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1  Introduction

Shell structures have found widespread applications in a variety 
of practical structures in civil, mechanical and aerospace engi-
neering. For this reason, the study of shell theory and its con-
version into numerical methods such as finite element method 
(FEM) has continuously received strong interests from many 
researchers [1–4]. Shell elements in FEM can be classified into 
three categories: degenerated shell elements derived from three-
dimensional continuum elements, curved shell elements based 
on general shell theories, and flat shell elements based on com-
bining membrane elements with plate bending elements. Among 
these three types, triangular flat shell elements have been widely 
employed in the analysis of shell structures because of their sim-
ple formulations and general applicability. However, flat shell 
elements would yield very erroneous results compared with 
other types of shell elements. Accordingly, the development 
of a simple and efficient flat shell element for the analysis of 
general shell structures is still required to improve the element 
performance.

It is well known that there are two fundamental the-
ories for shell elements: thick and thin shell theories. 
Formulations in thin and thick shell elements are based 
on Kirchhoff–Love theory [5–8] and Reissner–Mind-
lin theory [9–11], respectively. In general, thin shell 
elements are limited to thin shell problems, but Reiss-
ner–Mindlin shell elements can be applied to both thin 
and thick shell problems. However, thick shell elements 
encounter the shear-locking phenomenon which induces 
overly stiff behavior as the shell structure becomes pro-
gressively thinner. To eliminate this difficulty, a lot of 
techniques have been proposed to avoid shear locking: 
the reduced integration method by Zienkiewicz et  al. 
[2], the selective integration method by Hughes et  al. 
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[3], the mixed interpolation of tensorial components 
(MITC) element family by Bathe and Dvorkin [4], the 
three-node Mindlin plate element (MIN3) by Tessler 
and Hughes [12], the discrete shear triangular (DST) 
element family by Batoz and Lardeur [13], the discrete 
shear gap (DSG) technique [10] and others.

As a recent development of advanced finite element 
technologies, the smoothed finite element method(S-FEM) 
proposed by Liu and Nguyen [14] has achieved better per-
formance than standard FEM. The S-FEM is formulated 
by incorporating a strain smoothing technique into con-
ventional FEM. The difference in S-FEM series in the lit-
erature is that the weak form is evaluated by smoothing 
domains created from the entities associated with cells/
elements [15], edges [16] and nodes [17]. Each of these 
S-FEMs delivers different desired properties for a wide 
range of benchmark and practical mechanics problems.

Among these S-FEMs, edge-based S-FEM (ES-FEM) 
and node-based S-FEM (NS-FEM) using triangular ele-
ments demonstrate good performances for two-dimensional 
problems [16, 17]. In ES-FEM, the system stiffness matrix 
is computed using strains smoothed over the smoothing 
domains associated with the edges of triangular elements. 
The numerical results [16] showed that ES-FEM has the fol-
lowing properties: (1) ES-FEM model possesses a close-to-
exact stiffness: it is much softer than the ‘‘overly-stiff’’ FEM 
and is stiffer than the “soft” NS-FEM; (2) numerical results 
are often found super-convergent and much more accurate 
than those of the standard FEM with the same sets of nodes; 
and (3) there are no spurious non-zeros energy modes found 
and hence the method is also stable and works well. On the 
other hand, the system stiffness matrix for NS-FEM is com-
puted using strains smoothed over the smoothing domains 
associated with the nodes of triangular elements, and has the 
following properties [17]: (1) NS-FEM provides an upper 
bound to the strain energy of the exact solution when a rea-
sonably fine mesh is used; (2) numerical results showed that 
NS-FEM is immune from the volumetric locking; and (3) 
NS-FEM is relatively insensitive to element distortion.

Recently, Nguyen-Xuan et al. [19–22] presented Reiss-
ner–Mindlin plate elements using ES-FEM, NS-FEM, 
cell-based S-FEM (CS-FEM) and alpha S-FEM (αFEM) 
with DSG technique [10]. Cui et al. [18] proposed an ES-
FEM for Reissner–Mindlin flat shell elements. Some other 
S-FEM methods have been also studied for plate and shell 
structures [23–31]. As a hybrid approach, αFEM [22, 32] 
was developed by introducing a scale factor α ∈ [0, 1] to 
establish a continuous function of strain energy that con-
tains contributions from both conventional FEM and NS-
FEM. Numerical results confirm that αFEM shows an 
excellent performance compared to both conventional 
FEM and NS-FEM. It has clearly opened a novel window 

of opportunity to obtain numerical solutions that are nearly 
exact solutions.

