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tools, namely non-linear multiple regression (NLMR), 
artificial neural network (ANN) and adaptive neuro-fuzzy 
inference system (ANFIS). After conducting the mentioned 
models, considering several performance indices includ-
ing coefficient of determination (R2), variance account for 
and root mean squared error and also using simple ranking 
procedure, the models were examined and the best predic-
tion model was selected. It is concluded that the R2 equal 
to 0.951 for testing dataset suggests the superiority of the 
ANFIS model, while these values are 0.651 and 0.886 for 
NLMR and ANN techniques, respectively. The results 
pointed out that the ANFIS model can be used for predict-
ing UCS of rocks with higher capacity in comparison with 
others. However, the developed model may be useful at a 
preliminary stage of design; it should be used with caution 
and only for the specified rock types.

Keywords Uniaxial compressive strength · Granite · 
Non-linear multiple regression · Artificial neural network · 
Adaptive neuro-fuzzy inference system

1 Introduction

Rock strength plays a significant role in any type of geo-
technical projects such as slope and tunnels. The uniaxial 
compressive strength (UCS) of rock may be estimated 
directly with standard test method suggested by ISRM 
(International Society for Rock Mechanics) or ASTM 
(American Standards for Testing Materials). However, 
some impeding factors, such as obtaining standard intact 
rock samples especially in highly jointed faulted rock, exist 
in determination of UCS directly. Further, performing the 
direct test to measure the UCS of rock is relatively expen-
sive and time consuming as well [1–3]. Due to that, an 

Abstract Uniaxial compressive strength (UCS) of rock is 
crucial for any type of projects constructed in/on rock mass. 
The test that is conducted to measure the UCS of rock is 
expensive, time consuming and having sample restriction. 
For this reason, the UCS of rock may be estimated using 
simple rock tests such as point load index (Is(50)), Schmidt 
hammer (Rn) and p-wave velocity (Vp) tests. To estimate the 
UCS of granitic rock as a function of relevant rock proper-
ties like Rn, p-wave and Is(50), the rock cores were collected 
from the face of the Pahang–Selangor fresh water tunnel 
in Malaysia. Afterwards, 124 samples are prepared and 
tested in accordance with relevant standards and the data-
set is obtained. Further an established dataset is used for 
estimating the UCS of rock via three-nonlinear prediction 
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estimation of the UCS from simple index tests is economic 
and easier in present. For these purposes, several prediction 
methods have been developed and published in the litera-
ture [1, 4–10]. Some simple and multiple regression analy-
sis techniques have been used for estimating the UCS of 
rocks [7, 11, 12].

Several researchers have been developed empirical rela-
tions to estimate UCS. New relationships between pet-
rographical and engineering properties of granite were 
proposed in the study conducted by Tugrul and Zarif [4]. 
They used simple regression analysis to obtain the relation-
ship between the UCS and other rock properties including 
sonic velocity, Is(50) and Brazilian tensile strength (BTS). 
Sharma and Singh [8] introduced empirical equations to 
estimate the impact strength index, slake durability index 
and UCS from Vp. Yagiz [13] used non-destructive test, 
p-wave velocity, to estimate UCS, Schmidt hardness, mod-
ulus of elasticity, water absorption and effective porosity, 
slake durability index, saturated and dry density of rock. 
He stated that there is significant relationship between UCS 
and p-wave velocity of rocks. D’Andrea et al. [14] sug-
gested a linear regression model for predicting UCS using 
Is(50). Cargill and Shakoor [15] performed test on five dif-
ferent rocks to evaluate the correlations between UCS and 
the Schmidt hammer, point load, the slake durability and 
the Los Angeles abrasion test values. Their results indicate 
that there is a strong correlation between the UCS and Is(50). 
Singh and Singh [16] obtained the relationship between 
Is(50) and UCS of quartzites. Kahraman [17] developed the 
relationship between UCS and some rock parameters like 
Is(50), Schmidt hammer, sound velocity tests. Young and 
Rosenbaum [18] developed a reliable model to control the 
strength and deformability of sandstone using some miner-
alogical properties. Kahraman and Gunaydin [19] obtained 
some correlation between the UCS and Is(50) for igneous, 
metamorphic and sedimentary rocks via regression analy-
sis. Further, Basu and Kamran [20] examined the point load 
test on schistose rocks and its applicability for estimating 
UCS. Singh et al. [11] tested and verified the empirical 
relation between point load index and UCS for some Indian 
rocks. Empirical relationships to estimate UCS using 
P-wave velocity were suggested mainly for coal measure 
rocks in the studies carried out by Singh and Dubey [21] 
and Singh et al. [22]. Basu and Aydin [23] recommended 
an empirical relationship between UCS and point load 
index for Hong Kong Granite. Sharma et al. [24] estab-
lished some statistical relationship between Schmidt ham-
mer rebound numbers with impact strength index; slake 
durability index and p-wave velocity. Table 1 shows some 
published equations to estimate the UCS of rock.

Various researchers have utilized soft computing meth-
ods to estimate UCS [10, 43–48] from some rock index 
properties including point load, p-wave velocity and 

Schmidt hammer hardness. Sarkar et al. [49] conducted 
artificial neural network model to predict the UCS and 
shear strength of different types of rocks using dynamic 
wave velocity, Is(50), slake durability index and density. 
Verma and Singh [50] proposed an ANFIS model for pre-
dicting p-wave velocity and they emphasized that neuro-
fuzzy method shows a good potential to model complex, 
nonlinear and multivariate problems. Singh and Verma [51] 
performed a comparative analysis of intelligent algorithms 
to correlate strength and petrographic properties of some 
schistose rocks. Singh et al. [52] also published a compre-
hensive paper on the prediction of UCS by soft computing 
methods. Yagiz et al. [53] developed model to estimate uni-
axial compressive strength of carbonate rock using slake 
durability and index properties of rocks. They stated that 
the slake durability index (Id4), p-wave velocity, density and 
Schmidt hammer values of rocks may be used for estimat-
ing the UCS of rocks. Table 2 presents several recent works 
on the UCS prediction using soft computing techniques.

