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1  Introduction

Rapid enhancement in numbers and sizes of computational 
problems is radically motivating to design the modern par-
allel architecture. The applications that are computationally 
expensive are using parallel CPU architecture (multiproces-
sor) vastly [4].Task scheduling techniques play an effective 
role in efficient utilization of such multiprocessor systems. 
Task scheduling basically refers to allocate N number of 
tasks onto M number of available processing units (CPU) 
with the objectives to enhance the performance of the sys-
tem. However, number of constraints exposed by both, the 
applications and the hardware infrastructure, makes the 
task scheduling an NP-hard problem [2, 3]. Many other 
factors such as task inter-dependency, discriminating nature 
of tasks, uniformity/diversity in task’s execution time, pro-
cessors topology etc. makes the scheduling problem further 
complex. Because of such complexities, scheduling con-
tinue to be an important research area with the possibility 
of applying various heuristics and meta-heuristics for a rea-
sonably good solution [18].

Various heuristics and meta-heuristics techniques for 
multiprocessor task scheduling problem are available in 
literature [1, 2, 6–15, 25]. Jin et  al. [2]. presents a com-
parative study on different heuristics; Min–Min heuristic 
by Ibarra and Kim [6], Chaining heuristics by Djordjevic 
and Tosic [7], A* search by Kcafil et  al. [8], Simulated 
annealing by Monte Carlo [9], Tabu Search by Tian [10] 
and Porto et al. [11], highest level first with estimated times 
(HLFET) by Adam et al. [12], insertion scheduling heuris-
tic (ISH) by Kruatrachue and Lewis [13, 14], duplication 
scheduling heuristic (DSH) by Kruatrachue and Lewis 
[13, 14] and by Ahmad and Kwok [15] and genetic algo-
rithm (GA) by Hou et al. [25]. Jin et al. [2] presents a per-
formance study number of heuristics/meta-heuristics for 
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homogeneous multiprocessor task scheduling and consider-
ing task precedence constraint and task inter-communica-
tion delays. They implemented different heuristics on two 
well-known problems of linear algebra: LU decomposition 
and Gauss–Jordan elimination. Furthermore, Ahmad and 
Ali [1] proposed a multiprocessor task scheduling that uses 
particle swarm optimization (PSO) and evaluated its per-
formance on Gauss–Jordan elimination problem. They also 
compared its performance with DSH and GA heuristics and 
concluded that PSO performs better than GA.

Blum et  al. [17] observed that complementary charac-
teristics of different optimization heuristics benefits from 
hybridization. Inspired from this, an improved PSO and GA 
hybridization for multiprocessor task scheduling problem 
is proposed in this paper. According to [1], PSO provides 
better solutions over other heuristics/meta-heuristics for 
multiprocessor task scheduling problem. Also, the work of 
[16] infers that GA works effectively when used as a local 
search optimization technique in a hybrid meta-heuristic. 
Together, GA and PSO have been used widely to optimize 
solutions for different applications [26, 28–30, 33].

This paper hybridizes the PSO and the GA for multi-
processor DAG scheduling problem in which PSO works 
as a solution builder and GA as solution refiner to be used 
as a local search optimization technique. Initial popula-
tion is produced by PSO in form of particles (solutions). 
Few good particles enter into the new GA generation. GA 
operators, crossover and mutation, generate some newer 
and better particles after few generation which updates 
global best solution obtained using PSO. This procedure 
is repeated until the termination condition of the PSO 
is met. The new generated particles in GA component 
are expected to be better as these are produced from the 
genetic characteristics of the best fitness particles. The 
novelty of the proposal is that in each iteration GA com-
ponent builds the new solutions using their parent’s fea-
tures to act as local search technique and PSO component 
constructs diverse solution which provide a global search. 
Thus, the proposed PSO–GA hybrid meta-heuristic incul-
cates the advantages of both the meta-heuristics with posi-
tive feedback mechanism which is not so in other hybrid 
PSO, GA meta-heuristics [26, 28–30, 33]. Furthermore, 
to the best of author’s knowledge, the hybrid PSO, GA 
has not been applied earlier for the multiprocessor DAG 
scheduling problem.