In this paper, we propose a combined scheme of ES-FEM 
and NS-FEM, named edge/node-based S-FEM (ENS-FEM), 
to improve the accuracy and effectiveness of triangular Reiss-
ner–Mindlin shell elements. In ENS-FEM, the membrane, 
the bending and the shear strain fields are smoothed by the 
means of a gradient smoothing technique over the smoothing 
domains constructed based on a combination of ES-FEM and 
NS-FEM. ES-FEM produces usually lower bound solutions 
in strain energy of the exact solution as presented in numeri-
cal results [14, 16, 32, 33], and NS-FEM possesses the upper 
bound property when a reasonably fine mesh is used [14, 
17, 32, 33]. Hence, ENS-FEM model could be softer than 
ES-FEM model and stiffer than NS-FEM model. To avoid 
shear-locking phenomenon in thin shell elements, DSG tech-
nique [10] is used in ENS-FEM for Reissner–Mindlin shell 
elements. In this study, an average combination of ES-FEM 
and NS-FEM is proposed for all practical purpose to obtain 
better results for shell structural problems, compared with 
other methods such as DSG3 [10], MIN3 [12], MITC4 [4], 
ES-FEM [18, 19] and NS-FEM [17, 20]. Numerical results 
for some benchmark shell problems confirm that the present 
method has a good performance and is compatible to four-
node quadrilateral shell elements MITC4.

2 � Triangular Reissner–Mindlin flat shell elements

2.1 � Weak form of Reissner–Mindlinflat shells

Consider a flat shell element deformed by in-plane 
forces and bending moments as shown in Fig. 1. In this 
figure, Oxyz and Ôx̂ŷẑ are the global and the local coor-
dinate systems of a flat shell, respectively. The middle 

Fig. 1   A shell element with local coordinate system Ôx̂ŷẑ in global 
coordinate system Oxyz
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(neutral) surface of the shell is chosen as the reference 
plane that occupies a domain � ⊂ ℜ3. Let û, v̂ and ŵ be 
the displacements of the middle plane in the x̂, ŷ and ẑ 
directions, respectively; β̂x, β̂y and β̂z be the rotations 
of the middle surface of the shell around the ŷ, x̂ and ẑ 
axis, respectively, as indicated in Fig.  1. The unknown 
vector of a flat shell including six independent variables 
at any point in the problem domain can be written as:

An application of membrane theory to the Reissner–
Mindlin plate theory provides a mean to determine the 
Reissner–Mindlin flat shell behavior, wherein the mem-
brane strain ε̂, the bending strain κ̂ and the shear strains γ̂ in 
local coordinate system Ôx̂ŷẑ are defined, respectively, by

The elastic strain energy and the work done by external 
forces of Reissner–Mindlin flat shells are now expressed 
as: 

where b is the body force, and Dm, Db, and Ds are the mate-
rial matrices related to the membrane, bending and shear 
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deformations, respectively. The material matrices are given 
by

where G is the shear modulus, k = 5/6 is the shear correction 
factor, h is the thickness of shell, E is the Young’s modulus, 
and ν is the Poisson’s ratio. For static analysis of a Reissner–
Mindlin flat shell model, the weak form can now be written as:

2.2 � Finite element formulation of triangular Reissner–
Mindlin flat shell elements

In FEM, the problem domain is discretized using a mesh 
of ne three-node finite elements such that � =

⋃ne

e=1�
e 

and �i ∩�j =∅ for i �= j.. The finite element approxima-
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e
j , β̂

e
xj, β̂

e
yj, β̂

e
zj

]T

 for triangular 

Reissner–Mindlin shell elements, as shown in Fig.  2, can 
be expressed as:

where I6 is the unit matrix of 6th rank, 
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 is the vector containing 

nodal degrees of freedom of ûeh associated with the jth node 
of the element, and Ne

j  is the shape function at the jth node 
of the triangular element defined by
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Fig. 2   Three-node triangular element and local coordinates
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According to Eqs. (2) and (3), the approximation of the 
membrane and the bending strains in the triangular element 
can then be expressed in matrix forms as:

with
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where a = x2 − x1, b = y2 − y1, c = y3 − y1, d = x3 − x1, 
as indicated in Fig. 2, and Ae is the area of the triangular 
element.