In this study, several modeling techniques have been 
used for estimating the uniaxial compressive strength of 
rocks using various rock properties including Schmidt 
hardness, p-wave velocity and point load index of rocks. 
Furthermore, developed models have been discussed and 
the best model has been chosen to be used for engineering 
practices.

2  Data source and structure

The Pahang–Selangor fresh water tunnel in Malaysia 
has been investigated to obtain the rock cores to gain the 
research goals. The tunnel that is crossed under the main 
mountain range between Pahang and Selangor states is 
constructed to transfer the fresh water from Pahang state to 
Selangor and Kuala Lumpur states in the Country. The tun-
nel is 44.6 km long with a diameter of 5.2 m and a longitu-
dinal gradient of 1/1900. The tunnel is designed to operate 
under free flow conditions with the maximum 27.6 m3/s of 
fresh water discharge. 35 km of the tunnel was excavated 
using three different tunnel boring machines (TBMs), 
while the remaining tunnel was excavated using the drill-
ing and blasting method. The mentioned TBMs were used 
to excavate different ground conditions, i.e., mixed ground, 
very hard ground and blocky ground in Pahang–Selangor 
fresh water tunnel. Geological map of tunnel site and sam-
pling point along the tunnel is given in Fig. 1. The geo-
logical units include granite, metamorphic and some sedi-
mentary rocks as seen in the geological map; however, the 
most of the rock which is excavated with TBMs and blast-
ing method is composed of granite. To obtain the goal of 
the study, geotechnical investigation is conducted along 
the tunnel, and 124 granite block samples were taken from 
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the face of the tunnel in different TBMs site to perform the 
planned rock testing program. These blocks were taken to 
the laboratory and the samples were prepared according to 
the International Society for Rock Mechanics [64]. In this 
study, representative rock blocks having no defect and dis-
continuities were collected from site to conduct laboratory 
tests as much as can be.

Afterwards, laboratory tests including Schmidt ham-
mer rebound number (Rn), point load index (Is(50)), p-wave 
velocity (Vp) and UCS were carried out on those sam-
ples. If the samples were failed along the fractures or any 
defects, then this test result was extracted and not counted 
in the dataset since it may not characterize the intact rock 
strength. Results of the laboratory tests conducted in this 
study are shown in Table 3. As a result, the established 
datasets have been used for developing several models by 

performing different techniques and, then, introduced mod-
els are compared to each other for choosing the best model 
among them.

3  Model constructions

To predict the uniaxial compressive strength of rocks, sev-
eral methods including simple regression, non-linear mul-
tiple regression (NLMR), artificial neural network (ANN) 
and adaptive neuro-fuzzy inference system (ANFIS) have 
been utilized herein. The following sections describe mod-
eling procedure of the aforementioned methods to predict 
the UCS of intact rock like granite. For this purpose, devel-
oped data set including Rn, Is(50), and Vp for 124 samples is 
used as inputs for purposed models. Afterward, estimated 

Table 1  Lists of UCS correlations and their descriptions

Rn Schmidt hammer rebound no., Is(50) point load test, Vp p-wave velocity, ρ density of the rock

References Correlation R2 Description

Aufmuth [25] UCS = 0.33(Rnρ)1.35 0.80 25 different lithologies

Singh et al. [26] UCS = 2Rn 0.86 Sandstone, siltstone, mudstone, seatearth

Sachpazis [27] UCS = 4.29Rn − 67.52 0.96 33 different carbonates

Xu et al. [28] UCS = 2.98e(0.06Rn) 0.95 Mica-schist

Tugrul and Zarif [4] UCS = 8.36Rn – 416 0.87 Granite

Yasar and Erdogan [29] UCS = 0.000004Rn
4.29 0.89 Carbonates, sandstone, basalt

Kilic and Teymen [30] UCS = 0.0137Rn
.2721 0.93 Different rock types

Yagiz [9] UCS = 0.0028Rn
2.584 0.85 9 different rock types

Kahraman [17] UCS = 8.41Is(50) + 9.51 0.72 27 different rock samples

Sulukcu and Ulusay [31] UCS = 15.31Is(50) 0.64 23 samples in different rock types

Tsiambaos and Sabatakakis [32] UCS = 7.3I1.71
s(50) 0.82 188 samples (limestone, sandstone and marlstones)

Kahraman et al. [7] UCS = 10.22Is(50) + 24.31 0.75 38 different rock samples

Basu and Aydin [23] UCS = 18Is(50) 0.97 40 granitic rock samples

Yilmaz and Yuksek [33] UCS = 12.4Is(50) − 9.0859 0.81 39 gypsum sample sets

Diamantis et al. [34] UCS = 19.79Is(50) 0.74 32 samples of serpentinite rock

Mishra and Basu [35] UCS = 14.63Is(50) 0.88 60 samples (granite, schist and sandstone)

Kohno and Maeda [36] UCS = 16.4Is(50) 0.85 44 different rock samples

Kahraman [3] UCS = 2.68e0.93Is(50) 0.86 32 samples of pyroclastic rocks

Sharma and Singh [8] UCS = 0.0642Vp − 117.99 0.90 49 samples in different rock types

Kahraman [17] UCS = 9.95Vp
1.21 0.69 27 different rock samples

Yasar and Erdogan [29] Vp = 0.0317UCS + 2.0195 0.64 13 samples of various carbonate rock types

Moradian and Behnia [37] UCS = 165.05exp(−4.452/Vp) 0.70 64 different rock samples

Khandelwal [38] UCS = 0.033Vp − 34.83 0.87 12 samples of a wide rock types

Khandelwal and Singh [39] UCS = 0.1333Vp − 227.19 0.96 12 different rock samples

Minaeian and Ahangari [2] UCS = 0.005Vp 0.94 Some samples of weak conglomeratic rock

Diamantis et al. [34] UCS = 0.11Vp − 515.56 0.81 32 samples of serpentinite rock

Entwisle et al. [40] UCS = 0.78e0.88Vp 0.53 171 samples of Volcanic rock

Yagiz [13] UCS = 0.258Vp
3.543 0.85 9 types of rock

Tonnizam Mohamad et al. [41] UCS = 0.032Vp − 44.23 0.83 40 samples of soft rocks

Jahed Armaghani et al. [42] UCS = 0.0308Vp − 61.61 0.47 45 samples of granitic rocks
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UCS values are compared with actual UCS values obtained 
from laboratory study.

