyramids are used
when necessary. An example of a boundary layer mesh for
a pipe geometry is shown in Fig. 1. In addition to the lay-
ers of prismatic elements and interior tetrahedral elements,
this example includes a few pyramids. Note that pyramids
are used to transition into the unstructured tetrahedral mesh
when quadrilateral faces of the layered mesh are exposed,
for example, when the number of prisms in neighboring
stacks change due to a difference in the number of layers in
those stacks.

The layered portion of the boundary layer mesh has a
structure that can be decomposed into a tensor product of
a layer surface (2D) mesh and a thickness (1D) mesh [53].
The mesh composed of triangles located at the top or bottom
end of any layer is referred to as a layer surface, while the
lines normal to the wall composed of mesh edges are called
growth curves, see Fig. 2. The mesh edges that belong to
layer surfaces are referred to as layer edges and ones that

Fig. 1   Cut of the boundary layer mesh for a pipe geometry

Fig. 2   Boundary layer mesh terminology

770	 Engineering with Computers (2017) 33:767–795

1 3

reside on growth curves are called growth edges as depicted
in the figure. Each layer of elements is formed with the
help of two layer surfaces, one above and one below, while
the in-between growth edges join these layer surfaces. The
height of each layer is referred to as layer thickness whereas
the collective height of all the layers is the total thickness
of a layered stack of elements. The number of total vertices
(or edges) on growth curves determine its level. The vertices
on walls from which growth curves originate are referred
to as the originating vertices. The top most layer in a lay-
ered stack shares an interface with the unstructured interior
mesh. The interior tetrahedral or pyramidal elements, shar-
ing lower-order mesh entities with layered portion of the
mesh, are referred to as the interface elements.

3 � Mesh modifications in the layered portion of the
mesh

The goal of mesh modification operations for boundary
layer meshes is to maintain the overall layered structure in
the mesh. To do this, the mesh modification operations are
decomposed such that operations that affect the layer trian-
gulation of the layers are applied consistently throughout
the stack. It is also necessary to apply modification to the
corresponding unstructured mesh at the top of the stack.
This section describes the control of mesh modifications
for the layered and unstructured portions of the mesh.

3.1 � Mesh metric tensor

A mesh metric field is used to specify the anisotropic mesh
size distribution over the problem domain (e.g., see [37, 49,
51]). In an adaptive process, the error estimator or indica-
tor information is used to specify the desired mesh size or
metric field. This specification at any given point P is done
by a symmetric positive definite tensor T(P), referred to as
the mesh metric tensor. A mesh metric tensor contains the
desired directional mesh resolution at a point and geomet-
rically follows an ellipsoidal surface. Specifically, a mesh
metric tensor transforms an ellipsoid into a unit sphere. The
transformation: eTTe = 1 (where e denotes the edge vec-
tor), defines a mapping of the edge in the physical space
into a unit edge in the metric or transformed space. Any
tetrahedron that perfectly satisfies the mesh metric field
should be a unit equilateral tetrahedron in the metric space
as depicted in Fig. 3. However, in an unstructured mesh it is
often not possible to exactly satisfy the specified mesh met-
ric field. Therefore, mesh modification algorithms constrain
edge lengths in the metric space to be within an interval
around unity: [Lmin, Lmax] (e.g., [1/

√
2,
√
2]), while elements

are desired to achieve a mean ratio in the metric space to be
close to 1 (with 1 being the ideal value). Mean ratio for a

tetrahedron was defined in [39]. In the metric space, mean
ratio is defined as [37]: η = 12(3VT)

2/3/(
∑6

i=1 l
2
T ,i), where

VT is the volume of the tetrahedron and lT ,i is the length of
the ith edge of the tetrahedron in the metric space. As dis-
cussed later, we employ the cube of the mean ratio as the
measure for element shape quality (e.g., see [37]).

In the layered part of the mesh, the mesh metric tensor
can be decomposed into an ellipse as the planar (2D) part
along a layer surface, which dictates the local in-plane mesh
resolution, and a normal (1D) component that controls the
local layer thickness [53]. Note that layer thickness can also
be based on flow physics, for example, in turbulent bound-
ary layer flows [14]. Figure 4 illustrates the decomposition
of a mesh metric tensor in layered part of the mesh.

3.2 � Local mesh modification cavity

With the input of mesh metric field, the local mesh modi-
fications are carried out to adapt the mesh to match the
specified size field. As discussed before, a richer set of local
mesh modification operations [7, 37, 49] is needed for fully
unstructured anisotropic meshes. Each modification opera-
tion involves a local cavity or subdomain which is retri-
angulated. The cavity for a given operation is defined as
the union of sets of mesh entities that are changed by the
application of the modification operation with the restric-
tion that the triangulation of the cavity’s boundary remains
unchanged. This means that the boundary of the cavity can
be shared with unchanged mesh entities outside of the cavity
or in unaffected portion of the mesh (under this operation).

Fig. 3   Transformation of a tetrahedral element based on a mesh met-
ric tensor

Fig. 4   Decomposition of a mesh metric tensor in layered part of the
mesh

771Engineering with Computers (2017) 33:767–795	

1 3

In 3D, the cavity is defined as the set of mesh regions
along with its closure (i.e., lower-order mesh entities),
which will be modified by the modification associated with
entity Md

k and is denoted as:

The cavity’s boundary is defined as:

Equation 2 states that the cavity’s boundary contains the set
of lower-order entities

{

Md
j

}

 (d = 0, 1, 2) that are located
on the outer boundary of the closed set of regions com-
prising cavity

{

C(Md
k)
}

. This way the cavity’s boundary
is shared with adjacent mesh regions that are outside and
thus, not part of the cavity.

The application of a local mesh modification opera-
tion then is a retriangulation of the cavity,

{

C(Md
k)
}

 ,
which changes the mesh topology and results into a set of
mesh entities contained in the set {S} with the following
conditions:

There can be situations when an entity Md
k which requests

modification is (only) repositioned within the cavity with
no change in local mesh topology (for example, in case of
a vertex motion as considered in Sect. 3.3). In this scenario,
Eq. 3 will have the equality.

3.3 � Boundary layer stack modification

To preserve the layered nature of the boundary layer stacks,
the mesh adaptation process for layer surfaces utilizes layer

(1)

{

C(Md
k)
}

= {M3
i

⋃
{

∂M3
i

}

|M3
i

is affected by mesh modification

operation applied to Md
k }.

(2)

{

∂C(Md
k)
}

= {M2
j

⋃

{

∂M2
j

}

∈ C(Md
k)|

M2
j /∈

{

∂M3
i

}
⋂

{

∂M3
j

}

∀M3
i ,M

3
j ∈

{

C(Md
k)
}

}.

(3){S} �=
{

C(Md
k)

}

,

(4){∂S} =
{

∂C(Md
k)

}

.

edge split, collapse and swap operations [53], while adjust-
ment of layer thicknesses and movement of newly cre-
ated originating vertices to the curved domain boundary are
accomplished through vertex movement (that may involve
direct repositioning or local mesh modification operations as
discussed later).

The layer edge split operation splits edges in the bound-
ary layer stack and applies the appropriate subdivisions to
the unstructured interior mesh at the interface. When edge
split is requested for a single layer edge, all edges in the
stack are subdivided. This scheme is conservative in nature
in that it may provide a finer mesh than desired for some
layer surfaces. Namely, if M1

i , where i ∈ [1..N], is the layer
edge to be split in a stack of N layer edges, then the cav-
ity associated with it consists of a set of unique regions
{

C
{

M1
i

}}

=
{

⋃N
i=1

{

M1
i

{

M3
}}

}

. Figure 5 illustrates the
layer edge split operation. The subdivision of pyramids and
tetrahedra at the interface follows the stack split.

The layer edge collapse operation is performed on stacks
that contain all short edges in the metric space. It is carried out
under this condition to avoid any oscillation between collapse
and split operations [53]. The edge collapse operations can
only be applied when the affected unstructured mesh entities
at the top of the stack also remain valid after the collapse oper-
ation. Let

{

(M1
i ,M

0
i)
}

 (with i ∈ [1..N]) be N pairs of layer
edges (to be collapsed) and their corresponding vertices (to be
deleted) in a stack. Then the cavity associated with the layer
edge collapse operator is

{

C
{

M0
i

}}

=
{

⋃N
i=1

{

M0
i

{

M3
}}

}

in which regions
{

⋃N
i=1

{

M1
i

{

M3
}}

}

 are deleted. Figure 6

shows the local mesh cavity before and after the layer edge
collapse operation.

