
1 3

Engineering with Computers (2016) 32:377–404
DOI 10.1007/s00366-015-0421-2

ORIGINAL ARTICLE

A study into the potential of GPUs for the efficient construction
and evaluation of Kriging models

David J. J. Toal1

Received: 11 February 2015 / Accepted: 8 September 2015 / Published online: 19 September 2015
© Springer-Verlag London 2015

1 Introduction

The application of surrogate models, meta-models or
response surfaces to the prediction of the response of an
expensive black box function has grown in popularity over
the past 15 years [15, 49, 56, 59]. By emulating the output
of a costly simulation or experiment these techniques have
the potential to reduce the cost of design optimizations and
sensitivity studies and provide fast and accurate conceptual
design tools.

Of the many methods which can be employed to con-
struct these surrogates, Kriging [32, 46] is one of the most
popular due to the accuracy of the response and the use-
ful update metrics based on the model’s error prediction.
However, the construction of a Kriging model requires the
selection of a number of modelling parameters controlling
the degree of regression, rate of correlation change and the
smoothness of the response. Typically the selection of these
parameters involves some form of maximisation of the
Kriging likelihood function which can be costly for a num-
ber of reasons. The construction and inversion of the neces-
sary correlation matrix can be expensive while the presence
of multiple minima necessitates the use of a global opti-
mization algorithm thereby requiring many evaluations of
the likelihood function to ensure that a global optimum is
attained.

This issue is exacerbated further as the number of sam-
ple points used to construct the Kriging model increases.
This causes the size of the correlation matrix to increase
which increases the expense of both the correlation matrix
construction and inversion. Extensions of ordinary Krig-
ing to cope with non-stationary responses [60], multi-
fidelity data [31] and gradients [34], further increase the
cost of calculating the likelihood. The construction of a

Abstract The surrogate modelling technique known as
Kriging, and its various derivatives, requires an optimiza-
tion process to effectively determine the model’s defining
parameters. This optimization typically involves the maxi-
misation of a likelihood function which requires the con-
struction and inversion of a correlation matrix dependent
on the selected modelling parameters. The construction of
such models in high dimensions and with a large numbers
of sample points can, therefore, be considerably expensive.
Similarly, once such a model has been constructed the eval-
uation of the predictor, error and other related design and
model improvement criteria can also be costly. The follow-
ing paper investigates the potential for graphical processing
units to be used to accelerate the evaluation of the Krig-
ing likelihood, predictor and error functions. Five different
Kriging formulations are considered including, ordinary,
universal, non-stationary, gradient-enhanced and multi-
fidelity Kriging. Other key contributions include the deriva-
tion of the adjoint of the likelihood function for a fully and
partially gradient-enhanced Kriging model as well as the
presentation of novel schemes to accelerate the likelihood
optimization via a mixture of single and double precision
calculations and by automatically selecting the best hard-
ware to perform the evaluations on.

Keywords Kriging · Surrogate modelling · Meta-
models · GPU

 * David J. J. Toal
 djjt@soton.ac.uk

1 Faculty of Engineering and the Environment, University
of Southampton, Southampton SO16 7QF, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-015-0421-2&domain=pdf

378 Engineering with Computers (2016) 32:377–404

1 3

non-stationary Kriging model requires the remapping of
the original design space to one which a stationary Kriging
model can better represent. Multi-fidelity Kriging models
can include large amounts of data if the low-fidelity black
box function is particularly cheap to evaluate while the size
of the correlation matrix for a gradient-enhanced model
increases rapidly with the number of dimensions.

Of course, once a Kriging model has been constructed
evaluating the model’s predictor or error functions can
also be costly if used repeatedly within a global optimi-
zation to search for potentially good designs, as part of a
sensitivity analysis where a Monte Carlo analysis is per-
formed on the Kriging model or as part of some visuali-
sation routine. Combining a Monte Carlo analysis within
a global optimization, as would be the case in a robust
design optimization [12], can be quite time consum-
ing. As with the likelihood function, the cost of evaluat-
ing both the predictor and error function increases as the
number of sample points or the complexity of the model
increases. For all Kriging models both the predictor and
error function require the calculation of the correlation of
the unknown point and all of the points used to construct
the model. The cost of constructing this vector of correla-
tions increases with the number of sample points but also
with the complexity of the model. Non-stationary Krig-
ing, for example, requires the same non-linear mapping
to be performed to the unknown point as to the points
defining the model prior to the calculation of the correla-
tion. Once the vector of correlations is constructed then
a vector–vector multiplication is required to calculate the
prediction or, in the case of the error, a matrix–vector fol-
lowed by vector–vector multiplication is required both of
which grow in cost with increasing sample size. In the
case of a gradient-enhanced model, the cost also grows
with increasing dimensions.

Previous work within the literature has attempted to
tackle the cost of constructing Kriging models mainly
by addressing the optimization problem used to select an
appropriate set of modelling parameters. Toal et al., for
example, first investigated the impact of varying optimiza-
tion effort on the construction of Kriging models [50] and
then developed an adjoint of the Kriging likelihood func-
tion [52] and an efficient hybridised particle swarm algo-
rithm to employ this adjoint [51]. Zhang and Leithead
developed an analytical Hessian of the likelihood func-
tion [63] and then a reduced cost approximation of the
inverse of the covariance matrix [35] both of which were
employed within local optimization algorithms.

The following paper approaches the problem of costly
evaluations of the likelihood, prediction and error functions
from the point of view of the hardware used to evaluate
these functions. In particular, the following paper investi-
gates the potential benefits of evaluating these functions on

a graphical processing unit (GPU) for a variety of different
Kriging models.

GPUs with their parallel processing prowess have
become increasingly used to help accelerate the solution of
a variety of problems in a number of fields such as engi-
neering, physics and finance. Even modestly priced per-
sonal computers now come equipped with some form of
GPU which, although typically used for playing games or
other graphics intensive activities such as image process-
ing or computer aided design, could easily be harnessed
to accelerate traditional CPU-based activities. GPUs have
already been used to great effect to accelerate compu-
tational fluid dynamics [3, 29], finite element [1, 40] and
reaction [48] simulations. They have been used to accel-
erate topology optimizations [7, 62], uncertainty analy-
ses [2, 45] and perform sensitivity studies [26]. Within
the field of optimization algorithm development, genetic
algorithms [24], simulated annealing [13, 61], ant colony
searches [55], particle swarms [58] and tabu searches [10]
have all been demonstrated to benefit from being run on a
GPU. Within the field of surrogate modelling, artificial neu-
ral networks [39], self-organising maps [64], support vector
machines [36, 37] and radial basis functions [4] have also
benefited from the parallel processing capability offered by
GPUs.

Recently GPUs have been applied to accelerate Kriging
interpolation by Cheng [8], Demir and Westermann [11]
and Gutiérrez de Ravé et al. [43]. While their work dem-
onstrates very effectively the performance enhancements
that GPUs can offer with respect to matrix multiplication,
inversion and summation, there are a number of significant
differences to the current work. The work of Cheng, Demir
and Westermann and Gutiérrez de Ravé et al. employed a
different formulation of Kriging compared to that used
in the current paper. Here the method used previously in
the literature by Sacks et al. [46] and Jones [27, 28] is
employed which requires an optimization of the Kriging
log-likelihood function in order to define the model param-
eters. As the likelihood function is not considered within
the work of Cheng, Demir and Westermann and Gutiér-
rez de Ravé et al. the expense of computing its derivative
on a GPU has also not been considered. While employing
large sample sizes Cheng and Gutiérrez de Ravé et al. also
tended to consider problems with relatively few dimensions
whereas the optimization literature regularly applies Krig-
ing to problems with over 10 variables. Cheng, Demir and
Westermann and Gutiérrez de Ravé et al. also concentrated
on the two most common forms of Kriging and neglected
its non-stationary, multi-fidelity and gradient-enhanced var-
iants as well as the model’s predicted error.

The following paper, therefore, investigates the effi-
ciency of evaluating the log-likelihood, predictor and error
function on a GPU for each of the Kriging variants noted

379Engineering with Computers (2016) 32:377–404

1 3

above. For each case CPU and GPU versions of the func-
tions are presented and compared for a variety of sampling
plan sizes and problem dimensionalities. In addition to
this the manner in which the functions are coded to take as
much advantage as possible of efficient matrix and vector
operations is presented and compared to two freely availa-
ble toolboxes within the literature. These results provide an
indication of the level of performance improvement offered
by a GPU implementation of each Kriging model and use-
ful coding tips for the development of similar functions.
With the performance advantage established the paper then
investigates two novel ways in which the general process
of Kriging parameter optimization can be accelerated fur-
ther, through the application of a mixture of single and dou-
ble precision calculations and by automatically switching
between hardware.

Both the CPU and GPU versions of all of the functions
presented are coded using Matlab and its inbuilt GPU tool-
box. Matlab is used in this case as it provides a rapid means
of prototyping all of the functions and offers seamless inte-
gration with the Rolls-Royce proprietary optimization suite
OPTIMATv2 [30, 51, 52, 54, 57] which is itself written in
Matlab. Using Matlab also allows the programs to make
use of the simple and efficient way Matlab has of handling
the transfer of data between main memory and that of the
GPU. It should be noted there are other languages that offer
an interface to a GPU other than Matlab and indeed there
are a variety of different libraries available for linear alge-
bra operations such as, cuBLAS1, MAGMA2, CULA3 and
LibSciACC. While further gains in performance may be
obtained over those presented if these libraries were
employed the comparison of each of these different librar-
ies and combinations of individual functions from separate
libraries is deemed beyond the scope of the current investi-
gation. Similarly, those functions running on the CPU
could be written wholly or partially in a variety of lan-
guages and rather than comparing the efficiency of all of
these only Matlab implementations will be considered.

The following paper commences by assessing the appli-
cation of a GPU to some of the fundamental mathematical

1 https://developer.nvidia.com/cuBLAS.
2 http://icl.cs.utk.edu/magma/.
3 http://www.culatools.com/.

operations involved in the subsequent calculations of the
likelihood, predictor and error functions. The paper then
moves on to investigate the most basic form of Kriging,
that of ordinary Kriging. The formulation of the likelihood
function along with its adjoint and its corresponding predic-
tor and error functions are presented. The efficient coding
of each of these functions in Matlab is then discussed and
the efficiency of CPU and GPU versions of these functions
compared. This process of presenting the mathematics of
the likelihood, it’s adjoint and the predictor and error fol-
lowed by a comparison of CPU and GPU implementations
is repeated for universal Kriging, non-stationary Kriging,
multi-fidelity Kriging and finally gradient-enhanced Krig-
ing. The adjoint of a fully and partially gradient-enhanced
Kriging likelihood function is presented here for the first
time. The paper then proceeds to investigate efficiency of
single precision calculations of the ordinary Kriging likeli-
hood function and presents a novel mixed precision opti-
mization strategy to reduce the cost of the hyperparameter
optimization. Finally, the automated switching between
CPU and GPU evaluations of the likelihood function prior
to a hyperparameter optimization is considered.

2 Basic mathematical operations

As noted above, GPUs have been demonstrated to offer
considerable performance improvements over traditional
CPUs due to their parallel processing prowess. However, as
with CPUs, GPUs come in a variety of different flavours.
As such all of the calculations within this paper will be
assessed using three different pieces of computational hard-
ware, a mobile quad core CPU, a mobile GPU and a high
end GPU details of which are presented in Table 1. Com-
paring the efficiency of all of the various operations using
these three pieces of hardware provides an effective con-
trast of what can be achieved with a GPU on both limited
and unlimited budgets. The Quadro 2000M, for example, is
a very basic graphics card bundled with a laptop whereas
the Tesla K20C is an extremely high end card developed
especially for GPU-based supercomputers and is repre-
sentative of the current cutting edge. The Tesla card, for
example, has a much higher core clock speed, many more
CUDA cores as well as more memory clocked at a higher

Table 1 Hardware overview

Name Information

i7-2860QM 4 cores, processor core clock 2.5 GHz & 16 GB DDR3 at 1600 MHz

Nvidia Quadro 2000M 192 CUDA cores, processor core clock 550 MHz and 2 GB GDDR3 RAM at 900 MHz

Nvidia Tesla K20C 2496 CUDA cores, processor core clock 706 MHz and 5 GB GDDR5 RAM at 2.6 GHz

https://developer.nvidia.com/cuBLAS
http://icl.cs.utk.edu/magma/
http://www.culatools.com/

380 Engineering with Computers (2016) 32:377–404

1 3

speed. Both the i7-2860QM CPU and Quadro 2000M are
in the same laptop.

Before comparing the performance of CPU and GPU
calculations of the likelihood, predictor and error functions
let us compare the performance of both on a number of
standard operations which are employed within the subse-
quent Kriging functions.

As noted above one of the major costs of evaluating the
likelihood function is due to the inversion of the correlation
matrix. In the following paper all such matrix inversions
employ a Cholesky decomposition followed by a series of
two back substitutions. Before considering the cost of a
complete inversion let us consider each of these sub-oper-
ations in turn. Figure 1 presents a comparison of the cost
of performing the Cholesky decomposition of a symmetric
matrix of size n as n varies using the CPU and both GPUs.
As can be observed, performing a Cholesky decomposition
on the Quadro 2000M is considerably less efficient than the
CPU. Likewise, over the majority of the range of n the CPU
is considerably more efficient than the Tesla card. Only for
large matrices, when n > 700 does the Tesla GPU offer any
advantage.

Figure 2 compares the cost of performing a single back
substitution. As before the Quadro card performs badly rel-
ative to the CPU. The Tesla card performs better but unlike
with the Cholesky decomposition it never outperforms the
CPU at any point over the range of n tested.