In this study, discrete shear gap (DSG) method [10] is 
adopted here to avoid the shear-locking phenomenon. 
According to Eq.  (4), the shear strain γ̂ e in each element 
can be defined by

where

By substituting the discrete displacement field into 
Eq. (8), we can obtain a discretized equation for triangular 
Reissner–Mindlin flat shell elements such as
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Fig. 3   A mesh of triangular 
elements and the smoothing 
domains Ω(k) associated with 
edges in ES-FEM
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In the above formulas, each shell element occupies dif-
ferent local coordinates; the data need to be transferred to 
the global coordinates before conducting the assembling 
process of element stiffness matrices. The transformation 
of coordinates from a local coordinate system to a global 
coordinate system is performed by the transformation 
matrix �e

0:
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ment in Ôx̂ŷẑ and Oxyz, respectively. In Eq.  (20), �e
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From Eqs. (17), (20) and (21), the global system equa-
tion in Oxyz for flat shell elements can be expressed as:
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�

cos
�

i1, î3
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Fig. 4   A mesh of triangu-
lar elements and smoothing 
domains Ω(k) associated with 
the nodes in NS-FEM

Fig. 5   Local, global and smoothing coordinates of flat shell element 
for edge-based smoothing technique
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3 � An edge/node‑based smoothed FEM 
for Reissner–Mindlin flat shells

3.1 � ES‑FEM and NS‑FEM for Reissner–Mindlin flat 
shells

Computational cost of flat shell elements is directly 
affected by the order of approximation and the number 
of degrees of freedom associated with FE formulations. 
Therefore, using a low-order element such as three-node 
triangular elements, we can expect an efficient analysis in 
terms of computational time. Triangular elements, how-
ever, in general give poor solutions compared to high-order 
elements. In this study, smoothed finite element method 
(S-FEM) is employed to enhance the performance of tri-
angular flat shell elements. The shape functions used in 
S-FEM are identical to those in conventional FEM, and 
hence the displacement field in S-FEM is also ensured to 
be continuous on the whole problem domain. However, 
being different from conventional FEM which computes 
the stiffness matrix based on the element domains, S-FEM 
uses a gradient smoothing technique to compute the stiff-
ness matrix based on edges or nodes of elements.

In S-FEM, the finite element mesh is further divided into 
nk smoothing domains Ω(k) based on edges or nodes of ele-
ments such that � =

⋃nk

k=1�
(k) and �(i) ∩�(i) =∅ for i �= j

. In edge-based S-FEM (ES-FEM), the smoothing domain 
Ω(k) associated with the edge k is created by connecting 
two end nodes of the edge k to the centroids of adjacent 
elements, as shown in Fig. 3. The smoothing domain of an 
inner edge is formed by assembling two sub-domains of 
adjacent triangular elements while the smoothing domain 
of a boundary edge is a single sub-domain. On the other 
hand, the smoothing domain Ω(k) for node-based S-FEM 
(NS-FEM) associated with the node k is created by con-
necting sequentially the mid-edge-points to the centroids of 
the surrounding triangular elements (sub-domains) of the 
node k, as shown in Fig. 4.

For flat shell elements, the local coordinate system Ôx̂ŷẑ 
is defined in each element, and the compatible strains are 
computed in the local coordinates. The smoothed strains 
in S-FEM are computed using the smoothing coordinate 
system Õx̃ỹz̃ defined on sub-domains of adjacent elements 
sharing an edge or a node. In ES-FEM, the smoothing 
domain Ω(k)associated with the inner edge k consists of two 
sub-domains with local coordinate systems Ô1x̂1ŷ1ẑ1 and 
Ô2x̂2ŷ2ẑ2, respectively, as shown in Fig. 5. The smoothing 

coordinate system Õx̃ỹz̃ for the smoothing domain Ω(k) 
is defined by the x̃ axis coinciding with the edge k, the z̃ 
axis with the average normal direction between the ẑ1 and 
ẑ2 axis, and the ỹ axis is given by the cross product of the 
unit vectors in the x̃ and z̃ axis. In NS-FEM, the smoothing 
domain Ω(k) in NS-FEM associated with the inner node k 
consists of four sub-domains having local coordinate sys-
tems Ô1x̂1ŷ1ẑ1 Ô2x̂2ŷ2ẑ2 Ô3x̂3ŷ3ẑ3 and Ô4x̂4ŷ4ẑ4, respec-
tively, as indicated in Fig. 6. The smoothing coordinate sys-
tem Õx̃ỹz̃ for the smoothing domain Ω(k) is defined by the 
x̃ axis that coincides with an edge connected between the 
node k and a node of arbitrary surrounding triangular ele-
ments; the z̃ axis is the average normal direction of the ẑ1, 
ẑ2, ẑ3 and ẑ4 axis; the ỹ axis is the cross product of the unit 
vectors in the x̃ and z̃ axis.

