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1 Introduction

The application of surrogate models, meta-models or 
response surfaces to the prediction of the response of an 
expensive black box function has grown in popularity over 
the past 15 years [15, 49, 56, 59]. By emulating the output 
of a costly simulation or experiment these techniques have 
the potential to reduce the cost of design optimizations and 
sensitivity studies and provide fast and accurate conceptual 
design tools.

Of the many methods which can be employed to con-
struct these surrogates, Kriging [32, 46] is one of the most 
popular due to the accuracy of the response and the use-
ful update metrics based on the model’s error prediction. 
However, the construction of a Kriging model requires the 
selection of a number of modelling parameters controlling 
the degree of regression, rate of correlation change and the 
smoothness of the response. Typically the selection of these 
parameters involves some form of maximisation of the 
Kriging likelihood function which can be costly for a num-
ber of reasons. The construction and inversion of the neces-
sary correlation matrix can be expensive while the presence 
of multiple minima necessitates the use of a global opti-
mization algorithm thereby requiring many evaluations of 
the likelihood function to ensure that a global optimum is 
attained.

This issue is exacerbated further as the number of sam-
ple points used to construct the Kriging model increases. 
This causes the size of the correlation matrix to increase 
which increases the expense of both the correlation matrix 
construction and inversion. Extensions of ordinary Krig-
ing to cope with non-stationary responses [60], multi-
fidelity data [31] and gradients [34], further increase the 
cost of calculating the likelihood. The construction of a 
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non-stationary Kriging model requires the remapping of 
the original design space to one which a stationary Kriging 
model can better represent. Multi-fidelity Kriging models 
can include large amounts of data if the low-fidelity black 
box function is particularly cheap to evaluate while the size 
of the correlation matrix for a gradient-enhanced model 
increases rapidly with the number of dimensions.

Of course, once a Kriging model has been constructed 
evaluating the model’s predictor or error functions can 
also be costly if used repeatedly within a global optimi-
zation to search for potentially good designs, as part of a 
sensitivity analysis where a Monte Carlo analysis is per-
formed on the Kriging model or as part of some visuali-
sation routine. Combining a Monte Carlo analysis within 
a global optimization, as would be the case in a robust 
design optimization [12], can be quite time consum-
ing. As with the likelihood function, the cost of evaluat-
ing both the predictor and error function increases as the 
number of sample points or the complexity of the model 
increases. For all Kriging models both the predictor and 
error function require the calculation of the correlation of 
the unknown point and all of the points used to construct 
the model. The cost of constructing this vector of correla-
tions increases with the number of sample points but also 
with the complexity of the model. Non-stationary Krig-
ing, for example, requires the same non-linear mapping 
to be performed to the unknown point as to the points 
defining the model prior to the calculation of the correla-
tion. Once the vector of correlations is constructed then 
a vector–vector multiplication is required to calculate the 
prediction or, in the case of the error, a matrix–vector fol-
lowed by vector–vector multiplication is required both of 
which grow in cost with increasing sample size. In the 
case of a gradient-enhanced model, the cost also grows 
with increasing dimensions.

Previous work within the literature has attempted to 
tackle the cost of constructing Kriging models mainly 
by addressing the optimization problem used to select an 
appropriate set of modelling parameters. Toal et al., for 
example, first investigated the impact of varying optimiza-
tion effort on the construction of Kriging models [50] and 
then developed an adjoint of the Kriging likelihood func-
tion [52] and an efficient hybridised particle swarm algo-
rithm to employ this adjoint [51]. Zhang and Leithead 
developed an analytical Hessian of the likelihood func-
tion [63] and then a reduced cost approximation of the 
inverse of the covariance matrix [35] both of which were 
employed within local optimization algorithms.

The following paper approaches the problem of costly 
evaluations of the likelihood, prediction and error functions 
from the point of view of the hardware used to evaluate 
these functions. In particular, the following paper investi-
gates the potential benefits of evaluating these functions on 

a graphical processing unit (GPU) for a variety of different 
Kriging models.

GPUs with their parallel processing prowess have 
become increasingly used to help accelerate the solution of 
a variety of problems in a number of fields such as engi-
neering, physics and finance. Even modestly priced per-
sonal computers now come equipped with some form of 
GPU which, although typically used for playing games or 
other graphics intensive activities such as image process-
ing or computer aided design, could easily be harnessed 
to accelerate traditional CPU-based activities. GPUs have 
already been used to great effect to accelerate compu-
tational fluid dynamics [3, 29], finite element [1, 40] and 
reaction [48] simulations. They have been used to accel-
erate topology optimizations [7, 62], uncertainty analy-
ses [2, 45] and perform sensitivity studies [26]. Within 
the field of optimization algorithm development, genetic 
algorithms [24], simulated annealing [13, 61], ant colony 
searches [55], particle swarms [58] and tabu searches [10] 
have all been demonstrated to benefit from being run on a 
GPU. Within the field of surrogate modelling, artificial neu-
ral networks [39], self-organising maps [64], support vector 
machines [36, 37] and radial basis functions [4] have also 
benefited from the parallel processing capability offered by 
GPUs.

Recently GPUs have been applied to accelerate Kriging 
interpolation by Cheng [8], Demir and Westermann [11] 
and Gutiérrez de Ravé et al. [43]. While their work dem-
onstrates very effectively the performance enhancements 
that GPUs can offer with respect to matrix multiplication, 
inversion and summation, there are a number of significant 
differences to the current work. The work of Cheng, Demir 
and Westermann and Gutiérrez de Ravé et al. employed a 
different formulation of Kriging compared to that used 
in the current paper. Here the method used previously in 
the literature by Sacks et al. [46] and Jones [27, 28] is 
employed which requires an optimization of the Kriging 
log-likelihood function in order to define the model param-
eters. As the likelihood function is not considered within 
the work of Cheng, Demir and Westermann and Gutiér-
rez de Ravé et al. the expense of computing its derivative 
on a GPU has also not been considered. While employing 
large sample sizes Cheng and Gutiérrez de Ravé et al. also 
tended to consider problems with relatively few dimensions 
whereas the optimization literature regularly applies Krig-
ing to problems with over 10 variables. Cheng, Demir and 
Westermann and Gutiérrez de Ravé et al. also concentrated 
on the two most common forms of Kriging and neglected 
its non-stationary, multi-fidelity and gradient-enhanced var-
iants as well as the model’s predicted error.

The following paper, therefore, investigates the effi-
ciency of evaluating the log-likelihood, predictor and error 
function on a GPU for each of the Kriging variants noted 
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above. For each case CPU and GPU versions of the func-
tions are presented and compared for a variety of sampling 
plan sizes and problem dimensionalities. In addition to 
this the manner in which the functions are coded to take as 
much advantage as possible of efficient matrix and vector 
operations is presented and compared to two freely availa-
ble toolboxes within the literature. These results provide an 
indication of the level of performance improvement offered 
by a GPU implementation of each Kriging model and use-
ful coding tips for the development of similar functions. 
With the performance advantage established the paper then 
investigates two novel ways in which the general process 
of Kriging parameter optimization can be accelerated fur-
ther, through the application of a mixture of single and dou-
ble precision calculations and by automatically switching 
between hardware.

Both the CPU and GPU versions of all of the functions 
presented are coded using Matlab and its inbuilt GPU tool-
box. Matlab is used in this case as it provides a rapid means 
of prototyping all of the functions and offers seamless inte-
gration with the Rolls-Royce proprietary optimization suite 
OPTIMATv2 [30, 51, 52, 54, 57] which is itself written in 
Matlab. Using Matlab also allows the programs to make 
use of the simple and efficient way Matlab has of handling 
the transfer of data between main memory and that of the 
GPU. It should be noted there are other languages that offer 
an interface to a GPU other than Matlab and indeed there 
are a variety of different libraries available for linear alge-
bra operations such as, cuBLAS1, MAGMA2, CULA3 and 
LibSciACC. While further gains in performance may be 
obtained over those presented if these libraries were 
employed the comparison of each of these different librar-
ies and combinations of individual functions from separate 
libraries is deemed beyond the scope of the current investi-
gation. Similarly, those functions running on the CPU 
could be written wholly or partially in a variety of lan-
guages and rather than comparing the efficiency of all of 
these only Matlab implementations will be considered.

The following paper commences by assessing the appli-
cation of a GPU to some of the fundamental mathematical 

1 https://developer.nvidia.com/cuBLAS.
2 http://icl.cs.utk.edu/magma/.
3 http://www.culatools.com/.

operations involved in the subsequent calculations of the 
likelihood, predictor and error functions. The paper then 
moves on to investigate the most basic form of Kriging, 
that of ordinary Kriging. The formulation of the likelihood 
function along with its adjoint and its corresponding predic-
tor and error functions are presented. The efficient coding 
of each of these functions in Matlab is then discussed and 
the efficiency of CPU and GPU versions of these functions 
compared. This process of presenting the mathematics of 
the likelihood, it’s adjoint and the predictor and error fol-
lowed by a comparison of CPU and GPU implementations 
is repeated for universal Kriging, non-stationary Kriging, 
multi-fidelity Kriging and finally gradient-enhanced Krig-
ing. The adjoint of a fully and partially gradient-enhanced 
Kriging likelihood function is presented here for the first 
time. The paper then proceeds to investigate efficiency of 
single precision calculations of the ordinary Kriging likeli-
hood function and presents a novel mixed precision opti-
mization strategy to reduce the cost of the hyperparameter 
optimization. Finally, the automated switching between 
CPU and GPU evaluations of the likelihood function prior 
to a hyperparameter optimization is considered.

2  Basic mathematical operations

As noted above, GPUs have been demonstrated to offer 
considerable performance improvements over traditional 
CPUs due to their parallel processing prowess. However, as 
with CPUs, GPUs come in a variety of different flavours. 
As such all of the calculations within this paper will be 
assessed using three different pieces of computational hard-
ware, a mobile quad core CPU, a mobile GPU and a high 
end GPU details of which are presented in Table 1. Com-
paring the efficiency of all of the various operations using 
these three pieces of hardware provides an effective con-
trast of what can be achieved with a GPU on both limited 
and unlimited budgets. The Quadro 2000M, for example, is 
a very basic graphics card bundled with a laptop whereas 
the Tesla K20C is an extremely high end card developed 
especially for GPU-based supercomputers and is repre-
sentative of the current cutting edge. The Tesla card, for 
example, has a much higher core clock speed, many more 
CUDA cores as well as more memory clocked at a higher 

Table 1  Hardware overview

Name Information

i7-2860QM 4 cores, processor core clock 2.5 GHz & 16 GB DDR3 at 1600 MHz

Nvidia Quadro 2000M 192 CUDA cores, processor core clock 550 MHz and 2 GB GDDR3 RAM at 900 MHz

Nvidia Tesla K20C 2496 CUDA cores, processor core clock 706 MHz and 5 GB GDDR5 RAM at 2.6 GHz

https://developer.nvidia.com/cuBLAS
http://icl.cs.utk.edu/magma/
http://www.culatools.com/
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speed. Both the i7-2860QM CPU and Quadro 2000M are 
in the same laptop.