Combining the Cholesky decomposition and two back sub-
stitution operations together to calculate the inverse of a matrix,
as illustrated in Fig. 3, it can be observed that the CPU is gener-
ally much more efficient although the Tesla card does begin to
approach the performance of the CPU when n = 1000. Clearly
the operations involved in the inversion of a matrix cannot be
scaled effectively over the graphics card’s multiple cores.

Of course, the inversion of a matrix is not the only operation
performed regularly in the calculation of the likelihood, pre-
dictor or error functions. Figures 4, 5 and 6 compare the cost
of, respectively, a matrix–matrix multiplication, a pointwise
matrix–matrix multiplication and the pointwise multiplication
of two three dimensional matrices. Unlike the matrix inver-
sion the sub-operations involved in these three calculations
are much more amenable to parallelization and the results of
Figs. 4, 5 and 6 begin to illustrate the advantages of the many
compute cores of a GPU. Matrix–matrix operations, are con-
siderably faster on the Tesla card when n > 150 and the per-
formance of the Tesla card scales much better with increasing n
than the performance of the CPU. A similar trend is true for the
Tesla card when performing pointwise matrix multiplications
between both two and three dimensional matrices.

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

n

C
om

pu
ta

tio
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 1 Cost of performing a Cholesky decomposition with varying
matrix size

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

C
om

pu
ta

tio
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 2 Cost of performing a back substitution with varying matrix
size

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

C
om

pu
ta

tio
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 3 Cost of performing a matrix inversion with varying matrix
size

381Engineering with Computers (2016) 32:377–404

1 3

Even with its additional cores the Quadro card does not
perform as well as the CPU when performing matrix mul-
tiplications, however, it is much more efficient when per-
forming pointwise multiplications between 3D matrices
and outperforms the CPU when performing pointwise mul-
tiplications between 2D matrices when n > 700.

The above results, while illustrating both the advan-
tages and disadvantages of a GPU, offer an insight into the
results which can be expected when we compare the cost of
calculating the likelihood, predictor and error functions. As
will be presented in the following sections the calculation
of the likelihood generally involves a series of operations
to construct a matrix, invert the matrix and then calculate

the adjoint and subsequent partial derivatives. Given that
the matrix inversion when n < 1000 is faster on the CPU
one would, therefore, expect the GPU to begin to out per-
form the CPU in the calculation of the complete likelihood
when the other operations offer a greater cost saving than
the cost penalty of inverting the matrix on the GPU. Any
performance gain should also improve with increasing
problem dimensionality as the size and, therefore, cost of
the matrix inversion will stay constant but the cost of the
other operations, such as the pointwise matrix multiplica-
tions, will scale better if performed on a GPU. With this in
mind let us now consider the application of both GPUs to
ordinary Kriging.

3 Ordinary Kriging

3.1 Ordinary Kriging formulation

Of the five different formulations of Kriging considered
within the current paper ordinary Kriging is perhaps the
simplest and forms the basis upon which all of the other
models are derived. Popularised by Sacks et al. [46] for the
prediction of deterministic computer experiments, ordinary
Kriging has been applied in a wide variety of engineering
design and optimization problems.

The construction of a Kriging model assumes that when
two points are close together in the design space their
objective function values will be similar. This is modelled
by assuming that the correlation between two points xi and
xj is given by,

(1)
Rij = exp

(

−
d

∑

l=1

10θ
(l)�x(l)i − x

(l)
j �p(l)

)

,

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9
x 10

−3

n

C
om

pu
ta

tio
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 4 Cost of performing a matrix–matrix multiplication with vary-
ing matrix size

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

n

C
om

pu
ta

tio
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 5 Cost of performing a pointwise matrix–matrix multiplication
with varying matrix size

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

n

C
om

pu
ta

tio
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

Fig. 6 Cost of performing a 3D pointwise matrix–matrix multiplica-
tion with varying matrix size

382 Engineering with Computers (2016) 32:377–404

1 3

where θ and p represent vectors of length d of the Krig-
ing modelling parameters selected via a maximisation of
the likelihood on the observed dataset, y, which is given
by [27],

with the maximum likelihood variance, σ̂ 2, and mean, µ̂,
given by,

and

respectively where 1 denotes a vector of ones equal in
length to the number of sample points, n. As previously
noted the modelling parameters θ, p and, if necessary, a
regression constant [16], �, are selected via a maximisa-
tion of the likelihood function (Eq. 2). In order to acceler-
ate this optimization Toal et al. [51] developed an adjoint of
the likelihood function based on the linear algebra results
of Giles [20]. Throughout this paper the notation of Grie-
wank [22] is employed to denote the adjoint of a variable
using the bar symbol, the adjoint of correlation matrix R,
for example, is, therefore, denoted by R̄.

Commencing from an initial seeding for the adjoint of
the concentrated log-likelihood of φ̄ = 1 it can be shown
that the adjoint of the correlation matrix is given by,

with the derivative of the concentrated log-likelihood with
respect to the modelling parameters θ and p then given by,

and

respectively. If a regression constant, 10� has been added to
the diagonal of the correlation matrix the derivative of the
likelihood with respect to this constant is given by,

(2)φ = −n

2
ln(σ̂ 2)− 1

2
ln(|R|),

(3)σ̂ 2 = 1

n
(y− 1µ̂)TR−1(y− 1µ̂),

(4)µ̂ = 1
TR−1y

1TR−11
,

(5)R̄ = 1

2σ̂ 2
R−T (y− 1µ̂)T (y− 1µ̂)TR−T − 1

2
R−T ,

(6)
∂φ

∂θk
= ln 10

∑

ij

−10θk |x(i)k − x
(j)
k |pkR(i,j)R̄

(i,j)

(7)

∂φ

∂pk
= −

∑

ij

10θk |x(i)k − x
(j)
k |pk

× ln |x(i)k − x
(j)
k |R(i,j)R̄

(i,j)
,

(8)
∂φ

∂�
= 10�

∑

i

R̄
(i,i)

.

Employing this efficient formulation for the derivatives of
the likelihood function the optimization of the modelling
parameters can be accelerated. With an optimised set of
parameters obtained the corresponding correlation matrix
for the sample set and the vector of correlations, r, between
an unknown point, x∗ and the known sample points can
be constructed and used to calculate the prediction of the
Kriging model [27],

As noted above a Kriging model provides a very useful pre-
diction of the error in the model at an unsampled point,

which can be used to define regions of the space to include
additional data in order to improve the global accuracy of
the model. Both the Kriging predictor and the error func-
tions play an important role in the calculation of a number
of other very useful metrics. The probability of improve-
ment at an unknown point, P[I(x∗)], which is calculated as,

provides a measure of the probability that an unknown
point will attain an objective function value lower than the
current minimum ymin. A slight modification to this for-
mula also provides a metric which can be used to deter-
mine the probability of a point exceeding a constraint if
the surrogate model is constructed from a sampling plan
of constraint values. While the probability of improvement
indicates where improvement in the objective function can
be obtained it does not provide a measure of how big that
improvement will be. Another popular metric, the expected
improvement, E[I(x∗)] does just that and calculates the
amount of improvement over the current best value that is
expected and is given by,

It can be observed from Eqs. 11 and 12 that the predictor,
Eq. 9, and error function, Eq. 10, are employed repeatedly
in the calculation of the more “exotic” Kriging update cri-
teria. The efficiency of the calculation of both the predic-
tion and the error is, therefore, central to the efficiency of
the calculation of the probability of improvement, probabil-
ity of feasibility and expected improvement. The current
paper will only investigate the application of a GPU with
respect to improving the efficiency of the likelihood, pre-
diction and error calculations as these functions with their

(9)y(x∗) = µ̂+ rTR−1(y− 1µ̂).

(10)s2(x∗) = σ̂ 2
[

1− rTR−1r
]

,

(11)P[I(x∗)] = 1

2

[

1+ erf

(

ymin − y(x∗)

s
√
2

)]

,

(12)

E[I(x∗)] = (ymin − y(x∗))

[

1

2
+ 1

2
erf

(

ymin − y(x∗)

s
√
2

)]

+ s√
2π

exp

[−(ymin − y(x∗))2

2s2

]

.

383Engineering with Computers (2016) 32:377–404

1 3

many matrix multiplications, inversions and summations
are far more costly relative to the few additional mathemat-
ical operations to calculate P[I(x∗)] or E[I(x∗)].

3.2 Likelihood evaluation comparison

The first operation in the calculation of the concentrated
log-likelihood function for an ordinary Kriging model is
the construction of the correlation matrix. There are a num-
ber of ways in which this matrix can be constructed. In their
freely available Matlab surrogate modelling toolbox For-
rester et al. [17], for example, employ a nested for loop to
construct the upper triangular portion of R and then reflect
this in the diagonal to form the lower part of the matrix.
The Matlab DACE toolbox of Lophaven et al. [38] takes
a slightly different approach with the correlation matrix
being calculated in one operation from a predefined matrix
of distances between the sample points. However, neither
of these toolboxes calculate the adjoint of the likelihood
function which requires storage of some of the intermediate
values used in the calculation of R in order to improve the
efficiency of the derivative calculation.

In a similar manner to DACE, the algorithm employed
here pre-computes an n× n× d 3D matrix of distances
between all of the sample points where n is the number of
sample points and d is the number of dimensions. In the
case of ordinary Kriging these distances are independent
of the modelling parameters and remain constant through-
out the likelihood optimization. A similar process is used
within all of the Kriging routines wherever possible to
reduce the number of unnecessary repeated calculations.
Within the likelihood calculation this matrix of differences
is then combined with two further 3D matrices of repeated θ
and p values to calculate the 3D matrix of 10θk |x(i)k − x

(j)
k |pk

values which is necessary for the calculation of ∂φ
∂θ

 and ∂φ
∂p

.

With the 10θk |x(i)k − x
(j)
k |pk values calculated R is simply

a summation across the third dimension of the matrix fol-
lowed by the exponent. A diagonal matrix of 10� values is
then added to R to regress the model if required.

As with the toolboxes of Forrester et al. [17] and
Lophaven et al. [38] the calculation of R is followed by a
Cholesky decomposition. However, whereas these tool-
boxes use the resulting triangular matrix in all subsequent
calculations the present algorithm uses this matrix to cal-
culate and store R−1. As R−1 is required in the calculation
of R̄ it is much more efficient to compute it once, store and
reuse it to calculate the mean and variance than to use the
Cholesky decomposition and then calculate the inverse
anyway within the calculation of R̄.

The calculation of the mean, µ̂ is performed directly
using the inverse of the correlation matrix and the same
could be done for the variance, σ̂ 2. However, as indicated

in Eq. 3 the variance calculation includes the calculation of
R−1(y− 1µ̂) which is also required in the calculation of R̄.
Rather than calculating the variance in a single line the
operation is split into two parts with R−1(y− 1µ̂) calcu-
lated separately and stored for use in the adjoint calculation.

With all of the major components of Eq. 2 now defined
the concentrated log-likelihood can be calculated and
returned to the optimization algorithm if necessary. If, how-
ever, the gradients are also required the algorithm now pro-
ceeds with their calculation which is a considerable depar-
ture from the work of Forrester et al. and Lophaven et al.

The derivative calculation commences with the cal-
culation of the adjoint of the correlation matrix R̄. Given
that R−1 and R−1(y− 1µ̂) have already been calculated
and stored this reduces to a matrix multiplication, addi-
tion and pointwise division by 2σ̂ 2. With R̄ calculated the
derivative of the likelihood with respect to the regression
constant, �, can be easily calculated in a single operation.
∂φ
∂θk

 is also easily calculated using the stored 3D matrix of

10
θk | x(i)k − x

(j)
k |pk values and a pointwise multiplication

to the stored RR̄ matrix which has been repeated out d
times to form a 3D matrix. Each of the d layers of this 3D
matrix can then be summated to define the vector of deriva-
tives. The derivative with respect to p, ∂φ

∂p
 involves a very

similar calculation but with the addition of a 3D matrix of
ln |x(i)k − x

(j)
k | values precomputed along with the matrix of

differences.
The calculation of φ and its derivatives, therefore,

has a number of operations amenable to the paral-
lel capabilities of a GPU, for example, the calculation of
10θk | x(i)k − x

(j)
k |pk, R, R−1, µ̂, R−1(y− 1µ̂), σ̂ 2, R̄, ∂φ

∂θ
, ∂φ
∂p

and ∂φ

∂�
. These operations mainly consist of matrix and vec-

tor operations a lot of which involve pointwise operations
which can be easily spanned across the GPU.

The computation times for the likelihood function are
compared on a 5-, 10- and 15-dimensional analytical test
problem for sampling plans of varying sizes. The sim-
ple sphere function is used to provide the objective func-
tion values with the sampling plan defined using a random
Latin hypercube. The same sampling plan is used on every
machine and varies from 10 to 1000 points for the 5 and
10 variable case and between 10 and 500 points for the 15
variable case. All timings are averaged over 100 evalua-
tions of the likelihood with 100 sets of randomised model-
ling parameters used. The same modelling parameters are
used when testing each piece of hardware. Both the CPU
and GPU versions of the code have constant values, such as
the distances between sample points, calculated and stored
in memory prior to timing the 100 evaluations.

In the case of the GPU the transfer of these constants
over to the GPU memory is not included in the timing as
it would only occur once during a likelihood optimization

384 Engineering with Computers (2016) 32:377–404

1 3

and would, therefore, have very little bearing on the perfor-
mance of a GPU-based likelihood optimization. However,
the transfer of the Kriging modelling parameters to the
GPU and the transfer of the likelihood and its derivatives
back from the GPU is included in all of the GPU timings
as these would not remain constant during an optimization.
All comparisons of likelihood computation times include
the calculation of both the likelihood and its adjoint.