The outline of the paper is as follows. An illustration 
of the multiprocessor task scheduling problem is given in 
Sect.  2. The proposed meta-heuristic for multiprocessor 
task scheduling using PSO-GA is fully described in Sect. 3. 
The performance of the proposed meta-heuristic with com-
parative study with other heuristics is given in Sect.  4. 
Finally, the work is concluded in Sect. 5.

2 � Multiprocessor DAG scheduling problem

This section focuses on the multiprocessor task schedul-
ing problem with precedence constraint and communica-
tion amongst the tasks [1, 18]. All the parameters, related 
to the problem are assumed to be deterministic. Also, it is 
assumed that there are M homogeneous processors in the 
multiprocessor system and N tasks. Job/tasks, can be rep-
resented in form of directed acyclic graph (DAG) as G (V, 
E), where V and E denote the set of nodes and the set of 
directed edges, respectively. A node ni ∈ V  represents task 
number followed by some weight w (ni) depicting process-
ing time of the task ni. A directed edge (ni, nj) ∈ E repre-
sents the communication and the precedence between the 
two tasks ni and nj. Precedence (ni, nj) indicates that node 
nj cannot start its execution before ni. An edge (ni, nj) is 
assigned some weight w (ni, nj) which represents the com-
munication between ni and nj. If tasks ni and nj are assigned 
to the same processor, communication becomes zero i.e., 
nj can start its execution latest by finish time (ni). Other-
wise nj will start its execution on some other processor lat-
est by finish time (ni)+ w

(

ni, nj
)

. The objective is to assign 
N number of DAG tasks onto M number of homogeneous 
processors with the given precedence and communication 
constraints such that makespan of the DAG is minimized.

Figure 1 shows a DAG with 9 nodes (tasks) represented 
by oval inside which node number and processing time is 
shown. Each edge denotes the precedence relation between 
the nodes along with the communication cost. Figure  2 
shows a feasible schedule with respect to the DAG of Fig. 1 
on two homogeneous processors that gives makespan of 25 
time units each.
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Fig. 1   Directed acyclic graph
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3 � The proposed meta‑heuristic

In this section, the proposed hybrid meta-heuristic (PSO-
GA) with complete flowchart describing its various fea-
tures is demonstrated. It begins by exploring discrete solu-
tions using PSO which further are exploited using GA for a 
global best (Gbest), instantly. The process is repeated until a 
termination condition of PSO (Sect. 3.2.1) is met.

3.1 � Framework

The algorithmic flowchart of the proposed hybrid meta-
heuristic (PSO-GA) for task scheduling in multiprocessor 
system is presented in Fig. 3. It starts with random initial 
population (particles). Smallest position value (SPV) rule 
[1, 5] is applied thereafter to produce sequence vector cor-
responding to each particle. The fitness of each particle is 
calculated and personal best (Pbest) and global best (Gbest) 
are updated. If at least one termination condition of PSO 
is met, the algorithm terminates otherwise it continues. 
Consequently, all the parameters including inertia weight, 
velocity vector, position vector and Pbest of each particle 
are updated. To update the Gbest, t number of best particles 
(with minimum fitness) are extracted using a module min_
fitness() and submitted to the GA part of the meta-heuristic 
as an initial population of GA. GA operators, crossover 
and mutation [18], are applied to exploit these submit-
ted particles. Using SPV rule, each solution is scored and 
using a selection method [18] again t best solutions are for-
warded to the next GA generation. The best solution of the 
GA (Bsol) out of them is updated. For each PSO iteration, 
same GA procedure is repeated until a termination condi-
tion of GA (Sect. 3.2.1) is met. When it exits from the GA 
part, Gbest is updated. The PSO–GA hybrid meta-heuristic 
repeatedly continues until at least one predefined termina-
tion condition of PSO (Sect. 3.2.1) is met.

3.2 � PSO‑related terms

This section introduces PSO and its related terms and 
operators embedded into the proposed PSO–GA hybrid 
meta-heuristic.