The layer edge swap operation changes the connectivity
of neighboring boundary layer stacks. In comparison to an
edge swap operation for tetrahedra, which are reconfigured
based on the equatorial plane, there is only one other pos-
sible configuration for layer faces in case of a layer edge
swap operation [53]. If

{

M1
i

}

 (with i ∈ [1..N]) are the layer
edges to be swapped, then the layer edge swap operation
retriangulates the cavity

{

C
{

M1
i

}}

=
{

⋃N
i=1

{

M1
i

{

M3
}}

}

and new layer edges are introduced inside the cavity while

Fig. 5   Example of a layer edge
split operation

772	 Engineering with Computers (2017) 33:767–795

1 3

old layer edges
{

M1
i

}

 are deleted. The unstructured interior
regions at the interface are also retriangulated and in gen-
eral are not guaranteed to be in a valid configuration after
the swap operation. Thus, appropriate checks are required
to ensure that the layer edge swap operation results in a
valid mesh after its completion. Figure 7 gives an example
of the layer edge swap operation.

When edge split operations are applied to layer edges
on curved wall surfaces, the newly introduced originat-
ing vertices must be moved to the curved boundary to
maintain the proper geometric approximation. All the
vertices on a growth curve should gradually be moved
to follow the originating vertex, i.e., based on a move-
ment vector [53]. The movement vector is determined for
each stack of vertices based on the target location of the
originating vertex on the curved domain boundary. This is
given as: m = v

t

0
− v0 , where vt0 is the target location of

the new originating vertex on the curved boundary (super-
script t is used to denote target) and v0 is the location of
the new originating vertex on the original layer edge. The
movement vector m is then applied to all the vertices on
that growth curve. The procedure first evaluates the target
location of every vertex on all new growth curves, with
each vertex’s target location calculated as: vti = vi +m,
where vi is the current or original location of the ith vertex

on a growth curve and vti is its target location. The pro-
cedure then moves the vertices to their computed target
locations. An example is depicted in Fig. 8. Similar to the
repositioning of a newly created vertex in the unstruc-
tured mesh to the curved boundary, direct repositioning
of a new originating vertex is not always possible with-
out additional local mesh modification. Specifically for
the top most vertices, as it may introduce inverted ele-
ments. In this case local mesh modification operations are
applied to the unstructured interior mesh for it to allow
in a successful repositioning of the top most vertex. This
step is followed by repositioning the rest of vertices on
the growth curve.

3.4 � Subdivision of transition pyramids

For pyramids we consider more subdivision templates than
those presented in our previous work on serial boundary
layer meshes [53]. This is done to achieve more flexibility
in parallel mesh adaptation of boundary layer meshes. Pyr-
amids are subdivided during the refinement of the unstruc-
tured part of the mesh.

There are three ways the quadrilateral face of a pyramid,
which caps an exposed side of a stack, can be subdivided,
see Fig. 9. While a refinement in the lateral direction splits

Fig. 6   Example of a layer edge
collapse operation

Fig. 7   Example of a layer edge
swap operation

773Engineering with Computers (2017) 33:767–795	

1 3

the quadrilateral face using layer edges only (see the left
image in Fig. 9), the request to change the number of lay-
ers or the resolution along the normal or thickness direc-
tion can be achieved with bisection of the quadrilateral face
along the growth edges (see the middle image in Fig. 9).
Additionally, subdivision can be performed in both direc-
tions with the split of both layer and growth edges (see the
right image in Fig. 9).

In this study templates subdividing growth edges are not
exploited. The reason for this is not due to any limitation in
the ability to split the elements, but rather because thick-
ness adjustment based on vertex repositioning was found to
be sufficient for the problem cases considered in this work.

The rest of triangular faces of a pyramid is subdivided
by counting the number of layer edges that are marked or
tagged to be split, see Fig. 10. The triangular face tem-
plates are the same for the subdivision of layer faces and
unstructured interior faces, and thus, do not introduce any
additional ambiguity associated with the refinement of tri-
angular faces.

The templates for a pyramid depend on the number of
marked edges and the selection of the diagonal edge on a
triangular face when two of its edges are marked [37]. This
leads to a total of twenty-five subdivision templates for a
pyramid. The most frequently used templates for subdivid-
ing pyramids are shown in Fig. 11.

3.5 � Unstructured decomposition of boundary layers

Figure 12 shows a close-up of an adapted mesh on a pipe
geometry without unstructured decomposition of prisms
(on the left) and with prisms divided into tetrahedra and
pyramids (on the right). One can observe that on the left
part of the figure there are boundary layer regions with
low aspect ratio. It includes some layered regions that
have growth edges that are longer than the layer edges
which is counterintuitive in a boundary layer mesh and
are not desirable. To satisfy the desired mesh resolution
in such cases the corresponding regions in top portion of
the stacks are converted into unstructured part of the mesh

Fig. 8   Repositioning of
boundary layer vertices due to
movement of the newly created
originating vertex to the curved
domain boundary

Fig. 9   Subdivision of a quadrilateral face based on different edge splits

Fig. 10   Subdivision templates
for a triangular face

774	 Engineering with Computers (2017) 33:767–795

1 3

Fig. 11   Subdivision templates for a pyramid

Fig. 12   Mesh adaptation without and with unstructured decomposition of regions with relatively low aspect ratio in the top portion of the stacks

775Engineering with Computers (2017) 33:767–795	

1 3

and subsequently more flexible unstructured mesh modifi-
cation operations can be applied to achieve the appropriate
level of mesh resolution and anisotropy. This is an addi-
tional feature to our previous work on serial boundary layer
meshes [53].

The process of unstructured decomposition of prisms
or reducing the numbers of layers in selected stacks, also
referred to as trimming, leads to introduction of additional
quadrilateral faces that must be capped with pyramids so
that the mesh can be transitioned into tetrahedral elements
in the unstructured interior mesh. This step can be reversed
when a thicker boundary layer or more layers are desired. It
can be done by splitting growth edges that will reintroduce
more layers (locally). However, as mentioned before, split
of growth edges is not considered currently since it was not
necessary for the problems cases considered in this work.

The current algorithm for stack decomposition relies on
adjacent stacks of regions that share a face to differ in the
number of layers (or prisms) by only one, in which case the
top prism on the higher stack must be connected to a pyra-
mid. This is done to transition between different number of
layers in face-neighbor stacks of regions. This condition
can be enforced by controlling the number of vertices in
neighboring growth curves in a preprocessing step before
executing the trimming step.

Figure 13 shows boundary layer stacks with differ-
ent number of layers where any two face-neighbor stacks
have no more than one layer difference. Note that with this
condition the corresponding number of vertices between
growth curves of a given stack can vary by as much as
two. In the trimming step, the number of layers for a given
growth curve is dictated by the lowest level regions being
decomposed. The lowest level boundary layer vertices are
given a priority to bisect the quadrilateral faces adjacent
to it. If vertices next to each other are of the same level,
the priority is granted to the one having the smallest local

vertex identifier (ID) which eliminates any possible ambi-
guity in selecting the diagonal edge of the quadrilateral
face.

The application of this restriction during trimming of
the stacks yields a favorable situation in which all prisms
subdivided into tetrahedra can be triangulated without the
introduction of an interior vertex [60]. Avoiding an inte-
rior vertex eliminates certain algorithmic complexities and
typically results in a better control of the element shape
quality [35].

A prism can be subdivided into a pyramid and a tetra-
hedron when two of its quadrilateral faces are split and the
two diagonal edges share a common vertex, or into three
tetrahedra when all quadrilateral faces are subdivided and
there is at least a common vertex between any two diagonal
edges. This is depicted in Fig. 14. This logic eliminates the
possibility for a prism being subdivided to have only one
quadrilateral face that is split, or that there is no common
vertex between diagonal edges.

Fig. 13   Different number of layers in neighboring boundary layer
stacks. The number of vertices on growth curves is indicated by the
count shown at originating vertices. Bold solid and dashed lines at the
bottom represent edges on the wall

776	 Engineering with Computers (2017) 33:767–795

1 3

The algorithm for unstructured decomposition of the
appropriate portions of a boundary layer mesh consists of
three parts. The first part is responsible for determining the
layers in each stack that need to be decomposed based on
the allowed minimum value of the aspect ratio. The second
part adjusts the number of layers for any two face-neighbor
stacks of regions such that they have difference of no more
than one after the unstructured decomposition is accom-
plished. The third step assigns each quadrilateral face with
an appropriate diagonal edge using the rules described
above. Algorithm 1 presents the overall process of the
unstructured decomposition of boundary layers.

3.6 � Overall boundary layer mesh adaptation algorithm

Before we present our approach for parallel boundary
layer mesh adaptation, the overall adaptation procedure is
described. It is executed in three stages: mesh coarsening,
iterative mesh refinement and shape improvement [53]. The
first two stages are controlled by analysis of mesh edge
length in the metric or transformed space, whereas the third
stage is dictated by both mesh edge length and element
shape or quality control. The layered part of the mesh is
given a priority in applying mesh modification operations
of a specific type followed by the same operation for the
unstructured entities. This is done because size requests for
entities in boundary layer stacks are more involved (e.g.,
layer edge split is applied throughout the stack) and thus,
resolved first.