Before comparing the performance of CPU and GPU 
calculations of the likelihood, predictor and error functions 
let us compare the performance of both on a number of 
standard operations which are employed within the subse-
quent Kriging functions.

As noted above one of the major costs of evaluating the 
likelihood function is due to the inversion of the correlation 
matrix. In the following paper all such matrix inversions 
employ a Cholesky decomposition followed by a series of 
two back substitutions. Before considering the cost of a 
complete inversion let us consider each of these sub-oper-
ations in turn. Figure 1 presents a comparison of the cost 
of performing the Cholesky decomposition of a symmetric 
matrix of size n as n varies using the CPU and both GPUs. 
As can be observed, performing a Cholesky decomposition 
on the Quadro 2000M is considerably less efficient than the 
CPU. Likewise, over the majority of the range of n the CPU 
is considerably more efficient than the Tesla card. Only for 
large matrices, when n > 700 does the Tesla GPU offer any 
advantage.

Figure 2 compares the cost of performing a single back 
substitution. As before the Quadro card performs badly rel-
ative to the CPU. The Tesla card performs better but unlike 
with the Cholesky decomposition it never outperforms the 
CPU at any point over the range of n tested.

Combining the Cholesky decomposition and two back sub-
stitution operations together to calculate the inverse of a matrix, 
as illustrated in Fig. 3, it can be observed that the CPU is gener-
ally much more efficient although the Tesla card does begin to 
approach the performance of the CPU when n = 1000. Clearly 
the operations involved in the inversion of a matrix cannot be 
scaled effectively over the graphics card’s multiple cores.

Of course, the inversion of a matrix is not the only operation 
performed regularly in the calculation of the likelihood, pre-
dictor or error functions. Figures 4, 5 and 6 compare the cost 
of, respectively, a matrix–matrix multiplication, a pointwise 
matrix–matrix multiplication and the pointwise multiplication 
of two three dimensional matrices. Unlike the matrix inver-
sion the sub-operations involved in these three calculations 
are much more amenable to parallelization and the results of 
Figs. 4, 5 and 6 begin to illustrate the advantages of the many 
compute cores of a GPU. Matrix–matrix operations, are con-
siderably faster on the Tesla card when n > 150 and the per-
formance of the Tesla card scales much better with increasing n 
than the performance of the CPU. A similar trend is true for the 
Tesla card when performing pointwise matrix multiplications 
between both two and three dimensional matrices.
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Fig. 1  Cost of performing a Cholesky decomposition with varying 
matrix size
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Even with its additional cores the Quadro card does not 
perform as well as the CPU when performing matrix mul-
tiplications, however, it is much more efficient when per-
forming pointwise multiplications between 3D matrices 
and outperforms the CPU when performing pointwise mul-
tiplications between 2D matrices when n > 700.

The above results, while illustrating both the advan-
tages and disadvantages of a GPU, offer an insight into the 
results which can be expected when we compare the cost of 
calculating the likelihood, predictor and error functions. As 
will be presented in the following sections the calculation 
of the likelihood generally involves a series of operations 
to construct a matrix, invert the matrix and then calculate 

the adjoint and subsequent partial derivatives. Given that 
the matrix inversion when n < 1000 is faster on the CPU 
one would, therefore, expect the GPU to begin to out per-
form the CPU in the calculation of the complete likelihood 
when the other operations offer a greater cost saving than 
the cost penalty of inverting the matrix on the GPU. Any 
performance gain should also improve with increasing 
problem dimensionality as the size and, therefore, cost of 
the matrix inversion will stay constant but the cost of the 
other operations, such as the pointwise matrix multiplica-
tions, will scale better if performed on a GPU. With this in 
mind let us now consider the application of both GPUs to 
ordinary Kriging.

3  Ordinary Kriging

3.1  Ordinary Kriging formulation

Of the five different formulations of Kriging considered 
within the current paper ordinary Kriging is perhaps the 
simplest and forms the basis upon which all of the other 
models are derived. Popularised by Sacks et al. [46] for the 
prediction of deterministic computer experiments, ordinary 
Kriging has been applied in a wide variety of engineering 
design and optimization problems.

The construction of a Kriging model assumes that when 
two points are close together in the design space their 
objective function values will be similar. This is modelled 
by assuming that the correlation between two points xi and 
xj is given by,

(1)
Rij = exp

(

−
d

∑

l=1

10θ
(l)�x(l)i − x

(l)
j �p(l)

)

,
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Fig. 4  Cost of performing a matrix–matrix multiplication with vary-
ing matrix size
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Fig. 5  Cost of performing a pointwise matrix–matrix multiplication 
with varying matrix size

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

n

C
om

pu
ta

tio
n 

T
im

e 
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 6  Cost of performing a 3D pointwise matrix–matrix multiplica-
tion with varying matrix size



382 Engineering with Computers (2016) 32:377–404

1 3

where θ and p represent vectors of length d of the Krig-
ing modelling parameters selected via a maximisation of 
the likelihood on the observed dataset, y, which is given 
by [27],

with the maximum likelihood variance, σ̂ 2, and mean, µ̂, 
given by,

and

respectively where 1 denotes a vector of ones equal in 
length to the number of sample points, n. As previously 
noted the modelling parameters θ, p and, if necessary, a 
regression constant [16], �, are selected via a maximisa-
tion of the likelihood function (Eq. 2). In order to acceler-
ate this optimization Toal et al. [51] developed an adjoint of 
the likelihood function based on the linear algebra results 
of Giles [20]. Throughout this paper the notation of Grie-
wank [22] is employed to denote the adjoint of a variable 
using the bar symbol, the adjoint of correlation matrix R, 
for example, is, therefore, denoted by R̄.

Commencing from an initial seeding for the adjoint of 
the concentrated log-likelihood of φ̄ = 1 it can be shown 
that the adjoint of the correlation matrix is given by,

with the derivative of the concentrated log-likelihood with 
respect to the modelling parameters θ and p then given by,

and

respectively. If a regression constant, 10� has been added to 
the diagonal of the correlation matrix the derivative of the 
likelihood with respect to this constant is given by,

(2)φ = −n

2
ln(σ̂ 2)− 1

2
ln(|R|),

(3)σ̂ 2 = 1

n
(y− 1µ̂)TR−1(y− 1µ̂),

(4)µ̂ = 1
TR−1y

1TR−11
,

(5)R̄ = 1

2σ̂ 2
R−T (y− 1µ̂)T (y− 1µ̂)TR−T − 1

2
R−T ,

(6)
∂φ

∂θk
= ln 10

∑

ij

−10θk |x(i)k − x
(j)
k |pkR(i,j)R̄

(i,j)

(7)

∂φ

∂pk
= −

∑

ij

10θk |x(i)k − x
(j)
k |pk

× ln |x(i)k − x
(j)
k |R(i,j)R̄

(i,j)
,

(8)
∂φ

∂�
= 10�

∑

i

R̄
(i,i)

.

Employing this efficient formulation for the derivatives of 
the likelihood function the optimization of the modelling 
parameters can be accelerated. With an optimised set of 
parameters obtained the corresponding correlation matrix 
for the sample set and the vector of correlations, r, between 
an unknown point, x∗ and the known sample points can 
be constructed and used to calculate the prediction of the 
Kriging model [27],

As noted above a Kriging model provides a very useful pre-
diction of the error in the model at an unsampled point,

which can be used to define regions of the space to include 
additional data in order to improve the global accuracy of 
the model. Both the Kriging predictor and the error func-
tions play an important role in the calculation of a number 
of other very useful metrics. The probability of improve-
ment at an unknown point, P[I(x∗)], which is calculated as,

provides a measure of the probability that an unknown 
point will attain an objective function value lower than the 
current minimum ymin. A slight modification to this for-
mula also provides a metric which can be used to deter-
mine the probability of a point exceeding a constraint if 
the surrogate model is constructed from a sampling plan 
of constraint values. While the probability of improvement 
indicates where improvement in the objective function can 
be obtained it does not provide a measure of how big that 
improvement will be. Another popular metric, the expected 
improvement, E[I(x∗)] does just that and calculates the 
amount of improvement over the current best value that is 
expected and is given by,

It can be observed from Eqs. 11 and 12 that the predictor, 
Eq. 9, and error function, Eq. 10, are employed repeatedly 
in the calculation of the more “exotic” Kriging update cri-
teria. The efficiency of the calculation of both the predic-
tion and the error is, therefore, central to the efficiency of 
the calculation of the probability of improvement, probabil-
ity of feasibility and expected improvement. The current 
paper will only investigate the application of a GPU with 
respect to improving the efficiency of the likelihood, pre-
diction and error calculations as these functions with their 

(9)y(x∗) = µ̂+ rTR−1(y− 1µ̂).

(10)s2(x∗) = σ̂ 2
[

1− rTR−1r
]

,

(11)P[I(x∗)] = 1

2

[

1+ erf

(

ymin − y(x∗)

s
√
2

)]

,

(12)

E[I(x∗)] = (ymin − y(x∗))

[

1

2
+ 1

2
erf

(

ymin − y(x∗)

s
√
2

)]

+ s√
2π

exp

[−(ymin − y(x∗))2

2s2

]

.
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many matrix multiplications, inversions and summations 
are far more costly relative to the few additional mathemat-
ical operations to calculate P[I(x∗)] or E[I(x∗)].

3.2  Likelihood evaluation comparison

The first operation in the calculation of the concentrated 
log-likelihood function for an ordinary Kriging model is 
the construction of the correlation matrix. There are a num-
ber of ways in which this matrix can be constructed. In their 
freely available Matlab surrogate modelling toolbox For-
rester et al. [17], for example, employ a nested for loop to 
construct the upper triangular portion of R and then reflect 
this in the diagonal to form the lower part of the matrix. 
The Matlab DACE toolbox of Lophaven et al. [38] takes 
a slightly different approach with the correlation matrix 
being calculated in one operation from a predefined matrix 
of distances between the sample points. However, neither 
of these toolboxes calculate the adjoint of the likelihood 
function which requires storage of some of the intermediate 
values used in the calculation of R in order to improve the 
efficiency of the derivative calculation.

In a similar manner to DACE, the algorithm employed 
here pre-computes an n× n× d 3D matrix of distances 
between all of the sample points where n is the number of 
sample points and d is the number of dimensions. In the 
case of ordinary Kriging these distances are independent 
of the modelling parameters and remain constant through-
out the likelihood optimization. A similar process is used 
within all of the Kriging routines wherever possible to 
reduce the number of unnecessary repeated calculations. 
Within the likelihood calculation this matrix of differences 
is then combined with two further 3D matrices of repeated θ 
and p values to calculate the 3D matrix of 10θk |x(i)k − x

(j)
k |pk 

values which is necessary for the calculation of ∂φ
∂θ

 and ∂φ
∂p

.

With the 10θk |x(i)k − x
(j)
k |pk values calculated R is simply 

a summation across the third dimension of the matrix fol-
lowed by the exponent. A diagonal matrix of 10� values is 
then added to R to regress the model if required.

As with the toolboxes of Forrester et al. [17] and 
Lophaven et al. [38] the calculation of R is followed by a 
Cholesky decomposition. However, whereas these tool-
boxes use the resulting triangular matrix in all subsequent 
calculations the present algorithm uses this matrix to cal-
culate and store R−1. As R−1 is required in the calculation 
of R̄ it is much more efficient to compute it once, store and 
reuse it to calculate the mean and variance than to use the 
Cholesky decomposition and then calculate the inverse 
anyway within the calculation of R̄.