As a result, a smoothed membrane strain ε
(k)
g , a 

smoothed bending strain κ(k)g  and a smoothed shear strain 
γ
(k)
g  in Oxyz can be derived as:
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Fig. 6   Local, global and 
smoothing coordinates of the 
flat shell element for node-
based smoothing technique
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cyx̃czx̃ cyỹczỹ cyz̃czz̃ cyx̃czỹ + czx̃cyỹ cyỹczz̃ + czỹcyz̃ cyx̃czz̃ + czx̃cyz̃

]
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





(34)�T
s2 =

[

cx̃x̂cz̃x̂ cx̃ŷcz̃ŷ cx̃ẑcz̃ẑ cx̃x̂cz̃ŷ + cz̃x̂cx̃ŷ cx̃ŷcz̃ẑ + cz̃ŷcx̃ẑ cx̃x̂cz̃ẑ + cz̃x̂cx̃ẑ
cỹx̂cz̃x̂ cỹŷcz̃ŷ cỹẑcz̃ẑ cỹx̂cz̃ŷ + cz̃x̂cỹŷ cỹŷcz̃ẑ + cz̃ŷcỹẑ cỹx̂cz̃ẑ + cz̃x̂cỹẑ

]

where cxx̃ is the cosine of the angle between the x axis and 
the x̃ axis, �m1, �b1, and �s1 are the strain transformation 
matrices between Oxyz and Õx̃ỹz̃, and �m2, �b2, and �s2 
are the strain transformation matrices between Ôx̂ŷẑ of 
adjacent triangular elements and Õx̃ỹz̃.

Substituting Eqs.  (11), (12), (15) and (29) into 
Eqs. (26)–(28), the approximation of the smoothed strains 
on the smoothing domain Ω(k)in Oxyz can be expressed as:

(35)ε
(k)
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∑nnk

j=1
R
(k)
gj d

(k)
j ; κ

(k)
g =

∑nnk

j=1
B
(k)
gj d

(k)
j ; γ

(k)
g =

∑nnk

j=1
S
(k)
gj d

(k)
j

where nnk is the number of the neighboring nodes of edge 
k or node k, d(k)j  is the nodal degrees of freedom at the jth 
node of the smoothing domain Ω(k) in Oxyz, R(k)

gj , B(k)
gj  and 

S
(k)
gj  are the membrane, the bending and the shear smoothed 

gradient matrices at the jth node of the smoothing domain 
Ω(k)in Oxyz, respectively. R(k)

gj , B(k)
gj  and S(k)gj  can be com-

puted by

(36)R
(k)
gj = 1

A(k)

∑nek
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i
m2R

i
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where �(k)
m1, �

(k)
b1 , and �(k)

s1  are given by Eqs. (31) and (32), 
�i

m2, �
i
b2, and �i

s2 of the ith adjacent triangular element 
are given by Eqs.  (33) and (34), �i

0j is the transformation 
matrix between the local coordinate system Ôx̂ŷẑ at the jth 
node of the ith adjacent triangular element and the global 
coordinate system Oxyz.

The global stiffness matrix of the flat shell in Eq.  (24) 
is replaced by the global stiffness matrix of ES-FEM or 
NS-FEM:

where K(k)
ES and K(k)

NS are the smoothed stiffness matrices 
given by
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(40)

K
(k)
I =

∫

�
(k)
I

(

R
(k)T
gI D

m
R
(k)
gI + B

(k)T
gI D

b
B
(k)
gI + S

(k)T
gI D

s
S
(k)
gI

)

d�

= A
(k)
I

(

R
(k)T
gI D

m
R
(k)
gI + B

(k)T
gI D

b
B
(k)
gI + S

(k)T
gI D

s
S
(k)
gI

)

,

I = ES or NS

In Eq.  (40), A(k)
I , R(k)

gI , B(k)
gI  and S(k)gI  are the area, the 

membrane, the bending and the shear gradient matrices in 
ES-FEM or NS-FEM, respectively.