The overall procedure is given in Algorithm 2. It starts
with the coarsening stage. The coarsening stage applies
local mesh modification operations to eliminate the major-
ity of edges shorter than that requested by the local mesh
size field. A mesh edge is considered to be short if its
length in the transformed space is smaller than the speci-
fied value Lmin [37]. An advantage to coarsening first is that
it will make the traversals required during mesh adaptation
faster and limit the peak memory used during the adapta-
tion process. Thickness adjustment is applied on the coars-
ened mesh so that it is only applied to entities that will
remain in the mesh.

The second stage refines mesh regions using refinement
templates that split the mesh edges longer than Lmax in the
transformed space. Lmin and Lmax are typically selected to be
1/
√
2 and

√
2, respectively [37]. The procedure ensures that

the refinement is applied to stacks of prisms along with inte-
rior elements located at the interface. This stage also places
newly created boundary vertices onto the domain boundary
(e.g., as defined by the CAD model). It also coarsens any new
short mesh edges introduced by refinement templates. At the
end of an iteration in this stage, any elements in the stack that
have relatively low aspect are tetrahedralized and made part
of the unstructured interior mesh. Thus, removing them from
the stack by applying unstructured decomposition of boundary
layers. The refinement iterations terminate when no long layer
or interior edges are left.

The third stage applies shape improvement operations to
improve the quality of poorly shaped entities in the trans-
formed space. We use mean ratio [39] as the measure for
element shape quality, specifically the cube of the mean
ratio in the transformed space [37, 53]. This is done for

Fig. 14   Subdivision of a prism based on bisection of quadrilateral
faces with diagonal edges sharing a common vertex

777Engineering with Computers (2017) 33:767–795	

1 3

both layer faces (in layered part of the mesh) and tetrahedra
(in unstructured interior part of the mesh).

Poorly shaped entities (i.e., those below a certain value of
quality measure) are modified using sets of swap and compound
operators [37, 53] to obtain the best possible element quality
while preserving the desired edge length in the transformed
space [4, 17, 39]. Again, the shape correction operations are first
carried out in the layered part of the mesh and then followed by
mesh optimization in the unstructured interior part [53].

4 � Parallel implementation

The execution of parallel mesh adaptation is based on the
fact that the mesh is distributed [3, 57] into a number of
parts, where each part consists of a set of mesh entities and
is treated as a partitioned mesh with the addition of inter-
part boundaries within the mesh. A partitioned mesh is
managed by the parallel mesh database that tracks the mesh
entities residing on inter-part boundaries.

The application of a local mesh modification in parallel
involves a cavity of mesh entities that are all on one part or
are on multiple parts. In the case where the entities associ-
ated with a cavity are on a single part, the mesh modifica-
tion can be carried out on that part and thus making the par-
allel execution straightforward. However, in cases where the
entities in the cavity are distributed on multiple parts, some
form of inter-part or inter-processor coordination is needed.

4.1 � Distributed mesh infrastructure

The effective implementation of parallel mesh modifica-
tion requires a parallel mesh infrastructure and associated
parallel mesh control tools. The parallel mesh representa-
tion [57] employed maintains the information on mesh enti-
ties on inter-part boundaries such that all parts sharing an
entity maintain an on-part copy as well as remote copies
corresponding to other parts. It supports the ability to update
mesh entities on inter-part boundaries if they are modified
(e.g., due to an edge split). It also supports the movement or
migration of mesh entities from one part to another, which
is referred to as a mesh migration step and in which the
inter-part boundaries are automatically updated.

Mesh migration is needed to localize a cavity associated
with a mesh modification operator. For certain mesh modi-
fication operations, such as collapse and swap, the direct
consideration of cavities spanning multiple parts leads to a
complex and expensive procedure since it requires a num-
ber of communication steps to properly carry out the mesh
modification operation and update the local mesh in each
part. Thus, before applying the mesh modification opera-
tion, such cavities are localized on one part or processor
such that the cavity retriangulation can be carried out as in

the serial case. In cavity localization, all regions and stacks
of regions involved in the mesh modification operation are
migrated onto a single part [3, 57].

Note that during mesh adaptation, mesh migration is also
needed to control the memory usage since the adaptive mesh
modification process will alter the numbers of entities on a
part (e.g., due to concentrated refinement in a part) and thus
the mesh must be dynamically repartitioned. The Zoltan
library [56] is used to perform the dynamic repartitioning.

For a boundary layer mesh, the mesh modifications in
the layered part of the mesh are applied to the entire stack,
and therefore, maintaining the knowledge of the stack is
critical. In parallel, managing this information would be
difficult if the mesh regions in a stack were distributed over
multiple parts. Thus, the implementation of parallel bound-
ary layer mesh adaptation requires all the mesh regions in
a boundary layer stack to be placed in a mesh set [64] and
each such mesh set is required to reside on a single part
along with the ability to migrate such a set to another part.

Additionally, mesh modification and migration involve many
irregular or unstructured messages of relatively small sizes.
Thus, the parallel efficiency and scalability depend on effec-
tively controlling the underlying message-passing processes.
The Inter-Processor Communication Manager (IPComMan) is
used [48] for efficient parallel communications between proces-
sors. It is a general-purpose communication package built on
top of MPI [1] which significantly improves the inter-processor
communications by exploiting mesh neighborhood of a given
part and by packing small messages into larger messages.

778	 Engineering with Computers (2017) 33:767–795

1 3

4.2 � Refinement and boundary vertex repositioning

Subdivision of mesh edges and their adjacent mesh faces
on inter-part boundaries happens the same way as it is done
in serial [3, 16]. The duplicate faces on inter-part bounda-
ries maintain the bounding edges and vertices in the same
order on each part to ensure the triangulations are consist-
ent across face neighbors. Note that triangular faces can be
split using any combination of edges tagged for refinement
whereas quadrilateral faces (which are part of the bound-
ary layer stacks) are subdivided using opposite edges,
see Figs. 9 and 10. When a quadrilateral face is bisected
for unstructured decomposition of boundary layers (see
Fig. 14), then the procedure ensures that the diagonal edge
of the face is created in the same way on both parts sharing
the face. This way no invalidity is introduced during mesh
triangulation and matching of the newly created entities on
inter-part boundaries.

The inter-part links between newly created mesh enti-
ties are updated across the parts in a communication step
such that the distributed mesh is correctly connected. In the
execution of the refinement step, the corresponding old-to-
new entity mapping is formed such that the links for newly
created entities can be effectively set during the communi-
cation step. The communication step is carried out after all
tagged edges and faces have been split. The mesh regions
are subdivided using the same templates as in serial with-
out any communication (i.e., only lower-order entities on
inter-part boundaries require a communication step). The
pseudo code of the parallel refinement algorithm is given
in Algorithm 3.

The algorithm for updating the inter-part links involves
the same logic for both layered and unstructured parts of
the mesh. The only difference for the layered part is that
the update for any stack involves the entire subdivided por-
tion of that stack.

Figure 15 demonstrates an example of the paral-
lel refinement procedure. The initial distributed mesh is
depicted in Fig. 15a, where thick lines indicate edges and

adjacent faces which are going to be split and communi-
cated during the refinement step. One of those edges is rep-
resented as M1

0 on P0 and M1
1 on P1 (Fig. 15a). Consider top

view of the stack (Fig. 15b, c) showing refinement of edges
M1

0 and M1
1 on each part. Figure 15b shows the introduc-

tion of the vertex M0
0 splitting the edge M1

0, and Fig. 15c
shows M0

1 splitting the edge M1
1. On each part, the newly

created vertex and two edges are the child entities and
attached to the parent edge on inter-part boundary, namely:
M1

0 → {M0
0 ,M

1
2 ,M

1
3 } on P0 and M1

1 → {M0
1 ,M

1
4 ,M

1
5 } on

P1 . To set up the correct inter-part links between the new
entities, a communication step is carried out for remote
copies between {M0

0 ,M
1
2 ,M

1
3 } on P0 and {M0

1 ,M
1
4 ,M

1
5 } on

P1. On P0, M1
0 has a link to M1

1 and using this link it sends
to P1 the list of child entities, whereas on P1, M1

1 has a link
to M1

0 and using this link it sends the list of child entities to
P0. This way P1 receives the message for M1

1 containing the
list of remote copies of its children on P0 and vice-versa.
Then on P1, the old-to-new mapping is used to update the
links such that M0

0 corresponds to M0
1, M1

2 corresponds to
M1

4, and M1
3 corresponds to M1

5. Same is done on P0. This
is depicted in Fig. 15c. After all edges and faces are split
on the inter-part boundaries and the links are updated, the
regions are subdivided with no further communication. The
resulting mesh is depicted in Fig. 15d.