3.1  Simple regression model and input selection

In this study, first of all, simple regression analyses were 
conducted to examine the weight of each parameter as 
input for purposed models. Relevant rock properties that 
were measured in the laboratory were analyzed to obtain 
new empirical relations to predict the UCS. In this regard, 
some equation types such as linear, exponential, power and 
logarithmic were examined for each predictor as tabulated 
in Table 4. In this table, values of R2 were considered to 
evaluate the capacity performances of the developed empir-
ical equations. In addition, selected equations for each pre-
dictor model are highlighted. As result, the best relationship 
was obtained as exponential, linear and power between the 
UCS and other rock properties including Rn, Is(50), and Vp, 
respectively. The obtained relationships between measured 
variables and the UCS of rock are given in Figs. 2, 3 and 4. 
The results revealed that the relationships between the rele-
vant variables and the UCS are statistically meaningful and 
acceptable. Although gained results are relatively accept-
able for predicting UCS, the multiple linear regression 
analysis was also performed to obtain the best estimation.

3.2  Non‑linear multiple regression model

Multiple regression techniques can be applied to obtain 
the best-fit equation when more than one input parameter 
was needed. In common, the objective of this estimation 
method is to develop a relationship between more than 
one inputs and outputs. There are two types of multiple 
regressions, namely linear and non-linear. Using linear 
multiple regression (LMR) technique, a linear relation-
ship can be achieved between inputs and output param-
eters, while non-linear multiple regression (NLMR) is 
an approach to obtain a non-linear relationship between 
relevant parameters. Many researchers proposed both 
NLMR and LMR equations for predicting UCS of rock 
using different rock index properties [1, 10, 42, 48, 65, 
66]. In the present study, considering the simple regres-
sion analysis, the NLMR equations were introduced and 
the process was performed via iteration algorithm. The 
NLMR models were constructed using statistical soft-
ware package of SPSS version 16 [67] herein. For this 
purpose, all datasets were normalized using the following 
equation:

where Xmin is the minimum value of the measured param-
eter, Xmax is the maximum value of the measured param-
eter, X and Xnorm are the measured and normalized values 
in the dataset, respectively. Furthermore, five different 
datasets were selected randomly for training and testing 
to develop non-linear models.

The idea behind using some datasets for testing is to 
check the performance capacity of each model to select 
the best one. Swingler [68] and Looney [69] suggested 
that the 20 and 25 % of the all datasets can be used for 
testing. Also, Nelson and Illingworth [70] stated that the 
20 to 30 % of the whole datasets may be used for testing. 
Considering these suggestions in the literature, 20 % of 
the database was selected randomly for testing, whereas 
the remaining 80 % of data were used for training the 
constructed models. Random data selection for purposed 
models was performed utilizing the ANN code written 
by authors. Using the constructed datasets, five NLMR 
equations have been proposed as listed in Table 5. In 
these models, Schmidt hardness, point load index and 
p-wave velocity parameters were utilized as inputs and 
then the UCS of rock was estimated as function of the 
mentioned rock properties. While the regression coef-
ficients (R2) of training dataset that used for modeling 
were various from 0.747 and 0.789, testing datasets have 
regression coefficients ranges from 0.471 to 0.706 as in 
Table 5.

(1)Xnorm = (X − Xmin)/(Xmax − Xmin)

Table 2  Recent works on UCS prediction using soft computing tech-
niques

L Equotip value, ρ density, d grain size, PSV petrography study val-
ues, BPI block punch index, BD bulk density, Sw water saturation, 
Id slake durability index, Vp p-wave velocity, ne effective porosity, q 
quartz content, Wc water content, GA genetic algorithm, n porosity, 
Is(50) point load, cc concavo convex, PSO particle swarm optimization

Reference Technique Input R2

Meulenkamp and Grima [54] ANN L, n, ρ, d 0.95

Gokceoglu and Zorlu [1] FIS Is(50), BPI, Vp, BTS 0.67

Zorlu et al. [55] ANN q, ρ, d, cc 0.76

Yilmaz and Yuksek [33] ANN ne, Is(50), Rn, Id 0.93

Yilmaz and Yuksek [56] ANFIS Vp, Is(50), Rn, Wc 0.94

Dehghan et al. [48] ANN Vp, Is(50), Rn, n 0.86

Rabbani et al. [57] ANN n, BD, Sw 0.96

Rezaei et al. [58] FIS Rn, ρ, n 0.95

Ceryan et al. [59] ANN Id, Vp, ne, PSV 0.88

Yagiz et al. [53] ANN Vp, n, Rn, ρ, Id 0.50

Beiki et al. [60] GA ρ, n, Vp 0.83

Yesiloglu-Gultekin et al. [10] ANFIS BTS, Vp 0.68

Mishra and Basu [61] FIS Vp, Is(50), Rn, BPI 0.98

Torabi-Kaveh et al. [62] ANN Vp, ρ, n 0.95

Tonnizam Mohamad et al. [41] ANN-PSO BD, Vp, Is(50), BTS 0.97

Momeni et al. [63] ANN-PSO Rn, ρ, Vp, Is(50) 0.97
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3.3  ANN model