It is important to note that the in-plane actions do not 
affect the bending strains and vice versa, and the rotation 
about z axis (drilling rotation) does not raise the deforma-
tions of shell. Therefore, there is no stiffness associated 
with the local rotation degrees of freedom βz and if all ele-
ments are coplanar, the rank deficient phenomena appear-
ing in the global stiffness matrix would increase. To deal 

Fig. 7   Smoothing domains based on a combination of ES-FEM and NS-FEM for triangular elements: NS-FEM uses the three quadrilaterals, 
and ES-FEM uses the three pentagons

Fig. 8   Smoothing domains 
associated with a edge k in 
ES-FEM, and b node k in NS-
FEM for triangular elements in 
ENS-FEM

Fig. 9   Geometry of the spherical shell panel with simply supported 
on the boundaries
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with this issue, the null values of the stiffness correspond-
ing to the drilling degree of freedom are then replaced by 
approximate values. These approximate values are taken to 
be equal to 10−3 times the maximum diagonal value in the 
element stiffness matrix [30].

3.2 � A combination of ES‑FEM and NS‑FEM 
for Reissner–Mindlin flat shells

3.2.1 � An edge/node‑based smoothed FEM (ENS‑FEM)

ES-FEM and NS-FEM can be combined to improve the 
accuracy of numerical results by introducing the scale 
factor α ∈ [0, 1] that controls the contributions from 
ES-FEM and NS-FEM, which was proposed similarly 
by Liu et al. [32]. Note that the αFEM in [32] uses FE 
formulations based on smoothing domains constructed 
based on conventional FEM and NS-FEM. In ENS-
FEM, the area of each triangle is divided into three 

triangles for ES-FEM and three quadrilaterals for NS-
FEM as depicted in Fig.  7. In the present edge/node-
based S-FEM(ENS-FEM), the area A(e) of a triangular 
element is divided into four parts with a scale factor 
α: three quadrilaterals scaled down by (1− α2) at three 
corners with equal area of 1

3

(

1− α2
)

A(e) and three pen-
tagons in the middle of the element with equal area of 
1
3
α2A(e). NS-FEM is used to calculate for three quad-

rilaterals at the three corners, while ES-FEM is used 
to calculate for three pentagons in the middle of the 
element.

The global smoothed stiffness KENS is then assembled 
from the entries of those of both ES-FEM and NS-FEM as 
follows:

where K(k,α)
ES  and K(k,α)

NS  are given by

In the above, �(k,α)
ES  is the smoothing domain associ-

ated with the edge k and bounded by the boundaries Γ (k)
ES  

and Γ (k,α)
ES  as shown in Fig.  8a, and �(k,α)

NS  is the smooth-
ing domain associated with the node k and bounded by 
the boundary Γ (k,α)

NS  as shown in Fig. 8b. Note that the fol-
lowing relation between the area A(k,α) of the smoothing 
domain �(k,α) and the area A(k) of the smoothing domain 
Ω(k) is used:

Therefore, the smoothed gradient matrices forthe 
smoothing domain �(k,α)

ES  can be calculated by
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Fig. 10   Two discretizations of 
the spherical shell panel using 
a triangular elements, and b 
quadrilateral elements
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Fig. 11   Strain energy of the spherical shell panel problem
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The smoothed gradient matrices for the smoothing 
domain �(k,α)

NS  can be calculated similarly. Consequently, 
we can express the global smoothed stiffness matrix 
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Fig. 12   Results of the spherical shell panel problem: a convergence of vertical displacement at the center, b relative error under log–log scale, 
and c convergence of strain energy
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KENS using the original stiffness matrices in ES-FEM 
and NS-FEM such that

It should be noted that the scale factor α acts as a knob 
controlling the contributions from ES-FEM and NS-FEM. 
When the scale factor α varies from 0 to 1, a continuous 
solution function from the solution of ES-FEM to that of 
NS-FEM is obtained. Since ES-FEM produces usually 
lower bound solutions in strain energy of the exact solution 
[14, 16, 32, 33] and NS-FEM possesses the upper bound 

(48)KENS =
∑nk

k=1
α2

K
(k)
ES +

∑nk

k=1

(

1− α2
)

K
(k)
NS

property [14, 17, 32, 33], ENS-FEM can be expected to 
give better solutions than ES-FEM and NS-FEM.