3.2.1 � Basic terms

Kennedy et  al. [19] proposed PSO as an optimization 
technique that mimics the behavior of social creatures 
i.e., particles in food searching [1, 5]. In this technique, 
all particles search food in multidimensional search space 
based on their two important characteristics; position 
(suggested solution) and velocity (rate of change of par-
ticle position). If any particle finds optimal path to food 
location, it attracts other particles to follow its path. The 
optimal path is determined by fitness function. All parti-
cles move toward the optimal solution updating their per-
sonal best (Pbest) and global best (Gbest) solution. Finally, 
all particles reach to the destination following the most 
optimal path.

Position vector �X referred as position vector of length 
N, where N represents the number of dimensions or nodes 
in the task graph. It is represented by �X = [x1 . . . xi . . . xN ],  
where xi represents the position value in the ith 
dimension.

Velocity vector �V  referred as velocity vector of length 
N, where N represents the number of dimensions or 
nodes in the task graph. Velocity vector is represented by 
−→
V = [v1 . . . vi . . . vN ], where, vi represents velocity value in 
the ith dimension.

Inertia weight ωk , an important parameter, used to con-
trol the impact of pervious velocity on the current velocity 
(kth iteration).

Personal best Pbestki  represents the local best fitness 
position of ith particle until kth iteration.

Global best Gk
best represents globally best fitness position 

achieved by global best particle until kth iteration.
Termination condition Two different termination 

conditions are used; one is the given number of itera-
tions and the other is the convergence of the solution. 
In PSO, convergence is checked as Gbest of the PSO 
component equal to the CP length (critical path dis-
cussed in next subsection). In GA, convergence is 
checked as Bsol of the GA component (shown in Fig. 3) 
equal to the CP length. Number of iterations is differ-
ent for both PSO and GA components and are decided  
empirically.

Fig. 2   A feasible schedule cor-
responding to Fig. 1
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3.2.2 � Other related terms

Few other important related terms that may not belong to 
general PSO but specially used in this meta-heuristic, are 
as follows.

Smallest position value (SVP), a heuristic proposed by 
Tasgetiren et  al. [5], is used to convert continuous value 
vector of PSO into a discrete value vector so that it may 
apply to all sequencing class kind of problems. This con-
cept is similar to the random keys concept proposed by 
Bean [31] for genetic algorithm. With this heuristic, it 
is easy to convert the continuous position value vector 
of wandering particles into discrete activity vector. Con-
clusively, this heuristic finds the discrete value sequence 

vector i.e. 
−→
S  by sorting particle’s continuous value posi-

tion vector �X in ascending order. The detailed descrip-
tion for SPV is given in [1, 5] and the pseudo-code is as 
follows.

{
Sort Xk

ij in ascending order
Enumerate Skij with discrete values where 

Skij = dimention
(

Xk
ij

)

}
A demonstration of SPV rule is given in Table 1 in which 

the values corresponding to Skij represent the ascending 

SPV(Xk
ij)

Fig. 3   Flowchart of the proposed hybrid PSO–GA
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order of the activities of the ith particle in jth dimension at 
kth iteration corresponding to their position values.

Critical path length CP length is a source to sink node 
path having highest makespan [1, 5] as represented in 
Eq. 1. The motive of CP length is to provide a bound to the 
optimal solution [1, 20].

Wj is processing time of task j belonging to the critical 
path, j ⊂ N and N is the number of tasks in the directed acy-
clic graph (DAG). To parallelize this DAG, at least M mini-
mum number of processors is required which is obtained 
using Eq. 2.

According to Eqs.  1 and 2, CP length is equal to the 
optimal schedule if there is M minimum number of proces-
sors available and the communication cost is negligible.

3.2.3 � Initial particle generation

Initially, position and velocity of the particles is generated 
randomly. X0

ij depicts the position vector for the ith particle 
corresponding to jth dimension at 0th iteration and is gen-
erated using Eq. 3.

Where, Xmin and Xmax have values 0.0 and 4.0, respec-
tively to make the procedure random and r takes uniform 
random values between 0 and 1 as given in literature [1, 5].

The velocity vector for ith particle corresponding to jth 
dimension at 0th iteration is generated using Eq. 4.