Artificial neural network (ANN) is a soft computing tech-
nique inspired by the human-brain information process. A 
typical ANN consists of three main constituents, namely 
learning rule, network architecture, and transfer function 
[71]. There are two major types of ANN: recurrent and 
feed-forward. Shahin et al. [72] stated that if there is no 
time-dependent parameter in the ANN, the feed-forward 
(FF) ANN can be employed. The multi-layer perceptron 

(MLP) neural network is one of the most well-known FF-
ANNs [73]. MLP consists of several nodes or neurons in 
three layers (input, hidden and output) linked to each other 
by weights. Du et al. [74] and Kalinli et al. [75] reported 
on the high efficiency of MLP-ANNs in approximating 
various functions in high-dimensional spaces. Neverthe-
less, the ANN needs to be trained before interpreting the 
results. Among many kinds of learning algorithms to train 
MLP-FF, the back-propagation (BP) is the most exten-
sively utilized algorithm (Dreyfus, 2005). In a BP-ANN, 

Fig. 1  Geological map around 
the tunnel
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Table 3  Results of laboratory 
tests conducted in this study

Dataset no. Rock type Weathering zone Rn Vp (m/s) Is(50) (MPa) UCS (MPa)

1 Granite Fresh 40 5506 2.31 82.6

2 Granite Slightly weathered 39 6450 2.87 75.0

3 Granite Slightly weathered 37 3050 3.89 62.9

4 Granite Slightly weathered 45 2920 1.82 55.4

5 Granite Fresh 48 5950 3.12 132.9

6 Granite Fresh 55 3780 2.4 87.9

7 Granite Slightly weathered 34 3102 4.56 77.9

8 Granite Slightly weathered 33 3020 3.01 64.2

9 Granite Slightly weathered 35 6910 2.1 69.9

10 Granite Fresh 50 5217 3.22 97.9

11 Granite Fresh 26 3525 1.73 89.8

12 Granite Slightly weathered 35 2910 3.79 59.6

13 Granite Fresh 42 4670 3.34 102.9

14 Granite Slightly weathered 44 5345 1.93 111.9

15 Granite Slightly weathered 27 6190 3.14 81.3

16 Granite Fresh 36 4568 2.45 96.7

17 Granite Slightly weathered 22 5785 1.98 71.9

18 Granite Slightly weathered 50 7002 4.97 89.7

19 Granite Slightly weathered 32 6790 2.59 89.5

20 Granite Fresh 38 5310 3.96 100.8

21 Granite Fresh 42 6635 2.02 105.7

22 Granite Moderately weathered 23 3303 3.12 58.6

23 Granite Moderately weathered 20 3608 2.51 48.8

24 Granite Moderately weathered 28 3080 3.23 56.8

25 Granite Slightly weathered 40 3620 3.21 65.7

26 Granite Slightly weathered 41 3520 1.41 52.5

27 Granite Moderately weathered 42 3520 2.89 51.5

28 Granite Moderately weathered 31 3520 2.44 63.7

29 Granite Moderately weathered 37 3010 1.56 39.0

30 Granite Moderately weathered 34 3210 3.49 60.0

31 Granite Moderately weathered 24 3670 1.23 44.7

32 Granite Moderately weathered 18 3545 1.11 52.7

33 Granite Moderately weathered 27 5643 2.75 55.6

34 Granite Slightly weathered 45 4955 3.21 77.7

35 Granite Slightly weathered 43 3850 2.12 84.3

36 Granite Slightly weathered 44 3988 1.92 59.9

37 Granite Slightly weathered 28 5040 4.65 61.2

38 Granite Slightly weathered 27 3615 3.34 46.0

39 Granite Moderately weathered 26 3943 1.54 40.0

40 Granite Moderately weathered 22 4980 1.86 44.0

41 Granite Slightly weathered 24 4080 1.21 57.0

42 Granite Moderately weathered 41 4005 1.78 54.7

43 Granite Moderately weathered 26 4125 2.25 42.8

44 Granite Slightly weathered 25 3555 1.13 51.9

45 Granite Slightly weathered 40 3430 2.99 53.2

46 Granite Slightly weathered 37 6120 2.15 61.3

47 Granite Moderately weathered 33 4895 3.29 72.5

48 Granite Moderately weathered 32 4615 2.38 74.6

49 Granite Moderately weathered 34 3715 2.88 71.5

50 Granite Moderately weathered 40 4709 2.33 73.6
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Table 3  continued Dataset no. Rock type Weathering zone Rn Vp (m/s) Is(50) (MPa) UCS (MPa)