In the process of refinement, each part maintains a list
of new mesh vertices that reside on curved domain bound-
ary and need to be projected [3]. For the layered part of the
mesh, the newly created originating vertices are projected
onto to the curved surfaces with the help of the movement
vector as described in Sect. 3.3. In cases where a direct
repositioning will introduce invalidities in the unstructured
part of mesh (i.e., at the top of the stack), a more extensive
set of local mesh modification operations, which includes
collapses, swaps and/or splits, is used. This is done in par-
allel which involves mesh migration (as discussed above).
Algorithm 4 describes vertex repositioning procedure for
the parallel boundary layer mesh.

779Engineering with Computers (2017) 33:767–795	

1 3

Fig. 15   Example of layer edge split in parallel

780	 Engineering with Computers (2017) 33:767–795

1 3

4.3 � Coarsening and swapping

Layer edge collapse operation is always performed on
a localized or on-part cavity [3, 16]. For applying a layer
edge collapse operation on a growth curve, the boundary
layer stacks adjacent to the growth curve are checked. In
this step, all the layer edges that are adjacent to the vertices
on the growth curve, starting at the originating vertex M0

jorgn

and ending at the top most vertex M0
jtop

, are considered. If

no surrounding stack of short layer edges can be collapsed
locally, then the boundary layer coarsening procedure
migrates all the layered and interface regions adjacent to
growth-curve vertices (from M0

jorgn
 to M0

jtop
) onto a single

part. The procedure then checks for the validity of the layer
edge collapse operation for the given growth curve and pro-
ceeds with it.

Figure 16 shows the example of an layer edge collapse
operation requiring migration. It can be seen from the fig-
ure that growth-curve vertices [M0

jorgn
, . . . ,M0

jtop
] reside on

the inter-part boundary and the collapse operation cannot
be carried out. Thus, all the adjacent layered and interface
regions are migrated to one part P2 to perform the layer
edge collapse operation.

Algorithm 5 presents the procedure for coarsening of
the parallel boundary layer mesh. It starts with a (dynamic)
list on each part which consists of originating vertices that
are connected to atleast a stack of layer edges with all short
edges in the metric space and must be collapsed. This list is
repeatedly traversed until it is empty.

In each traversal, the adjacent boundary layer stacks
are checked for the layer edge collapse operation based on
the shortest adjacent edges to a given growth curve. If all
layered and interface regions are on one part, then the col-
lapse operation is checked for validity and applied as in the
serial case and the dynamic list of originating vertices to

781Engineering with Computers (2017) 33:767–795	

1 3

Fig. 16   Example of layer edge
collapse in parallel involving
mesh migration

Fig. 17   A schematic of the
adaptive loop with different
simulation components

782	 Engineering with Computers (2017) 33:767–795

1 3

be collapsed is updated. Otherwise, the corresponding layer
vertices on inter-part boundaries are added to the list of
vertices to be migrated. After each traversal, the migration
list is used to request migration of surrounding layered and
interior regions. These requests then drive the mesh migra-
tion step and also updating of the on-part list of originating

vertices to be collapsed.
Parallelization of the layer edge swap operation follows

the same overall logic as the layer edge collapse operation.
Layer edge swaps are applied at the end of the boundary
layer mesh adaptation procedure, i.e., within the mesh
optimization step for the layered part of the mesh [53].
The only difference in such an optimization step is that it
is driven by a traversal process focused on improving the
shape quality of the layer faces. Algorithm 6 describes the
surface optimization procedure for the parallel boundary
layer mesh.

5 � Results and discussions

5.1 � Adaptive loops and applications

An adaptive loop is constructed using a set of interoperable
components that includes analysis code along with librar-
ies for geometry-based problem specification, automatic
mesh generation, error estimation and generalized mesh
modification (e.g., see [12, 58]). The adaptive loop links

the analysis and adaptation components needed for the suc-
cessful simulation of the problem on the domain of inter-
est. The solution obtained by the analysis code is evalu-
ated to provide information for mesh adaptation, which
in-turn results in an adapted mesh that enriches the solution
approximation. In this step, the error distribution is deter-
mined on the current mesh and is converted into a mesh
metric or size field that is used to drive the adaptation pro-
cedure. In the adaptation procedure as the mesh is locally
modified, the necessary solution fields are transferred onto
the modified mesh. The resulting adapted mesh and asso-
ciated solution fields are sent back to the analysis code to
perform the next step of analysis and adaptation within the
adaptive loop. The overall structure of the adaptive loop is
shown in Fig. 17.

The current capabilities of the parallel anisotropic mesh
adaptation with boundary layers are demonstrated on three
flow applications. The first case involves the ONERA M6
wing [61] for which the FUN3D flow solver [46] was
used. In the second case, the simulation of a heat transfer
manifold was executed. The analysis for this case was per-
formed using the PHASTA flow solver [63]. The third test
case involves a scramjet engine (of the NASA CIAM con-
figuration [45]), where the analysis was performed using
the FUN3D flow solver.

The parallel boundary layer mesh adaptation proce-
dure for these cases has been executed on Hopper Cray
XE6 [18] at the National Energy Research Scientific Com-
puting Center. It is configured with 2 twelve-core AMD
2.1 GHz processors per node, with separate L3 caches and
memory controllers, 32 GB or 64 GB DDR3 SDRAM per
node. Hopper has a Gemini interconnect with a 3D torus
topology. Note that all available processors or cores on a
node were used in this work.

In this work, both strong and weak scalings are studied.
The strong scaling (for a fixed size mesh in an aggregate
sense) is computed based on the execution time on base
processors and is defined as:

where npbase is the base number of processors or cores, tbase
is the execution time on base processors, npi is the num-
ber of processors on which strong scaling is tested, and ti is
the execution time on test processors. A scaling factor of 1
indicates a perfect linear scaling (i.e., 100 % parallel effi-
ciency) and a value below or above 1 denotes a sub-linear
scaling (or below 100 % parallel efficiency) or super-linear
scaling (or above 100 % parallel efficiency), respectively.

On the other hand, the weak scaling (with a fixed load
per part) is computed using a correction factor. This is done
to account for (slightly) different loads in an aggregate and
average sense between different meshes considered under
weak scaling. It is computed as:

(5)Ssi = (npbase × tbase)/(npi × ti),

783Engineering with Computers (2017) 33:767–795	

1 3

where Mincr is the mesh increase factor defined by the ratio
of the number of regions from input to adapted meshes for
a test case and Mincr−i and Mincr−base are the mesh increase
factors for the test and base cases, respectively. f is a factor
which is the ratio of the mesh increase factors of the test
and base cases.

5.2 � ONERA M6 wing

The ONERA M6 wing is a classic validation case [61]. Air
enters the wind tunnel at transonic speed and is acceler-
ated over the wing to a supersonic speed causing a shock
to appear on the wing. The free-stream Mach number is
0.84 and the angle of attack is 3.06o. The free-stream pres-
sure and temperature are 42.89 psi and 255.5 K, respec-
tively. The Reynolds number is 11.72 million based on the
mean aerodynamic chord. This flow marks a strong need
for mesh adaptivity since the location and structure of the
complex lambda shock is unknown a priori. The reference
experimental data are from Schmitt and Charpin in [61].
We used FUN3D flow solver for this case.

Three cycles of mesh adaptation were applied for this
case, where Hessian of pressure was used to compute the
mesh metric field. Initial mesh contained 0.28M regions
with pre-defined boundary layers (where M denotes a

(6)f = Mincr−i/Mincr−base,

(7)Swi = f × tbase/ti,

million). The first adapted mesh had 0.37M regions, the
second adapted mesh had 1.24M regions while the third
and finest adapted mesh had 3.8M regions. Figure 18 shows
the surface mesh on the upper side of the wing for the ini-
tial and three adapt meshes. The imprint of the lambda
shock on the adapted mesh can be clearly seen.

Figure 19 presents the pressure coefficient for the initial
and three adapted meshes. The surface pressure contours
(along with surface meshes in Fig. 18) show that the mesh
is refined in the shock region and the shape of the lambda
shock is clearly captured. The mesh away from the shock is
coarsened, due to a low variation in pressure in those regions.
The surface pressure contours become sharper and more reg-
ular with adaptivity. One thing to notice is that the elements
start to align with the shock in the first adapted mesh.

To perform a more quantitative comparison, we look at
the pressure coefficient profiles along the chord at certain
spanwise locations on the wing. Figure 20 shows pressure
coefficient along the local chord at two spanwise locations.
In this figure, experimental data are also included [61].
These plots show that as the mesh is adapted, the pres-
sure coefficient becomes more accurate. To establish this
aspect further we look at a zoomed view near the suction
peak in Fig. 21. The zoomed view clearly shows that the
agreement between experimental and numerical results
are improved as the mesh is adapted further. The finest or
third adapted mesh shows the best agreement among all
meshes. For example, at non-dimensional span location of
y/b = 0.9 , the peak pressure value is captured far better

Fig. 18   ONERA M6 wing: initial (top left) and three adapted meshes (first and third adapted meshes are shown in the right column)

784	 Engineering with Computers (2017) 33:767–795

1 3

on the finest adapted mesh as compared to other adapted
meshes. Results on the initial mesh are the least accurate
among all meshes.