The calculation of the mean, µ̂ is performed directly 
using the inverse of the correlation matrix and the same 
could be done for the variance, σ̂ 2. However, as indicated 

in Eq. 3 the variance calculation includes the calculation of 
R−1(y− 1µ̂) which is also required in the calculation of R̄. 
Rather than calculating the variance in a single line the 
operation is split into two parts with R−1(y− 1µ̂) calcu-
lated separately and stored for use in the adjoint calculation.

With all of the major components of Eq. 2 now defined 
the concentrated log-likelihood can be calculated and 
returned to the optimization algorithm if necessary. If, how-
ever, the gradients are also required the algorithm now pro-
ceeds with their calculation which is a considerable depar-
ture from the work of Forrester et al. and Lophaven et al.

The derivative calculation commences with the cal-
culation of the adjoint of the correlation matrix R̄. Given 
that R−1 and R−1(y− 1µ̂) have already been calculated 
and stored this reduces to a matrix multiplication, addi-
tion and pointwise division by 2σ̂ 2. With R̄ calculated the 
derivative of the likelihood with respect to the regression 
constant, �, can be easily calculated in a single operation. 
∂φ
∂θk

 is also easily calculated using the stored 3D matrix of 

10
θk | x(i)k − x

(j)
k |pk values and a pointwise multiplication 

to the stored RR̄ matrix which has been repeated out d 
times to form a 3D matrix. Each of the d layers of this 3D 
matrix can then be summated to define the vector of deriva-
tives. The derivative with respect to p, ∂φ

∂p
 involves a very 

similar calculation but with the addition of a 3D matrix of 
ln |x(i)k − x

(j)
k | values precomputed along with the matrix of 

differences.
The calculation of φ and its derivatives, therefore, 

has a number of operations amenable to the paral-
lel capabilities of a GPU, for example, the calculation of 
10θk | x(i)k − x

(j)
k |pk, R, R−1, µ̂, R−1(y− 1µ̂), σ̂ 2, R̄, ∂φ

∂θ
, ∂φ
∂p

 
and ∂φ

∂�
. These operations mainly consist of matrix and vec-

tor operations a lot of which involve pointwise operations 
which can be easily spanned across the GPU.

The computation times for the likelihood function are 
compared on a 5-, 10- and 15-dimensional analytical test 
problem for sampling plans of varying sizes. The sim-
ple sphere function is used to provide the objective func-
tion values with the sampling plan defined using a random 
Latin hypercube. The same sampling plan is used on every 
machine and varies from 10 to 1000 points for the 5 and 
10 variable case and between 10 and 500 points for the 15 
variable case. All timings are averaged over 100 evalua-
tions of the likelihood with 100 sets of randomised model-
ling parameters used. The same modelling parameters are 
used when testing each piece of hardware. Both the CPU 
and GPU versions of the code have constant values, such as 
the distances between sample points, calculated and stored 
in memory prior to timing the 100 evaluations.

In the case of the GPU the transfer of these constants 
over to the GPU memory is not included in the timing as 
it would only occur once during a likelihood optimization 
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and would, therefore, have very little bearing on the perfor-
mance of a GPU-based likelihood optimization. However, 
the transfer of the Kriging modelling parameters to the 
GPU and the transfer of the likelihood and its derivatives 
back from the GPU is included in all of the GPU timings 
as these would not remain constant during an optimization. 
All comparisons of likelihood computation times include 
the calculation of both the likelihood and its adjoint.

Figure 7 presents a comparison of the costs of calculat-
ing the Kriging concentrated log-likelihood function using 
the three pieces of hardware. Also included in Fig. 7 is a 
line representing the cost of calculating the likelihood 
using the CPU but with it restricted to a single computa-
tional thread. By default Matlab will use all four compu-
tational threads on the test machine and the impact of this 
can be clearly observed in these plots. Given the clear 
advantage of Matlab using multiple CPU cores, single core 
computations will be discounted from the comparisons for 
the remainder of the present article.

Figure 7 illustrates that no matter the dimensionality of 
the problem there is always some form of overhead associ-
ated with the use of either GPU due to the inefficiencies of 
some processes, such as matrix inversions, when the matri-
ces are small. However, once overcome there is a clear 
advantage to calculating the likelihood function on a GPU. 
The Tesla card, in particular, shows a considerable speed 
improvement over the CPU even for a modest number of 
design variables. Evaluating the likelihood function for a 5 
dimensional problem with a 1000 point sampling plan, for 
example, is almost one fifth the cost of that of the CPU.

The less powerful Quadro 2000M GPU also offers an 
improvement in likelihood calculation times over the CPU 
as the number of sample points increases but the improve-
ment is much less than that of the Tesla card. Neverthe-
less for high-dimensional problems with a large number of 
sample points there is a clear advantage to having a GPU 
evaluate the likelihood function even if that GPU is rela-
tively low end.

3.3  Predictor evaluation comparison

Having considered the evaluation of the likelihood function 
and, therefore, the construction of a Kriging model let us 
now consider the model’s predictor given by Eq. 9.

It is clear from this equation that both the µ̂ and the 
R−1(y− 1µ̂) terms are independent of the unknown point 
at which a prediction is to be made. These terms can, there-
fore, be calculated and stored as soon as the Kriging model 
parameters have been determined for use in any future 
Kriging predictions. The DACE toolbox of Lophaven 
et al. [38] does exactly this.

The only unknown in Eq. 9 is, therefore, the correla-
tion between the unknown point and the sample points, r,  
the calculation of which closely follows that of R in the 
computation of the likelihood function. Here the distance 
between the unknown point(s), x∗, and the sample points 
defining the Kriging model are calculated simultaneously 
in a single matrix operation. The distances are then all 
taken to the power of p, multiplied by 10θ and summed to 
produce the vector r (or matrix if more than one sample 
point is required).

With r obtained the remaining operation is a simple 
matrix–vector or vector–vector multiplication between r 
and the stored R−1(y− 1µ̂) to which the mean is added. 
The calculation of both r and rTR−1(y− 1µ̂) are, there-
fore, prime candidates to benefit from being performed on 
a GPU.

Figure 8 illustrates the cost of 1000 simultaneous predic-
tions using either a 5, 10 or 15 dimension Kriging model 
constructed from a variety of different sample sizes. All 
timings are once again averaged over 100 evaluations. It 
should be noted that the cost of the GPU predictions also 
includes the movement of the R−1(y− 1µ̂) vector and 
matrix of differences to the GPU’s memory.

As would be expected the cost for all cases scales lin-
early as the number of sample points increases. However, 
unlike the evaluation of the likelihood function the GPU 
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Fig. 7  Comparison of Kriging CLF evaluation costs for varying model size and computation method for a 5, b 10 and c 15-dimensional prob-
lems



385Engineering with Computers (2016) 32:377–404 

1 3

offers better evaluation times even with relatively small 
sample sizes. This is despite the slight overhead in transfer-
ring the constant data to the GPU each time. The Quadro 
2000M also performs much better across the board than it 
did when calculating the likelihood function.

The above results, therefore, indicate that even if the 
likelihood evaluation and, therefore, the model parameter 
optimization is more efficient on a CPU when the sample 
size is small it is almost always more efficient to evaluate 
the predictor of a large number of points on a GPU.

3.4  Error evaluation comparison

Calculating the error has a number of commonalities with 
the predictor. It too requires the correlation between the 
sample points and the unknown point(s), r, to be calcu-
lated. The approach described above for the predictor can, 
therefore, be repeated here. The major difference is, there-
fore, the calculation of rTR−1r. The inverse of the corre-
lation matrix can be calculated and stored once the model 
parameters have been determined as it is independent of 
the unknown point which leaves a matrix–vector and vec-
tor–vector multiplication, if only one point is required or 

a matrix–matrix followed by a matrix–matrix pointwise 
multiplication and summation, if the error at more than one 
point is required. These operations are once again ripe for 
parallelization on a GPU.

Figure 9 illustrates the cost of calculating the error at 
1000 points simultaneously for 5-, 10- and 15-dimensional 
Kriging models constructed using varying numbers of sam-
ple points. As with the predictor the cost increases linearly 
with the number of sample points and once again the GPU 
offers a considerable advantage even when there are rela-
tively few sample points in the underlying Kriging model. 
As with the predictor, even the low end GPU quickly out-
performs the CPU.

4  Universal Kriging

4.1  Universal Kriging formulation

A natural extension of ordinary Kriging is to replace the 
assumption of a constant mean, µ̂, with a mean of a known 
functional form. This technique is known as universal 
Kriging [9] where the mean throughout the design space 
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Fig. 8  Comparison of Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b 
10, c 15-dimensional problems
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Fig. 9  Comparison of Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b 10, c 
15-dimensional problems
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is given by µ(x) = f (x)Tβ where the vector f  is made up 
of a set of known functions, f (x) = [1, f1(x), . . . , fm(x)].  
Equation 4 in an ordinary Kriging model is, therefore, 
replaced by,

to calculate the vector of unknown parameters, β. The cor-
relation matrix, R, is once again given by Eq. 1 and the 
only other difference in the calculation of the likelihood 
function is the replacing of y− 1µ̂ in the above equations 
with y− Fβ̂. This pattern extends to the Kriging predictor 
which now becomes,

with the constant mean, µ̂, replaced by the mean at the 
unknown point given by the defined functional form. The 
calculation of the variance for the ordinary Kriging model 
does not employ a mean term, the formulation, therefore, 
remains exactly the same for a universal Kriging model. 
The adjoint formulation of the universal Kriging likelihood 
function is also identical to that of ordinary Kriging.

4.2  Likelihood evaluation comparison

With the exception of a mean term which varies throughout 
the design space the calculation of the universal Kriging 
likelihood function and its adjoint is very similar to that of 
ordinary Kriging. The calculation of the correlation matrix 
from a pre-calculated set of distances between the sample 
points, the inversion of this matrix, the calculation of the 
variance and the likelihood itself are all identical.

The main difference in the likelihood evaluation is, 
therefore, the calculation of the unknown parameters of 
the mean, β̂, via Eq. 13. While this is of a similar form 
to the calculation of the mean in ordinary Kriging it now 
involves matrix–matrix and matrix–vector multiplications 
and an inversion. While this is more costly than the equiva-
lent operation during an evaluation of the likelihood for an 

(13)β̂ = (FTR−1F)−1FTR−1y,

(14)y(x∗) = f (x∗)T β̂ + r(x∗)TR−1(y− Fβ̂),

ordinary Kriging model it can certainly benefit from par-
allelization on a GPU. The matrix F constructed from the 
known functional form is independent of the modelling 
parameters θ and p and can, therefore, be computed once, 
stored and reused in any subsequent likelihood evaluation. 
A similar process is used in the DACE toolbox of Lophaven 
et al. [38].

In a similar manner to the ordinary Kriging likelihood, 
Fig. 10 illustrates the cost of evaluating the universal Krig-
ing likelihood on the CPU and GPUs for problems of 5, 10 
and 15 dimension with a variety of different sample sizes, 
n. Once again the GPU timings do not include the transfer 
of the constants, such as the matrix of distances between 
the sample points for each evaluation of the likelihood.