51 Granite Moderately weathered 27 3301 1.02 39.4

52 Granite Moderately weathered 19 2823 3.22 43.5

53 Granite Moderately weathered 24 3378 3.72 48.2

54 Granite Slightly weathered 40 4823 3.02 117.9

55 Granite Slightly weathered 38 5065 2.91 122.3

56 Granite Slightly weathered 48 6635 6.39 166.3

57 Granite Slightly weathered 46 6233 3.21 138.6

58 Granite Fresh 45 5490 4.67 124.7

59 Granite Fresh 44 5230 3.31 110.9

60 Granite Fresh 57 7003 5.02 152.4

61 Granite Fresh 56 5268 2.89 106.7

62 Granite Fresh 52 6480 5.33 180.1

63 Granite Slightly weathered 51 6108 4.34 149.0

64 Granite Slightly weathered 47 4250 2.78 95.6

65 Granite Slightly weathered 49 4530 2.43 80.5

66 Granite Slightly weathered 55 5876 3.23 121.3

67 Granite Fresh 56 5463 3.23 107.6

68 Granite Fresh 45 5520 3.02 101.9

69 Granite Moderately weathered 48 5270 3.89 81.5

70 Granite Slightly weathered 57 5109 3.67 117.9

71 Granite Fresh 57 6659 4.89 163.3

72 Granite Fresh 54 6148 5.89 141.7

73 Granite Slightly weathered 45 5920 1.82 87.9

74 Granite Fresh 49 5950 3.12 120.0

75 Granite Fresh 52 4780 4.4 137.2

76 Granite Moderately weathered 39 6102 2.56 93.0

77 Granite Slightly weathered 53 5020 3.01 123.5

78 Granite Fresh 58 6910 2.1 109.9

79 Granite Slightly weathered 43 5217 2.22 80.3

80 Granite Slightly weathered 46 5025 1.73 99.9

81 Granite Slightly weathered 31 4910 3.79 88.3

82 Granite Slightly weathered 30 4670 3.34 100.6

83 Granite Slightly weathered 54 5345 1.93 104.3

84 Granite Fresh 48 6190 6.14 184.9

85 Granite Slightly weathered 55 4568 2.45 102.5

86 Granite Slightly weathered 37 5785 1.98 114.6

87 Granite Slightly weathered 42 7002 4.97 105.4

88 Granite Fresh 55 7943 6.59 209.4

89 Granite Fresh 54 7310 5.45 168.7

90 Granite Fresh 56 6635 2.02 105.6

91 Granite Fresh 48 6503 3.12 123.5

92 Granite Fresh 61 7608 6.51 211.9

93 Granite Fresh 56 6080 4.9 170.7

94 Granite Fresh 58 6620 4.21 154.4

95 Granite Fresh 59 6320 6.41 163.3

96 Granite Fresh 53 5832 4.89 135.1

97 Granite Fresh 51 4922 4.44 149.5

98 Granite Fresh 49 6848 3.56 148.6

99 Granite Fresh 50 5380 3.49 155.6

100 Granite Fresh 58 7433 7.1 191.7
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the imported data in the input layer start to propagate to 
hidden neurons through connection weights [76]. The 
input from each neuron in the previous layer, Ii, is multi-
plied by an adjustable connection or weight, Wij. At each 
node, the sum of the weighted input signals is computed 
and then this value is added to a threshold value known 
as the bias value, Bij (Eq. 2). To create the output of the 

neuron, the combined input, Ji, is passed through a non-
linear transfer function f (Jj), such as a sigmoidal function 
(Eq. 3). However, in general, the output of each neuron 
provides the input to the next layer neuron. This procedure 
is continued until the output is generated. To achieve the 
error, the created output is checked against the desired out-
put. The BP training can change the weights between the 
neurons iteratively in a way that minimizes the root mean 
square error (RMSE) of the system. More details of the BP 

Table 3  continued Dataset no. Rock type Weathering zone Rn Vp (m/s) Is(50) (MPa) UCS (MPa)

101 Granite Fresh 56 5545 5.11 178.9

102 Granite Fresh 54 5643 2.75 100.9

103 Granite Fresh 58 4955 3.21 152.1

104 Granite Fresh 51 7850 5.12 141.7

105 Granite Fresh 57 5988 4.92 143.9

106 Granite Fresh 55 5040 5.65 159.9

107 Granite Moderately weathered 40 4615 1.34 48.0

108 Granite Moderately weathered 37 3943 2.54 63.8

109 Granite Slightly weathered 30 5980 1.86 58.0

110 Granite Moderately weathered 40 3180 0.89 40.0

111 Granite Slightly weathered 30 6005 1.78 50.2

112 Granite Slightly weathered 31 4125 2.25 53.6

113 Granite Slightly weathered 39 6555 1.6 74.9

114 Granite Slightly weathered 38 6430 2.99 105.6

115 Granite Slightly weathered 33 6120 4.15 71.5

116 Granite Moderately weathered 34 4895 1.29 56.5

117 Granite Slightly weathered 44 6615 3.38 96.0

118 Granite Moderately weathered 51 5715 4.88 87.4

119 Granite Moderately weathered 33 6080 3.21 95.2

120 Granite Moderately weathered 37 6005 4.78 116.8

121 Granite Moderately weathered 33 5125 2.25 107.0

122 Granite Slightly weathered 49 6555 2.13 105.7

123 Granite Slightly weathered 53 6430 2.99 106.8

124 Granite Moderately weathered 23 6120 4.15 82.2

Table 4  Results of simple regression analyses for prediction of UCS

Regression 
model

Predictor Regression function R2

Linear Rn UCS = 2.791Rn − 18.963 0.566

Is(50) UCS = 22.115Is(50) + 26.258 0.542

Vp UCS = 0.0218Vp − 15.421 0.457

Exponential Rn UCS = 25.952e0.030Rn 0.587

Is(50) UCS = 44.592e0.215Is(50) 0.474

Vp UCS = 26.449e0.0003Vp 0.488

Power Rn UCS = 1.596Rn
1.0898 0.555

Is(50) UCS = 43.847Is(50)
0.659 0.466

Vp UCS = 0.005Vp
1.141 0.494

Logarithmic Rn UCS = 100.98 ln(Rn) − 275.370 0.517

Is(50) UCS = 64.284 ln(Is(50)) + 28.193 0.481

Vp UCS = 103.980 ln(Vp) − 788.890 0.445

Fig. 2  Proposed equation for UCS prediction using Schmidt hammer 
rebound number
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algorithm can be seen in the classic artificial intelligence 
books [77].