To evaluate the parallel performance of boundary mesh
adaptivity, a strong scaling study was conducted. In this
study we consider a refined mesh of the third adapted
mesh resulting in 160M regions. Strong scaling study was
executed on cores ranging from 512 (base) to 8192, which
spans 4 doublings in core counts.

Table 1 shows that the execution time for mesh adapta-
tion procedure decreases with an increase in the number of
processors. As the given mesh is distributed to more pro-
cessors, there is little computation performed during mesh
modifications relative to the substantial increase in com-
munications, and thus, the scaling decreases on high core
counts.

5.3 � Heat transfer manifold

The heat transfer manifold test case consists of a large
diameter cylindrical pipe as the inlet, a relatively thin and
flat manifold section, and twenty outlet pipes. Flow simula-
tions for this case were performed using the incompress-
ible Reynolds-averaged Navier-Stokes (RANS) simulations
with the Spalart-Allmaras turbulence model. A turbulent
velocity profile with a Reynolds number of 1 million was
used at the inlet pipe. No-slip boundary conditions were
assumed at walls and a homogeneous natural pressure was
prescribed at the outlet. In this case, the Hessian-based
error indicator used the static pressure combined with a
scaled dynamic pressure. This was defined as: p+ αρu2/2 ,

where the factor α = 0.2 was chosen to attain an appropri-
ate balance of static and dynamic pressure.

Two iterations or cycles of the adaptive loop (which con-
sists of a flow solve and mesh adaptation within each cycle)
were carried out, and at each cycle, flow solver was started
from the solution of the previous cycle. The initial compu-
tation used a mesh of 3M elements with pre-defined bound-
ary layers. The first adapted mesh had 16M regions and the
second adapted boundary layer mesh had 81M regions. The
initial mesh along with the first and second adapted meshes
are shown in Fig. 22.

For this case we provide a qualitative assessment of the
numerical results due to the lack of experimental or any
reference data for comparison. The pressure distribution
near the inlet pipe is provided in Fig. 23, whereas near
the outlet pipe is presented in Fig. 24. The initial mesh
is too coarse and these figures demonstrate its inability
to capture the dominant flow features. Critical flow loca-
tions, including stagnation and turns around fillets of
the pipes, get significantly refined. For example, see the
smoother solution obtained on adapted meshes. The walls
of the manifold, especially the wall closest to the inlet
pipe, get refined to a higher degree. The fillets of the out-
let pipes also get more refinement. The central part of the
flat manifold gets relatively lesser refinement because of a
relatively small variation in the solution. Moreover, away
from flow regions with stagnation and turns, highly aniso-
tropic mesh elements are created to effectively capture the
anisotropy present in the flow. This results in significant
computational savings over isotropic meshes of equiva-
lent resolution.

Fig. 19   ONERA M6 wing: pressure on initial (top left) and three adapted meshes (first and third adapted meshes are shown in the right column)

785Engineering with Computers (2017) 33:767–795	

1 3

Figure 25 shows the magnitude of wall shear stress.
With adaptivity, smoothness of the wall shear stress field
improves and its details are captured better. It has been
shown in [53] that a wall shear stress field computed on an
adapted boundary layer mesh is superior to that computed
on a fully unstructured adapted mesh of a similar resolution.

In addition to these results, mesh statistics were also
collected for this case. Specifically, this was done for three
quantities in the metric or transformed space: layer edge
length, interior edge length and mean ratio for interior
regions (for further details on such mesh statistics for fully
unstructured, anisotropically adapted meshes see [37, 49]).
Currently mesh statistics were collected for the final adap-
tation cycle, where it was done for both the input mesh and

the resulting adapted mesh. Figure 26 shows these statis-
tics. It can be seen that the input mesh has a large number of
interior and layer edges whose lengths in the metric space
are outside the desired interval of [1/

√
2,
√
2] , however,

for the adapted mesh interior edges fall within this inter-
val indicating the satisfaction of the specified mesh metric
field. Note that a large number of layer edges in the adapted
mesh have a length (in the metric space) close to 0.5. This
is due to the conservative nature of the split scheme used
for layer edges (i.e., edge split of a single layer edge results
in the split of all layer edges in that stack). Similarly, mean
ratio plot shows that the shape quality measure of the ele-
ments in the adapted mesh is higher and respects the speci-
fied mesh metric field.

Fig. 20   Pressure coefficient profiles along the local chord on initial
and three adapted meshes at two spanwise locations

Fig. 21   A zoomed view of the pressure coefficient profiles (near the
suction peak) on initial and three adapted meshes at two spanwise
locations

786	 Engineering with Computers (2017) 33:767–795

1 3

As before, a strong scaling study was conducted to eval-
uate the parallel performance of boundary mesh adaptation
procedure on this test case. In this case, mesh adaptation
in the second cycle of the adaptive loop was executed on a
range of processors from 256 (base) to 4096, which spans
4 doublings in processor counts. Table 2 gives the scaling
results for the input mesh with 16M regions and the final

Table 1   Execution time and strong scaling of mesh adaptation for
the ONERA M6 case

Num. cores (np) 512 (base) 1024 2048 4096 8192

Time (t in s) 1212.83 812.68 507.36 322.82 241.94

Scaling factor (Ss) 1 0.75 0.60 0.47 0.31

Fig. 22   Heat transfer manifold: initial (left), first adapted (middle) and second adapted (right) meshes

Fig. 23   Initial (left), first adapted (middle) and second adapted (right) meshes (in top row) and pressure distribution (in bottom row) for the heat
transfer manifold test case. The cut is applied at the end of the inlet pipe near the flat section

787Engineering with Computers (2017) 33:767–795	

1 3

adapted mesh with 81M regions. In Table 2 the execution
time for mesh adaptation decreases with an increase in the
number of cores. Again, on high core counts there is little
computation performed during mesh modifications relative
to the substantial increase in communications, and thus, the
scaling decreases on high core counts.

The flow solver has been shown to strongly scale [55,
66] on a large number of cores, i.e., for a fixed size prob-
lem in an aggregate sense. It is the analysis part of a simu-
lation which defines the number of processors on which
the particular problem is being executed. The idea is to
efficiently execute the mesh adaptation procedure on the
same number of cores since repartitioning and migrating
the mesh to a smaller number of cores for adaptation, and
then again to a larger number after adaptation, will intro-
duce a substantial amount of additional work and data
movement.

In this case, the mesh adaptation procedure took 0.7 %
of the total simulation time on 256 cores and 3.2 % on 4096
cores. In either case, mesh adaptation cost do not dominate
as compared to the cost of the analysis step. Thus, even
with some loss of strong scaling in the mesh adaptation

step, it is reasonable to execute it on the same number of
processors together with the flow solver.

A weak scaling study was also performed for this
case on three uniformly refined meshes starting with the
first mesh on 256 (base) cores. The second mesh was
obtained by uniform refinement of the first mesh and
the third mesh by uniform refinement of the second. The
mesh metric field for the second and third meshes was
constructed from that on the first mesh by multiplying
it uniformly by a factor of 1 / 2 and 1 / 4, respectively.
Due to the existence of the layered elements in the mesh
the second and third meshes had roughly six times more
regions than the first and second meshes, respectively.
Thus, the numbers of processors used to adapt the sec-
ond and third meshes was set to 1536 and 9216, respec-
tively. This roughly spans a factor of 36 in the number of
mesh regions and core counts. Considering the heuristics
employed in the mesh adaptation procedure and the fact
that the ratio of regions in the test and base meshes is not
precisely six, the weak scaling factor is calculated using
a correction factor as discussed above. The weak scaling
results are presented in Table 3.

Fig. 24   Initial (left), first adapted (middle) and second adapted (right) meshes (in top row) and pressure distribution (in bottom row) for the heat
transfer manifold test case. The cut is applied at an outlet pipe

788	 Engineering with Computers (2017) 33:767–795

1 3

Table 3 shows that the weak scaling does not degrade
substantially with the increase in the number of cores while
having relatively the same amount of workload in each
test. The scaling is affected not only by the growing data
exchange between cores at larger core counts, but also by
the asynchronous application of mesh modification opera-
tions. Note that although the average workload is approxi-
mately the same per part, it might be very different for each
specific part depending on the amount of different types of
mesh modification operations applied locally on any given
part and its neighboring parts sharing inter-part boundaries.

5.4 � Scramjet engine

The NASA CIAM scramjet case [45] was setup with a free-
stream Mach number of 6.2 and temperature of 203.5 K.
The initial mesh had 2.86M regions. A cut of it is shown in
Fig. 27 along with a zoomed view near the tip of the nose
cone. Hessian calculations were based on the Mach number
to compute the mesh size field.