Where, Vmin and Vmax have values −4.0 and 4.0, respec-
tively and r is defined as uniform random value between 0 
and 1. These values are taken for randomization purpose as 
given in [1, 5].

Sequencing vector 
−→
S0i  denotes the continuous posi-

tion vector value of each particle i which is converted 
into discrete value permutation vector using SPV rule. 
Fitness, Fi of the ith particle, is evaluated using fitness 

(1)CP length =
∑

Wj

(2)M =

∑

Wi

CPlength
1 ≤ i ≤ N

(3)X0
ij = Xmin +

(

Xmax − Xmin

)

∗ r

(4)V0
ij = Vmin +

(

Vmax − Vmin

)

∗ r

function (Sect.  3.4). Personal best is initialized for each 
i particle i.e., Pbesti  =  Xi. Global best is initialized as 
Gbest = Xb;b = argmini{Fi}.

A representation of encoding of ith particle with jth 
dimensions is shown in Table 1. Where 1 ≤  j ≤  (N = 7). 
First row of the table represents the node numbers of the 
DAG. Second and third rows represent the position and 
velocity values generated randomly corresponding to the 
nodes of the DAG, respectively. Last row of the table rep-
resents the sequence position vector, produced using SPV 
rule. According to the SPV rule, position vector 

(

X0
i,j

)

 is 
sorted in ascending order corresponding to its values and 
SPV (S0ij) is the sequences of nodes with respect to sorted 
indexed (jth) nodes (tasks) as shown in Table  1. This 
sequence vector, as a solution, is evaluated using fitness 
function (Sect. 3.4) considering all problem constraints. The 
values in SPV (S0ij) represent the node numbers of the DAG.

3.2.4 � PSO updating rules

After initialization, a predefined number of iterations are 
performed in which the particles evolve to achieve optimal 
solution. According to standard PSO procedure, updating 
rules for inertia weight and velocity, position of the parti-
cles are required. Updating rules used in this work, are as 
follows [1, 5].

Inertia weight updating rule: ωk at kth iteration is 
updated using Eq. 5 as follows.

Where, ω is predefined as ω = 0.9 and α is a decrement-
ing factor randomly generated between 0 and 1.

Velocity vector updating rule: The velocity at kth itera-
tion is updated using Eq. 6.

Where, c1 and c2 are self-recognition and social con-
stant, respectively and r1, r2 are uniform random number 
between 0 and 1.

Position vector updating rule: At kth iteration, position 
of the particle is updated using Eq. 7.

(5)ωk = ωk−1 ∗ α

(6)

−→
Vk = ω ∗

−−→
Vk−1 + c1r1

(−−−−−→
Pbestk−1 −

−−→
Xk−1

)

+ c2r2

(−−→
Gbest −

−−→
Xk−1

)

(7)
−→
Xk =

−−→
Xk−1 +

−→
Vk

Table 1   Particle encoding 
representation

J 1 2 3 4 5 6 7

X0

ij
2.12 0.54 1.56 2.42 0.94 0.34 3.3

V0

ij
0.34 −0.84 −1.83 1.34 3.83 −3.2 0.92

S0ij 6 2 5 3 1 4 7
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3.3 � GA‑related terms and operators

This section briefly introduces GA, its related terms 
and operators specific to the proposed hybrid PSO-GA 
meta-heuristic.

GA is a well-known search technique applied for com-
binatorial problems in search of optimal solution [18, 21]. 
It is based on the principal of evolution and natural genet-
ics. It works efficiently for large search space. It starts with 
a set of initial random generated solutions called initial 
population consisting of chromosomes. Each chromosome 
represents a potential solution to the specified problem and 
is composed of string of genes. Genes may be represented 
using binary {0, 1}, integer or real values depending upon 
the applications. Genetic operators such as crossover, muta-
tion, and selection are iteratively applied to the population. 
Over the number of generation, GA converges to a near 
optimal solution.

Encoding Input for the GA component of the proposed 
PSO–GA meta-heuristic is the position vector (real val-
ues) of PSO-generated solution. This encoding is shown in 
Table 2. A chromosome for 10 real values is shown depict-
ing the particle values at the corresponding position.