3.2.2 � An average edge/node‑based smoothed FEM 
(aENS‑FEM)

Development of a generalized method for estimating 
the best scale factor αbest is no easy task, because it is 
difficult to clarify mathematical aspects of ENS-FEM 
in terms of the scale factor, and the best scale factor 
depends on the mesh, geometry and boundary condi-
tions. Liu et  al. [32] proposed a method for αFEM to 
estimate the scale factor by taking the intersection 
point of strain energy versus scale factor curves for a 
sequence of meshes with different resolutions. They 
recommended the scale factor αbest ∈ [0.5, 0.7] through 
numerical experiments. However, these methods require 
a high computational cost for preparing and solving a 
series of analysis models.

As a simple approach, the scale factor α in ENS-
FEM can be chosen as a constant if one can obtain bet-
ter solutions by ENS-FEM with a constant scale factor 
than other methods such as FEM, ES-FEM and NS-
FEM. We, therefore, propose immediately the average 
combination (α = 0.5) of ES-FEM and NS-FEM for all 
practical purpose. Numerical experiments show that the 

Table 1   Vertical displacement 
at the center of spherical shell 
panel obtained by different 
methods

Reference solution [35] 1.0000

Mesh DSG3 MIN3 MITC4 ES-FEM NS-FEM aENS-FEM (α = 0.5) ENS-FEM (α = 0.363)

8 × 8 0.3967 0.6273 0.8784 0.5499 1.1790 0.7314 0.8152

12 × 12 0.5914 0.7997 0.9382 0.7294 1.1377 0.8844 0.9458

16 × 16 0.7266 0.8779 0.9616 0.8222 1.0999 0.9421 0.9861

20 × 20 0.8153 0.9170 0.9732 0.8694 1.0752 0.9639 0.9977

24 × 24 0.8720 0.9391 0.9799 0.8946 1.0590 0.9725 1.0003

28 × 28 0.9085 0.9529 0.9841 0.9092 1.0478 0.9759 0.9999

Table 2   The strain energy 
of the spherical shell panel 
obtained by different methods

Mesh DSG3 MIN3 MITC4 ES-FEM NS-FEM aENS-FEM (α = 0.5) ENS-FEM (α = 0.363)

8 × 8 2.2513 3.5600 4.9849 3.1206 6.6909 4.1508 4.6265

12 × 12 3.3562 4.5385 5.3242 4.1392 6.4566 5.0189 5.3673

16 × 16 4.1232 4.9822 5.4571 4.6662 6.2417 5.3462 5.5961

20 × 20 4.6269 5.2041 5.5231 4.9337 6.1019 5.4699 5.6621

24 × 24 4.9485 5.3296 5.5609 5.0771 6.0097 5.5186 5.6768

28 × 28 5.1538 5.4078 5.5847 5.1597 5.9464 5.5380 5.6749

Fig. 13   Deformed configuration of the spherical shell panel (dis-
placements of the spherical shell panel are amplified by a factor 100)
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present method gives better solutions of shell problems 
than other existing techniques including stabilized dis-
crete shear gap method using three-node triangular ele-
ments (DSG3) [10], three-node Mindlin method (MIN3) 
[12], edge-based smoothed discrete shear gap triangular 
element method [18, 19], andnode-based smoothed dis-
crete shear gap triangular element method [17, 20]. It 
should be noted that the accuracy of solutions is often 
much better than FEM solutions when the average com-
bination of ES-FEM and NS-FEM is chosen. The ENS-
FEM with α = 0.5 is named by aENS-FEM, and the 
global smoothed stiffness KaENS can be then expressed 
as:

In aENS-FEM, formulae of ES-FEM and NS-FEM are 
used directly to calculate the entries of the stiffness matrices, 
and then the stiffness matrix of aENS-FEM can be obtained 
by averaging the stiffness matrices of ES-FEM and NS-FEM. 
Therefore, aENS-FEM code is very similar to conventional 
FEM code, and the bandwidth of the stiffness matrix of 
aENS-FEM is exactly the same to that of the stiffness matrix 

(49)KaENS = 1

4
(KES + 3KNS)

Fig. 14   Geometry, material 
parameters and loaded point 
of the cantilever cylinder shell 
stiffened by concentric stiffen-
ers

Fig. 15   Two discretizations of 
the stiffened cantilever cylinder 
shell using a triangular elements 
and b quadrilateral elements
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Fig. 16   Strain energy of the stiffened cantilever cylinder shell
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of conventional FEM. The computational cost for solving the 
system equations will also be the same. All numerical exam-
ples in the next section use aENS-FEM, and numerical results 
are compared with those of other methods.