Two adaptation cycles were carried out for this case.
The first adapted mesh had 7.2M regions and the second
adapted mesh consisted of 16M regions. Figure 28 presents

Fig. 25   Wall shear stress on the initial (left), first adapted (middle) and second adapted (right) meshes

789Engineering with Computers (2017) 33:767–795	

1 3

a cut of the first and second adapted meshes, whereas
Fig. 29 shows a zoomed view near the nose cone. For this
case also we provide a qualitative assessment of the numer-
ical results. Figure 30 presents the Mach number contour
plots on the initial mesh and the first and second adapted
meshes. In addition, Fig. 31 shows adapted meshes and
contours of the computed Mach number near the cowl lip
region of the inlet to the combustor region.

The solution resolution is greatly improved through the
use of anisotropic mesh adaptation. The second adapted
mesh captures the shocks far better than the initial mesh. In
the far-field region upstream of the primary shock, where
flow is uniform and parallel, the mesh was appropriately
coarsened. Expected mesh refinement was obtained at the
nose cone, at the cowl lip, within the combustor region, at
the sharp edges of the combustor liner as well as behind the
engine. Mesh anisotropy follows the shock emanating from
the nose cone, i.e., elements are longer in the tangential
directions to the shock than in the normal direction.

Changes in the mesh evidently reflect a sharper resolu-
tion of flow features in the relevant regions of the domain.
The second adapted mesh captures the shocks better than the
initial mesh, and a sharper resolution of the shocks can be
seen in Fig. 30. The resolution of the shocks in the far field is
limited since it is currently not of concern and far-field reso-
lution can easily be improved with more stringent adaptation
criteria. Behind the engine also, the flow features are better
resolved on the second adapted mesh. Finally, the flow solu-
tion in the combustor region is also better resolved which is
important in proceeding forward to a combustion simulation.

In this case, an anisotropic mesh gradation proce-
dure [36] is also used to reduce high variations in the mesh
size around the tip of the nose cone. Figure 32 illustrates
the impact of anisotropic gradation near the tip of the nose
cone. The requested sizes at the wall surface are over an
order of magnitude smaller than those in the unstructured
region directly at the top of the boundary layer stacks. As
a result, the boundary layer stack at the tip is much more
refined than in the adjacent unstructured interior mesh,
leading to a so-called “spider web” behavior and poorly
shaped elements locally. As shown in Fig. 32, gradation of
the mesh size field alleviates this issue.

Mesh statistics were collected for this case too. The
same three quantities were collected in the final adapta-
tion cycle. Figure 33 shows these statistics. It can be seen

Fig. 26   Distribution of edge length (left plot for interior edges and
middle plot for layer edges) and mean ratio (right plot) in the trans-
formed space from the final adaptation cycle of the heat transfer man-
ifold case

Table 2   Execution time and strong scaling of mesh adaptation for
the heat transfer manifold case

Num. cores (np) 256 (base) 512 1024 2048 4096

Time (t in s) 1194.34 785.44 514.45 421.09 339.38

Scaling factor (Ss) 1 0.76 0.58 0.35 0.22

790	 Engineering with Computers (2017) 33:767–795

1 3

that the input mesh has a large number of interior and
layer edges whose lengths in the metric space are outside
the desired interval whereas interior edges in the adapted
mesh fall in this interval. As before, many layer edges in
the adapted mesh are finer (or shorter) than desired, which
is due to the conservative nature of the split scheme used
for layer edges. The percentage of finer layer edges in the
metric space is higher in this case because the computed
mesh size field has more variation along the thickness of
the layered mesh (e.g., in stacks near the tip region of the
nose cone). As before, mean ratio plot shows that the shape
quality measure of the elements in the adapted mesh is
higher and respects the specified mesh metric field.

Table 3   Execution time and weak scaling of mesh adaptation for the
heat transfer manifold case

Num. cores (np) 256 (base) 1536 9216

Initial mesh—number of
regions

16,319,606 94,487,988 604,853,414

Adapted mesh—number of
regions

80,890,803 527,501,893 3,702,376,095

Mesh increase factor
(Mincr)

4.96 5.58 6.12

Time (t in s) 1194.34 1381.55 1716.23

Scaling factor (Sw) 1 0.97 0.86

Fig. 27   Cut of the initial mesh for the scramjet case: whole body
(top) and a zoomed view near the tip of the nose cone (bottom)

Fig. 28   Cut of the first (top) and second (bottom) adapted meshes for
the scramjet case

Fig. 29   Cut of the first (top) and second (bottom) meshes for the
scramjet case near the nose

791Engineering with Computers (2017) 33:767–795	

1 3

Table 4 provides execution time and scalability of the
mesh adaptation procedure based on the second adapted
mesh. The strong scaling studies were performed on cores
ranging from 128 (base) to 4096, which spans 5 doublings
in core counts.

Table 4 shows that the execution time for mesh adap-
tation procedure is decreased on larger number of cores.
Even though the mesh is relatively smaller for this case as
compared to the heat transfer manifold case, the parallel
scalability is better. Note that the mesh adaptation proce-
dure took 1.2 % of the total simulation time on 128 cores
and 3.6 % on 4096 cores, which is not significant when
compared to the analysis time. As in the previous cases,
even for a fixed size problem, mesh adaptation procedure is
able to perform effectively on high core counts.

Table 5 gives weak scaling results for the scramjet
engine case, where the scaling factor is calculated the
same way it was done for the heat transfer manifold case.
It can be seen in Table 5, with a relatively equal amount
of workload per part in each test, the drop in weak scal-
ing is modest as the core count is increased. In contrast
to the strong scaling results, the weak scaling is better for
the heat transfer manifold case as compared to the scram-
jet case. Note that the mesh increase factors are less in
the scramjet case by roughly 2× as compared to the heat
transfer manifold case. As noted earlier, the parallel per-
formance of the mesh adaptation procedure is specific to
the types of mesh modification operations carried out on
different parts and on the communication-to-computation
ratio.

6 � Closing remarks

In this paper, a parallel adaptive boundary layer meshing
procedure is presented. The approach successfully works
on distributed meshes and effectively supports layered
structure in the mesh. It is based on local mesh modifica-
tion operations which are carried out in parallel and dic-
tated by the specified mesh size field. The current paral-
lelization paradigm allows the adaptation procedure to
be applied on large and complex problem cases (e.g., on
meshes with billions of regions).

The adaptation procedure was executed in parallel for
three viscous flow problem cases, namely: the ONERA M6
wing, a heat transfer manifold and a scramjet engine. It has
been demonstrated that boundary layer mesh adaptation
leads to an accurate prediction of flow quantities of interest
(e.g., surface pressure and wall shear stress) and appropri-
ately resolves critical flow features (e.g., lambda shock). In
the ONERA M6 wing case, numerical results on the fin-
est adapted mesh showed good agreement with the experi-
mental data. However, in the other two cases a qualitative
assessment was made.

The parallel performance of the mesh adaptation pro-
cedure for these problems showed that the execution time
decreases with an increase in the number of cores for a
fixed size problem or under strong scaling (e.g., with 5
doublings in core counts). Weak scaling was also presented
showing that the procedure is capable to scale for larger
meshes on high core counts (e.g., spanning a factor of 36
in the number of mesh regions and core counts). With mesh
adaptation taking a small fraction of the total simulation
time within the adaptive loop, parallel boundary layer mesh
adaptation can be effectively integrated into workflows to
support large-scale automated flow simulations of complex
problems on high core counts. In the future, we plan to
include cases where change in number of layers is required

Fig. 30   Mach contours on the initial (top), first adapted (middle) and
second adapted (bottom) meshes

792	 Engineering with Computers (2017) 33:767–795

1 3

Fig. 31   Initial (top), first adapted (middle) and second adapted (bottom) meshes (left column) and Mach number contours (right column) for the
scramjet case near the cowl lip and at the inlet to the combustor region

Fig. 32   Anisotropic gradation near the nose cone for the scramjet case: without (left) and with (right) gradation

793Engineering with Computers (2017) 33:767–795	

1 3

and far-field solution features (e.g., far-field shocks) play
an important role.

Acknowledgments  This work is supported by the National Science
Foundation under Grant No. 0749152, and by the U.S. Department
of Energy under DOE Grant No. DE-FC02-06ER25769, and by the
NASA STTR Part II Grant No. BEE103/NNX11CC69C. Comput-
ing support is provided by the National Energy Research Scientific
Computing Center for granting access to the Hopper Cray XE6 super-
computer. Resources at the Center for Computational Innovations
(CCI) at Rensselaer were also used for testing and development. The
authors would like to acknowledge the help of Dr. L. Fovargue on the
ONERA M6 case and F. Nihan Cayan and O. Breslouer for help with
the scramjet case.