Crossover operator The work uses a random crossover 
which generates new ‘individuals’ by combining the por-
tions of the parents’ (solutions) genetic material [18]. A 
random two-point crossover is used and all the positions 
of string between randomly generated two points of both 
the parents are remapped. The overall procedure is shown 
in Fig. 4.

An illustration of the random crossover operator, which 
consists of three steps, is given in Fig. 5. In step 1, two cut-
ting points are randomly selected for the substrings str1 and 
str2 from both the parents. Sorting Priorities (SP) corre-
sponding to the values of substrings is generated in increas-
ing order. The values of substring str1 are exchanged accord-
ing to the sorted priority of str2 and vice versa as shown in 
step 2. In step 3, output offspring v1’ and v2’ are obtained.

Mutation Operator Simple swap mutation operator is 
used in this work. Two positions are randomly selected and 
their contents are swapped as shown in Fig. 7. This proce-
dure guarantees to generate legal offspring. The swap muta-
tion operator usually converts less effective solution to more 
effective solution. The overall processor is shown in Fig. 6.

Selection Roulette wheel selection [18, 22] is used 
in this meta-heuristic. All solutions are placed on rou-
lette wheel where better solution has larger portion on the 
wheel. This gives a fair chance to each individual to be a 

potential parent in proportion to their fitness value. Best 
probability of selecting a parent is generated by a spinning 
roulette wheel along with the size of its slots for every par-
ent. Obviously, parents with bigger fitness value (larger slot 
sizes) have higher probability to be chosen.

3.4 � Fitness function

The motive of the work is to optimize the scheduling length 
of the given problem represented as DAG. Hence, the solu-
tion can be scored by makespan which is the complete 
scheduling length as defined in Eq. 8.

Where, FT(n)i,j represents the finish time of task ni on 
best suitable processor pj and 1 ≤ i ≤ N, 1 ≤ j ≤ M.

(8)makespan = max
(

FT(n)i,j
)

Table 2   GA encoding

Chromosome 0.6 2.4 3.6 0.4 0.65 0.86 0.77 0.78 0.09 0.1

Procedure: Crossover 

Input: parent v1,v2, number of tasks  N 

Output: offspring: v1’, v2’ 

begin 

           Point1 = random[1, N-1]; 

           Point2 = random[point1,N]; 

           Length = point2 – point1; 

for  i = 1 to length 

            str1[i] = v1[Point1+i]; 

            str2[i] = v2[Point2+i]; 

str1[.] = sorting(str1[.]); 

str2[.] = sorting(str2[.]); 

            v1’ = v1[1: Point1]// v2[Point1: Point2]// v1[Point2+1:N]; 

            v2’ = v2[1: Point1]// v1[Point1: Point2]// v2[Point2+1:N]; 

end for 

 for  i = 1 to length 

       for  j = 1 to length 

               if v1’[Point1+i] = str2[j] then

                   v1’[Point1+i] = str1[j]; 

               end if 

       end for 

       for  j = 1 to length 

             if  v2’[Point1+i] = str1[j] then

                v2’[Point1+i] = str2[j]; 

             end if  

       end for 

end for 

end

Fig. 4   Random crossover procedure [18]
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This fitness function evaluates the solution using serial 
schedule scheme (SSS) [32]. The SSS is used when the 
generated solutions i.e., particles or chromosomes are 

invalid (not following dependency constraint). Basically, 
SSS schedules all the activities sequentially until a valid 
or feasible solution is achieved. The detailed description of 
the SSS procedure is given in [32].

4 � Experimental studies

This section details the performance of the PSO–GA 
hybrid meta-heuristic applied for task scheduling in mul-
tiprocessor. It has been compared with some other heuris-
tics as proposed in literature [2, 6–14, 25]. The compared 
nine heuristics/meta-heuristics are: Min–Min, Chaining, 
A*search, Simulated Annealing, Tabu Search, HLFET, 
ISH, GA and PSO. The DAG for job/task is generated for 
two standard linear algebra problems. Some random DAG 
is also used. The proposed PSO–GA meta-heuristic is sim-
ulated in Matlab.