In ANN modeling procedure, the same datasets of 
the NLMR analyses were utilized. The parameters of 
ANN such as momentum coefficient and learning rate 
play an important role in the performance capacity of 

(2)Jj =
∑

(wijIi)+ Bj

(3)yi = f (Jj)

the ANN models. A brief review of the previous stud-
ies is required to determine the values of these param-
eters. If the selected learning rate is small, the training 
rate will be slow. Because minor changes to weights 
can be occurred when small values of learning rate are 
implemented [6, 78]. In addition, fluctuations may hap-
pen in the results of training phase caused using large 
values of learning rate [6, 65]. Different learning rate 
values have been proposed by several authors. Learning 
rates of 0.05 and 0.5 were suggested in the studies con-
ducted by Jahed Armaghani et al. [42] and Choobbasti 
et al. [79], respectively. Yilmaz and Yuksek [56], Erzin 
and Cetin [80] and Momeni et al. [81] recommended 
the value of 0.01 for learning rate, while this value was 
suggested as 0.1 in the study conducted by Yagiz et al. 
[65]. Apart from learning rate, a steadying effect can be 
observed by momentum coefficient [82]. Various values 
have been recommended for momentum coefficient such 
as 0.95 by Yagiz et al. [65], 0.9 by Jahed Armaghani 
et al. [42], 0.0–1.0 by Hassoun [83] and Fu [84], 0.4–
0.9 by Wyhthoff [85] and close to 1.0 by Henseler [86]. 
According to the above discussion, it seems that differ-
ent values of learning rates and the momentum coeffi-
cients can be utilized to solve the engineering problems. 
To determine the proper learning rate and momentum 
coefficient, a series of sensitivity analyses were per-
formed in this study. Considering the provided informa-
tion by various researchers and the trial-and-error proce-
dure performed in this study, values of 0.05 and 0.9 were 
chosen for learning rate and the momentum coefficient, 
respectively.

Besides, performance of ANN models also depends 
strongly on the suggested architecture of the network as 
mentioned in the studies conducted by Hush [87] and 
Kanellopoulas and Wilkinson [88]. Therefore, determi-
nation of the optimal architecture is required to design 
an ANN model. The network architecture is defined as 
the number of hidden layer(s) and the number of nodes 
in each hidden layer(s). According to various researchers 
(e.g., [89–91]) and considering the results of several stud-
ies (e.g., [92, 93]), one hidden layer can solve any complex 
function in a network. Hence, one hidden layer was cho-
sen to construct the ANN models. In addition, determining 

Fig. 3  Proposed equation for UCS prediction using point load index

Fig. 4  Proposed equation for UCS prediction using p-wave velocity

Table 5  NLMR equations for 
five randomly selected datasets

Dataset no. Proposed equation R2

1 UCS = 11.558e0.0301Rn + 0.0006V1.193
p + 21.938Is(50) − 34.728 0.747

2 UCS = 11.442e0.0297Rn + 0.001V1.178
p + 22.297Is(50) − 35.051 0.766

3 UCS = 11.707e0.0297Rn + 0.001V1.1702
p + 22.629Is(50) − 36.986 0.771

4 UCS = 10.817e0.0311Rn + 0.0005V1.242
p + 23.274Is(50) − 36.567 0.789

5 UCS = 11.506e0.0287Rn + 0.001V1.196
p + 21.943Is(50) − 31.365 0.757
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neuron number(s) in the hidden layer is the most critical 
task of the ANN architecture as highlighted in the stud-
ies conducted by Sonmez et al. [6] and Sonmez and Gok-
ceoglu [94]. Table 6 presents some proposed equations 
for determination of number of neuron by several schol-
ars. As mentioned earlier, Rn, Is(50), and Vp were used as 
input parameters in the analyses of this study. Based on 
Table 6, considering three neurons in input layer (Ni) and 
one neuron in output layer (No), the numbers of neurons 
that should be used in the hidden layer are in the range of 
1 and 7.

To determine the optimum number of neurons in the 
hidden layer, using 5 randomly selected datasets, 35 ANN 
models were constructed using one hidden layer and 
number of hidden neurons of 1 to 7 as shown in Table 7. 
According to Table 7, considering average R2 value of both 
training and testing datasets, model no. 5 with hidden neu-
rons of 5 outperforms the other models. Hence, five was 
selected as number of hidden neurons in constructing ANN 
models. It should be noted that only results of R2 are con-
sidered as performance criteria to select the best model. 
Performance indices of all models with 5 hidden neurons 

for training and testing datasets are presented in Table 9. 
Suggested ANN structure in this study is illustrated in 
Fig. 5. More discussions regarding the selection of the best 
ANN model to predict UCS will be given in results and dis-
cussion section.

3.4  ANFIS model

ANFIS was developed by Jang [100] based on the Takagi–
Sugeno fuzzy inference system (FIS). ANFIS is constructed 
by a set of if–then fuzzy rules with proper membership 
functions to produce the required output from the input 
data. As a universal predictor, ANFIS has the capability of 
estimating any real continuous functions [101]. In general, 
an FIS is established based on five functioning blocks:

•	 Several if–then fuzzy rules
•	 A database to define the membership functions
•	 A decision-making element to conduct the inference 

operations on the rules
•	 A fuzzification interface to convert the inputs utilizing 

linguistic values
•	 A defuzzification interface to convert the fuzzy results 

into an output.

Table 6  The proposed equations for number of neurons in hidden 
layer

Ni number of input neuron, No number of output neuron

Heuristic References

≤2 × Ni + 1 Hecht-Nielsen [89]

(Ni + No)/2 Ripley [95]

2+No×Ni+0.5No×(N2
o+Ni)−3

Ni+No

Paola [96]

2Ni/3 Wang [97]
√
Ni × No Masters [98]

2Ni Kaastra and Boyd [99], Kannellopoulas 
and Wilkinson [88]