References

	 1.	 Gropp W, Lusk E, Skjellum A (2014) Using MPI: portable paral-
lel programming with the message-passing interface. MIT Press,
Cambridge. https://mitpress.mit.edu/using-MPI-3ed

	 2.	 Ainsworth M, Oden JT (2000) A posteriori error estimation in
finite element analysis. Wiley, New York

	 3.	 Alauzet F, Li X, Seol ES, Shephard MS (2006) Parallel aniso-
tropic 3D mesh adaptation by mesh modification. Eng Comput
21(3):247–258. doi:10.1007/s00366-005-0009-3

	 4.	 Au P, Dompierre J, Labbe P, Guibault F, Camarero R (1998)
Proposal of benchmarks for 3D unstructured tetrahedral mesh
optimization. In: Proceedings of the 7th International Meshing
Roundtable, pp 459–478

	 5.	 Bänsch E (1991) Local mesh refinement in 2 and 3 dimensions.
IMPACT Comput Sci Eng 3(3):181–191

	 6.	 Becker R, Rannacher R (2001) An optimal control approach
to a posteriori error estimation in finite element methods. Acta
Numer 10(1):1–102

Fig. 33   Distribution of edge length (left plot for interior edges and
middle plot for layer edges) and mean ratio (right plot) in the trans-
formed space from the final adaptation cycle of the scramjet case

Table 4   Execution time and strong scaling of mesh adaptation for
the scramjet case

Num. cores (np)128 (base) 256 512 1024 2048 4096

Time (t in s) 957.80 532.29 339.39 202.17 136.83 90.85

Scaling factor
(Ss)

1 0.90 0.71 0.59 0.44 0.33

Table 5   Execution time and weak scaling of mesh adaptation for the
scramjet case

Num. cores (np) 256 (base) 1536 9216

Initial mesh—number of
regions

16,166,918 91,201,986 594,353,904

Adapted mesh—number of
regions

43,444,375 265,189,371 1,776,274,993

Mesh increase factor
(Mincr)

2.69 2.91 2.99

Time (t in s) 532.29 606.12 734.82

Scaling factor (Sw) 1 0.95 0.81

https://mitpress.mit.edu/using-MPI-3ed
http://dx.doi.org/10.1007/s00366-005-0009-3

794	 Engineering with Computers (2017) 33:767–795

1 3

	 7.	 Botasso CL (2004) Anisotropic mesh adaption by metric-
driven optimization. Int J Numer Methods Eng 60(3):597–639.
doi:10.1002/nme.977

	 8.	 Bottasso CL, Detomi D (2002) A procedure for tetrahedral
boundary layer mesh generation. Eng Comput 18(1):66–79.
doi:10.1007/s003660200006

	 9.	 Bourgault Y, Picasso M, Alauzet F, Loseille A (2009) On the
use of anisotropic a posteriori error estimators for the adaptative
solution of 3D inviscid compressible flows. Int J Numer Methods
Fluids 59(1):47–74. doi:10.1002/fld.1797

	10.	 Buscaglia GC, Dari EA (1997) Anisotropic mesh optimiza-
tion and its application in adaptivity. Int J Numer Methods Eng
40:4119–4136

	11.	 Castro-Diáz MJ, Hecht F, Mohammadi B, Pironneau O (1997)
Anisotropic unstructured mesh adaption for flow simulations. Int
J Numer Methods Fluids 25:475–491

	12.	 Chand KK, Diachin LF, Li X, Ollivier-Gooch C, Seol ES, Shephard
MS, Tautges T, Trease H (2008) Toward interoperable mesh, geom-
etry and field components for pde simulation development. Eng
Comput 24(2):165–182. doi:10.1007/s00366-007-0080-z

	13.	 Chandra S, Li X, Saif T, Parashar M (2007) Enabling scalable
parallel implementations of structured adaptive mesh refine-
ment applications. J Supercomput 39(2):177–203. doi:10.1007/
s11227-007-0110-z

	14.	 Chitale K, Sahni O, Tendulkar S, Nastasia R, Shephard M,
Jansen K (2013) Boundary layer adaptivity for transonic turbu-
lent flows. AIAA Paper 13-2445. doi:10.2514/6.2013-2445

	15.	 Connell SD, Braaten ME (1995) Semistructured mesh genera-
tion for three-dimensional Navier–Stokes calculations. AIAA J
33(6):1017–1024

	16.	 de Cougny HL, Shephard MS (1999) Parallel refinement and
coarsening of tetrahedral meshes. Comput Methods Appl Mech
Eng 46:1101–1125

	17.	 de Cougny HL, Shephard MS, Georges MK (1990) Explicit node
point mesh smoothing within the octree mesh generator. Tech.
Rep. 1990-10, Rensselaer Polytechnic Institute, Troy

	18.	 Cray: Cray XE6. [Online]. http://www.cray.com/Products/XE/
CrayXE6System.aspx. Accessed 19 Sep 2012

	19.	 Foster TM, Mohamed MS, Trevelyan J, Coates G (2012) Rapid
re-meshing and re-solution of three-dimensional boundary ele-
ment problems for interactive stress analysis. Eng Anal Bound
Elem 36(9):1331–1343. doi:10.1016/j.enganabound.2012.02.020

	20.	 Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improve-
ment using swapping and smoothing. Int J Numer Methods Eng
40(21):3979–4002

	21.	 Frey PJ, Alauzet F (2005) Anisotropic mesh adaptation for
CFD computations. Comput Methods Appl Mech Eng 194(48–
49):5068–5082. doi:10.1016/j.cma.2004.11.025

	22.	 Garimella RV, Shephard MS (2000) Boundary layer mesh gen-
eration for viscous flow simulations. Int J Numer Methods Eng
49:193–218

	23.	 George P, Borouchaki H, Laug P (2002) An efficient algorithm
for 3D adaptive meshing. Adv Eng Softw 33(7):377–387

	24.	 Giles MB, Süli E (2002) Adjoint methods for PDEs: a poste-
riori error analysis and postprocessing by duality. Acta Numer
11(1):145–236

	25.	 Hassan O, Morgan K, Probert EJ, Peraire J (1996) Unstructured
tetrahedral mesh generation for three-dimensional viscous flows.
Int J Numer Methods Eng 39:549–567

	26.	 Hassan O, Morgan K, Weatherill N (2007) Unstructured mesh
methods for the solution of the unsteady compressible flow equa-
tions with moving boundary components. Philos Trans R S A
Math Phys Eng Sci 365(1859):2531–2552

	27.	 Ito Y, Murayama M, Yamamoto K, Shih AM, Soni BK (2013)
Efficient hybrid surface/volume mesh generation using sup-
pressed marching-direction method. AIAA J 51(6):1450–1461

	28.	 Ito Y, Nakahashi K (2002) Unstructured mesh generation for
viscous flow computations. In: Proceedings of the 11th Interna-
tional Meshing Roundtable, pp 367–377

	29.	 Joe B (1995) Construction of three-dimensional improved-qual-
ity triangulations using local transformations. SIAM J Sci Com-
put 16(6):1292–1307

	30.	 Kallinderis Y, Kavouklis C (2005) A dynamic adaptation scheme
for general 3-D hybrid meshes. Comput Methods Appl Mech
Eng 194(48–49):5019–5050. doi:10.1016/j.cma.2004.11.023

	31.	 Kallinderis Y, Vijayan P (1993) Adaptive refinement-coarsening
scheme for three-dimensional unstructured meshes. AIAA J
31(8):1440–1447

	32.	 Kavouklis C, Kallinderis Y (2010) Parallel adaptation of general
three-dimensional hybrid meshes. J Comput Phys 229(9):3454–
3473. doi:10.1016/j.jcp.2010.01.011

	33.	 Khawaja A, Kallinderis Y (2000) Hybrid grid generation for tur-
bomachinery and aerospace applications. Int J Numer Methods
Eng 49(1–2):145–166

	34.	 Khawaja A, Minyard T, Kallinderis Y (2000) Adaptive hybrid
grid methods. Comput Methods Appl Mech Eng 189(4):1231–
1245. doi:10.1016/S0045-7825(99)00375-8

	35.	 Li X (2003) Mesh modification procedures for general 3D non-
manifold domains. Ph.D. Dissertation, Department of Mechani-
cal Engineering, Rensselaer Polytechnic Institute, Troy

	36.	 Li X, Remacle JF, Chevaugeon N, Shephard MS (2004) Aniso-
tropic mesh gradation control. In: Proceedings of the 13th Inter-
national Meshing Roundtable, pp 401–412

	37.	 Li X, Shephard M, Beall M (2005) 3D anisotropic mesh adapta-
tion by mesh modifications. Comput Methods Appl Mech Eng
194(48–49):4915–4950. doi:10.1016/j.cma.2004.11.019

	38.	 Li X, Shephard MS, Beall MW (2003) Accounting for curved
domains in mesh adaptation. Int J Numer Methods Eng
58(2):247–276. doi:10.1002/nme.772