As observed with the ordinary Kriging results there is 
an overhead associated with using the GPU when there are 
less than approximately 200 sample points in the model. 
However, as both the dimensions and number of sample 
points increases the GPU outperforms the CPU considera-
bly. Once again the Tesla card offers the most performance 
gain but even the low end Quadro card offers a worthwhile 
speed-up at high dimensions.

4.3  Predictor evaluation comparison

As noted above the universal Kriging predictor is quite 
similar in form to that of the ordinary Kriging predictor. 
The only difference is that the constant mean has been 
replaced by f (x∗)T β̂ and R−1(y− 1µ̂) has been replaced 
by R−1(y− Fβ̂). As with the ordinary Kriging predictor 
this last term is independent of the unknown point at which 
a prediction is to be made and can therefore, be calculated, 
stored and reused indefinitely once the model parameters 
have been defined. The correlation between the unknown 
point and the sample points in the model can be calculated 
in exactly the same way as for the ordinary Kriging pre-
dictor. Only the mean term remains to be calculated and 
can be done so using the known functional form and the 
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Fig. 10  Comparison of universal Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation method 
for a 5, b 10, c 15-dimensional problems
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coordinates of the unknown point and the stored vector of 
coefficients, β̂.

In addition to the calculation of r(x∗)TR−1(y− Fβ̂) 
via a matrix–vector multiplication the universal Kriging 
predictor therefore, requires an additional matrix–vector 
multiplication in the calculation of f (x∗)T β̂. This assumes, 
of course, that the prediction at more than one point is 
required simultaneously, with the above calculations reduc-
ing to two vector–vector multiplications if a single point 
was required. As with the ordinary Kriging model the oper-
ations involved in the prediction calculation should, there-
fore, benefit from parallelization on a GPU.

Figure 11 illustrates the cost of calculating the universal 
Kriging prediction at 1000 points simultaneously for mod-
els with 5, 10 and 15 dimensions with a variety of different 
sample sizes.

As with the ordinary Kriging predictor there is a linear 
increase in cost for all cases as the sample size increases. 
Once again both GPUs perform considerably better than 
the CPU even when the sample size is relatively small with 
the Tesla card giving a considerable reduction in compu-
tational effort. As with ordinary Kriging, even if the like-
lihood optimization is more efficiently performed on the 

CPU it is almost always more efficient to evaluate the pre-
dictor for a large number of points on a GPU.

4.4  Error evaluation comparison

As noted above there is no difference in the formulation of 
the ordinary Kriging error and that of universal Kriging. This 
is reinforced by the timings presented in Fig. 12 which, when 
compared to those in Fig. 9 show little discernible difference.

5  Non‑stationary Kriging

5.1  Non‑stationary Kriging formulation

While both ordinary and universal Kriging have been 
shown to be effective at design space prediction and design 
optimization both techniques can struggle to represent non-
stationary responses. In this instance, by non-stationarity 
we mean changes in the smoothness throughout the design 
space which can only be accurately represented by a corre-
sponding variation in the covariance function, see the solid 
black line in Fig. 13a for a simple example.
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Fig. 11  Comparison of universal Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 
5, b 10, c 15-dimensional problems
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Fig. 12  Comparison of universal Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 
5, b 10, c 15-dimensional problems
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There are a number of different schemes within the lit-
erature for dealing with such responses including the direct 
formulation of non-stationary covariance functions [19, 
41, 42], moving window approaches [23], mixtures of 
experts [18] and nonlinear mappings [47, 60]. Nonlinear 
mapping schemes, which remap the original function into 
a space whereby it can be more easily represented by a sta-
tionary covariance function, are attractive due to their sim-
plicity, the fact they result in a continuous function and are 
more suited to small sample sizes.

Nonlinear mapping schemes can, however, suffer from 
an over parameterization if not formulated correctly and 
can require a costly multivariate integration. The method 
used here and proposed by Xiong et al. [60] employs a 
univariate piecewise linear representation of the density 
function, Fig. 13b, used to perform the nonlinear map-
ping. Defining the nonlinear mapping in this manner 

simultaneously reduces the number of parameters to be 
optimised while the integration reduces to an analytical 
function.

The formulation of the non-stationary Kriging model of 
Xiong et al. is similar to that of an ordinary Kriging model 
except that instead of a direct correlation between the sam-
ple points, xi and xj, the correlation between their nonlinear 
mappings is used,

where the nonlinear mapping is given by,

with g(x′) defined by a piecewise linear function of K 
pieces defined using K + 1 knots of density value 10ηk and 
position ζk. In the following formulation it is assumed that 
the knots defining this function are evenly spaced along 
each design variable and that there is a single common θ 
parameter across all dimensions.

Figure 13, recreated from Toal and Keane [54] illus-
trates an example of the density function and its impact 
when used to map a non-stationary function. In this exam-
ple the nonlinear mapping procedure for the point x = 0.3 
simply involves the calculation of the shaded area under 
the piecewise line illustrated in Fig. 13b. When applied to 
the whole function, as illustrated in Fig. 13a, the nonlinear 
mapping expands out the rapidly oscillating region found 
towards the left of the design space while collapsing in 
the smoother region on the right thereby producing a new 
function with the same degree of smoothness throughout 
that can be better represented by a stationary covariance 
function.

The general integral under the piecewise linear function 
reduces to a series of constant areas under each section,

where,

which can be combined along with the position of the sam-
ple point to calculate the integral,

where j denotes the piecewise section that x falls within and 
10ηx is,

(15)Rij = exp

(

−
d

∑

l=1

10θ�f (x(l)i )− f (x
(l)
j )�p(l)

)

,

(16)f (x(l)) =
∫ x(l)

0

g(x′)dx′,

(17)Ai =
1

2
(ζi+1 − ζi)(10

ηi+1 + 10ηi),

(18)bi =
10ηi+1 − 10ηi

ζi+1 − ζi
and ai = 10ηi+1 − biζi+1,

(19)f (x) = 1

2
(x − ζj)(10

ηx + 10ηj )+
j−1
∑

l=1
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As per any Kriging model the parameters defining the 
model need to be optimised. Once again the concentrated 
log-likelihood can be used to perform this optimization 
and with the correlation matrix defined using the remapped 
sample points the calculation of the likelihood function 
proceeds in an identical fashion as that for ordinary Krig-
ing. The major difference here is that not only do θ, p and 
the regression constant � need to be optimised but so to do 
the density values, η at each knot location.

As per ordinary Kriging an adjoint of the modelling 
parameters can also be derived for non-stationary Kriging 
thereby accelerating the optimization process. The calcula-
tion of R̄ remains identical to Eq. 5 while the partial deriva-
tives of the model parameters become [54],

where,

with

and

where

(20)10ηx = bix + ai.

(21)
∂φ

∂θ
= −10θ ln 10

d
�

l=1





�

ij

��f
(l)
ij �p(l)RijR̄ij



,

(22)�f
(l)
ij = f (x

(l)
i )− f (x

(l)
j ),

(23)
∂φ

∂p(l)
=

∑

ij

−10
θ��f

(l)
ij �p(l)ln ��f

(l)
ij �RijR̄ij,

(24)

∂φ

∂η
(l)
k

=
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ij

−10
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(l)
ij �(p
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×�f
(l)
ij

[

∂f (x
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i )

∂η
(l)
k

−
∂f (x
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k

]

RijR̄ij,

(25)
∂f (x(l))

∂ηk
= ∂A1

∂ηk
if k = 1

(26)
∂f (x(l))

∂ηk
= ∂Ak

∂ηk
+ ∂Ak−1
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if k ≤ L − 1

(27)

∂f (x(l))

∂ηk
= 1

2
(x(l) − ζL)

(

10ηL ln 10+ x(l)
∂bL

∂η
(l)
k

+ ∂aL

∂η
(l)
k

)

+ ∂AL−1

∂η
(l)
k

if k = L

(28)

∂f (x(l))

∂η
(l)
k

= 1

2
(x(l) − ζL)

(

x(l)
∂bL

∂η
(l)
k

+ ∂aL

∂η
(l)
k

)

if k = L + 1

and where L refers to the Lth piecewise section that x(l) 
falls within. Given that the density function is represented 
by a series of K straight lines of intercept a, gradient b and 
integral A then,

The formulation of both the non-stationary Kriging pre-
dictor and error are identical to those for ordinary Kriging 
with the exception that the unknown point(s) must undergo 
the same nonlinear mapping as the points defining the 
non-stationary Kriging model prior to calculation of the 
correlations.

5.2  Likelihood evaluation comparison

As described above, once the nonlinear mapping of the 
sample points has been performed the calculation of the 
correlation matrix and hence the calculation of the likeli-
hood function for a non-stationary model will proceed in 
an identical fashion to that of an ordinary Kriging model. 
The nonlinear mapping, therefore, introduces an additional 
cost over that of an ordinary Kriging model. As the param-
eters defining the nonlinear mapping are subject to change 
during a likelihood optimization the distances between the 
sample points will no longer be constant. Therefore, not 
only does the nonlinear mapping have to be performed with 
every likelihood evaluation but so to does the calculation of 
distances between the sample points.

The calculation of the non-stationary likelihood function 
proceeds as follows. Firstly the provided density function 
values at each knot are used to calculate the gradient, b, and 
intercept, a of each piecewise line along with the ∂a

∂η
 and ∂b

∂η
 

values if required. The constant areas, A, under each section 

(29)
∂f (x(l))

∂η
(l)
k

= 0 if k ≥ L + 2

(30)
∂aL

∂ηL
= −ζL+1

∂bL

∂ηL

(31)
∂aL

∂ηL+1

= 10ηL+1 ln 10− ζL+1
∂bL

∂ηL+1

(32)
∂bL

∂ηL
= 10ηL ln 10

ζL+1 − ζL

(33)
∂bL

∂ηL+1

= 10ηL+1 ln 10

ζL+1 − ζL

(34)
∂Ak−1

∂ηk
= 1

2
(ζk − ζk−1)10

ηL ln 10

(35)
∂Ak−1

∂ηk−1

= 1

2
(ζk − ζk−1)10

ηL+1 ln 10
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are then calculated along with their derivatives. The bounds 
of the piecewise section that each of the sample points falls 
within is then determined in parallel and used to calculate 
the cumulative sum of the areas under the preceding sec-
tions which in turn is used to initialise the mapped values. 
The density function value at the current point is then cal-
culated and used to calculate the integral under the current 
piecewise section. Upon adding this to the cumulative sum 
of the areas under the preceding sections the nonlinear 
mapping is completed. During this computation of the non-
linear mapping the derivatives, ∂f (x)

∂η
, can also be calculated.

With the nonlinear mapping performed the distances 
between every sample point in each axis can be calcu-
lated. As per the ordinary Kriging likelihood calcula-
tion, this enables the storage of the n× n× d matrix of 
10

θk | x(i)k − x
(j)
k |pk values necessary for the subsequent 

adjoint calculation. With these distances determined the 
calculation of the correlation matrix and the remainder 
of the likelihood calculation can proceed as per ordinary 
Kriging.