Table 7  Several ANN models with different hidden nodes

Model no. Nodes in hidden layers Network result

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average

R2 R2 R2 R2 R2 R2

Train Test Train Test Train Test Train Test Train Test Train Test

1 1 0.831 0.650 0.792 0.846 0.801 0.865 0.846 0.593 0.837 0.539 0.821 0.699

2 2 0.848 0.722 0.837 0.745 0.819 0.776 0.824 0.817 0.823 0.776 0.830 0.767

3 3 0.865 0.722 0.851 0.810 0.865 0.719 0.844 0.757 0.828 0.884 0.851 0.778

4 4 0.866 0.808 0.848 0.867 0.841 0.880 0.865 0.760 0.823 0.848 0.849 0.833

5 5 0.863 0.874 0.864 0.877 0.867 0.886 0.864 0.861 0.864 0.858 0.864 0.871

6 6 0.879 0.722 0.822 0.848 0.861 0.817 0.855 0.799 0.857 0.867 0.855 0.811

7 7 0.880 0.817 0.844 0.851 0.865 0.810 0.846 0.865 0.877 0.847 0.862 0.838

Table 8  ANFIS parameters and their values

ANFIS parameter Value

Number of nodes 158

Number of linear parameters 256

Number of nonlinear parameters 24

Total number of parameters 280

Number of training data pairs 99

Number of checking data pairs 25

Number of fuzzy rules 64
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An ANFIS model offers the advantages of both ANN 
and FIS principles and presents all their benefits in a sin-
gle framework. An adaptive ANN model involves numbers 
of nodes connected by directional links, where each node 
is designated using a node function with fixed or change-
able parameters. In these networks, the ANN is employed 
to determine the unknown relationship between the param-
eters when the FIS is initialized. This process is called 
“adaptive”. An adaptive ANN model which involves prem-
ise and consequent parts is shown in Fig. 6a, which equates 
to an FIS (Fig. 6b).

To describe the modeling procedure through an ANFIS 
model, it is supposed that the FIS under consideration is 
composed of two inputs (x, y) and one output (f) and the 
rule base includes a two fuzzy rule set “if–then” as below:

Rule I: if x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule II: if x is A2 and y is B2, then f2 = p2x + q2y + r2

where pi, qi, and ri are the consequent parameters to be 
settled. According to Jang [100] and Jang et al. [101], 
an ANFIS model with two inputs, one output, five layers 
and two rules (see Fig. 6b) can be described as follows:

Layer 1: Each node i in layer 1 produces a membership 
grade of a linguistic label. For instance, the node function 
of the ith node is:

in which Qi
1 and x are the membership function and input to 

node i, respectively. Ai is the linguistic label related to node 
i and σ1, vi, bi are parameters that make changes in the form 
of the membership functions. The existing parameters in this 
layer are related to the premise part, as shown in Fig. 6a.

(4)
Q1
i = µAi(x) =

1

1+
[

(

x−vi
σ1

)2
]bi

Table 9  Performance indices 
of each model and their 
rank values for all predictive 
approaches

Method Model R2 RMSE VAF Rating for R2 Rating for RMSE Rating for VAF Rank value

NLMR Train 1 0.747 22.282 72.109 1 2 2 5

Train 2 0.766 22.179 73.016 3 3 3 9

Train 3 0.771 21.571 73.667 4 4 4 12

Train 4 0.789 20.668 76.201 5 5 5 15

Train 5 0.757 23.537 71.788 2 1 1 4

Test 1 0.706 19.705 69.386 5 5 5 15

Test 2 0.651 22.420 63.354 4 4 4 12

Test 3 0.619 24.534 55.522 2 2 2 6

Test 4 0.471 28.534 40.211 1 1 1 3

Test 5 0.649 23.901 62.577 3 3 3 9

ANN Train 1 0.863 14.947 86.318 3 3 1 7

Train 2 0.864 14.180 86.405 4 5 3 12

Train 3 0.867 14.408 86.602 5 4 5 14

Train 4 0.864 15.060 86.425 4 2 4 10

Train 5 0.864 15.034 86.403 4 3 2 9

Test 1 0.874 15.401 87.369 3 5 4 12

Test 2 0.877 17.868 85.663 4 2 3 9

Test 3 0.886 16.444 87.758 5 4 5 14

Test 4 0.861 16.458 84.172 2 3 1 6

Test 5 0.858 18.104 84.191 1 1 2 4

ANFIS Train 1 0.932 10.877 93.265 2 1 1 4

Train 2 0.935 10.608 93.467 3 2 2 7

Train 3 0.956 8.654 95.649 5 5 5 15

Train 4 0.956 8.911 95.576 5 4 4 13

Train 5 0.943 9.877 94.265 4 3 3 10

Test 1 0.941 8.685 94.086 2 2 2 6

Test 2 0.950 8.969 94.485 4 1 4 9

Test 3 0.951 8.473 94.706 5 3 5 13

Test 4 0.946 7.018 94.349 3 5 3 11

Test 5 0.939 8.227 93.827 1 4 1 6
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Layer 2: Each node in layer 2 computes the firing 
strength of each rule through multiplication:

Layer 3: The ratio of firing strength of the ith rule to the 
sum of firing strengths of all rules is obtained in this layer.

Layer 4: Every node i in this layer is a node function 
whereas Wi is the output of layer 3. Parameters of this layer 
are related to the consequent part.

Layer 5: The incoming signals are summed in this layer 
and form the overall output.

(5)Q2
i = wi = µAi(x) · µBi(y) i = 1, 2

(6)Q3
i = Wi =

wi
∑2

j=1 wj

i = 1, 2

(7)Q4
i = Wifi = Wi(pix + qiy + ri)