Figure 7 presents a comparison of the costs of calculat-
ing the Kriging concentrated log-likelihood function using
the three pieces of hardware. Also included in Fig. 7 is a
line representing the cost of calculating the likelihood
using the CPU but with it restricted to a single computa-
tional thread. By default Matlab will use all four compu-
tational threads on the test machine and the impact of this
can be clearly observed in these plots. Given the clear
advantage of Matlab using multiple CPU cores, single core
computations will be discounted from the comparisons for
the remainder of the present article.

Figure 7 illustrates that no matter the dimensionality of
the problem there is always some form of overhead associ-
ated with the use of either GPU due to the inefficiencies of
some processes, such as matrix inversions, when the matri-
ces are small. However, once overcome there is a clear
advantage to calculating the likelihood function on a GPU.
The Tesla card, in particular, shows a considerable speed
improvement over the CPU even for a modest number of
design variables. Evaluating the likelihood function for a 5
dimensional problem with a 1000 point sampling plan, for
example, is almost one fifth the cost of that of the CPU.

The less powerful Quadro 2000M GPU also offers an
improvement in likelihood calculation times over the CPU
as the number of sample points increases but the improve-
ment is much less than that of the Tesla card. Neverthe-
less for high-dimensional problems with a large number of
sample points there is a clear advantage to having a GPU
evaluate the likelihood function even if that GPU is rela-
tively low end.

3.3 Predictor evaluation comparison

Having considered the evaluation of the likelihood function
and, therefore, the construction of a Kriging model let us
now consider the model’s predictor given by Eq. 9.

It is clear from this equation that both the µ̂ and the
R−1(y− 1µ̂) terms are independent of the unknown point
at which a prediction is to be made. These terms can, there-
fore, be calculated and stored as soon as the Kriging model
parameters have been determined for use in any future
Kriging predictions. The DACE toolbox of Lophaven
et al. [38] does exactly this.

The only unknown in Eq. 9 is, therefore, the correla-
tion between the unknown point and the sample points, r,
the calculation of which closely follows that of R in the
computation of the likelihood function. Here the distance
between the unknown point(s), x∗, and the sample points
defining the Kriging model are calculated simultaneously
in a single matrix operation. The distances are then all
taken to the power of p, multiplied by 10θ and summed to
produce the vector r (or matrix if more than one sample
point is required).

With r obtained the remaining operation is a simple
matrix–vector or vector–vector multiplication between r
and the stored R−1(y− 1µ̂) to which the mean is added.
The calculation of both r and rTR−1(y− 1µ̂) are, there-
fore, prime candidates to benefit from being performed on
a GPU.

Figure 8 illustrates the cost of 1000 simultaneous predic-
tions using either a 5, 10 or 15 dimension Kriging model
constructed from a variety of different sample sizes. All
timings are once again averaged over 100 evaluations. It
should be noted that the cost of the GPU predictions also
includes the movement of the R−1(y− 1µ̂) vector and
matrix of differences to the GPU’s memory.

As would be expected the cost for all cases scales lin-
early as the number of sample points increases. However,
unlike the evaluation of the likelihood function the GPU

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)
5 Variables

i7−2860QM Single Core
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

10 Variables

i7−2860QM Single Core
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

15 Variables

i7−2860QM Single Core
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 7 Comparison of Kriging CLF evaluation costs for varying model size and computation method for a 5, b 10 and c 15-dimensional prob-
lems

385Engineering with Computers (2016) 32:377–404

1 3

offers better evaluation times even with relatively small
sample sizes. This is despite the slight overhead in transfer-
ring the constant data to the GPU each time. The Quadro
2000M also performs much better across the board than it
did when calculating the likelihood function.

The above results, therefore, indicate that even if the
likelihood evaluation and, therefore, the model parameter
optimization is more efficient on a CPU when the sample
size is small it is almost always more efficient to evaluate
the predictor of a large number of points on a GPU.

3.4 Error evaluation comparison

Calculating the error has a number of commonalities with
the predictor. It too requires the correlation between the
sample points and the unknown point(s), r, to be calcu-
lated. The approach described above for the predictor can,
therefore, be repeated here. The major difference is, there-
fore, the calculation of rTR−1r. The inverse of the corre-
lation matrix can be calculated and stored once the model
parameters have been determined as it is independent of
the unknown point which leaves a matrix–vector and vec-
tor–vector multiplication, if only one point is required or

a matrix–matrix followed by a matrix–matrix pointwise
multiplication and summation, if the error at more than one
point is required. These operations are once again ripe for
parallelization on a GPU.

Figure 9 illustrates the cost of calculating the error at
1000 points simultaneously for 5-, 10- and 15-dimensional
Kriging models constructed using varying numbers of sam-
ple points. As with the predictor the cost increases linearly
with the number of sample points and once again the GPU
offers a considerable advantage even when there are rela-
tively few sample points in the underlying Kriging model.
As with the predictor, even the low end GPU quickly out-
performs the CPU.

4 Universal Kriging

4.1 Universal Kriging formulation

A natural extension of ordinary Kriging is to replace the
assumption of a constant mean, µ̂, with a mean of a known
functional form. This technique is known as universal
Kriging [9] where the mean throughout the design space

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 8 Comparison of Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b
10, c 15-dimensional problems

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

n

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM multithread
TeslaK20C
Quadro2000M

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

n

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM multithread
TeslaK20C
Quadro2000M

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM multithread
TeslaK20C
Quadro2000M

(c)

Fig. 9 Comparison of Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b 10, c
15-dimensional problems

386 Engineering with Computers (2016) 32:377–404

1 3

is given by µ(x) = f (x)Tβ where the vector f is made up
of a set of known functions, f (x) = [1, f1(x), . . . , fm(x)].
Equation 4 in an ordinary Kriging model is, therefore,
replaced by,

to calculate the vector of unknown parameters, β. The cor-
relation matrix, R, is once again given by Eq. 1 and the
only other difference in the calculation of the likelihood
function is the replacing of y− 1µ̂ in the above equations
with y− Fβ̂. This pattern extends to the Kriging predictor
which now becomes,

with the constant mean, µ̂, replaced by the mean at the
unknown point given by the defined functional form. The
calculation of the variance for the ordinary Kriging model
does not employ a mean term, the formulation, therefore,
remains exactly the same for a universal Kriging model.
The adjoint formulation of the universal Kriging likelihood
function is also identical to that of ordinary Kriging.

4.2 Likelihood evaluation comparison

With the exception of a mean term which varies throughout
the design space the calculation of the universal Kriging
likelihood function and its adjoint is very similar to that of
ordinary Kriging. The calculation of the correlation matrix
from a pre-calculated set of distances between the sample
points, the inversion of this matrix, the calculation of the
variance and the likelihood itself are all identical.

The main difference in the likelihood evaluation is,
therefore, the calculation of the unknown parameters of
the mean, β̂, via Eq. 13. While this is of a similar form
to the calculation of the mean in ordinary Kriging it now
involves matrix–matrix and matrix–vector multiplications
and an inversion. While this is more costly than the equiva-
lent operation during an evaluation of the likelihood for an

(13)β̂ = (FTR−1F)−1FTR−1y,

(14)y(x∗) = f (x∗)T β̂ + r(x∗)TR−1(y− Fβ̂),

ordinary Kriging model it can certainly benefit from par-
allelization on a GPU. The matrix F constructed from the
known functional form is independent of the modelling
parameters θ and p and can, therefore, be computed once,
stored and reused in any subsequent likelihood evaluation.
A similar process is used in the DACE toolbox of Lophaven
et al. [38].

In a similar manner to the ordinary Kriging likelihood,
Fig. 10 illustrates the cost of evaluating the universal Krig-
ing likelihood on the CPU and GPUs for problems of 5, 10
and 15 dimension with a variety of different sample sizes,
n. Once again the GPU timings do not include the transfer
of the constants, such as the matrix of distances between
the sample points for each evaluation of the likelihood.

As observed with the ordinary Kriging results there is
an overhead associated with using the GPU when there are
less than approximately 200 sample points in the model.
However, as both the dimensions and number of sample
points increases the GPU outperforms the CPU considera-
bly. Once again the Tesla card offers the most performance
gain but even the low end Quadro card offers a worthwhile
speed-up at high dimensions.

4.3 Predictor evaluation comparison

As noted above the universal Kriging predictor is quite
similar in form to that of the ordinary Kriging predictor.
The only difference is that the constant mean has been
replaced by f (x∗)T β̂ and R−1(y− 1µ̂) has been replaced
by R−1(y− Fβ̂). As with the ordinary Kriging predictor
this last term is independent of the unknown point at which
a prediction is to be made and can therefore, be calculated,
stored and reused indefinitely once the model parameters
have been defined. The correlation between the unknown
point and the sample points in the model can be calculated
in exactly the same way as for the ordinary Kriging pre-
dictor. Only the mean term remains to be calculated and
can be done so using the known functional form and the

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 10 Comparison of universal Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation method
for a 5, b 10, c 15-dimensional problems

387Engineering with Computers (2016) 32:377–404

1 3

coordinates of the unknown point and the stored vector of
coefficients, β̂.

In addition to the calculation of r(x∗)TR−1(y− Fβ̂)
via a matrix–vector multiplication the universal Kriging
predictor therefore, requires an additional matrix–vector
multiplication in the calculation of f (x∗)T β̂. This assumes,
of course, that the prediction at more than one point is
required simultaneously, with the above calculations reduc-
ing to two vector–vector multiplications if a single point
was required. As with the ordinary Kriging model the oper-
ations involved in the prediction calculation should, there-
fore, benefit from parallelization on a GPU.

Figure 11 illustrates the cost of calculating the universal
Kriging prediction at 1000 points simultaneously for mod-
els with 5, 10 and 15 dimensions with a variety of different
sample sizes.

As with the ordinary Kriging predictor there is a linear
increase in cost for all cases as the sample size increases.
Once again both GPUs perform considerably better than
the CPU even when the sample size is relatively small with
the Tesla card giving a considerable reduction in compu-
tational effort. As with ordinary Kriging, even if the like-
lihood optimization is more efficiently performed on the

CPU it is almost always more efficient to evaluate the pre-
dictor for a large number of points on a GPU.

4.4 Error evaluation comparison

As noted above there is no difference in the formulation of
the ordinary Kriging error and that of universal Kriging. This
is reinforced by the timings presented in Fig. 12 which, when
compared to those in Fig. 9 show little discernible difference.

5 Non‑stationary Kriging

5.1 Non‑stationary Kriging formulation

While both ordinary and universal Kriging have been
shown to be effective at design space prediction and design
optimization both techniques can struggle to represent non-
stationary responses. In this instance, by non-stationarity
we mean changes in the smoothness throughout the design
space which can only be accurately represented by a corre-
sponding variation in the covariance function, see the solid
black line in Fig. 13a for a simple example.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s) i7−2860QM Multi−Threaded

Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s) i7−2860QM Multi−Threaded

Quadro 2000M
Tesla K20C

(c)

Fig. 11 Comparison of universal Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a
5, b 10, c 15-dimensional problems

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 12 Comparison of universal Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a
5, b 10, c 15-dimensional problems

388 Engineering with Computers (2016) 32:377–404

1 3

There are a number of different schemes within the lit-
erature for dealing with such responses including the direct
formulation of non-stationary covariance functions [19,
41, 42], moving window approaches [23], mixtures of
experts [18] and nonlinear mappings [47, 60]. Nonlinear
mapping schemes, which remap the original function into
a space whereby it can be more easily represented by a sta-
tionary covariance function, are attractive due to their sim-
plicity, the fact they result in a continuous function and are
more suited to small sample sizes.

Nonlinear mapping schemes can, however, suffer from
an over parameterization if not formulated correctly and
can require a costly multivariate integration. The method
used here and proposed by Xiong et al. [60] employs a
univariate piecewise linear representation of the density
function, Fig. 13b, used to perform the nonlinear map-
ping. Defining the nonlinear mapping in this manner

simultaneously reduces the number of parameters to be
optimised while the integration reduces to an analytical
function.

The formulation of the non-stationary Kriging model of
Xiong et al. is similar to that of an ordinary Kriging model
except that instead of a direct correlation between the sam-
ple points, xi and xj, the correlation between their nonlinear
mappings is used,

where the nonlinear mapping is given by,

with g(x′) defined by a piecewise linear function of K
pieces defined using K + 1 knots of density value 10ηk and
position ζk. In the following formulation it is assumed that
the knots defining this function are evenly spaced along
each design variable and that there is a single common θ
parameter across all dimensions.

Figure 13, recreated from Toal and Keane [54] illus-
trates an example of the density function and its impact
when used to map a non-stationary function. In this exam-
ple the nonlinear mapping procedure for the point x = 0.3
simply involves the calculation of the shaded area under
the piecewise line illustrated in Fig. 13b. When applied to
the whole function, as illustrated in Fig. 13a, the nonlinear
mapping expands out the rapidly oscillating region found
towards the left of the design space while collapsing in
the smoother region on the right thereby producing a new
function with the same degree of smoothness throughout
that can be better represented by a stationary covariance
function.

The general integral under the piecewise linear function
reduces to a series of constant areas under each section,

where,

which can be combined along with the position of the sam-
ple point to calculate the integral,

where j denotes the piecewise section that x falls within and
10ηx is,

(15)Rij = exp

(

−
d

∑

l=1

10θ�f (x(l)i)− f (x
(l)
j)�p(l)

)

,

(16)f (x(l)) =
∫ x(l)

0

g(x′)dx′,

(17)Ai =
1

2
(ζi+1 − ζi)(10

ηi+1 + 10ηi),

(18)bi =
10ηi+1 − 10ηi

ζi+1 − ζi
and ai = 10ηi+1 − biζi+1,

(19)f (x) = 1

2
(x − ζj)(10

ηx + 10ηj)+
j−1
∑

l=1

Al,

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y(
x)

Original Xiong Function
Xiong Function Post Non−linear Mapping

0 20 40 60 80 100
f(x)

x = 0.3 f(x) = 57.4

(a)

x

g(
x)

f(0.3) =
0.3

0
g(x)dx

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Density function
Defining Knots

(b)

Fig. 13 Illustration of the piecewise linear representation of the den-
sity function (a) and the resulting non-linear mapping of the Xiong
function (b) recreated from Toal and Keane [54]

389Engineering with Computers (2016) 32:377–404

1 3

As per any Kriging model the parameters defining the
model need to be optimised. Once again the concentrated
log-likelihood can be used to perform this optimization
and with the correlation matrix defined using the remapped
sample points the calculation of the likelihood function
proceeds in an identical fashion as that for ordinary Krig-
ing. The major difference here is that not only do θ, p and
the regression constant � need to be optimised but so to do
the density values, η at each knot location.