4.1 � Test bed

There are no commonly used and standard tasks set 
benchmarks available to study the performance of the 
heuristics/meta-heuristics on task scheduling problems 
[23]. Researchers have often used random task graphs of 
known optimal schedules [1, 23]. For effective compara-
tive study, two well-known standard problems of linear 
algebra; LU decomposition [2] and Gauss–Jordan elimi-
nation (GJE) [2, 24] have been used. These are tested on 

Fig. 5   An Illustration of ran-
dom crossover operator

Step 1: Select two cutting points (C-P) 

Parent v1 0.3 0.5 0.4 0.6 0.2 0.8 0.9 0.1 0.7 0.1 

Parent v2 0.5  0.3 0.1 0.4 0.8 0.7 0.1 0.2 0.9 0.6 

Step 2: Mapping relationship based on sorting priorities (SP) 

Step 3:  Legalize the offspring based on step 2 

Parent v1’ 0.3 0.5 0.2 0.4 0.6 0.8 0.9 0.1 0.7 0.1 

Parent v2’ 0.5 0.3 0.4 0.8 0.1 0.7 0.10 0.2 0.9 0.6 

S.p. 2 1 3 

values 0.4 0.6 0.2 

S.p. 3 2 1

values 0.2 0.4 0.6 

S.p. 3 2 1 

values 0.1 0.4 0.8 

S.p. 2 1 3 

values 0.4 0.8 0.1 

C-P 

Procedure: Swap Mutation 

Input: chromosome v, number of task N 

Output: v’ 

begin 

         x = random[1,N-1]; 

         y = random[x+1,N]; 

         v’ = v[1:x-1]//v[y]//v[x+1:y-1]//v[x]//v[y+1:N]; 

end   

Fig. 6   Swap mutation operator [18]

Parent v 0.3 0.5 0.4 0.6 0.2 0.8 0.9 0.1 0.7 0.1 

Parent v’ 0.3 0.5 0.9 0.6 0.2 0.8 0.4 0.1 0.7 0.1 

Exchangin
g points

Fig. 7   Illustration of the swap mutation operator



42	 Engineering with Computers (2016) 32:35–47

1 3

nine heuristics as defined in [1, 2]. Figure 8a, b depict the 
pictorial representation of LU decomposition and GJE 
problem.

Further, to study the behavior of the proposed PSO–GA 
on large sizes of task graphs, few experiments are done on 

random generated task graphs. Random task graphs are pic-
torially represented in Fig. 8c.

4.2 � Experimental analysis

For the performance analysis of the PSO–GA, two set of 
experiments have been performed in this section. In the 
first subsection, the PSO-GA is evaluated on two well-
known linear algebra problems i.e., GJE and LU decompo-
sition graphs along with some known optimal solutions of 
different heuristics/meta-heuristics [1, 2]. Next subsection 
demonstrates the comparative results of the PSO–GA with 
PSO [1] and GA [25] on randomly generated graphs.

4.2.1 � Benchmark task graphs experiments

This subsection depicts comparative results of the proposed 
PSO–GA meta-heuristic on GJE and LU decomposition 
graphs with other available heuristics. The parameters to 
generate task graphs corresponding to GJE and LU decom-
position problems and input parameters of the PSO–GA are 
given in Table 3 and Table 4, respectively. All the param-
eters and number of iterations in both the tables are taken 
from other contemporary meta-heuristics [1, 2] for the pur-
pose of fair comparative study. Inter-process communica-
tion cost on the edges of GJE and LU decomposition DAGs 
is taken same as in the models [1, 2, 23]. For random task 
graph experiments (Sect.  4.2.2), it is randomly generated 
between certain ranges as given in Table 5. The constants 
C1 and C2 (self-recognition and social constant, respec-
tively) are taken as 2 against the suggested value of 2.05 
in “standard” PSO [27]. The second and third rows details 
about the processing time (in time unit) taken by each node 
of the task graph and communication cost (in time unit) of 
the edges, respectively in both the tables.