With the likelihood calculated the derivative of the 
likelihood with respect to the modelling parameters still 
remains to be determined. The majority of this process is 
the same as that for ordinary Kriging. First the adjoint of 
the correlation matrix, R̄, is calculated using Eq. 5 and used 
to calculate ∂φ

∂�
 and the pointwise multiplication of R̄ and 

R. The calculation of ∂φ
∂p

 proceeds in an identical manner 
to that for an ordinary Kriging model whereas the calcula-
tion of ∂φ

∂θ
 is the same with the exception that the derivatives 

for every dimension are summed together as in the above 
model there is a single θ term. Given that ∂f (x)

∂η
 has been cal-

culated for each sample point and each dimension it only 
remains to calculate ∂φ

∂η
 for each knot density using Eq. 24.

Figure 14 presents a comparison of non-stationary likeli-
hood evaluation times for 5, 10 and 15-dimensional prob-
lems with a variety of different sample sizes. Once again all 
of the results are averaged over 100 evaluations.

As observed with the ordinary and universal Krig-
ing results the evaluation of the non-stationary likelihood 
function suffers from an initial overhead compared to the 
CPU-based evaluation. However, for all cases the point at 
which the GPUs become more efficient requires a smaller 
sample size. For the 15-dimensional problem the Telsa card 
becomes more efficient when the sample size is greater 
than approximately 150 points but for the universal and 
ordinary Kriging models it’s only more efficient when a 
sample size greater than approximately 200 points is used. 
Similarly, for the same problem, the Quadro card becomes 
more efficient after a sample size of 200 with a non-sta-
tionary model compared to almost 300 for a universal or 
ordinary Kriging model.

The above results, therefore, illustrate that as the dimen-
sionality and number of sample points in a non-stationary 
Kriging model increase it becomes more and more efficient 
to perform the calculation on a GPU as opposed to a CPU.

5.3  Predictor evaluation comparison

As with the universal Kriging predictor, the predictor for 
a non-stationary Kriging model is quite similar to that of 
an ordinary Kriging model. The only substantial differ-
ence is the need for the unknown point or points to undergo 
the same nonlinear mapping as the sample points defin-
ing the model. Once this has been carried out the correla-
tion matrix can be constructed as normal with the stored 
R−1(y− 1µ̂) vector and mean reducing the number of cal-
culations required. With the modelling parameters defined 
the nonlinear mappings of the sample points can also be 
stored for use in the calculation of the correlation between 
the unknown and known points.

The nonlinear mapping of the coordinates of the 
unknown points can be performed using exactly the same 
algorithm as employed in the likelihood computation. The 
only difference is that the derivatives, ∂f (x)

∂η
, no longer need 
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Fig. 14  Comparison of non-stationary Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c 
15-dimensional problems
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to be determined. Other constants such as the values of a, b 
and A can be stored and reused in any prediction.

Figure 15 presents the cost of 1000 simultaneous evalua-
tions of the non-stationary Kriging predictor using the CPU 
and GPUs on 5, 10 and 15-dimensional problems for a vari-
ety of sample sizes. As with the preceding cases the cost of 
evaluating the prediction increases linearly with increasing 
sample size and as with these cases there is a clear advan-
tage to using a GPU even at relatively low sample sizes. 
Both the low and high end GPUs out perform the CPU in 
the majority of cases.

5.4  Error evaluation comparison

The calculation of the predicted error of a non-stationary 
Kriging model is identical to that of an ordinary Kriging 
model except that, as with the predictor, a nonlinear map-
ping of the unknown points is required to construct the 
correlation.

Figure 16 illustrates the cost of making 1000 simulta-
neous evaluations of the error function of a non-stationary 
Kriging model constructed in 5, 10 and 15 dimensions 
using a variety of sampling plan sizes. Once again the 

linear increase in cost can be observed in all cases with the 
GPU quickly offering a substantial improvement in calcu-
lation time with even the low end GPU providing a con-
siderable performance gain on high-dimensional problems.

6  Multi‑fidelity Kriging

6.1  Multi‑fidelity Kriging formulation

Multi-fidelity surrogate modelling techniques have grown 
in popularity over the past few years as they can be used 
to combine many cheap low-fidelity simulations with a 
smaller number of more accurate high-fidelity simulations 
to create a surrogate model much more accurate than a 
model created with only the high-fidelity simulations [5, 
14, 53]. Figure 17 illustrates the potential of construct-
ing such multi-fidelity models. Here two analytical func-
tions are used to represent high-fidelity (expensive) and 
low-fidelity (cheap) functions. A surrogate model through 
only the expensive function at the indicated sample points 
produces an inaccurate prediction but if these points are 
augmented with 11 cheap sample points the resulting 
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Fig. 15  Comparison of non-stationary Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation 
method for a 5, b 10, c 15-dimensional problems
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Fig. 16  Comparison of non-stationary Kriging Likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c 
15-dimensional problems
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multi-fidelity model almost exactly represents the true 
response of the expensive function.

Kriging has been extended to make use of multiple lev-
els of simulation data by Kennedy and O’Hagan [31]. In 
such a model the output of a high-fidelity simulation is 
approximated by multiplying a surrogate model of the out-
put of a cheap simulation by a scaling factor, ρ, and adding 
this to a second surrogate model of the difference between 
the low and high-fidelity simulation outputs,

If we denote two matrices of sample points, Xc and Xe 
as representing the cheap and expensive sampling plans, 
respectively, where we assume that a cheap, low-fidelity 
simulation has been carried out at every expensive, high-
fidelity sample point then the covariance matrix, C, is,

These correlations are of the same form as Kriging, Eq. 1, 
except that there are now two correlations and, therefore, 
twice the number of modelling parameters to determine, 
one for each surrogate model. In addition to these param-
eters the scaling factor, ρ must also be determined.

In Kennedy and O’Hagan’s approach the cheap data is 
assumed to be independent of the expensive data which 
means that the set of modelling parameters for the model 
of the cheap data can be determined in a completely iden-
tical manner to that of an ordinary Kriging model. The 
remaining set of modelling parameters, including the scal-
ing factor, are determined through a very similar likelihood 
optimization but where the vector of objective function 
values, y, in the above equations for the ordinary Kriging 

(36)Ze(x) = ρZc(x)+ Zd(x).

(37)

C =

(

σ 2
c
Rc(Xc,Xc) ρσ 2

c
Rc(Xc,Xe)

ρσ 2
c
Rc(Xe,Xc) ρ2σ 2

c
Rc(Xe,Xe)+ σ 2

d
Rd(Xe,Xe)

)

.

maximum likelihood estimators of mean and variance, have 
been replaced by the difference between the high-fidelity 
output and the low-fidelity output multiplied by the scaling 
factor,

The derivatives of the likelihood of the difference model 
with respect to the θ, p and � modelling parameters can be 
calculated in an identical manner to those for an ordinary 
Kriging model. The derivative with respect to the scaling 
factor is calculated by first defining the adjoint of the vector 
of differences [53],

which can then be used to calculate the derivative as,

With the hyperparameters determined the multi-fidelity 
Kriging predictor is defined as,

where,

and

and the multi-fidelity error prediction is defined as,

With the error and prediction determined the predicted 
improvement and expected improvement can be calculated 
as normal.

6.2  Likelihood evaluation comparison

As the optimization of the modelling parameters for a 
multi-fidelity Kriging model are performed in series the 
evaluation of the likelihood for the low-fidelity surrogate 
model is, therefore, identical to that of an ordinary Kriging 
model. The following section will, therefore, focus on the 
evaluation of the likelihood for the difference model under 
the assumption that an appropriate set of parameters for the 
cheap model has already be obtained.

The calculation of the likelihood function for the differ-
ence model is almost identical to that for ordinary Kriging. 
The correlation matrix is constructed in exactly the same 

(38)d = ye − ρyc(Xe).

(39)d̄ = −R−1
d

(

d − 1µ̂d

)

(

1

σ̂ 2
d

)

,

(40)
∂φ

∂ρ
= −

ne
∑

i=1

yci d̄i.

(41)ye(x
∗) = µ̂+ cTC−1(y− 1µ̂),

(42)µ̂ = 1
TC−1Y

1TC−11
,

(43)c =
[

ρσ̂ 2
c Rc(Xc, x

∗)
ρ2σ̂ 2

c Rc(Xe, x
∗)+ σ̂ 2

dRd(Xe, x
∗)

]

(44)s2e(x
∗) = ρ2σ̂ 2

c + σ̂ 2
d − cTC−1c.
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fashion using a precomputed matrix of differences between 
the points. As per the other models in the current paper the 
inverse of the correlation matrix is explicitly calculated 
as it is required in the adjoint calculation. As noted above 
the only major difference is the calculation of d via Eq. 38 
which is a very simple operation.

With the likelihood calculated, the calculation of the 
derivatives with respect to θ, p and � is identical to that 
of the ordinary Kriging approach. The calculation of 
the derivative with respect to ρ is also very simple. The 
R−1
d (d − 1µ̂d) term is used in the calculation of the vari-

ance as part of the likelihood calculation and is kept in 
memory for the calculation of R̄ so the calculation of d̄ 
involves a simple division of each element of this vector by 
the variance. The derivative is then the summation of the 
pointwise multiplication of d̄ and the vector of low-fidelity 
objective function values at the high-fidelity sample points.

Figure 18 presents the computational costs of evalu-
ating the likelihood of a difference model for a 5, 10 and 
15-dimensional model with a varying number of sample 
points. In each case it is assumed that the difference model 
is constructed on top of a low-fidelity model defined using 
a sampling plan with 1000 points. This is analogous to the 
construction of a multi-fidelity Kriging model from an 
extremely cheap simulation and an expensive simulation of 
varying cost thereby enabling different sampling plan sizes.

In the case of the likelihood evaluation of the differ-
ence model, the size of the underlying cheap surrogate 
has no impact as it is only the objective function values of 
the cheap function corresponding to the sampling plan of 
the expensive function that is of importance. The size of 
the matrix and vector multiplications are, therefore, only 
dependent on the size of the expensive sampling plan. Once 
again the costs of the evaluating the likelihood are averaged 
over 100 evaluations with the constant differences between 
sample points precomputed and passed to the GPUs mem-
ory not included.

Overall the results of Fig. 18 are extremely close to that 
for the ordinary Kriging model. The same overhead when 

using the GPU on small sampling plans and the same per-
formance advantage on large sampling plans is observed.

6.3  Predictor evaluation comparison

The multi-fidelity Kriging predictor, given by Eq. 41, 
while similar in form to the ordinary Kriging predictor 
does require slightly more effort to calculate. As per ordi-
nary Kriging a number of the terms can be precalculated 
and stored for use once the model parameters have all been 
determined. The mean, µ̂ and the C−1(y− 1µ̂) terms, for 
example, can be calculated once and stored as can the 
matrices of differences between the two sampling plans. 
The only term which must be calculated is, therefore, the 
correlation, c, between the unknown points and the sam-
pling plans. This operation can be split into two parts, the 
first to calculate ρσ̂ 2

c Rc(Xc, x
∗) and the second to calculate 

ρ2σ̂ 2
c Rc(Xe, x

∗) +σ̂ 2
dRd(Xe, x

∗). Both operations involve 
the calculation of the distances between the unknown and 
known points as per ordinary Kriging and then the calcula-
tion of the correlations. The calculation of Rc(Xe, x

∗) and 
Rd(Xe, x

∗) use the same set of differences which can be 
calculated once and reused. The calculation of the differ-
ences and the final correlations both involve a lot of matrix 
operations which should be amenable to parallelization on 
a GPU.