4 � Numerical results

In this section, various numerical examples are solved to 
verify the accuracy and efficiency of the proposed aENS-
FEM compared to the analytical solutions and reference 

solutions. To demonstrate the performance of numerical 
results, the relative deflection error is defined by

where dref and dnum are the reference and numerical deflec-
tions, respectively. For the convergence rate of the rela-
tively deflection error in Eq. (50), we use the dimensionless 
length lh [38] defined by

(50)er =
∣

∣dnum − dref
∣

∣

dref
× 100 %,

(51)lh =
1√
ndof

,
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Fig. 17   Results of the cantilever cylinder shell stiffened by concentric stiffeners: a convergence of radial displacement at the loaded point (cm), 
and b convergence of strain energy

Table 3   Radial displacements 
at the loaded point of the 
cantilever cylinder shell 
stiffened by concentric 
stiffeners

Reference solution [40] 0.1988

Mesh DSG3 MIN3 MITC4 ES-FEM NS-FEM aENS-FEM (α = 0.5) ENS-FEM (α = 0.67)

8 × 8 0.1787 0.1847 0.1917 0.1880 0.1929 0.1913 0.1903

12 × 12 0.1885 0.1900 0.1925 0.1912 0.1945 0.1933 0.1926

16 × 16 0.1910 0.1915 0.1930 0.1919 0.1949 0.1938 0.1932

20 × 20 0.1920 0.1922 0.1932 0.1921 0.1951 0.1940 0.1934

Table 4   The strain energy 
of the cantilever cylinder 
shell stiffened by concentric 
stiffeners

Mesh DSG3 MIN3 MITC4 ES-FEM NS-FEM aENS-FEM (α = 0.5) ENS-FEM (α = 0.67)

8 × 8 0.8659 0.8958 0.9296 0.9109 0.9353 0.9275 0.9223

12 × 12 0.9140 0.9215 0.9338 0.9266 0.9427 0.9371 0.9336

16 × 16 0.9265 0.9288 0.9359 0.9299 0.9447 0.9395 0.9362

20 × 20 0.9309 0.9319 0.9372 0.9310 0.9455 0.9405 0.9372
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where ndof is the total number of degrees of freedom of the 
whole domain.

4.1 � Spherical shell panel subjected to a point load 
problem

In this example, a simply supported spherical shell 
panel in Fig.  9 is considered. The spherical shell has 
dimensions and elastic properties: a =  b = 400  mm, 
r =  2400 mm, h =  2.54 mm, E =  7037 kgf/mm2 and 
ν = 0.3. The shell is subjected to a point central load 
P =  45.4 kgf. Due to its symmetry, only one quarter 
of the structure is modeled, as shown in Fig.  9. The 
spherical shell is uniformly discretized by 8  ×  8, 
12 × 12, 16 × 16, 20 × 20, 24 × 24 and 28 × 28 tri-
angular and quadrilateral elements. The FE model with 
the 16 × 16 mesh is plotted in Fig. 10. The reference 
solution of the center deflection at the point load pro-
posed by Mousa and Naggar [35] is 1 mm. We now use 
two scale factors estimated from strain energy curves 
of analysis models and from the average combination 
of ES-FEM and NS-FEM. As shown in Fig.  11, the 
strain energy at the intersection of strain energy ver-
sus scale factor curves for three fine meshes 20 × 20, 
24 × 24 and 28 × 28 is 5.6749 at α = 0.363. Figure 12 
and Tables  1 and 2 show the convergence of deflec-
tion at the center of the spherical shell panel in terms 
of the relative errors and the strain energy of present 
method with α = 0.363 and α = 0.5. It can be seen that 
the results obtained using the scale value of α = 0.363 
are clearly the best competitor: the displacement and 
strain energy for the scale factor estimated from strain 
energy curves are much more accurate than those 
for the quadrilateral shell element MITC4. Since the 
selection of the scale factor depends on analysis mod-
els and problems, one can use the average combina-
tion of ES-FEM and NS-FEM as an alternative choice 
for all practical purpose. Although ENS-FEM with the 
α = 0.5 (aENS-FEM) is not the best solution, it is still 
more accurate than DSG3, MIN3, ES-FEM and NS-
FEM, and is a good competitor with quadrilateral shell 
elements (MITC4). Figure 13 shows the deformed con-
figuration of the spherical shell panel.