	39.	 Liu A, Joe B (1994) On the shape of tetrahedra from bisection.
Math Comput 63(207):141–154

	40.	 Löhner R, Baum JD (1992) Adaptive h-refinement on 3D
unstructured grids for transient problems. Int J Numer Methods
Fluids 14(12):1407–1419

	41.	 Lohner R, Cebral J (2000) Generation of non-isotropic unstruc-
tured grids via directional enrichment. Int J Numer Methods Eng
49(1–2):219–232

	42.	 Loseille A, Löhner R (2013) Robust boundary layer mesh gener-
ation. In: Proceedings of the 21st International Meshing Round-
table, pp 493–511

	43.	 Marcum DL (1995) Generation of unstructured grids for viscous
flow applications. AIAA Paper 95-0212

	44.	 Muller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA
(2005) Anisotropic adaptive finite element method for modeling
blood flow. Comput Methods Biomech Biomed Eng 8(5):295–
305. doi:10.1080/10255840500264742

	45.	 NASA: CIAM Axisymmetric Scramjet. [Online]. http://hapb-
www.larc.nasa.gov/Public/Engines/Ciam/Ciam.html. Accessed
19 Sep 2012

	46.	 NASA: FUN3D online manual. [Online]. http://fun3d.larc.nasa.
gov/. Accessed 19 Sep 2012

	47.	 Oliker L, Biswas R, Gabow HN (2000) Parallel tetrahedral
mesh adaptation with dynamic load balancing. Parallel Comput
26(12):1583–1608

	48.	 Ovcharenko A, Ibanez D, Delalondre F, Sahni O, Jansen KE,
Carothers CD, Shephard MS (2012) Neighborhood communi-
cation paradigm to increase scalability in large-scale dynamic
scientific applications. Parallel Comput 38(3):140–156.
doi:10.1016/j.parco.2011.10.013

	49.	 Pain CC, Umpleby AP, de Oliveira CRE, Goddard AJH
(2001) Tetrahedral mesh optimization and adaptivity for
steady-state and transient finite element calculations. Comput

http://dx.doi.org/10.1002/nme.977
http://dx.doi.org/10.1007/s003660200006
http://dx.doi.org/10.1002/fld.1797
http://dx.doi.org/10.1007/s00366-007-0080-z
http://dx.doi.org/10.1007/s11227-007-0110-z
http://dx.doi.org/10.1007/s11227-007-0110-z
http://dx.doi.org/10.2514/6.2013-2445
http://www.cray.com/Products/XE/CrayXE6System.aspx
http://www.cray.com/Products/XE/CrayXE6System.aspx
http://dx.doi.org/10.1016/j.enganabound.2012.02.020
http://dx.doi.org/10.1016/j.cma.2004.11.025
http://dx.doi.org/10.1016/j.cma.2004.11.023
http://dx.doi.org/10.1016/j.jcp.2010.01.011
http://dx.doi.org/10.1016/S0045-7825(99)00375-8
http://dx.doi.org/10.1016/j.cma.2004.11.019
http://dx.doi.org/10.1002/nme.772
http://dx.doi.org/10.1080/10255840500264742
http://hapb-www.larc.nasa.gov/Public/Engines/Ciam/Ciam.html
http://hapb-www.larc.nasa.gov/Public/Engines/Ciam/Ciam.html
http://fun3d.larc.nasa.gov/
http://fun3d.larc.nasa.gov/
http://dx.doi.org/10.1016/j.parco.2011.10.013

795Engineering with Computers (2017) 33:767–795	

1 3

Methods Appl Mech Eng 190(29–30):3771–3796. doi:10.1016/
S0045-7825(00)00294-2

	50.	 Park YM, Kwon OJ (2005) A parallel unstructured dynamic
mesh adaptation algorithm for 3-D unsteady flows. Int J Numer
Methods Fluids 48(6):671–690

	51.	 Peraire J, Peiro J, Morgan K (1992) Adaptive remeshing for
three-dimensional compressible flow computation. J Comput
Phys 103(2):269–285. doi:10.1016/0021-9991(92)90401-J

	52.	 Pirzadeh S (1994) Unstructured viscous grid generation by the
advancing-layers method. AIAA J 32(8):1735–1737

	53.	 Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008)
Adaptive boundary layer meshing for viscous flow simulations.
Eng Comput 24(3):267–285. doi:10.1007/s00366-008-0095-0

	54.	 Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006)
Efficient anisotropic adaptive discretization of the cardiovascular
system. Comput Methods Appl Mech Eng 195(41–43):5634–
5655. doi:10.1016/j.cma.2005.10.018

	55.	 Sahni O, Zhou M, Shephard MS, Jansen KE (2009) Scalable
implicit finite element solver for massively parallel processing
with demonstration to 160K cores. In: Proceedigs of the 2009
ACM/IEEE Conference on High Performance Computing

	56.	 Sandia National Laboratories: Zoltan unstructured communi-
cation utilities. [Online]. http://www.cs.sandia.gov/Zoltan/ug_
html/ug_util_comm.html. Accessed 19 Sep 2012

	57.	 Seol ES, Shephard MS (2006) Efficient distributed mesh data
structure for parallel automated adaptive analysis. Eng Comput
22(3–4):197–213

	58.	 Shephard MS, Beall MW, O’Bara RM, Webster BE (2004)
Toward simulation-based design. Finite Elem Anal Design
40(12):1575–1598. doi:10.1016/j.finel.2003.11.004

	59.	 Stogner RH, Carey GF, Murray BT (2008) Approximation of
Cahn–Hilliard diffuse interface models using parallel adaptive
mesh refinement and coarsening with C1 elements. Int J Numer
Methods Eng 76(5):636–661. doi:10.1002/nme.2337

	60.	 Toussaint GT, Verbrugge C, Wang C, Zhu B (1993) Tetrahedrali-
zation of simple and non-simple polyhedra. In: Proceedings of
the 5th Canadian Conference on Computational Geometry, pp
24–29

	61.	 Schmitt V, Charpin F (1979) Pressure distribution on the
ONERA-M6-Wing at transonic mach numbers. In: Report of the
Fluid Dynamics Panel Working Group 04, vol 138. AGARD

	62.	 Verfürth R (1996) A review of posteriori error estimation and
adaptive mesh-refinement techniques. Teubner-Wiley, Stuttgart

	63.	 Whiting CH, Jansen KE (2001) A stabilized finite element
method for the incompressible Navier–Stokes equations using a
hierarchical basis. Int J Numer Methods Fluids 35(1):93–116

	64.	 Xie T, Seol ES, Shephard MS (2012) Generic components
for petascale automated adaptive simulations. Eng Comput
(Accepted for publication)

	65.	 Zhang L, Chang X, Duan X, Zhao Z, He X (2012) Applications
of dynamic hybrid grid method for three-dimensional mov-
ing/deforming boundary problems. Comput Fluids 62:45–63.
doi:10.1016/j.compfluid.2012.03.008

	66.	 Zhou M, Sahni O, Kim HJ, Figueroa CA, Taylor CA, Shephard
MS, Jansen KE (2010) Cardiovascular flow simulation at
extreme scale. Comput Mechan 46(1):71–82. doi:10.1007/
s00466-009-0450-z

http://dx.doi.org/10.1016/S0045-7825(00)00294-2
http://dx.doi.org/10.1016/S0045-7825(00)00294-2
http://dx.doi.org/10.1016/0021-9991(92)90401-J
http://dx.doi.org/10.1007/s00366-008-0095-0
http://dx.doi.org/10.1016/j.cma.2005.10.018
http://www.cs.sandia.gov/Zoltan/ug_html/ug_util_comm.html
http://www.cs.sandia.gov/Zoltan/ug_html/ug_util_comm.html
http://dx.doi.org/10.1016/j.finel.2003.11.004
http://dx.doi.org/10.1002/nme.2337
http://dx.doi.org/10.1016/j.compfluid.2012.03.008
http://dx.doi.org/10.1007/s00466-009-0450-z
http://dx.doi.org/10.1007/s00466-009-0450-z

	Parallel anisotropic mesh adaptation with boundary layers for automated viscous flow simulations
	Abstract
	1 Introduction
	1.1 Nomenclature

	2 Boundary layer mesh terminology
	3 Mesh modifications in the layered portion of the mesh
	3.1 Mesh metric tensor
	3.2 Local mesh modification cavity
	3.3 Boundary layer stack modification
	3.4 Subdivision of transition pyramids
	3.5 Unstructured decomposition of boundary layers
	3.6 Overall boundary layer mesh adaptation algorithm

	4 Parallel implementation
	4.1 Distributed mesh infrastructure
	4.2 Refinement and boundary vertex repositioning
	4.3 Coarsening and swapping

	5 Results and discussions
	5.1 Adaptive loops and applications
	5.2 ONERA M6 wing
	5.3 Heat transfer manifold
	5.4 Scramjet engine

	6 Closing remarks
	Acknowledgments
	References