Figure 19 illustrates the cost of evaluating the multi-
fidelity Kriging prediction at 1000 points simultaneously 
for 5, 10 and 15-dimensional problems. Unlike previous 
cases where the number of sample points increased in a lin-
ear manner the sampling plans used in this comparison aim 
to mimic that of a real world multi-fidelity surrogate mod-
elling process. The size of the sampling plan for the under-
lying cheap function is constant throughout at 25 times the 
number of dimensions in the problem. The 5 dimension 
cases, therefore, all have 125 cheap function evaluations 
while the 15 dimension cases have 375. The number of 
points in the expensive sampling plan is also a factor of the 
number of dimensions but this time the factor is permitted 
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Fig. 18  Comparison of Co-Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c 15-dimen-
sional problems
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to vary from 2 to 15 times the number of dimensions. The 
5 dimensional case, therefore, varies from a case with 
125 cheap points and 10 expensive points to a case with 
125 cheap points and 75 expensive points. Likewise the 
15-dimensional case varies from 375 cheap points and 30 
expensive to 375 and 225 expensive points.

The results presented in Fig. 19 are similar to those of 
the previous Kriging predictors. When the total number of 
points is less than 200 and the problem is of low dimen-
sions the low end GPU is less efficient than the CPU but 
this quickly reverses as the dimensionality and the number 
of sample points increases. As with the other predictors the 
high end Tesla card proves to be much more efficient than 
the CPU on all of the cases tested.

6.4  Error evaluation comparison

The calculation of the error function of a multi-fidelity 
Kriging model commences in the same manner as the pre-
dictor with the calculation of the correlation between the 
unknown point or points. With this calculated the multipli-
cations with the stored inverse of the combined correlation 
matrix, C−1, can be carried out and the other terms added. 

The calculation of cTC−1c should, therefore, benefit from 
parallelization.

Figure 20 demonstrates the cost of evaluating the error 
for 5, 10 and 15-dimensional problems. As with the predic-
tion comparisons a 25d low-fidelity sampling plan is used 
throughout with the high-fidelity sampling plan varying 
from 2d to 15d in size.

The results of Fig. 20 reinforce those observed with the 
previous cases. The Tesla card offers a huge advantage over 
the CPU in all of the cases considered whereas the Quadro 
card requires a larger number of sample points and a higher 
number of dimensions in order to become more efficient.

7  Gradient‑enhanced Kriging

7.1  Gradient‑enhanced Kriging formulation

The application of derivative information has long been a 
corner stone of local optimization methodologies [6] and 
with the development of automatic differentiation [22] 
and adjoint enabled simulations [21, 25] the derivatives 
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Fig. 19  Comparison of multi-fidelity Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation 
method for a 5, b 10, c 15-dimensional problems
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Fig. 20  Comparison of Co-Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b 
10, c 15-dimensional problems
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of even high-dimensional problems can be computed with 
very little additional cost. All of the variants of Kriging 
considered up until this point have assumed, however, 
that only the objective function value is known at each 
sampling point. Gradient-enhanced Kriging models [33, 
34, 44] are an extension of Kriging to include both the 
objective function value and the derivative of the objec-
tive function with respect to each design variable at each 
sample point. Gradient-enhanced Kriging can, therefore, 
be used to fully exploit any derivative information avail-
able from an adjoint or an automatically differentiated 
computer code.

Figure 21 illustrates the impact that the inclusion of gra-
dient information can have on a surrogate model. Here, the 
same analytical function used to illustrate multi-fidelity 
Kriging is employed but the analytical gradient information 
at each of the four sample points has also been included in 
the surrogate model. The resulting model is clearly more 
accurate throughout the design space than the model with-
out gradient information.

In a gradient-enhanced Kriging model the vector of 
observed data y containing n observations is now extended 
to include derivative information at every sample point 
with respect to every variable,

and is now n(d + 1) long. The original correlation matrix, 
R must, therefore, be expanded to include the correlations 
between the data points and the derivatives and the deriva-
tives and themselves. The resulting correlation matrix is 
n(d + 1)× n(d + 1) in size and defined as,

(45)ẏ =
(

yT ,
∂yT

∂x1
,
∂yT

∂x2
. . .

∂yT

∂xk

)T

,

where R is defined by Eq. 1, the first derivative of the cor-
relation matrix is defined as,

with the corresponding component of Ṙ on the opposite 
side defined as its transpose. The diagonal components of 
Ṙ defining the correlation between derivatives of the same 
dimensions are defined as,

with the off diagonal components, the correlation between 
derivatives of different dimensions, defined as,

As well as the inclusion of derivative information in such 
a Kriging model it should be noted that the p modelling 
parameter has been fixed at 2 in order for the model to be 
differentiable. While this makes the resulting parameter 
optimization simpler by reducing the number of variables 
the size of the correlation matrix, Ṙ, can grow considerably 
for high-dimensional problems with even a modest num-
ber of sample points thereby making the calculation of the 
likelihood function expensive. With the correlation matrix 
defined as above the calculation of the likelihood is identi-
cal to that for ordinary Kriging with y replaced by ẏ in the 
equations for the µ̂ and σ̂ 2 and the vector of ones, 1, now 
containing n ones followed by dn zeros and denoted as 1̇.

As with the previous Kriging models it is possible to 
define an adjoint of the likelihood function with which to 
efficiently calculate the derivatives of the likelihood with 
respect to the θ parameters. Using the same linear algebra 
results [20] as before the adjoint of the gradient-enhanced 
Kriging correlation matrix becomes,

As can be observed from Eq. 46 the gradient-enhanced 
Kriging correlation matrix is constructed from four sets 
of terms, the basic correlation matrix, the correlation of 
the data points with the derivatives and the correlation of 

(46)Ṙ =
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(47)
∂R(i,j)

∂xk
= −2(10θk )(x

(i)
k − x

(j)
k )R(i,j)

(48)
∂2R(i,j)

∂x2k
=

[

2(10θk )− 4(102θk )(x
(i)
k − x

(j)
k )2

]

R(i,j),

(49)
∂2R(i,j)

∂xk∂xl
= −4(10θk+θl )(x

(i)
k − x

(j)
k )(x

(i)
l − x

(j)
l )R(i,j).

(50)¯̇R = 1

2σ̇ 2
Ṙ−T (ẏ− 1̇µ̇)T (ẏ− 1̇µ̇)T Ṙ−T − 1

2
Ṙ−T .
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Fig. 21  Gradient-enhanced Kriging example
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the derivatives with themselves for the same and different 
dimensions. Equations 47, 48 and 49 which define these 
correlations all employ both the modelling parameter θ and 
the original correlation matrix, R. As θ is also used to cal-
culate R the calculation of the adjoint of the likelihood with 
respect to θ therefore, first requires the calculation of the 
adjoint of the original correlation matrix. As the correlation 
matrix appears in four different equations defining Ṙ then 
its adjoint is itself constructed from four different terms,

where ¯̇R(1:n,1:n) denotes the top left corner of ¯̇R corresponding 
to the correlation between the data point objective functions,

defines the component of R̄ due to the correlation between 
the data points and the gradients,

defines the component of R̄ due to the correlation between 
gradients of the same dimension and

defines the component due to the correlation between gra-
dients of different dimensions with R̄3 defined as the sum 
over all of the off diagonal components R̄

(k,l)
3 . In all of these 

equations �xk is defined as a matrix of distances between 
the sample points of the kth dimension.

As with the correlation matrix, the θ parameter is used in 
four different correlation calculations, therefore, the deriva-
tive of the likelihood with respect to each of the θ param-
eters is dependent on four components,

where θ̄1 is equal to Eq. 6 with R̄ replaced by that due to 
Eq. 51 and p = 2, θ̄2 is due to the correlation between 
objective functions and gradients and is given by,

θ̄3 is due to the correlation between gradients of the same 
dimension,

(51)R̄ = ¯̇R(1:n,1:n) + R̄1 + R̄2 + R̄3,

(52)R̄1 = 2×
d

∑

k=1

2(10θk )�xk
∂R

∂xk

(53)R̄2 =
d

∑

k=1

[

2(10θk )− 4(102θk )�x2k

]∂2R

∂x2k
,

(54)
R̄
(k,l)
3 = −4(10θk )(10θ l )�xk�xl

∂2R

∂xk∂xl
× 2,

(55)
∂φ

∂θk
= θ̄1 + θ̄2 + θ̄3 + θ̄4

(56)θ̄2 = 2 ln 10
∑

ij

∂R

∂xk

∂R

∂xk
,

(57)
θ̄3 = 2 ln 10(10θk )

∑

ij

[

1− 4(10θk )�x2k

]∂2R

∂x2

∂2R

∂x2k

and θ̄4 is due to the correlation between gradients of differ-
ent dimensions,

In the above equations the ∂R
∂xk

, ∂
2R

∂x2k
 and ∂2R

∂xk∂xl
 terms refer to 

locations in ¯̇R corresponding to the locations of ∂R
∂xk

, ∂
2R

∂x2k
 and 

∂2R
∂xk∂xl

 respectively, in Ṙ.
With the θ modelling parameters determined the model’s 

predictor and predicted error as well as the probability of 
improvement and expected improvement can be calculated 
as with any Kriging model. The equation for the predictor 
is of a similar form to that for ordinary Kriging,

with the extended vector of correlations, ṙ, defined as,

and the mean defined as,

The predicted error is once again of a similar form to that 
of ordinary Kriging,

with r replaced by ṙ and with the variance defined as,

7.2  Constructing a model with missing information

The above formulation assumes, of course, that deriva-
tives are available for all of the variables in the model and 
that every point has a complete set of derivatives associ-
ated with it. This may, of course, not be the case, in real-
life design optimization problems there may be a mixture 
of sampling points with and without gradients and some 
design variables may preclude the calculation of derivatives 
completely. To cope with such scenarios a masking vec-
tor can be used to exclude columns and rows of the cor-
relation matrix when calculating Ṙ−1. In such an approach 
inputs to the algorithm include predefined “dummy” values 
for the derivatives at those points or for those dimensions 
for which gradients have not been provided. These dummy 
values can then be used to create a binary masking vector 
with a one indicating that information is known and a zero 

(58)θ̄4 = ln 10
∑

ij

∂2R

∂xk∂xl

∂2R

∂xk∂xl
.

(59)y(x∗) = µ̇+ ṙT Ṙ−1(ẏ− 1̇µ̇)

(60)ṙ =
(

r,
∂r

∂x1
,
∂r

∂x2
, . . . ,

∂r

∂xk

)T

(61)µ̇ = 1̇
T Ṙ−1ẏ

1̇T Ṙ−11̇
.