(8)Q5
i = Overall output =

∑

Wifi =
∑

wifi
∑

wi

Fig. 5  Suggested structure of the ANN model

Fig. 6  a Sugeno fuzzy model 
with two rules, b equivalent 
ANFIS architecture [101]
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To develop an ANFIS model for prediction of the UCS 
of rock, results of three index tests including Rn, Is(50), and 
Vp were utilized as input parameters. Accordingly, the 
results of UCS tests were set as the output parameter. The 
modeling was conducted over a database consisting of 124 
datasets. In ANFIS technique, similar to ANN modeling, 
the best architecture should be determined. To this aim, 
using a trial-and-error procedure, several ANFIS models 
were constructed to determine the number of fuzzy rules. 
The Gaussian, as a well-known membership function in 
fuzzy systems, was employed for this model [42]. Even-
tually, each input parameter with 4 fuzzy rules outper-
forms the other ANFIS models. Therefore, 64 fuzzy rules 
(4 × 4 × 4) show the best performance for UCS predic-
tion of the rock. In determining the number of fuzzy rules, 
the results of RMSE were only considered. The linguistic 
variables for input parameters were set to very low (VL), 
low (L), high (H) and very high (VH). In this step, consid-
ering the suggested ANFIS structure and using randomly 
selected datasets, five ANFIS models were constructed as 
shown in Table 9. In addition, these models were checked 
using the data assigned for testing datasets. Figures 7, 8 

and 9 show the normalized membership functions of the 
input parameters for the ANFIS model. For this model, the 
RMSE results were not decreased after epoch number of 
17. The presented membership functions were assigned 
after training the system. Furthermore, for the output, a 
linear type of membership function was utilized. Table 8 
shows ANFIS parameters and their values used in the 
modeling. It should be mentioned that all ANN and ANFIS 
models in this study were constructed using MatLab ver-
sion 7.14.0.739 [102].

4  Results of models performances

From simple regression results, it was found that the mod-
els with multi-input parameters may predict UCS with 
higher degree of accuracy. Therefore, various non-linear 
techniques namely NLMR, ANN and ANFIS were devel-
oped to predict UCS of rocks obtained from the face of the 
Pahang–Selangor fresh water tunnel in Malaysia. During 
the modeling process of this study, all 124 datasets were 
randomly selected to 5 different datasets including training 

Fig. 7  Membership functions 
assigned for Schmidt hammer 
rebound number

Fig. 8  Membership functions 
assigned for point load index
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and testing for development of non-linear models. Some 
performance indices including R2, variance account for 
(VAF) and RMSE were computed to check the capacity 
performance of all predictive models:

where y, y′ and ỹ are the measured, predicted and mean of 
the y values, respectively, N is the total number of data and 
P is the number of predictors. Theoretically, the model will 
be excellent if the R2 is one, VAF is 100 and RMSE is zero. 
Results of models performance indices (R2, RMSE and 
VAF) for all randomly selected datasets based on training 
and testing are presented in Table 9. High performances of 
the training datasets indicate that the learning process of the 
predictive models is successful if those of testing datasets 
reveal that the models generalization ability is satisfactory. 
As seen in Table 9, selecting the best model for the UCS 
prediction is quite difficult. To overcome this difficulty, 
a simple ranking procedure suggested by Zorlu et al. [55] 
was used to select the best models. A ranking value was 
calculated and assigned for each training and testing data-
set separately (Table 9). Total ranking of training and testing 
datasets for three non-linear models is shown in Table 10. 
According to this table, models 2 and 3 exhibited the best 
performances of UCS prediction for NLMR and ANN tech-
niques, respectively, while model 3 yielded the best results 
among ANFIS models. When considering both training and 

(9)R2 = 1−
∑N

i=1(y− y′)2

∑N
i=1(y − ỹ)2

(10)VAF =
[

1−
var(y − y′)

var(y)

]

× 100

(11)RMSE =

√

√

√

√

1

N

N
∑

i=1

(y − y′)2

Fig. 9  Membership functions 
assigned for p-wave velocity

Table 10  Results of total rank for all predictive techniques obtained 
from five randomly selected datasets

Method Model Total rank

NLMR 1 20

2 21

3 18

4 18

5 13

ANN 1 19

2 21

3 28

4 16

5 13

ANFIS 1 10

2 16

3 28

4 24

5 16

Fig. 10  R2 of measured and predicted values of UCS for training and 
testing datasets using NLMR technique
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testing datasets, the prediction performances of the ANFIS 
models are higher than those of ANN and NLMR models. 
The NLMR equation for model 2 is given as follows:

Utilizing the NLMR, ANN and ANFIS methods, the 
developed relationship between the estimated UCS of gra-
nitic rocks and the measured one is given in Figs. 10, 11 
and 12 respectively. It is shown that the best prediction 
model is obtained using the ANFIS technique with regres-
sion coefficient of 0.951 and 0.956 for testing and training 
data in comparison with others including NLMR and ANN 
as shown in figures.

5  Conclusions

To develop the purposed models, laboratory tests were per-
formed on the rocks obtained from the face of the Pahang–
Selangor fresh water tunnel in Malaysia herein. The dataset 

(12)UCS = 11.442e0.0297Rn + 0.001V1.178
p + 22.297Is(50) − 35.051

composed of Schmidt hammer rebound number, point load 
index, p-wave velocity and UCS properties of granitic rocks. 
Based on the dataset, several non-linear prediction models 
were developed for estimating the UCS of granitic rocks. 
The simple relationship between the UCS and input vari-
ables including Rn, Is(50) and Vp is acceptable and obtained 
regression coefficients between the UCS and each variable 
are acceptable. Afterward, non-linear multiple regression 
model, the ANN and ANFIS techniques were employed for 
developing the best accurate predictor for estimating the 
UCS of rocks. Further, the developed models are compared 
to each other for choosing the best model one. For select-
ing the best model, obtained regression coefficient and total 
rank for each model were computed and compared. As con-
sidering the testing datasets, the prediction performance of 
the ANFIS models (R2 = 0.951) is higher than those of the 
ANN model (R2 = 0.886) and NLMR (R2 = 0.651). Also, 
considering the training datasets, similar results were also 
obtained (R2 = 0.766; 0.867; 0.956, respectively). Further, it 
is found that the ANFIS model gives best result in compari-
son with other models according to the total rank method 
as discussed previously. As a result, it is concluded that 
each developed model can be used for predicting the UCS 
of granitic rocks; however, the most accurate result can be 
obtained using the ANFIS model; however, it is obvious that 
developed models should be used for similar type of rocks 
and it is open to be developed.
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