As per ordinary Kriging an adjoint of the modelling
parameters can also be derived for non-stationary Kriging
thereby accelerating the optimization process. The calcula-
tion of R̄ remains identical to Eq. 5 while the partial deriva-
tives of the model parameters become [54],

where,

with

and

where

(20)10ηx = bix + ai.

(21)
∂φ

∂θ
= −10θ ln 10

d
�

l=1

�

ij

��f
(l)
ij �p(l)RijR̄ij

,

(22)�f
(l)
ij = f (x

(l)
i)− f (x

(l)
j),

(23)
∂φ

∂p(l)
=

∑

ij

−10
θ��f

(l)
ij �p(l)ln ��f

(l)
ij �RijR̄ij,

(24)

∂φ

∂η
(l)
k

=
∑

ij

−10
θp(l) ��f

(l)
ij �(p

(l)−2)

×�f
(l)
ij

[

∂f (x
(l)
i)

∂η
(l)
k

−
∂f (x

(l)
j)

∂η
(l)
k

]

RijR̄ij,

(25)
∂f (x(l))

∂ηk
= ∂A1

∂ηk
if k = 1

(26)
∂f (x(l))

∂ηk
= ∂Ak

∂ηk
+ ∂Ak−1

∂ηk
if k ≤ L − 1

(27)

∂f (x(l))

∂ηk
= 1

2
(x(l) − ζL)

(

10ηL ln 10+ x(l)
∂bL

∂η
(l)
k

+ ∂aL

∂η
(l)
k

)

+ ∂AL−1

∂η
(l)
k

if k = L

(28)

∂f (x(l))

∂η
(l)
k

= 1

2
(x(l) − ζL)

(

x(l)
∂bL

∂η
(l)
k

+ ∂aL

∂η
(l)
k

)

if k = L + 1

and where L refers to the Lth piecewise section that x(l)
falls within. Given that the density function is represented
by a series of K straight lines of intercept a, gradient b and
integral A then,

The formulation of both the non-stationary Kriging pre-
dictor and error are identical to those for ordinary Kriging
with the exception that the unknown point(s) must undergo
the same nonlinear mapping as the points defining the
non-stationary Kriging model prior to calculation of the
correlations.

5.2 Likelihood evaluation comparison

As described above, once the nonlinear mapping of the
sample points has been performed the calculation of the
correlation matrix and hence the calculation of the likeli-
hood function for a non-stationary model will proceed in
an identical fashion to that of an ordinary Kriging model.
The nonlinear mapping, therefore, introduces an additional
cost over that of an ordinary Kriging model. As the param-
eters defining the nonlinear mapping are subject to change
during a likelihood optimization the distances between the
sample points will no longer be constant. Therefore, not
only does the nonlinear mapping have to be performed with
every likelihood evaluation but so to does the calculation of
distances between the sample points.

The calculation of the non-stationary likelihood function
proceeds as follows. Firstly the provided density function
values at each knot are used to calculate the gradient, b, and
intercept, a of each piecewise line along with the ∂a

∂η
 and ∂b

∂η

values if required. The constant areas, A, under each section

(29)
∂f (x(l))

∂η
(l)
k

= 0 if k ≥ L + 2

(30)
∂aL

∂ηL
= −ζL+1

∂bL

∂ηL

(31)
∂aL

∂ηL+1

= 10ηL+1 ln 10− ζL+1
∂bL

∂ηL+1

(32)
∂bL

∂ηL
= 10ηL ln 10

ζL+1 − ζL

(33)
∂bL

∂ηL+1

= 10ηL+1 ln 10

ζL+1 − ζL

(34)
∂Ak−1

∂ηk
= 1

2
(ζk − ζk−1)10

ηL ln 10

(35)
∂Ak−1

∂ηk−1

= 1

2
(ζk − ζk−1)10

ηL+1 ln 10

390 Engineering with Computers (2016) 32:377–404

1 3

are then calculated along with their derivatives. The bounds
of the piecewise section that each of the sample points falls
within is then determined in parallel and used to calculate
the cumulative sum of the areas under the preceding sec-
tions which in turn is used to initialise the mapped values.
The density function value at the current point is then cal-
culated and used to calculate the integral under the current
piecewise section. Upon adding this to the cumulative sum
of the areas under the preceding sections the nonlinear
mapping is completed. During this computation of the non-
linear mapping the derivatives, ∂f (x)

∂η
, can also be calculated.

With the nonlinear mapping performed the distances
between every sample point in each axis can be calcu-
lated. As per the ordinary Kriging likelihood calcula-
tion, this enables the storage of the n× n× d matrix of
10

θk | x(i)k − x
(j)
k |pk values necessary for the subsequent

adjoint calculation. With these distances determined the
calculation of the correlation matrix and the remainder
of the likelihood calculation can proceed as per ordinary
Kriging.

With the likelihood calculated the derivative of the
likelihood with respect to the modelling parameters still
remains to be determined. The majority of this process is
the same as that for ordinary Kriging. First the adjoint of
the correlation matrix, R̄, is calculated using Eq. 5 and used
to calculate ∂φ

∂�
 and the pointwise multiplication of R̄ and

R. The calculation of ∂φ
∂p

 proceeds in an identical manner
to that for an ordinary Kriging model whereas the calcula-
tion of ∂φ

∂θ
 is the same with the exception that the derivatives

for every dimension are summed together as in the above
model there is a single θ term. Given that ∂f (x)

∂η
 has been cal-

culated for each sample point and each dimension it only
remains to calculate ∂φ

∂η
 for each knot density using Eq. 24.

Figure 14 presents a comparison of non-stationary likeli-
hood evaluation times for 5, 10 and 15-dimensional prob-
lems with a variety of different sample sizes. Once again all
of the results are averaged over 100 evaluations.

As observed with the ordinary and universal Krig-
ing results the evaluation of the non-stationary likelihood
function suffers from an initial overhead compared to the
CPU-based evaluation. However, for all cases the point at
which the GPUs become more efficient requires a smaller
sample size. For the 15-dimensional problem the Telsa card
becomes more efficient when the sample size is greater
than approximately 150 points but for the universal and
ordinary Kriging models it’s only more efficient when a
sample size greater than approximately 200 points is used.
Similarly, for the same problem, the Quadro card becomes
more efficient after a sample size of 200 with a non-sta-
tionary model compared to almost 300 for a universal or
ordinary Kriging model.

The above results, therefore, illustrate that as the dimen-
sionality and number of sample points in a non-stationary
Kriging model increase it becomes more and more efficient
to perform the calculation on a GPU as opposed to a CPU.

5.3 Predictor evaluation comparison

As with the universal Kriging predictor, the predictor for
a non-stationary Kriging model is quite similar to that of
an ordinary Kriging model. The only substantial differ-
ence is the need for the unknown point or points to undergo
the same nonlinear mapping as the sample points defin-
ing the model. Once this has been carried out the correla-
tion matrix can be constructed as normal with the stored
R−1(y− 1µ̂) vector and mean reducing the number of cal-
culations required. With the modelling parameters defined
the nonlinear mappings of the sample points can also be
stored for use in the calculation of the correlation between
the unknown and known points.

The nonlinear mapping of the coordinates of the
unknown points can be performed using exactly the same
algorithm as employed in the likelihood computation. The
only difference is that the derivatives, ∂f (x)

∂η
, no longer need

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 14 Comparison of non-stationary Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c
15-dimensional problems

391Engineering with Computers (2016) 32:377–404

1 3

to be determined. Other constants such as the values of a, b
and A can be stored and reused in any prediction.

Figure 15 presents the cost of 1000 simultaneous evalua-
tions of the non-stationary Kriging predictor using the CPU
and GPUs on 5, 10 and 15-dimensional problems for a vari-
ety of sample sizes. As with the preceding cases the cost of
evaluating the prediction increases linearly with increasing
sample size and as with these cases there is a clear advan-
tage to using a GPU even at relatively low sample sizes.
Both the low and high end GPUs out perform the CPU in
the majority of cases.

5.4 Error evaluation comparison

The calculation of the predicted error of a non-stationary
Kriging model is identical to that of an ordinary Kriging
model except that, as with the predictor, a nonlinear map-
ping of the unknown points is required to construct the
correlation.

Figure 16 illustrates the cost of making 1000 simulta-
neous evaluations of the error function of a non-stationary
Kriging model constructed in 5, 10 and 15 dimensions
using a variety of sampling plan sizes. Once again the

linear increase in cost can be observed in all cases with the
GPU quickly offering a substantial improvement in calcu-
lation time with even the low end GPU providing a con-
siderable performance gain on high-dimensional problems.

6 Multi‑fidelity Kriging

6.1 Multi‑fidelity Kriging formulation

Multi-fidelity surrogate modelling techniques have grown
in popularity over the past few years as they can be used
to combine many cheap low-fidelity simulations with a
smaller number of more accurate high-fidelity simulations
to create a surrogate model much more accurate than a
model created with only the high-fidelity simulations [5,
14, 53]. Figure 17 illustrates the potential of construct-
ing such multi-fidelity models. Here two analytical func-
tions are used to represent high-fidelity (expensive) and
low-fidelity (cheap) functions. A surrogate model through
only the expensive function at the indicated sample points
produces an inaccurate prediction but if these points are
augmented with 11 cheap sample points the resulting

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

U
ni

ve
rs

al
 K

rig
in

g
P

re
di

ct
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 15 Comparison of non-stationary Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation
method for a 5, b 10, c 15-dimensional problems

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s) i7−2860QM Multi−Threaded

Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

U
ni

ve
rs

al
 K

rig
in

g
E

rr
or

 C
os

t (
s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 16 Comparison of non-stationary Kriging Likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c
15-dimensional problems

392 Engineering with Computers (2016) 32:377–404

1 3

multi-fidelity model almost exactly represents the true
response of the expensive function.

Kriging has been extended to make use of multiple lev-
els of simulation data by Kennedy and O’Hagan [31]. In
such a model the output of a high-fidelity simulation is
approximated by multiplying a surrogate model of the out-
put of a cheap simulation by a scaling factor, ρ, and adding
this to a second surrogate model of the difference between
the low and high-fidelity simulation outputs,

If we denote two matrices of sample points, Xc and Xe
as representing the cheap and expensive sampling plans,
respectively, where we assume that a cheap, low-fidelity
simulation has been carried out at every expensive, high-
fidelity sample point then the covariance matrix, C, is,

These correlations are of the same form as Kriging, Eq. 1,
except that there are now two correlations and, therefore,
twice the number of modelling parameters to determine,
one for each surrogate model. In addition to these param-
eters the scaling factor, ρ must also be determined.

In Kennedy and O’Hagan’s approach the cheap data is
assumed to be independent of the expensive data which
means that the set of modelling parameters for the model
of the cheap data can be determined in a completely iden-
tical manner to that of an ordinary Kriging model. The
remaining set of modelling parameters, including the scal-
ing factor, are determined through a very similar likelihood
optimization but where the vector of objective function
values, y, in the above equations for the ordinary Kriging

(36)Ze(x) = ρZc(x)+ Zd(x).

(37)

C =

(

σ 2
c
Rc(Xc,Xc) ρσ 2

c
Rc(Xc,Xe)

ρσ 2
c
Rc(Xe,Xc) ρ2σ 2

c
Rc(Xe,Xe)+ σ 2

d
Rd(Xe,Xe)

)

.

maximum likelihood estimators of mean and variance, have
been replaced by the difference between the high-fidelity
output and the low-fidelity output multiplied by the scaling
factor,

The derivatives of the likelihood of the difference model
with respect to the θ, p and � modelling parameters can be
calculated in an identical manner to those for an ordinary
Kriging model. The derivative with respect to the scaling
factor is calculated by first defining the adjoint of the vector
of differences [53],

which can then be used to calculate the derivative as,

With the hyperparameters determined the multi-fidelity
Kriging predictor is defined as,

where,

and

and the multi-fidelity error prediction is defined as,

With the error and prediction determined the predicted
improvement and expected improvement can be calculated
as normal.

6.2 Likelihood evaluation comparison

As the optimization of the modelling parameters for a
multi-fidelity Kriging model are performed in series the
evaluation of the likelihood for the low-fidelity surrogate
model is, therefore, identical to that of an ordinary Kriging
model. The following section will, therefore, focus on the
evaluation of the likelihood for the difference model under
the assumption that an appropriate set of parameters for the
cheap model has already be obtained.

The calculation of the likelihood function for the differ-
ence model is almost identical to that for ordinary Kriging.
The correlation matrix is constructed in exactly the same

(38)d = ye − ρyc(Xe).

(39)d̄ = −R−1
d

(

d − 1µ̂d

)

(

1

σ̂ 2
d

)

,

(40)
∂φ

∂ρ
= −

ne
∑

i=1

yci d̄i.