4.2 � A cantilever cylinder shell stiffened by concentric 
beams

We now study a cantilever cylindrical shell stiffened 
by three concentric stiffeners at two curved edges and 

Fig. 18   Deformed configuration of the cantilever cylinder shell stiff-
ened by concentric stiffeners (displacements of the stiffened cantile-
ver cylinder shell are amplified by a factor 3 × 102)

Fig. 19   Geometry of the stiffened spherical shell panel with simply 
supported on the boundaries
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one straight edge. The dimensions, material param-
eters and boundary conditions are given in Fig.  14. 
The cantilever cylindrical shell is discretized into 
8 × 8, 12 × 12, 16 × 16, 20 × 20 and 24 × 24 trian-
gular and quadrilateral elements. The FE model with 
the 12 ×  12 mesh is plotted in Fig.  15. The numeri-
cal results obtained by the aENS-FEM are compared 
with those by DSG3, MIN3, ES-FEM, NS-FEM and 
MITC4. Sinha et  al. [40] presented a highly accurate 
solution to this problem using a higher-order shell the-
ory. However, we use the numerical results obtained 
by MITC4 as a reference solution, because the solution 
given by Sinha et al. [40] is not close to the numerical 
solutions in this study. Figure 16 shows that the strain 
energy versus scale factor curves do not intersect each 
other for any meshes. Hence, we take the value of α at 
the intersection point between the strain energies for 

MITC4 and ENS-FEM using the mesh 24 ×  24. The 
strain energy at the intersection is 0.9372 at α = 0.67, 
as shown in Fig. 16. Figure 17 shows the convergence 
of the radial displacement and strain energy for ENS-
FEM with α = 0.67 and α = 0.5. This figure indicates 
that ENS-FEM with α = 0.5 (aENS-FEM) has better 
performance than DSG3, MIN3, ES-FEM and NS-
FEM, and can be a good competitor to the quadrilat-
eral shell elements (MITC4). Tables  3 and 4 summa-
rize the values of the radial displacement and strain 
energy at the loaded point of the concentric stiffened 
cylinders. The deformed configuration of the canti-
lever cylinder shell stiffened by concentric beams is 
plotted in Fig. 18.

4.3 � Spherical shell with cross stiffeners

Lastly, a simply supported spherical panel stiffened by 
two cross concentric stiffeners under a concentrated load 
45 kN at the center is investigated. The dimensions and 
the material properties of the stiffened shell are listed in 
Fig. 19. Sinha et al. [37] and Prusty et al. [39] solved this 
problem for the spherical shell with cross stiffeners. The 
stiffened shell is uniformly discretized by 4 ×  4, 8 ×  8, 
12 × 12, 16 × 16, and 20 × 20 triangular and quadrilat-
eral elements, and only the 12 ×  12 mesh is plotted in 
Fig.  20. The vertical displacement at the center load is 
monitored, and the results given by Prusty et al. [39] with 
12 × 12 eight-noded isoparametric quadrilateral elements, 
w = 0.04327 m, are taken as a reference solution. In this 
problem, we found that the value of α is 0.444 at the inter-
section of four strain energy versus scale factor curves 
for four meshes, as shown in Fig.  21. Figure  22 shows 
the comparison of the vertical displacement at the center 
of stiffened shell and strain energy, listed in Tables 5 and 
6. It can be seen that with the same number of degrees of 
freedom, ENS-FEM with α = 0.444 and α = 0.5 outper-
forms all other elements in terms of accuracy and con-
vergence. It should be noted that ENS-FEM with α = 0.5 

Fig. 20   Two discretizations 
of the stiffened spherical 
shell panel using a triangular 
elements and b quadrilateral 
elements
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Fig. 21   Strain energy of the stiffened spherical shell panel
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Fig. 22   Results of the stiffened spherical shell panel problem: a convergence of vertical displacement at the center, b relative error under log–
log scale, and c convergence of strain energy

Table 5   The vertical 
displacement at the center load 
of stiffened spherical shell panel 
by different methods

Reference solution [39] 0.04327

Mesh DSG3 MIN3 MITC4 ES-FEM NS-FEM aENS-FEM (α = 0.5) ENS-FEM (α = 0.444)

4 × 4 0.0367 0.0377 0.0398 0.0400 0.0442 0.0426 0.0429

8 × 8 0.0404 0.0406 0.0412 0.0425 0.0437 0.0432 0.0433

12 × 12 0.0410 0.0412 0.0415 0.0429 0.0435 0.0432 0.0433

16 × 16 0.0413 0.0414 0.0416 0.0431 0.0434 0.0432 0.0433
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