(62)s2(x∗) = σ̇ 2
[

1− ṙTR−1ṙ
]

,

(63)σ̇ 2 = 1

n
(ẏ− 1̇µ̇)T Ṙ−1(ẏ− 1̇µ̇).
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indicating that no information is known. The correlation 
matrix, Ṙ, can be computed as normal with the masking 
vector then used to exclude unnecessary columns and rows 
prior to the calculation of its inverse, mean, variance and 
likelihood.

When employing such a masking the adjoint calculation 
commences as before but with the calculation of ¯̇R result-
ing in a smaller matrix. The masking vector is then used 
to place these values into the rows and columns of the full 
size, (d + 1)n× (d + 1)n, ¯̇R matrix with the remaining val-
ues set to equal 0. Once this matrix has been defined the 
remaining adjoint calculation can proceed as normal.

Figure 22 illustrates this masking procedure in action 
using the same analytical example and sampling plan 
as used in Fig. 21. In this figure three different gradient-
enhanced Kriging models have been produced from dif-
ferent amounts of information. In the first model all of the 
objective function values and all of the gradients have been 
used to construct the model, i.e. this is the same model as 
in Fig. 21. In the second model once again all of the objec-
tive function values have been used but the gradients at 
x = 0.4 and x = 1.0 have not been provided. Applying the 
above masking procedure clearly results in a model which 
matches the gradients at those sample points where gradi-
ents have been provided and which doesn’t at the points 
where no gradients are known.

As the above masking procedure is completely generic it 
is also possible to construct a model where gradient infor-
mation is provided at a point where no objective function 
value is provided. It would, of course, be unlikely that this 
would be the case in a real-life design optimization but it 
may be the case that derivatives of a problem are success-
fully calculated and returned while the objective function 
calculation subsequently fails. The third model presented in 

Fig. 22 illustrates such a case where the derivative informa-
tion has been provided for all sample points but the objec-
tive function information is missing at the point x = 0.4.  
This model clearly interpolates the three remaining sam-
ple points and matches the gradients at these points but it 
also matches the gradient at x = 0.4 without interpolating 
the point as the objective function at this point has not been 
provided.

7.3  Likelihood evaluation comparison

Having addressed the mathematics behind the calculation 
of both the likelihood and its adjoint consider now the effi-
cient programming of this calculation. As with the preced-
ing Kriging models the three dimensional matrix of differ-
ences between the locations of each sampling point in each 
of the d dimensions can be evaluated, stored and used in all 
subsequent likelihood calculations as it is independent of 
the model parameter values.

With these values stored the calculation of the likelihood 
commences with the calculation of the correlation matrix R.  
This process is identical to that used for ordinary Kriging 
with the same intermediate step taken to calculate and store 
the values of 10θk |x(i)k − x

(j)
k |2 which are necessary in the 

calculation of θ̄1.
The matrix R then forms the top left corner of Ṙ and is 

used to calculate the remaining terms. The complete set 
of d ∂R

∂x
 terms can be calculated in one operation by car-

rying out a pointwise multiplication of R, which has been 
repeated out d times, with the stored 3D matrix of differ-
ences and a 3D matrix of repeated θ values. This n× nd 
matrix can then be placed into the first row of Ṙ and trans-
posed and placed into the first column of Ṙ.

The calculation of the remaining components can be 
simplified considerably by considering the ∂

2R

∂x2k
 terms as 

modifications of the ∂2R
∂xk∂xl

 terms. By rearranging Eq. 48 to 
give,

it can be observed that Eq. 49 can be calculated simulta-
neously everywhere with 2(10θ )R then added to only the 
diagonal components to complete Ṙ.

With the correlation matrix defined the calculation of 
the likelihood function proceeds in an identical manner as 
for ordinary Kriging. Once again a Cholesky factorisation 
is performed followed by a calculation of Ṙ−1 as this is 
used directly in the calculation of ¯̇R, Eq. 50. Similarly the 
Ṙ−1(ẏ− 1̇µ̇) term used in the calculation of the variance is 
also stored for use in this calculation.

(64)

∂2R(i,j)

∂x2k
= 2(10θk )R(i,j)

− 4(10θk+θk )(x
(i)
k − x

(j)
k )(x

(i)
k − x

(j)
k )R(i,j),
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The calculation of the derivatives commences in a simi-
lar manner to that for an ordinary Kriging model with ¯̇R 
calculated using Eq. 50 and the stored matrices. R̄ is then 
initialized using the top left n× n portion of ¯̇R. The R̄1 
component of R̄ can be calculated in one operation and 
added to the initialized terms. As with the calculation of 
the second derivative terms of the correlation matrix the 
calculation of the R̄2 and R̄3 components can be simpli-
fied by once again recognising the similarities between 
Eqs. 53 and 54. In this case R̄3 can be calculated for all 
cases with additional component due to the diagonal, 
R̄2 =

∑d
k=1 2(10

θk ) ∂
2R

∂x2k
, included separately.

With the calculation of R̄ completed ∂φ
∂θ

 can be initial-
ized using Eq. 6. The θ̄2 components which are the result 
of a simple pointwise multiplication between the relevant 
sections of Ṙ and ¯̇R can then the added to these initialized 
values. As with the calculation of R̄ the calculation of the 
remaining components, θ̄3 and θ̄4 can be simplified by using 
Eq. 58 for the diagonal terms as well as the off diagonal 
terms and then adding in the additional term due to the 
diagonals.

Figure 23 presents a comparison of the likelihood evalu-
ation costs using the CPU and the two GPUs for 5, 10 and 
15 variable problems with a variety of sampling plan sizes. 
In all cases the sampling plan size is limited to a maximum 
of 300 points due to the rapid increase in the size of the cor-
relation matrix with increasing dimensionality compared to 
the previous Kriging models. The 15-dimensional gradient-
enhanced Kriging model with a 300 point sampling plan, 
for example, requires a 4800× 4800 correlation matrix. As 
with the other models the presented times for the GPU do 
not include the transfer of constant values to GPU memory 
which would occur only once at the beginning of any likeli-
hood optimization.

As with the other Kriging models the results of Fig. 23 
illustrate an initial overhead for the GPU when there are 
fewer sampling points in the model. Unlike the previous 

cases it appears that the complexity of the likelihood calcu-
lation makes it much less efficient for it to be performed on 
a GPU. The low end Quadro GPU, for example, is less effi-
cient than the CPU across all of the cases considered. The 
Tesla card, on the other hand, does eventually evaluate the 
likelihood more efficiently than the CPU but is much more 
sensitive to an increase in sample size than observed with 
the previous Kriging models. The optimization of the like-
lihood of a gradient-enhanced Kriging model could, there-
fore, be said to benefit from having the likelihood evaluated 
on a GPU but only for high-dimensional problems with 
large sampling plans and only when evaluated on a high 
end GPU.

7.4  Predictor evaluation comparison

The calculation of the gradient-enhanced Kriging predic-
tion can be simplified somewhat by the evaluation and 
storage of the constant values for µ̇ and Ṙ−1(ẏ− 1̇µ̇) once 
the modelling parameters have been defined. As with the 
other Kriging models it is only the correlation between the 
unknown points and the existing sample points, ¯̇R, which 
needs to be calculated.

The calculation of this correlation vector, or matrix 
if more than one unknown point is needed, proceeds in 
a manner similar to the calculation of ¯̇R. The vector r is 
first calculated in exactly the same manner as for ordinary 
Kriging. This vector is then used in the calculation of all 
of the ∂r

∂x
 terms which can be performed in a single opera-

tion using the calculated 3D matrix of point distances, a 
repeated r vector and the θ values.

With ¯̇R calculated the prediction can be determined 
through a vector–vector multiplication with Ṙ−1(ẏ− 1̇µ̇) 
or, if more than one prediction is required, through a 
matrix–vector multiplication.

Figure 24 illustrates the average cost of evaluating 
the predictor at 1000 points for problems of 5, 10 and 15 
dimensions with varying sampling plan sizes. As with the 
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Fig. 23  Comparison of gradient-enhanced Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and 
c 15-dimensional problems
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likelihood evaluation results, the Quadro GPU struggles 
compared to the CPU and at no point does it perform better 
whereas the high end GPU performs better in the major-
ity of cases and is less sensitive than the CPU to increas-
ing sampling plan size. Unlike the results for the previous 
Kriging models those of Fig. 24 indicate an initial overhead 
when evaluating the predictor on a GPU when the sampling 
size is small.

7.5  Error evaluation comparison

The calculation of the predicted error, Eq. 62, begins with 
the same calculation of ¯̇R used in the predictor calculation. 
This is then used along with a precomputed and stored R−1 
matrix to calculate ṙTR−1ṙ.

Figure 25 presents plots comparing the cost of calcu-
lating the error on the three pieces of hardware for 5, 10 
and 15-dimensional problems with varying sample size. 
As with the prediction there is no benefit to evaluating the 
error on the low end Quadro GPU which never performs 
better than the CPU. The Tesla GPU on the other hand per-
forms consistently better than the CPU with the exception 
of those cases where the sampling plan is relatively small. 

The Tesla GPU is also much less sensitive to increasing 
sampling size.

8  Single precision calculations

The above results clearly illustrate that the calculation of 
the likelihood, predictor and error functions for a variety of 
Kriging models can be improved when performed using a 
GPU, although the level of any performance improvement is 
dependent on the GPU hardware used. In all cases the lower 
end Quadro card is outperformed by the high end Tesla card.

However, all of the above comparisons use double pre-
cision calculations and GPUs are generally acknowledged 
to offer greater performance increases over CPUs when 
performing single precision operations. Can, therefore, 
the optimization of the Kriging model parameters, the 
most expensive of the above operations, be accelerated by 
switching to single precision calculations and performing 
these calculations on a GPU?

To give an indication of the potential performance 
improvement when switching to single precision calcula-
tions, Fig. 26 presents the compute time when performing 
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Fig. 24  Comparison of gradient-enhanced Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computa-
tion method for a 5, b 10, c 15-dimensional problems
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Fig. 25  Comparison of gradient-enhanced Kriging error evaluation costs for 1000 points in parallel for varying model size and computation 
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single and double precision matrix inversions using 
the Quadro card. In this instance given a large matrix, 
n = 1000, there is the potential for the cost to reduce by 
over 50 % when performed using single precision.

Figure 27 presents the variation in computation time when 
calculating the likelihood function for an ordinary Kriging 
model on the CPU and both GPUs when performed on a five-
dimensional problem in either single or double precision. 
This figure clearly illustrates that switching to single preci-
sion calculations offers a considerable performance advan-
tage. When n = 1000, for example, the cost of calculating the 
likelihood function using the CPU drops by almost 60 %, the 
Quadro card by over 83 % and the Tesla card by over 76 %.

Of course, this reduction in calculation time is not with-
out issues and resorting to single precision calculations can 

result in a loss of accuracy and in an increase in the num-
ber of calculations which fail due to the attempted inver-
sion of a non-positive definite correlation matrix. Sam-
pling the Kriging parameter space using a 1000 point Latin 
Hypercube for a five-dimensional problem with a sampling 
size of 1000 points i.e. n = 1000 in Fig. 27 and compar-
ing the results of double and single precision likelihood 
evaluations gives an indication of the level of risk involved 
in employing single precision calculations. Of the 1000 
likelihood evaluations approximately 12 % fail due to an 
attempted inversion of a non-positive definite matrix and 
of those cases that didn’t fail over 3 % resulted in a rela-
tive error of more than 1 % compared to the double preci-
sion calculation. Of course issues with matrix inversions 
can also occur when using double precision but these are 
generally rare thanks to a small level of regression which is 
always introduced into the model.