(41)ye(x
∗) = µ̂+ cTC−1(y− 1µ̂),

(42)µ̂ = 1
TC−1Y

1TC−11
,

(43)c =
[

ρσ̂ 2
c Rc(Xc, x

∗)
ρ2σ̂ 2

c Rc(Xe, x
∗)+ σ̂ 2

dRd(Xe, x
∗)

]

(44)s2e(x
∗) = ρ2σ̂ 2

c + σ̂ 2
d − cTC−1c.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

f
e
(x)

f
c
(x)

Expensive DoE
Cheap DoE
Single Fidelity Model
Multi−fidelity Model

Fig. 17 A multi-fidelity Kriging example

393Engineering with Computers (2016) 32:377–404

1 3

fashion using a precomputed matrix of differences between
the points. As per the other models in the current paper the
inverse of the correlation matrix is explicitly calculated
as it is required in the adjoint calculation. As noted above
the only major difference is the calculation of d via Eq. 38
which is a very simple operation.

With the likelihood calculated, the calculation of the
derivatives with respect to θ, p and � is identical to that
of the ordinary Kriging approach. The calculation of
the derivative with respect to ρ is also very simple. The
R−1
d (d − 1µ̂d) term is used in the calculation of the vari-

ance as part of the likelihood calculation and is kept in
memory for the calculation of R̄ so the calculation of d̄
involves a simple division of each element of this vector by
the variance. The derivative is then the summation of the
pointwise multiplication of d̄ and the vector of low-fidelity
objective function values at the high-fidelity sample points.

Figure 18 presents the computational costs of evalu-
ating the likelihood of a difference model for a 5, 10 and
15-dimensional model with a varying number of sample
points. In each case it is assumed that the difference model
is constructed on top of a low-fidelity model defined using
a sampling plan with 1000 points. This is analogous to the
construction of a multi-fidelity Kriging model from an
extremely cheap simulation and an expensive simulation of
varying cost thereby enabling different sampling plan sizes.

In the case of the likelihood evaluation of the differ-
ence model, the size of the underlying cheap surrogate
has no impact as it is only the objective function values of
the cheap function corresponding to the sampling plan of
the expensive function that is of importance. The size of
the matrix and vector multiplications are, therefore, only
dependent on the size of the expensive sampling plan. Once
again the costs of the evaluating the likelihood are averaged
over 100 evaluations with the constant differences between
sample points precomputed and passed to the GPUs mem-
ory not included.

Overall the results of Fig. 18 are extremely close to that
for the ordinary Kriging model. The same overhead when

using the GPU on small sampling plans and the same per-
formance advantage on large sampling plans is observed.

6.3 Predictor evaluation comparison

The multi-fidelity Kriging predictor, given by Eq. 41,
while similar in form to the ordinary Kriging predictor
does require slightly more effort to calculate. As per ordi-
nary Kriging a number of the terms can be precalculated
and stored for use once the model parameters have all been
determined. The mean, µ̂ and the C−1(y− 1µ̂) terms, for
example, can be calculated once and stored as can the
matrices of differences between the two sampling plans.
The only term which must be calculated is, therefore, the
correlation, c, between the unknown points and the sam-
pling plans. This operation can be split into two parts, the
first to calculate ρσ̂ 2

c Rc(Xc, x
∗) and the second to calculate

ρ2σ̂ 2
c Rc(Xe, x

∗) +σ̂ 2
dRd(Xe, x

∗). Both operations involve
the calculation of the distances between the unknown and
known points as per ordinary Kriging and then the calcula-
tion of the correlations. The calculation of Rc(Xe, x

∗) and
Rd(Xe, x

∗) use the same set of differences which can be
calculated once and reused. The calculation of the differ-
ences and the final correlations both involve a lot of matrix
operations which should be amenable to parallelization on
a GPU.

Figure 19 illustrates the cost of evaluating the multi-
fidelity Kriging prediction at 1000 points simultaneously
for 5, 10 and 15-dimensional problems. Unlike previous
cases where the number of sample points increased in a lin-
ear manner the sampling plans used in this comparison aim
to mimic that of a real world multi-fidelity surrogate mod-
elling process. The size of the sampling plan for the under-
lying cheap function is constant throughout at 25 times the
number of dimensions in the problem. The 5 dimension
cases, therefore, all have 125 cheap function evaluations
while the 15 dimension cases have 375. The number of
points in the expensive sampling plan is also a factor of the
number of dimensions but this time the factor is permitted

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 18 Comparison of Co-Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and c 15-dimen-
sional problems

394 Engineering with Computers (2016) 32:377–404

1 3

to vary from 2 to 15 times the number of dimensions. The
5 dimensional case, therefore, varies from a case with
125 cheap points and 10 expensive points to a case with
125 cheap points and 75 expensive points. Likewise the
15-dimensional case varies from 375 cheap points and 30
expensive to 375 and 225 expensive points.

The results presented in Fig. 19 are similar to those of
the previous Kriging predictors. When the total number of
points is less than 200 and the problem is of low dimen-
sions the low end GPU is less efficient than the CPU but
this quickly reverses as the dimensionality and the number
of sample points increases. As with the other predictors the
high end Tesla card proves to be much more efficient than
the CPU on all of the cases tested.

6.4 Error evaluation comparison

The calculation of the error function of a multi-fidelity
Kriging model commences in the same manner as the pre-
dictor with the calculation of the correlation between the
unknown point or points. With this calculated the multipli-
cations with the stored inverse of the combined correlation
matrix, C−1, can be carried out and the other terms added.

The calculation of cTC−1c should, therefore, benefit from
parallelization.

Figure 20 demonstrates the cost of evaluating the error
for 5, 10 and 15-dimensional problems. As with the predic-
tion comparisons a 25d low-fidelity sampling plan is used
throughout with the high-fidelity sampling plan varying
from 2d to 15d in size.

The results of Fig. 20 reinforce those observed with the
previous cases. The Tesla card offers a huge advantage over
the CPU in all of the cases considered whereas the Quadro
card requires a larger number of sample points and a higher
number of dimensions in order to become more efficient.

7 Gradient‑enhanced Kriging

7.1 Gradient‑enhanced Kriging formulation

The application of derivative information has long been a
corner stone of local optimization methodologies [6] and
with the development of automatic differentiation [22]
and adjoint enabled simulations [21, 25] the derivatives

130 140 150 160 170 180 190 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

n
c
 + n

e

C
o−

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

260 280 300 320 340 360 380 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n
c
 + n

e

C
o−

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n
c
 + n

e

C
o−

K
rig

in
g

P
re

di
ct

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 19 Comparison of multi-fidelity Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computation
method for a 5, b 10, c 15-dimensional problems

130 140 150 160 170 180 190 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

n
c
 + n

e

C
o−

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

260 280 300 320 340 360 380 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n
c
 + n

e

C
o−

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n
c
 + n

e

C
o−

K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 20 Comparison of Co-Kriging error evaluation costs for 1000 points in parallel for varying model size and computation method for a 5, b
10, c 15-dimensional problems

395Engineering with Computers (2016) 32:377–404

1 3

of even high-dimensional problems can be computed with
very little additional cost. All of the variants of Kriging
considered up until this point have assumed, however,
that only the objective function value is known at each
sampling point. Gradient-enhanced Kriging models [33,
34, 44] are an extension of Kriging to include both the
objective function value and the derivative of the objec-
tive function with respect to each design variable at each
sample point. Gradient-enhanced Kriging can, therefore,
be used to fully exploit any derivative information avail-
able from an adjoint or an automatically differentiated
computer code.

Figure 21 illustrates the impact that the inclusion of gra-
dient information can have on a surrogate model. Here, the
same analytical function used to illustrate multi-fidelity
Kriging is employed but the analytical gradient information
at each of the four sample points has also been included in
the surrogate model. The resulting model is clearly more
accurate throughout the design space than the model with-
out gradient information.

In a gradient-enhanced Kriging model the vector of
observed data y containing n observations is now extended
to include derivative information at every sample point
with respect to every variable,

and is now n(d + 1) long. The original correlation matrix,
R must, therefore, be expanded to include the correlations
between the data points and the derivatives and the deriva-
tives and themselves. The resulting correlation matrix is
n(d + 1)× n(d + 1) in size and defined as,

(45)ẏ =
(

yT ,
∂yT

∂x1
,
∂yT

∂x2
. . .

∂yT

∂xk

)T

,

where R is defined by Eq. 1, the first derivative of the cor-
relation matrix is defined as,

with the corresponding component of Ṙ on the opposite
side defined as its transpose. The diagonal components of
Ṙ defining the correlation between derivatives of the same
dimensions are defined as,

with the off diagonal components, the correlation between
derivatives of different dimensions, defined as,

As well as the inclusion of derivative information in such
a Kriging model it should be noted that the p modelling
parameter has been fixed at 2 in order for the model to be
differentiable. While this makes the resulting parameter
optimization simpler by reducing the number of variables
the size of the correlation matrix, Ṙ, can grow considerably
for high-dimensional problems with even a modest num-
ber of sample points thereby making the calculation of the
likelihood function expensive. With the correlation matrix
defined as above the calculation of the likelihood is identi-
cal to that for ordinary Kriging with y replaced by ẏ in the
equations for the µ̂ and σ̂ 2 and the vector of ones, 1, now
containing n ones followed by dn zeros and denoted as 1̇.

As with the previous Kriging models it is possible to
define an adjoint of the likelihood function with which to
efficiently calculate the derivatives of the likelihood with
respect to the θ parameters. Using the same linear algebra
results [20] as before the adjoint of the gradient-enhanced
Kriging correlation matrix becomes,

As can be observed from Eq. 46 the gradient-enhanced
Kriging correlation matrix is constructed from four sets
of terms, the basic correlation matrix, the correlation of
the data points with the derivatives and the correlation of

(46)Ṙ =

R ∂R
∂x1

∂R
∂x2

. . . ∂R
∂xd

�

∂R
∂x1

�T
∂2R

∂x1∂x1

∂2R
∂x2∂x1

. . . ∂2R
∂xd∂x1

�

∂R
∂x2

�T
∂2R

∂x1∂x2

∂2R
∂x2∂x2

. . . ∂2R
∂xd∂x2

...
...

...
. . .

...
�

∂R
∂xd

�T
∂2R

∂x1∂xd

∂2R
∂x2∂xd

. . . ∂2R
∂xd∂xd

,

(47)
∂R(i,j)

∂xk
= −2(10θk)(x

(i)
k − x

(j)
k)R(i,j)

(48)
∂2R(i,j)

∂x2k
=

[

2(10θk)− 4(102θk)(x
(i)
k − x

(j)
k)2

]

R(i,j),

(49)
∂2R(i,j)

∂xk∂xl
= −4(10θk+θl)(x

(i)
k − x

(j)
k)(x

(i)
l − x

(j)
l)R(i,j).

(50)¯̇R = 1

2σ̇ 2
Ṙ−T (ẏ− 1̇µ̇)T (ẏ− 1̇µ̇)T Ṙ−T − 1

2
Ṙ−T .

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

f(x)
DoE
Kriging
Gradient Enhanced Kriging

Fig. 21 Gradient-enhanced Kriging example

396 Engineering with Computers (2016) 32:377–404

1 3

the derivatives with themselves for the same and different
dimensions. Equations 47, 48 and 49 which define these
correlations all employ both the modelling parameter θ and
the original correlation matrix, R. As θ is also used to cal-
culate R the calculation of the adjoint of the likelihood with
respect to θ therefore, first requires the calculation of the
adjoint of the original correlation matrix. As the correlation
matrix appears in four different equations defining Ṙ then
its adjoint is itself constructed from four different terms,

where ¯̇R(1:n,1:n) denotes the top left corner of ¯̇R corresponding
to the correlation between the data point objective functions,

defines the component of R̄ due to the correlation between
the data points and the gradients,

defines the component of R̄ due to the correlation between
gradients of the same dimension and

defines the component due to the correlation between gra-
dients of different dimensions with R̄3 defined as the sum
over all of the off diagonal components R̄

(k,l)
3 . In all of these

equations �xk is defined as a matrix of distances between
the sample points of the kth dimension.

As with the correlation matrix, the θ parameter is used in
four different correlation calculations, therefore, the deriva-
tive of the likelihood with respect to each of the θ param-
eters is dependent on four components,

where θ̄1 is equal to Eq. 6 with R̄ replaced by that due to
Eq. 51 and p = 2, θ̄2 is due to the correlation between
objective functions and gradients and is given by,

θ̄3 is due to the correlation between gradients of the same
dimension,

(51)R̄ = ¯̇R(1:n,1:n) + R̄1 + R̄2 + R̄3,

(52)R̄1 = 2×
d

∑

k=1

2(10θk)�xk
∂R

∂xk

(53)R̄2 =
d

∑

k=1

[

2(10θk)− 4(102θk)�x2k

]∂2R

∂x2k
,

(54)
R̄
(k,l)
3 = −4(10θk)(10θ l)�xk�xl

∂2R

∂xk∂xl
× 2,

(55)
∂φ

∂θk
= θ̄1 + θ̄2 + θ̄3 + θ̄4

(56)θ̄2 = 2 ln 10
∑

ij

∂R

∂xk

∂R

∂xk
,

(57)
θ̄3 = 2 ln 10(10θk)

∑

ij

[

1− 4(10θk)�x2k

]∂2R

∂x2

∂2R

∂x2k

and θ̄4 is due to the correlation between gradients of differ-
ent dimensions,

In the above equations the ∂R
∂xk

, ∂
2R

∂x2k
 and ∂2R

∂xk∂xl
 terms refer to

locations in ¯̇R corresponding to the locations of ∂R
∂xk

, ∂
2R

∂x2k
 and

∂2R
∂xk∂xl

 respectively, in Ṙ.
With the θ modelling parameters determined the model’s

predictor and predicted error as well as the probability of
improvement and expected improvement can be calculated
as with any Kriging model. The equation for the predictor
is of a similar form to that for ordinary Kriging,

with the extended vector of correlations, ṙ, defined as,

and the mean defined as,

The predicted error is once again of a similar form to that
of ordinary Kriging,

with r replaced by ṙ and with the variance defined as,

7.2 Constructing a model with missing information

The above formulation assumes, of course, that deriva-
tives are available for all of the variables in the model and
that every point has a complete set of derivatives associ-
ated with it. This may, of course, not be the case, in real-
life design optimization problems there may be a mixture
of sampling points with and without gradients and some
design variables may preclude the calculation of derivatives
completely. To cope with such scenarios a masking vec-
tor can be used to exclude columns and rows of the cor-
relation matrix when calculating Ṙ−1. In such an approach
inputs to the algorithm include predefined “dummy” values
for the derivatives at those points or for those dimensions
for which gradients have not been provided. These dummy
values can then be used to create a binary masking vector
with a one indicating that information is known and a zero

(58)θ̄4 = ln 10
∑

ij

∂2R

∂xk∂xl

∂2R

∂xk∂xl
.