Comparative result of all the heuristics with the PSO–
GA meta-heuristic is shown in Figs. 9 and 10 correspond-
ing to GJE and LU decomposition graphs, respectively.

Fig. 8   Pictorial representation of GJE, LU decomposition and random graphs

Table 3   GJE task graphs experimental details

Number of tasks (N) 15 21 28 36

Processing time 40/task 40/task 40/task 40/task

Communication cost 100/edge 100/edge 100/edge 100/edge

Processors (M) 4 4 4 4

Population size 30 42 56 72

PSO-iterations 50 50 50 50

GA-iterations 10 10 10 10

C1 2 2 2 2

C2 2 2 2 2

ω 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15

Table 4   LU decomposition task graphs experimental details

Number of tasks (N) 14 20 27 35

Processing time 10 s bottom layer task, plus 10 s for every 
layer

Communication cost 80/edge 80/edge 80/edge 80/edge

Processors (M) 4 4 4 4

Population size 28 40 54 70

PSO-iterations 50 50 50 50

GA-iterations 10 10 10 10

C1 2 2 2 2

C2 2 2 2 2

ω 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15
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From the experimental results of Figs.  9 and 10, it is 
observed that the proposed PSO–GA meta-heuristic outper-
forms all the other heuristics/meta-heuristics for GJE and 

LU decomposition problem. The experimental analysis also 
exhibit that GA and PSO are popular and most competing 
heuristics to solve large and complex problems. Hence, for 

Table 5   Input values for 
random task graphs experiment

Tasks (N) 100 200 500 800 1,000 2,000

Iterations for GA [25] 3,000 3,000 4,000 4,000 5,000 5,000

Iterations for PSO [1] 3,000 3,000 4,000 4,000 5,000 5,000

Iterations for proposed hybrid PSO–GA PSO-150 PSO-150 PSO-200 PSO-200 PSO-250 PSO-250

GA-20 GA-20 GA-20 GA-20 GA-20 GA-20

Population 150 250 300 300 400 500

Communication cost 10–50 1–50 10–100 10–100 20–150 20–150

Processing time 10–30 10–30 10–60 10–60 20–90 20–90

Processors (M) 4 4 8 8 16 16

C1 2 2 2 2 2 2

C2 2 2 2 2 2 2

ω 0.9 0.9 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15 0.15 0.15

Fig. 9   Comparative study of 10 
heuristics on GJE graphs

Fig. 10   Comparative study of 
10 heuristics on LU decomposi-
tion graphs
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further experimentation, we select these two techniques for 
the comparison purpose.

The experimental results shown in Figs.  9 and 10 are 
limited to four numbers of processors and same size 
of problems (i.e. task graphs). This is to make a fair 

comparative study with other existing state of the arts 
heuristics [1, 2] as these have been applied for the same 
configuration. The results shown in the Figs.  9 and 10 
are overlapping because of limited problem size and high 
precedence constraints among the nodes of DAGs. Also 

Fig. 11   Comparative study 
of three meta-heuristics using 
GJE taskgraph-465 with varied 
number of processors

Fig. 12   Comparative study 
of three meta-heuristics using 
GJE taskgraph-820 with varied 
number of processors

Fig. 13   Comparative study of 
three meta-heuristics using LU 
decomposition taskgraph-464 
with varied number of proces-
sors
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results cannot be further optimized increasing the number 
of processors because of limited problem size and prece-
dence constraints among the nodes and the proposed PSO–
GA has improved the quality of the solution to its max 
using the same configuration.

To further evaluate the performance of the PSO–GA in 
comparison to the dominating meta-heuristics i.e., GA and 
PSO, experiments have been performed by varying num-
bers of processors and using large sizes of JGE and LU 
decomposition graphs. Results are shown in in Figs.  11, 
12, 13 and 14. To do this set of experiments, all the param-
eters except initial population and numbers of processors 
for GJE and LU decomposition task graphs are taken from 
Tables 3 and 4, respectively. For all the experiments, initial 
population is taken as 150 and numbers of processors are 
shown in the respective figures.