While single precision calculations of the likelihood 
have the potential to be more efficient the greater potential 
for failed evaluations and errors in successful evaluations 
means that they need to be employed with caution within 
any optimization of the Kriging parameters.

The proprietary OPTIMATv2 software, of which all of 
the presented CPU and GPU functions are part, employs a 
hybridised particle swarm with periodic particle reinitiali-
zation [51] to perform all likelihood optimizations. As with 
any hybridised algorithm, the stochastic search, the particle 
swarm, attempts to locate the region of an optimal solution 
which is then refined using a terminal local optimization, in 
this case sequential quadratic programming. Clearly, rely-
ing solely on single precision calculations while faster offer 
less chance that the same optimum set of parameters will 
be obtained as with an optimization employing solely dou-
ble precision calculations. The larger errors in the likeli-
hood calculation and the high proportion of failures would 
particularly impact the terminal local search and the deriva-
tives that it relies upon.

The particle swarm optimization, however, offers the 
basis for a mixture of single and double precision calcula-
tions to be performed within one optimization and, there-
fore, a potential reduction in overall tuning cost with very 
little loss in reliability. To achieve this the terminal local 
search is modified to employ only double precision calcu-
lations while the particle swarm employs single precision 
calculations, with a double precision calculation being per-
formed if a single precision calculation fails. This means 
that the optimization is only really affected by the errors 
in the magnitude of the likelihood. We, therefore, assume 
that while these errors exist they are smaller than the gen-
eral trend in the likelihood function. In other words it is 
assumed that even with mostly single precision calculations 
the particle swarm will be able to locate the correct region 
of the optimal parameter set which can then be converged 
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to precisely using double precision calculations within the 
local search.

Figure 28 above, illustrates the total time taken to opti-
mize the parameters for a five-dimensional Kriging model 
using solely double precision calculations within the hybrid-
ised search and with a mixture of double and single precision 
calculations as outlined above. In the majority of cases the 
strategy employing a mixture of precisions is either of a sim-
ilar or reduced cost compared to the wholly double precision 
calculation. The results for the Quadro card, in particular, 
demonstrate a significant benefit when employing the mixed 
precision approach with the cost to optimize the parameters 
of a Kriging model with a sample size of n = 1000 reduc-
ing by over 17 %. In all cases the mixed precision approach 
attains the same set of optimal Kriging parameters that were 
found by the purely double precision approach. However, 
based on the results of Fig. 27 the reduction in the cost of the 
optimization is not as great as expected due to the additional 
cost of recalculating the likelihood for those single precision 
cases which fail and compensating for errors in the start-
ing position of the terminal local search which may result 
in more double precision calculations within this part of the 
search. Of course any improvements in performance may be 
problem dependent with more single precision failures and, 
therefore, double precision recalculations as the optimization 
moves towards the lower bound of the regression parameter 
(i.e. towards a completely interpolating model) where matrix 
inversion failures can be more prevalent.

9  Automated selection of CPU/GPU

As already noted the above results illustrate that switching 
to evaluating the likelihood function on a GPU can offer a 

reduction in computation time. However, the results also 
illustrated that, in particular, for low dimensional prob-
lems with low sample sizes, the CPU can be more effi-
cient. Kriging models and their different variants can be 
employed as part of an automated design optimization pro-
cess where an initial small sampling plan of a design space 
is augmented with infill points based on some criteria, 
for example, the predictor or the expected improvement. 
As such, as a surrogate based optimization progresses the 
evaluation of the likelihood function involved in construct-
ing the model may move from a region where it is more 
efficient to do so on the CPU to one where it is more effi-
cient on the GPU. Similarly, an optimization may involve 
a number of surrogate models constructed from different 
sampling plans. An engineering design optimization, for 
example, may involve surrogate models constructed from 
a few expensive CFD or FEA simulations and other mod-
els of constraints derived from large numbers of cheap 
to evaluate geometrical quantities. In either case an auto-
mated approach to switch between CPU and GPU evalu-
ations of the likelihood function would be considerably 
advantageous.

To that end consider a simple methodology whereby 
prior to proceeding with the Kriging parameter optimiza-
tion a check is performed to determine whether evaluating 
the likelihood is more efficient on the CPU or GPU. In this 
instance 10 evaluations of the likelihood are performed in 
series using both the CPU and GPU on 10 different sets of 
Kriging model parameters. The same set of parameters are 
used to test both the CPU and GPU. The costs of these 10 
evaluations are then used to determine if the CPU or GPU 
should be used. While this adds a small initial overhead 
to the total cost of the optimization, correctly determining 
which approach to use may offer considerable time savings 
further on.

An alternative to this approach would be to employ 
a series of mappings based on performance tests such as 
those carried out previously in this paper. Grids of CPU and 
GPU performance with varying problem dimensionality 
and sample size could be interpolated and used to predict 
the cost of each likelihood evaluation and, therefore, which 
piece of hardware should be used. While theoretically fea-
sible the practicalities of employing such an approach in 
the real world are an issue. As can be observed from the 
previous results there can be a considerable difference in 
performance between GPUs. To make such an approach 
accurate over the vast range of hardware available would be 
impractical and calculating and comparing evaluation costs 
each time is a more robust approach. Of course if a com-
parison is performed once on a particular machine it could 
be stored and reused with the necessary performance map-
pings, therefore, being generated gradually as the software 
is used over time.
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Figure 29 above illustrates the total parameter tuning 
cost for an ordinary Kriging model on a five-dimensional 
problem with varying sample size. This figure presents the 
total costs when solely using the Tesla card or the CPU and 
when automatically switching between the the CPU and 
GPU according to the above strategy. It should be noted 
here that the CPU used in this instance is a Xeon E5-2609, 
the CPU in the same machine as the Tesla card. The results 
in Fig. 29, therefore, represent a live test of the automatic 
switching and not a theoretical test based on the perfor-
mance results presented previously.

As per the previous results the Tesla card is much less 
sensitive to increases in the sampling plan size than the 
CPU but the results in Fig. 29 still illustrate a cost penalty 
when the sampling plan size is low. The results for the auto-
matic switching, however, clearly demonstrate that for the 
cases where n equals 25, 50 and 100 the CPU is being used 
whereas when n ≥ 150 the GPU is being correctly used.

Whilst being a relatively simple approach, determining 
which hardware to evaluate the likelihood function on prior 
to performing any subsequent optimization is clearly very 
effective at reducing the overall parameter optimization 
cost.

10  Conclusions

The present article has investigated the potential of GPUs 
in the calculation of the concentrated log-likelihood func-
tion, prediction and error functions for five variations of 
Kriging. Ordinary Kriging, universal Kriging, non-station-
ary Kriging, multi-fidelity Kriging and gradient-enhanced 
Kriging were all considered with evaluation times for the 
above functions presented for a quad core CPU and two 

GPUs, one a low end GPU built into a laptop and the other 
a high end GPU specially design for GPU-based supercom-
puters. It should be noted that all likelihood evaluations 
performed included the adjoint of the likelihood function 
with the adjoint of the gradient-enhanced Kriging likeli-
hood function presented within this article for the first 
time. In addition to these comparisons, two strategies for 
reducing the cost of Kriging parameter optimizations were 
presented, the first employing a mix of single and double 
precision calculations, the second employing a scheme 
for automatically switching between the most efficient 
hardware.

In evaluating the likelihood for the ordinary, univer-
sal, non-stationary and multi-fidelity Kriging models both 
GPUs showed a performance advantage over the tested 
CPU with the high end GPU, in particular, being consid-
erably more efficient than the CPU on high-dimensional 
problems with large sampling plans. The low end GPU 
was less efficient but still outperformed the CPU when 
both the sampling plan and the underlying dimensionality 
of the problem were large enough. Both GPUs, however, 
demonstrated an inefficiency when calculating the likeli-
hood function for problems with relatively small sampling 
plans. The cost of evaluating the likelihood for a gradient-
enhanced Kriging model was the only case which demon-
strated the need for a high end GPU in order to obtain any 
benefit over the CPU due to the size of the matrix inver-
sions involved. The low end GPU in this case was always 
less efficient than the CPU.

The time taken to calculate predictions of each Kriging 
model in parallel was compared using the three hardware 
configurations. In all cases the predictor was demonstrated 
to benefit considerably from being evaluated on the GPU. 
The GPU was less sensitive to increasing sample sizes 
than the CPU. The only exception to this was the applica-
tion of the low end GPU to the evaluation of the gradient-
enhanced Kriging predictor which was demonstrated to 
never be more efficient than the CPU.

The efficiency of the error calculations was also shown 
to improve when performed on a GPU with the GPU again 
shown to be less sensitive to increasing sampling plan sizes 
and dimensionality. Once again only the high end GPU was 
more efficient than the CPU when calculating the predicted 
error for a gradient-enhanced Kriging model.

Switching from double to single precision calcula-
tions were demonstrated to offer a considerable reduction 
in compute time for the likelihood function but at the risk 
of introducing errors into the calculation and considerably 
more failures due to non-positive definite correlation matri-
ces. However, if utilised effectively within an appropriate 
optimization strategy, such as the mixed single/double pre-
cision hybdridized particle swarm presented here, single 
precision calculations have been demonstrated to offer a 
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reduction in the cost of the total Kriging parameter optimi-
zation. The level of this reduction is, of course, dependent 
on the underlying problem the Kriging model is attempting 
to represent and, therefore, the number of likelihood evalu-
ation failures and hence double precision recalculations 
which result.

The performance comparisons for the likelihood func-
tions all demonstrated a region where the CPU was more 
efficient than either GPU. Typically this was when the sam-
ple size was small and the number of dimensions low. In 
other words, when the loss in performance due to the inef-
ficiency of the GPU-based matrix inversion could not be 
overcome by any increase in efficiency in the other opera-
tions. Performing a brief test of the efficiency of the CPU 
and GPU likelihood calculation prior to proceeding with 
the optimization of the likelihood was demonstrated to 
offer a simple way in which the optimum hardware could 
be automatically selected. This has the potential to offer 
significant time savings when the construction of a Kriging 
model is central to a surrogate based optimization and the 
sampling plan grows with each iteration.

In conclusion, the above series of studies indicate that 
GPUs offer considerable potential to reduce the cost of 
evaluating the Kriging likelihood, predictor and error func-
tions which can reduce the time taken to construct Kriging 
models, perform Monte Carlo analyses for robust design 
and to create visualisations of the design space and update 
metrics. Switching to single precision calculations also has 
the potential to further reduce calculation times. However, 
the presented results also demonstrate that these reductions 
in cost are not without issue. Any performance benefit from 
a GPU is dependent on hardware configuration and the 
level of parallelization within the sub-operations making up 
each function while the use of single precision calculations 
leads to inaccuracies and a significant increase in the num-
ber of failed matrix inversions. To get the most efficient 
Kriging operations, therefore, requires careful management 
of when a GPU should and should not be used.
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