(59)y(x∗) = µ̇+ ṙT Ṙ−1(ẏ− 1̇µ̇)

(60)ṙ =
(

r,
∂r

∂x1
,
∂r

∂x2
, . . . ,

∂r

∂xk

)T

(61)µ̇ = 1̇
T Ṙ−1ẏ

1̇T Ṙ−11̇
.

(62)s2(x∗) = σ̇ 2
[

1− ṙTR−1ṙ
]

,

(63)σ̇ 2 = 1

n
(ẏ− 1̇µ̇)T Ṙ−1(ẏ− 1̇µ̇).

397Engineering with Computers (2016) 32:377–404

1 3

indicating that no information is known. The correlation
matrix, Ṙ, can be computed as normal with the masking
vector then used to exclude unnecessary columns and rows
prior to the calculation of its inverse, mean, variance and
likelihood.

When employing such a masking the adjoint calculation
commences as before but with the calculation of ¯̇R result-
ing in a smaller matrix. The masking vector is then used
to place these values into the rows and columns of the full
size, (d + 1)n× (d + 1)n, ¯̇R matrix with the remaining val-
ues set to equal 0. Once this matrix has been defined the
remaining adjoint calculation can proceed as normal.

Figure 22 illustrates this masking procedure in action
using the same analytical example and sampling plan
as used in Fig. 21. In this figure three different gradient-
enhanced Kriging models have been produced from dif-
ferent amounts of information. In the first model all of the
objective function values and all of the gradients have been
used to construct the model, i.e. this is the same model as
in Fig. 21. In the second model once again all of the objec-
tive function values have been used but the gradients at
x = 0.4 and x = 1.0 have not been provided. Applying the
above masking procedure clearly results in a model which
matches the gradients at those sample points where gradi-
ents have been provided and which doesn’t at the points
where no gradients are known.

As the above masking procedure is completely generic it
is also possible to construct a model where gradient infor-
mation is provided at a point where no objective function
value is provided. It would, of course, be unlikely that this
would be the case in a real-life design optimization but it
may be the case that derivatives of a problem are success-
fully calculated and returned while the objective function
calculation subsequently fails. The third model presented in

Fig. 22 illustrates such a case where the derivative informa-
tion has been provided for all sample points but the objec-
tive function information is missing at the point x = 0.4.
This model clearly interpolates the three remaining sam-
ple points and matches the gradients at these points but it
also matches the gradient at x = 0.4 without interpolating
the point as the objective function at this point has not been
provided.

7.3 Likelihood evaluation comparison

Having addressed the mathematics behind the calculation
of both the likelihood and its adjoint consider now the effi-
cient programming of this calculation. As with the preced-
ing Kriging models the three dimensional matrix of differ-
ences between the locations of each sampling point in each
of the d dimensions can be evaluated, stored and used in all
subsequent likelihood calculations as it is independent of
the model parameter values.

With these values stored the calculation of the likelihood
commences with the calculation of the correlation matrix R.
This process is identical to that used for ordinary Kriging
with the same intermediate step taken to calculate and store
the values of 10θk |x(i)k − x

(j)
k |2 which are necessary in the

calculation of θ̄1.
The matrix R then forms the top left corner of Ṙ and is

used to calculate the remaining terms. The complete set
of d ∂R

∂x
 terms can be calculated in one operation by car-

rying out a pointwise multiplication of R, which has been
repeated out d times, with the stored 3D matrix of differ-
ences and a 3D matrix of repeated θ values. This n× nd
matrix can then be placed into the first row of Ṙ and trans-
posed and placed into the first column of Ṙ.

The calculation of the remaining components can be
simplified considerably by considering the ∂

2R

∂x2k
 terms as

modifications of the ∂2R
∂xk∂xl

 terms. By rearranging Eq. 48 to
give,

it can be observed that Eq. 49 can be calculated simulta-
neously everywhere with 2(10θ)R then added to only the
diagonal components to complete Ṙ.

With the correlation matrix defined the calculation of
the likelihood function proceeds in an identical manner as
for ordinary Kriging. Once again a Cholesky factorisation
is performed followed by a calculation of Ṙ−1 as this is
used directly in the calculation of ¯̇R, Eq. 50. Similarly the
Ṙ−1(ẏ− 1̇µ̇) term used in the calculation of the variance is
also stored for use in this calculation.

(64)

∂2R(i,j)

∂x2k
= 2(10θk)R(i,j)

− 4(10θk+θk)(x
(i)
k − x

(j)
k)(x

(i)
k − x

(j)
k)R(i,j),

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

f(x)
DoE
All f(x) & ∇f(x)
All f(x) & Two ∇f(x)
Three f(x) & All ∇f(x)

Fig. 22 Gradient-enhanced Kriging example with missing gradient
and objective function values

398 Engineering with Computers (2016) 32:377–404

1 3

The calculation of the derivatives commences in a simi-
lar manner to that for an ordinary Kriging model with ¯̇R
calculated using Eq. 50 and the stored matrices. R̄ is then
initialized using the top left n× n portion of ¯̇R. The R̄1
component of R̄ can be calculated in one operation and
added to the initialized terms. As with the calculation of
the second derivative terms of the correlation matrix the
calculation of the R̄2 and R̄3 components can be simpli-
fied by once again recognising the similarities between
Eqs. 53 and 54. In this case R̄3 can be calculated for all
cases with additional component due to the diagonal,
R̄2 =

∑d
k=1 2(10

θk) ∂
2R

∂x2k
, included separately.

With the calculation of R̄ completed ∂φ
∂θ

 can be initial-
ized using Eq. 6. The θ̄2 components which are the result
of a simple pointwise multiplication between the relevant
sections of Ṙ and ¯̇R can then the added to these initialized
values. As with the calculation of R̄ the calculation of the
remaining components, θ̄3 and θ̄4 can be simplified by using
Eq. 58 for the diagonal terms as well as the off diagonal
terms and then adding in the additional term due to the
diagonals.

Figure 23 presents a comparison of the likelihood evalu-
ation costs using the CPU and the two GPUs for 5, 10 and
15 variable problems with a variety of sampling plan sizes.
In all cases the sampling plan size is limited to a maximum
of 300 points due to the rapid increase in the size of the cor-
relation matrix with increasing dimensionality compared to
the previous Kriging models. The 15-dimensional gradient-
enhanced Kriging model with a 300 point sampling plan,
for example, requires a 4800× 4800 correlation matrix. As
with the other models the presented times for the GPU do
not include the transfer of constant values to GPU memory
which would occur only once at the beginning of any likeli-
hood optimization.

As with the other Kriging models the results of Fig. 23
illustrate an initial overhead for the GPU when there are
fewer sampling points in the model. Unlike the previous

cases it appears that the complexity of the likelihood calcu-
lation makes it much less efficient for it to be performed on
a GPU. The low end Quadro GPU, for example, is less effi-
cient than the CPU across all of the cases considered. The
Tesla card, on the other hand, does eventually evaluate the
likelihood more efficiently than the CPU but is much more
sensitive to an increase in sample size than observed with
the previous Kriging models. The optimization of the like-
lihood of a gradient-enhanced Kriging model could, there-
fore, be said to benefit from having the likelihood evaluated
on a GPU but only for high-dimensional problems with
large sampling plans and only when evaluated on a high
end GPU.

7.4 Predictor evaluation comparison

The calculation of the gradient-enhanced Kriging predic-
tion can be simplified somewhat by the evaluation and
storage of the constant values for µ̇ and Ṙ−1(ẏ− 1̇µ̇) once
the modelling parameters have been defined. As with the
other Kriging models it is only the correlation between the
unknown points and the existing sample points, ¯̇R, which
needs to be calculated.

The calculation of this correlation vector, or matrix
if more than one unknown point is needed, proceeds in
a manner similar to the calculation of ¯̇R. The vector r is
first calculated in exactly the same manner as for ordinary
Kriging. This vector is then used in the calculation of all
of the ∂r

∂x
 terms which can be performed in a single opera-

tion using the calculated 3D matrix of point distances, a
repeated r vector and the θ values.

With ¯̇R calculated the prediction can be determined
through a vector–vector multiplication with Ṙ−1(ẏ− 1̇µ̇)
or, if more than one prediction is required, through a
matrix–vector multiplication.

Figure 24 illustrates the average cost of evaluating
the predictor at 1000 points for problems of 5, 10 and 15
dimensions with varying sampling plan sizes. As with the

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)
i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 23 Comparison of gradient-enhanced Kriging likelihood evaluation costs for varying model size and computation method for a 5, b 10 and
c 15-dimensional problems

399Engineering with Computers (2016) 32:377–404

1 3

likelihood evaluation results, the Quadro GPU struggles
compared to the CPU and at no point does it perform better
whereas the high end GPU performs better in the major-
ity of cases and is less sensitive than the CPU to increas-
ing sampling plan size. Unlike the results for the previous
Kriging models those of Fig. 24 indicate an initial overhead
when evaluating the predictor on a GPU when the sampling
size is small.

7.5 Error evaluation comparison

The calculation of the predicted error, Eq. 62, begins with
the same calculation of ¯̇R used in the predictor calculation.
This is then used along with a precomputed and stored R−1
matrix to calculate ṙTR−1ṙ.

Figure 25 presents plots comparing the cost of calcu-
lating the error on the three pieces of hardware for 5, 10
and 15-dimensional problems with varying sample size.
As with the prediction there is no benefit to evaluating the
error on the low end Quadro GPU which never performs
better than the CPU. The Tesla GPU on the other hand per-
forms consistently better than the CPU with the exception
of those cases where the sampling plan is relatively small.

The Tesla GPU is also much less sensitive to increasing
sampling size.

8 Single precision calculations

The above results clearly illustrate that the calculation of
the likelihood, predictor and error functions for a variety of
Kriging models can be improved when performed using a
GPU, although the level of any performance improvement is
dependent on the GPU hardware used. In all cases the lower
end Quadro card is outperformed by the high end Tesla card.

However, all of the above comparisons use double pre-
cision calculations and GPUs are generally acknowledged
to offer greater performance increases over CPUs when
performing single precision operations. Can, therefore,
the optimization of the Kriging model parameters, the
most expensive of the above operations, be accelerated by
switching to single precision calculations and performing
these calculations on a GPU?

To give an indication of the potential performance
improvement when switching to single precision calcula-
tions, Fig. 26 presents the compute time when performing

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

n

G
ra

di
en

t K
rig

in
g

P
re

di
ct

or
 C

os
t (

s) i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

n

G
ra

di
en

t K
rig

in
g

P
re

di
ct

or
 C

os
t (

s) i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

G
ra

di
en

t K
rig

in
g

P
re

di
ct

or
 C

os
t (

s) i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 24 Comparison of gradient-enhanced Kriging prediction evaluation costs for 1000 points in parallel for varying model size and computa-
tion method for a 5, b 10, c 15-dimensional problems

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

G
ra

di
en

t K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(a)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

G
ra

di
en

t K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(b)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

G
ra

di
en

t K
rig

in
g

E
rr

or
 C

os
t (

s)

i7−2860QM Multi−Threaded
Quadro 2000M
Tesla K20C

(c)

Fig. 25 Comparison of gradient-enhanced Kriging error evaluation costs for 1000 points in parallel for varying model size and computation
method for a 5, b 10, c 15-dimensional problems

400 Engineering with Computers (2016) 32:377–404

1 3

single and double precision matrix inversions using
the Quadro card. In this instance given a large matrix,
n = 1000, there is the potential for the cost to reduce by
over 50 % when performed using single precision.

Figure 27 presents the variation in computation time when
calculating the likelihood function for an ordinary Kriging
model on the CPU and both GPUs when performed on a five-
dimensional problem in either single or double precision.
This figure clearly illustrates that switching to single preci-
sion calculations offers a considerable performance advan-
tage. When n = 1000, for example, the cost of calculating the
likelihood function using the CPU drops by almost 60 %, the
Quadro card by over 83 % and the Tesla card by over 76 %.

Of course, this reduction in calculation time is not with-
out issues and resorting to single precision calculations can

result in a loss of accuracy and in an increase in the num-
ber of calculations which fail due to the attempted inver-
sion of a non-positive definite correlation matrix. Sam-
pling the Kriging parameter space using a 1000 point Latin
Hypercube for a five-dimensional problem with a sampling
size of 1000 points i.e. n = 1000 in Fig. 27 and compar-
ing the results of double and single precision likelihood
evaluations gives an indication of the level of risk involved
in employing single precision calculations. Of the 1000
likelihood evaluations approximately 12 % fail due to an
attempted inversion of a non-positive definite matrix and
of those cases that didn’t fail over 3 % resulted in a rela-
tive error of more than 1 % compared to the double preci-
sion calculation. Of course issues with matrix inversions
can also occur when using double precision but these are
generally rare thanks to a small level of regression which is
always introduced into the model.

While single precision calculations of the likelihood
have the potential to be more efficient the greater potential
for failed evaluations and errors in successful evaluations
means that they need to be employed with caution within
any optimization of the Kriging parameters.