Figures  11 and 12 shows the performance of the 
PSO–GA in comparison to PSO and GA with varied 
number of processors on GJE task graphs of 645 and 820 
nodes, respectively. From the results, it is observed that 
when numbers of processors are increased with respect 
to the large size of task graphs, the performance of the 
proposed PSO-GA is rapid improving in comparison to 
others.

To make it more clear, the impact of increasing numbers 
of processors on the proposed PSO–GA, an experimental 
analysis on large sizes of LU decomposition task graphs 
of 464 and 819 nodes is also done and results are shown 
in Figs. 13 and 14, respectively. The results infer that the 
PSO–GA again outperforms other heuristics with the var-
ied number of processors corresponding to large sizes of 
LU decomposition task graphs.

The Figs.  13 and 14 exhibit the similar pattern as that 
of small sizes of DAGs. To observe the performance of the 
model on random task graphs, the next section presents an 
experimental analysis of the PSO-GA model using random 
task graphs.

4.2.2 � Random task graphs experiment

In this experiment, the performance of the PSO–GA is 
studied by comparing it with PSO [1] and GA [25] over 
the large size random DAGs. The PSO-GA meta-heuristic 
is also tested by varying the number of processors. Table 5 
represents the input parameters for random task graphs 
and meta-heuristic techniques used in random task graph 
experiments.

On the basis of the given input parameters (Table 5), six 
large sizes of random DAGs are generated with 100, 200, 
500, 800, 1,000, and 2,000 tasks. Most of the parameters 
conforms to that of Tables  3 and 4 suitable for heuristics 
implementation and comparison with various state of the 
art. For a fair comparison, all the parameters, number of 
iterations and fitness function etc. are taken to be the same. 
The comparative results of GA, PSO and PSO–GA for ran-
dom task graphs are shown in Fig. 15.

The parameters are taken for these experiments are 
shown in Table 5. From the Fig. 15, it is observed that the 
performance of the PSO–GA is far better than other meta-
heuristics. This set of experiments also proves that the pro-
posed hybrid PSO–GA meta-heuristic effectively outper-
forms PSO [1] and GA [25] in all the cases.

5 � Conclusion

The paper proposes a hybrid PSO–GA meta-heuristic using 
PSO and GA meta-heuristics to solve the multiprocessor 
DAG scheduling problem using homogenous multipro-
cessor system. In the proposed PSO–GA meta-heuristic, 
PSO works as a solution builder and GA works as a solu-
tion refiner. Novelty of the proposal is the way GA is used 
inside the PSO i.e., good generated PSO solutions are fur-
ther refined using GA. Moreover, at each iteration of the 
PSO, few best of these particles with their updated position 

Fig. 14   Comparative study of 
three meta-heuristics using LU 
decomposition taskgraph-819 
with varied number of proces-
sors
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and velocity is fed to the GA component of the model and 
refined. Global best solution of PSO is updated using a best 
solution suggested by GA part of the model. The compu-
tational results of the PSO–GA are compared with other 
heuristics/meta-heuristics [1, 2] on two well-known linear 
algebra problems; GJE, LU decomposition and random-
generated graphs. Initially, the results are compared with 
nine other states of the art using GJE and LU decomposi-
tion tasks graphs and few numbers of processors. From the 
results, it is observed that the PSO–GA outperforms nine 
states of the arts heuristics. Further, to test the behavior of 
the PSO–GA on larger sizes of GJE, LU tasks graphs on 
large number of processors, some experiments are done. 
The results are compared with two well-known and most 
effective meta-heuristics (for large search space problem) 
i.e., GA and PSO and it is found that the proposed PSO–
GA meta-heuristic is effective and scalable to solve the 
large sizes of problems also. The performance of the PSO–
GA is also tested on various large sizes of random tasks 
graphs with varying number of processors. Again, results 
proof the effectiveness of the proposed model.

Thus, it is concluded that PSO–GA hybrid meta-heuris-
tic is a promising candidate for multiprocessor task sched-
uling problem. The proposed PSO–GA meta-heuristic can 
also be applied to solve other larger and complex combina-
torial optimization problems effectively.
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