The proprietary OPTIMATv2 software, of which all of
the presented CPU and GPU functions are part, employs a
hybridised particle swarm with periodic particle reinitiali-
zation [51] to perform all likelihood optimizations. As with
any hybridised algorithm, the stochastic search, the particle
swarm, attempts to locate the region of an optimal solution
which is then refined using a terminal local optimization, in
this case sequential quadratic programming. Clearly, rely-
ing solely on single precision calculations while faster offer
less chance that the same optimum set of parameters will
be obtained as with an optimization employing solely dou-
ble precision calculations. The larger errors in the likeli-
hood calculation and the high proportion of failures would
particularly impact the terminal local search and the deriva-
tives that it relies upon.

The particle swarm optimization, however, offers the
basis for a mixture of single and double precision calcula-
tions to be performed within one optimization and, there-
fore, a potential reduction in overall tuning cost with very
little loss in reliability. To achieve this the terminal local
search is modified to employ only double precision calcu-
lations while the particle swarm employs single precision
calculations, with a double precision calculation being per-
formed if a single precision calculation fails. This means
that the optimization is only really affected by the errors
in the magnitude of the likelihood. We, therefore, assume
that while these errors exist they are smaller than the gen-
eral trend in the likelihood function. In other words it is
assumed that even with mostly single precision calculations
the particle swarm will be able to locate the correct region
of the optimal parameter set which can then be converged

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n

C
om

pu
ta

tio
n

T
im

e
(s

)
Double Precision
Single Precision

Fig. 26 Single and double precision matrix inversion costs with var-
ying matrix size when using the Quadro 2000M

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

C
LF

 E
va

lu
at

io
n

T
im

e
(s

)

i7−2860QM Multi−Threaded (dp)
Quadro 2000M (dp)
Tesla K20C (dp)
i7−2860QM Multi−Threaded (sp)
Quadro 2000M (sp)
Tesla K20C (sp)

Fig. 27 Comparison of ordinary Kriging likelihood function evalua-
tion cost when using single and double precision

401Engineering with Computers (2016) 32:377–404

1 3

to precisely using double precision calculations within the
local search.

Figure 28 above, illustrates the total time taken to opti-
mize the parameters for a five-dimensional Kriging model
using solely double precision calculations within the hybrid-
ised search and with a mixture of double and single precision
calculations as outlined above. In the majority of cases the
strategy employing a mixture of precisions is either of a sim-
ilar or reduced cost compared to the wholly double precision
calculation. The results for the Quadro card, in particular,
demonstrate a significant benefit when employing the mixed
precision approach with the cost to optimize the parameters
of a Kriging model with a sample size of n = 1000 reduc-
ing by over 17 %. In all cases the mixed precision approach
attains the same set of optimal Kriging parameters that were
found by the purely double precision approach. However,
based on the results of Fig. 27 the reduction in the cost of the
optimization is not as great as expected due to the additional
cost of recalculating the likelihood for those single precision
cases which fail and compensating for errors in the start-
ing position of the terminal local search which may result
in more double precision calculations within this part of the
search. Of course any improvements in performance may be
problem dependent with more single precision failures and,
therefore, double precision recalculations as the optimization
moves towards the lower bound of the regression parameter
(i.e. towards a completely interpolating model) where matrix
inversion failures can be more prevalent.

9 Automated selection of CPU/GPU

As already noted the above results illustrate that switching
to evaluating the likelihood function on a GPU can offer a

reduction in computation time. However, the results also
illustrated that, in particular, for low dimensional prob-
lems with low sample sizes, the CPU can be more effi-
cient. Kriging models and their different variants can be
employed as part of an automated design optimization pro-
cess where an initial small sampling plan of a design space
is augmented with infill points based on some criteria,
for example, the predictor or the expected improvement.
As such, as a surrogate based optimization progresses the
evaluation of the likelihood function involved in construct-
ing the model may move from a region where it is more
efficient to do so on the CPU to one where it is more effi-
cient on the GPU. Similarly, an optimization may involve
a number of surrogate models constructed from different
sampling plans. An engineering design optimization, for
example, may involve surrogate models constructed from
a few expensive CFD or FEA simulations and other mod-
els of constraints derived from large numbers of cheap
to evaluate geometrical quantities. In either case an auto-
mated approach to switch between CPU and GPU evalu-
ations of the likelihood function would be considerably
advantageous.

To that end consider a simple methodology whereby
prior to proceeding with the Kriging parameter optimiza-
tion a check is performed to determine whether evaluating
the likelihood is more efficient on the CPU or GPU. In this
instance 10 evaluations of the likelihood are performed in
series using both the CPU and GPU on 10 different sets of
Kriging model parameters. The same set of parameters are
used to test both the CPU and GPU. The costs of these 10
evaluations are then used to determine if the CPU or GPU
should be used. While this adds a small initial overhead
to the total cost of the optimization, correctly determining
which approach to use may offer considerable time savings
further on.

An alternative to this approach would be to employ
a series of mappings based on performance tests such as
those carried out previously in this paper. Grids of CPU and
GPU performance with varying problem dimensionality
and sample size could be interpolated and used to predict
the cost of each likelihood evaluation and, therefore, which
piece of hardware should be used. While theoretically fea-
sible the practicalities of employing such an approach in
the real world are an issue. As can be observed from the
previous results there can be a considerable difference in
performance between GPUs. To make such an approach
accurate over the vast range of hardware available would be
impractical and calculating and comparing evaluation costs
each time is a more robust approach. Of course if a com-
parison is performed once on a particular machine it could
be stored and reused with the necessary performance map-
pings, therefore, being generated gradually as the software
is used over time.

0 100 200 300 400 500
0

50

100

150

200

250

300

n

T
ot

al
 K

rig
in

g
P

ar
am

et
er

O
pt

im
iz

at
io

n
T

im
e

(s
)

i7−2860QM Multi−Threaded (dp)
Quadro 2000M (dp)
Tesla K20C (dp)
i7−2860QM Multi−Threaded (sp)
Quadro 2000M (sp)
Tesla K20C (sp)

Fig. 28 Comparison of total hyperparameter optimization costs when
employing a solely double precision and a single and double preci-
sion approach

402 Engineering with Computers (2016) 32:377–404

1 3

Figure 29 above illustrates the total parameter tuning
cost for an ordinary Kriging model on a five-dimensional
problem with varying sample size. This figure presents the
total costs when solely using the Tesla card or the CPU and
when automatically switching between the the CPU and
GPU according to the above strategy. It should be noted
here that the CPU used in this instance is a Xeon E5-2609,
the CPU in the same machine as the Tesla card. The results
in Fig. 29, therefore, represent a live test of the automatic
switching and not a theoretical test based on the perfor-
mance results presented previously.

As per the previous results the Tesla card is much less
sensitive to increases in the sampling plan size than the
CPU but the results in Fig. 29 still illustrate a cost penalty
when the sampling plan size is low. The results for the auto-
matic switching, however, clearly demonstrate that for the
cases where n equals 25, 50 and 100 the CPU is being used
whereas when n ≥ 150 the GPU is being correctly used.

Whilst being a relatively simple approach, determining
which hardware to evaluate the likelihood function on prior
to performing any subsequent optimization is clearly very
effective at reducing the overall parameter optimization
cost.

10 Conclusions

The present article has investigated the potential of GPUs
in the calculation of the concentrated log-likelihood func-
tion, prediction and error functions for five variations of
Kriging. Ordinary Kriging, universal Kriging, non-station-
ary Kriging, multi-fidelity Kriging and gradient-enhanced
Kriging were all considered with evaluation times for the
above functions presented for a quad core CPU and two

GPUs, one a low end GPU built into a laptop and the other
a high end GPU specially design for GPU-based supercom-
puters. It should be noted that all likelihood evaluations
performed included the adjoint of the likelihood function
with the adjoint of the gradient-enhanced Kriging likeli-
hood function presented within this article for the first
time. In addition to these comparisons, two strategies for
reducing the cost of Kriging parameter optimizations were
presented, the first employing a mix of single and double
precision calculations, the second employing a scheme
for automatically switching between the most efficient
hardware.

In evaluating the likelihood for the ordinary, univer-
sal, non-stationary and multi-fidelity Kriging models both
GPUs showed a performance advantage over the tested
CPU with the high end GPU, in particular, being consid-
erably more efficient than the CPU on high-dimensional
problems with large sampling plans. The low end GPU
was less efficient but still outperformed the CPU when
both the sampling plan and the underlying dimensionality
of the problem were large enough. Both GPUs, however,
demonstrated an inefficiency when calculating the likeli-
hood function for problems with relatively small sampling
plans. The cost of evaluating the likelihood for a gradient-
enhanced Kriging model was the only case which demon-
strated the need for a high end GPU in order to obtain any
benefit over the CPU due to the size of the matrix inver-
sions involved. The low end GPU in this case was always
less efficient than the CPU.

The time taken to calculate predictions of each Kriging
model in parallel was compared using the three hardware
configurations. In all cases the predictor was demonstrated
to benefit considerably from being evaluated on the GPU.
The GPU was less sensitive to increasing sample sizes
than the CPU. The only exception to this was the applica-
tion of the low end GPU to the evaluation of the gradient-
enhanced Kriging predictor which was demonstrated to
never be more efficient than the CPU.

The efficiency of the error calculations was also shown
to improve when performed on a GPU with the GPU again
shown to be less sensitive to increasing sampling plan sizes
and dimensionality. Once again only the high end GPU was
more efficient than the CPU when calculating the predicted
error for a gradient-enhanced Kriging model.

Switching from double to single precision calcula-
tions were demonstrated to offer a considerable reduction
in compute time for the likelihood function but at the risk
of introducing errors into the calculation and considerably
more failures due to non-positive definite correlation matri-
ces. However, if utilised effectively within an appropriate
optimization strategy, such as the mixed single/double pre-
cision hybdridized particle swarm presented here, single
precision calculations have been demonstrated to offer a

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

n

T
ot

al
 K

rig
in

g
P

ar
am

et
er

O
pt

im
iz

at
io

n
T

im
e

(s
)

Xeon E5−2609
Tesla K20C (dp)
Xeon/Tesla Auto Switch

Fig. 29 Comparison of total hyperparameter optimization costs when
employing only a CPU or GPU and when this is automatically deter-
mined

403Engineering with Computers (2016) 32:377–404

1 3

reduction in the cost of the total Kriging parameter optimi-
zation. The level of this reduction is, of course, dependent
on the underlying problem the Kriging model is attempting
to represent and, therefore, the number of likelihood evalu-
ation failures and hence double precision recalculations
which result.

The performance comparisons for the likelihood func-
tions all demonstrated a region where the CPU was more
efficient than either GPU. Typically this was when the sam-
ple size was small and the number of dimensions low. In
other words, when the loss in performance due to the inef-
ficiency of the GPU-based matrix inversion could not be
overcome by any increase in efficiency in the other opera-
tions. Performing a brief test of the efficiency of the CPU
and GPU likelihood calculation prior to proceeding with
the optimization of the likelihood was demonstrated to
offer a simple way in which the optimum hardware could
be automatically selected. This has the potential to offer
significant time savings when the construction of a Kriging
model is central to a surrogate based optimization and the
sampling plan grows with each iteration.

In conclusion, the above series of studies indicate that
GPUs offer considerable potential to reduce the cost of
evaluating the Kriging likelihood, predictor and error func-
tions which can reduce the time taken to construct Kriging
models, perform Monte Carlo analyses for robust design
and to create visualisations of the design space and update
metrics. Switching to single precision calculations also has
the potential to further reduce calculation times. However,
the presented results also demonstrate that these reductions
in cost are not without issue. Any performance benefit from
a GPU is dependent on hardware configuration and the
level of parallelization within the sub-operations making up
each function while the use of single precision calculations
leads to inaccuracies and a significant increase in the num-
ber of failed matrix inversions. To get the most efficient
Kriging operations, therefore, requires careful management
of when a GPU should and should not be used.

Acknowledgments The support of Rolls-Royce in carrying out this
work is greatly appreciated.

References

 1. Akbariyeh A, Carrigan T, Dennis B, Chan W, Wang B, Lawrence
K (2012) Application of gpu-based computing to large scale finite
element analysis of three-dimensional structures. In: Proceedings
of the 8th international conference on engineering computational
technology

 2. Angelikopoulos P, Papadimitriou C (2012) Bayesian uncertainty
quantification and propagation in molecular dynamics simula-
tions. In: ECCOMAS 2012—European congress on computa-
tional methods in applied sciences and engineering

 3. Appleyard J, Drikakis D (2011) Higher-order cfd and interface
tracking methods on highly-parallel mpi and gpu systems. Comput
Fluids 46(1):101–105. doi:10.1016/j.compfluid.2010.10.019

 4. Brandstetter A, Artusi A (2008) Radial basis function net-
works gpu-based implementation. IEEE Trans Neural Netw
19(12):2150–2154. doi:10.1109/TNN.2008.2003284

 5. Brooks C, Forrester A, Keane A, Shahpar S (2011) Multi-fidel-
ity design optimisation of a transonic compressor rotor. In: 9th
European turbomachinery conference. Istanbul

 6. Broyden C (1970) The convergence of a class of double-rank
minimization algorithms. J Inst Math Appl 6(1):76–90

 7. Challis V, Roberts A, Grotowski J (2014) High resolution topol-
ogy optimization using graphics processing units (gpus). Struct
Multidiscip Optim 49:315–325. doi:10.1007/s00158-013-0980-z

 8. Cheng T (2013) Accelerating universal Kriging interpolation
algorithm using cuda-enable gpu. Comput Geosci 54:178–183.
doi:10.1016/j.cageo.2012.11.013

 9. Cressie N (1993) Statistics for spatial data, probability and math-
ematical statistics. Wiley, New York

 10. Czapinski M, Barnes S (2011) Tabu search with two approaches
to parallel flowshop evaluation on cuda platform. J Parallel Dis-
trib Comput 71(6):802–811. doi:10.1016/j.jpdc.2011.02.006

 11. Demir I, Westermann R (2013) Progressive high-quality
response surfaces for visually guided sensitivity analysis. Com-
put Graph Forum 32(3):2130. doi:10.1111/cgf.12089

 12. Dwight R, Han Z (2009) Efficient uncertainty quantification
using gradient-enhanced kriging. In: 50th AIAA/ASME/ASCE/
AHS/ASC Structures, structural dynamics, and materials confer-
ence. doi: Y10.2514/6.2009-2276

 13. Ferreiro AM, Garcfa JA, Lpez-Salas JG, Vzquez C (2013) An
efficient implementation of parallel simulated annealing algo-
rithm in gpus. J Glob Optim 57(3):863–890. doi:10.1007/
s10898-012-9979-z

 14. Forrester A, Bressloff N, Keane A (2006) Optimization using
surrogate models and partially converged computational fluid
dynamics simulations. Proc R Soc A 462(2071):2177–2204.
doi:10.1098/rspa.2006.1679

 15. Forrester A, Keane A (2009) Recent advances in surrogate-based
optimization. Prog Aerosp Sci 45(1–3):50–79. doi:10.1016/j.
paerosci.2008.11.001

 16. Forrester A, Keane A, Bressloff N (2006) Design and analysis of
“noisy” computer experiments. AIAA Journal 44(10):2331–2339

 17. Forrester A, Sóbester A, Keane A (2008) Engineering design via
surrogate modelling. Wiley, London

 18. Fuentes M (2001) A high frequency Kriging approach for non-
stationary environmental processes. Environmetrics 12:469–483

 19. Gibbs M (1997) Bayesian Gaussian processes for regression and
classficiation. Ph.D. Dissertation, University of Cambridge

 20. Giles M (2008) Collected matrix derivative results for forward
and reverse mode algorithmic differentiation. Lect Notes Com-
put Sci Eng 64:35–44. doi:10.1007/978-3-540-68942-3-4

 21. Giles M, Pierce N (2000) An introduction to the adjoint approach
to design. Flow Turbul Combust 65(3–4):393–415

 22. Griewank A (2000) Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, Philadelphia

 23. Haas T (1990) Lognormal and moving window methods of esti-
mating acid deposition. J Am Stat Assoc 85(412):950–963

 24. Hofmann J, Limmer S, Fey D (2013) Performance investigations
of genetic algorithms on graphics cards. Swarm Evol Comput
12:33–47. doi:10.1016/j.swevo.2013.04.003

 25. Jameson A (1988) Aerodynamic design via control theory. J Sci
Comput 3(3):233–260. doi:10.1007/BF01061285

 26. Jia X, Gu X, Graves YJ, Folkerts M, Jiang S (2011) Gpu-based fast
Monte Carlo simulation for radiotherapy dose calculation. Phys
Med Biol 56(22):7017–7031. doi:10.1088/0031-9155/56/22/002

http://dx.doi.org/10.1016/j.compfluid.2010.10.019
http://dx.doi.org/10.1109/TNN.2008.2003284
http://dx.doi.org/10.1007/s00158-013-0980-z
http://dx.doi.org/10.1016/j.cageo.2012.11.013
http://dx.doi.org/10.1016/j.jpdc.2011.02.006
http://dx.doi.org/10.1111/cgf.12089
http://dx.doi.org/10.1007/s10898-012-9979-z
http://dx.doi.org/10.1007/s10898-012-9979-z
http://dx.doi.org/10.1098/rspa.2006.1679
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.1007/978-3-540-68942-3-4
http://dx.doi.org/10.1016/j.swevo.2013.04.003
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.1088/0031-9155/56/22/002

404 Engineering with Computers (2016) 32:377–404

1 3

 27. Jones D (2001) A taxonomy of global optimization methods
based on response surfaces. J Glob Optim 21(4):345–383. doi:10
.1023/A:1012771025575

 28. Jones D, Schonlau M, Welch W (1998) Efficient global optimiza-
tion of expensive black-box functions. J Glob Optim 13(4):455–
492. doi:10.1023/A:1008306431147

 29. Kampolis I, Trompoukis X, Asouti V, Giannakoglou K (2010)
Cfd-based analysis and two-level aerodynamic optimization on
graphics processing units. Comput Methods Appl Mech Eng
199(9–12):712–722. doi:10.1016/j.cma.2009.11.001

 30. Keane A (2006) Statistical improvement criteria for use in
mulitobjective design optimization. AIAA J 44(4):879–891

 31. Kennedy M, O’Hagan A (2000) Predicting the output from a
complex computer code when fast approximations are available.
Biometrika 87(1):1–13. doi:10.1093/biomet/87.1.1

 32. Krige D (1951) A statistical approach to some basic mine valua-
tion problems on the witwatersrand. J Chem Metallurigical Min
Eng Soc S Afr 52(6):119–139. doi:10.2307/3006914

 33. Laurenceau J, Sagaut P (2008) Building efficient response sur-
faces of aerodynamic functions with Kriging and cokriging.
AIAA J 46(2):498–507. doi:10.2514/1.32308

 34. Leary S, Bhaskar A, Keane A (2004) Global approximation and
optimisation using adjoint computational fluid dynamics codes.
AIAA J 42(3):631–641

 35. Leithead W, Zhang Y (2007) O(N2)-operation approximation of
covariance matrix inverse in gaussian process regression based
on quasi-newton BFGS method. Commun Stat Simul Comput
36(2):367–380

 36. Li Q, Salman R, Kecman V (2010) An intelligent system for
accelerating parallel SVM classification problems on large data-
sets using GPU. In: Proceedings of the 2010 10th international
conference on intelligent systems design and applications, pp
1131–1135. doi:10.1109/ISDA.2010.5687033

 37. Liao Q, Wang J, Webster Y, Watson I (2009) Gpu accelerated
support vector machines for mining high-throughput screening
data. J Chem Inf Model 49(12):2718–2725

 38. Lophaven S, Nielsen H, Søndergaard J (2002) Dace: A matlab
Kriging toolbox, imm-tr-2002-12. Tech. rep., Informatics and
Mathematical Modelling, Technical University of Denmark

 39. Luo Z, Liu H (2005) Artificial neural network computa-
tion on graphic process unit. In: Proceedings of the inter-
national joint conference on neural networks. doi:10.1109/
IJCNN.2005.1555903

 40. Mishra V, Suresh K (2011) GPU-friendly preconditioners for
efficient 3-d finite element analysis of thin structures. In: Pro-
ceedings of the ASME 2011 international design engineering
technical conferences and computers and information in engi-
neering conference

 41. Paciorek C, Schervish M (2004) Nonstationary covariance func-
tions for Gaussian process regression. Adv Neural Inf Process
Syst 16:273–280

 42. Pintore A, Holmes C (2004) Spatially adaptive non-stationary
covariance functions via spatially adaptive spectra. Technical
Report, University of Oxford, U.K

 43. Gutiérrez de Ravé E, Jiménez-Hornero F, Ariza-Villaverde
A, Gómez-Lpez J (2014) Using general-purpose computing
on graphics processing units (GPGPU) to accelerate the ordi-
nary Kriging algorithm. Comput Geosci 64:1–6. doi:10.1016/j.
cageo.2012.11.013

 44. Rumpfkeil M (2013) Optimization under uncertainty using gra-
dients, hessians and surrogate models. AIAA J 51(2):444–451.
doi:10.2514/1.J051847

 45. Rupesh S, Deb K (2013) An evolutionary based bayesian design
optimization approach under incomplete information. Eng Optim
45(2). doi:10.1080/0305215X.2012.661730

 46. Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and
analysis of computer experiments. Stat Sci 4(4):409–435.
doi:10.2307/2245858

 47. Sampson P, Guttorp P (1992) Nonparametric estimation of
nonstationary spatial covariance structure. J Am Stat Assoc
87(417):108–119

 48. Sankaran R, Grout R (2012) Accelerating the computation of
detailed chemical reaction kinetics for simulating combustion
of complex fuels. In: 50th AIAA aerospace sciences meeting
including the new horizons forum and aerospace exposition.
doi:Y10.2514/6.2012-720

 49. Simpson T, Peplinski J, Kock P, Allen J (2001) Metamodels for
computer-based engineering design: survey and recommenda-
tions. Eng Comput 17(2):129–150. doi:10.1007/PL00007198

 50. Toal D, Bressloff N, Keane A (2008) Kriging hyperparameter
tuning strategies. AIAA J 46(5):1240–1252. doi:10.2514/1.34822

 51. Toal D, Bressloff N, Keane A, Holden C (2011) The develop-
ment of a hybridized particle swarm for Kriging hyperparam-
eter tuning. Eng Optim. doi:10.1080/0305215X.2010.508524.
(Accepted for Publication)

 52. Toal D, Forrester A, Bressloff N, Keane A, Holden C (2009)
An adjoint for likelihood maximization. Proc R Soc A
465(2111):3267–3287. doi:10.1098/rspa.2009.0096

 53. Toal D, Keane A (2011) Efficient multi-point aerodynamic
design optimization via co-Kriging. J Aircr 48(5):1685–1695.
doi:10.2514/1.C031342

 54. Toal D, Keane A (2011) Non-stationary Kriging for design opti-
mization. Eng Optim. doi:10.1080/0305215X.2011.607816

 55. Uchida A, Ito Y, Nakano K (2013) Accelerating ant colony opti-
misation for the travelling salesman problem on the GPU. Int J
Parallel Emergent Distrib Syst. doi:10.1080/17445760.2013.842
568

 56. Viana F, Simpson T, Balabanov V, Toropov V (2014) Metamod-
eling in multidisciplinary design optimization: how far have we
come. AIAA J. doi:10.2514/1.J052375

 57. Voutchkov I, Keane A, Fox R (2006) Robust structural design of
a simplified jet engine model using multiobjective optimization.
In: 11th AIAA/ISSMO Multidisciplinary analysis and optimiza-
tion conference. Portsmouth

 58. Wachowiak M, Lambe Foster AE (2012) GPU-based asynchro-
nous global optimization with particle swarm. In: High perfor-
mance computing symposium 2012

 59. Wang G, Shan S (2007) Review of metamodeling techniques in
support of engineering design optimization. ASME J Mech Des
129:370–380. doi:10.1115/1.2429697

 60. Xiong Y, Chen W, Apley D, Ding X (2007) A non-stationary
covariance-based Kriging method for metamodelling in engi-
neering design. Int J Numer Methods Eng 71(6):733–756

 61. Zbierski M (2011) A simulated annealing algorithm for GPU
clusters. In: 9th International conference on parallel processing
and applied mathematics

 62. Zegard T, Paulino G (2013) Toward GPU accelerated topology
optimization on unstructured meshes. Struct Multidiscip Optim
48:473–485. doi:10.1007/s00158-013-0920-y

 63. Zhang Y, Leithead W (2005) Exploiting hessian matrix and trust-
region algorithm in hyperparameters estimation of Gaussian pro-
cess. Appl Math Comput 171(2):1264–1281

 64. Zhongwen L, Hongzhi L, Zhengping Y, Xincai W (2005) Self-
organizing maps computing on graphic process unit. In: Proceed-
ings—13th European symposium on artificial neural networks

http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1016/j.cma.2009.11.001
http://dx.doi.org/10.1093/biomet/87.1.1
http://dx.doi.org/10.2307/3006914
http://dx.doi.org/10.2514/1.32308
http://dx.doi.org/10.1109/ISDA.2010.5687033
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1016/j.cageo.2012.11.013
http://dx.doi.org/10.1016/j.cageo.2012.11.013
http://dx.doi.org/10.2514/1.J051847
http://dx.doi.org/10.1080/0305215X.2012.661730
http://dx.doi.org/10.2307/2245858
http://dx.doi.org/10.1007/PL00007198
http://dx.doi.org/10.2514/1.34822
http://dx.doi.org/10.1080/0305215X.2010.508524
http://dx.doi.org/10.1098/rspa.2009.0096
http://dx.doi.org/10.2514/1.C031342
http://dx.doi.org/10.1080/0305215X.2011.607816
http://dx.doi.org/10.1080/17445760.2013.842568
http://dx.doi.org/10.1080/17445760.2013.842568
http://dx.doi.org/10.2514/1.J052375
http://dx.doi.org/10.1115/1.2429697
http://dx.doi.org/10.1007/s00158-013-0920-y

	A study into the potential of GPUs for the efficient construction and evaluation of Kriging models
	Abstract
	1 Introduction
	2 Basic mathematical operations
	3 Ordinary Kriging
	3.1 Ordinary Kriging formulation
	3.2 Likelihood evaluation comparison
	3.3 Predictor evaluation comparison
	3.4 Error evaluation comparison

	4 Universal Kriging
	4.1 Universal Kriging formulation
	4.2 Likelihood evaluation comparison
	4.3 Predictor evaluation comparison
	4.4 Error evaluation comparison

	5 Non-stationary Kriging
	5.1 Non-stationary Kriging formulation
	5.2 Likelihood evaluation comparison
	5.3 Predictor evaluation comparison
	5.4 Error evaluation comparison

	6 Multi-fidelity Kriging
	6.1 Multi-fidelity Kriging formulation
	6.2 Likelihood evaluation comparison
	6.3 Predictor evaluation comparison
	6.4 Error evaluation comparison

	7 Gradient-enhanced Kriging
	7.1 Gradient-enhanced Kriging formulation
	7.2 Constructing a model with missing information
	7.3 Likelihood evaluation comparison
	7.4 Predictor evaluation comparison
	7.5 Error evaluation comparison

	8 Single precision calculations
	9 Automated selection of CPUGPU
	10 Conclusions
	Acknowledgments
	References

