
1 3

Engineering with Computers (2016) 32:35–47
DOI 10.1007/s00366-015-0396-z

ORIGINAL ARTICLE

A novel hybrid PSO–GA meta‑heuristic for scheduling of DAG
with communication on multiprocessor systems

Neetesh Kumar · Deo Prakash Vidyarthi

Received: 28 July 2014 / Accepted: 16 January 2015 / Published online: 1 February 2015
© Springer-Verlag London 2015

1  Introduction

Rapid enhancement in numbers and sizes of computational
problems is radically motivating to design the modern par-
allel architecture. The applications that are computationally
expensive are using parallel CPU architecture (multiproces-
sor) vastly [4].Task scheduling techniques play an effective
role in efficient utilization of such multiprocessor systems.
Task scheduling basically refers to allocate N number of
tasks onto M number of available processing units (CPU)
with the objectives to enhance the performance of the sys-
tem. However, number of constraints exposed by both, the
applications and the hardware infrastructure, makes the
task scheduling an NP-hard problem [2, 3]. Many other
factors such as task inter-dependency, discriminating nature
of tasks, uniformity/diversity in task’s execution time, pro-
cessors topology etc. makes the scheduling problem further
complex. Because of such complexities, scheduling con-
tinue to be an important research area with the possibility
of applying various heuristics and meta-heuristics for a rea-
sonably good solution [18].

Various heuristics and meta-heuristics techniques for
multiprocessor task scheduling problem are available in
literature [1, 2, 6–15, 25]. Jin et al. [2]. presents a com-
parative study on different heuristics; Min–Min heuristic
by Ibarra and Kim [6], Chaining heuristics by Djordjevic
and Tosic [7], A* search by Kcafil et al. [8], Simulated
annealing by Monte Carlo [9], Tabu Search by Tian [10]
and Porto et al. [11], highest level first with estimated times
(HLFET) by Adam et al. [12], insertion scheduling heuris-
tic (ISH) by Kruatrachue and Lewis [13, 14], duplication
scheduling heuristic (DSH) by Kruatrachue and Lewis
[13, 14] and by Ahmad and Kwok [15] and genetic algo-
rithm (GA) by Hou et al. [25]. Jin et al. [2] presents a per-
formance study number of heuristics/meta-heuristics for

Abstract  This work presents a novel hybrid meta-heuris-
tic that combines particle swarm optimization and genetic
algorithm (PSO–GA) for the job/tasks in the form of
directed acyclic graph (DAG) exhibiting inter-task commu-
nication. The proposed meta-heuristic starts with PSO and
enters into GA when local best result from PSO is obtained.
Thus, the proposed PSO–GA meta-heuristic is different
than other such hybrid meta-heuristics as it aims at improv-
ing the solution obtained by PSO using GA. In the pro-
posed meta-heuristic, PSO is used to provide diversification
while GA is used to provide intensification. The PSO–GA
is tested for task scheduling on two standard well-known
linear algebra problems: LU decomposition and Gauss–
Jordan elimination. It is also compared with other states-
of-the-art heuristics for known solutions. Furthermore, its
effectiveness is evaluated on few large sizes of random task
graphs. Comparative study of the proposed PSO-GA with
other heuristics depicts that the PSO–GA performs quite
effectively for multiprocessor DAG scheduling problem.

Keywords  Multiprocessor DAG scheduling · Genetic
algorithm · Particle swarm optimization · NP-hard · Critical
path

N. Kumar · D. P. Vidyarthi (*)
School of Computer and Systems Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
e-mail: dpv@mail.jnu.ac.in

N. Kumar
e-mail: dgoldneetesh15@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-015-0396-z&domain=pdf

36	 Engineering with Computers (2016) 32:35–47

1 3

homogeneous multiprocessor task scheduling and consider-
ing task precedence constraint and task inter-communica-
tion delays. They implemented different heuristics on two
well-known problems of linear algebra: LU decomposition
and Gauss–Jordan elimination. Furthermore, Ahmad and
Ali [1] proposed a multiprocessor task scheduling that uses
particle swarm optimization (PSO) and evaluated its per-
formance on Gauss–Jordan elimination problem. They also
compared its performance with DSH and GA heuristics and
concluded that PSO performs better than GA.

Blum et al. [17] observed that complementary charac-
teristics of different optimization heuristics benefits from
hybridization. Inspired from this, an improved PSO and GA
hybridization for multiprocessor task scheduling problem
is proposed in this paper. According to [1], PSO provides
better solutions over other heuristics/meta-heuristics for
multiprocessor task scheduling problem. Also, the work of
[16] infers that GA works effectively when used as a local
search optimization technique in a hybrid meta-heuristic.
Together, GA and PSO have been used widely to optimize
solutions for different applications [26, 28–30, 33].

This paper hybridizes the PSO and the GA for multi-
processor DAG scheduling problem in which PSO works
as a solution builder and GA as solution refiner to be used
as a local search optimization technique. Initial popula-
tion is produced by PSO in form of particles (solutions).
Few good particles enter into the new GA generation. GA
operators, crossover and mutation, generate some newer
and better particles after few generation which updates
global best solution obtained using PSO. This procedure
is repeated until the termination condition of the PSO
is met. The new generated particles in GA component
are expected to be better as these are produced from the
genetic characteristics of the best fitness particles. The
novelty of the proposal is that in each iteration GA com-
ponent builds the new solutions using their parent’s fea-
tures to act as local search technique and PSO component
constructs diverse solution which provide a global search.
Thus, the proposed PSO–GA hybrid meta-heuristic incul-
cates the advantages of both the meta-heuristics with posi-
tive feedback mechanism which is not so in other hybrid
PSO, GA meta-heuristics [26, 28–30, 33]. Furthermore,
to the best of author’s knowledge, the hybrid PSO, GA
has not been applied earlier for the multiprocessor DAG
scheduling problem.

The outline of the paper is as follows. An illustration
of the multiprocessor task scheduling problem is given in
Sect. 2. The proposed meta-heuristic for multiprocessor
task scheduling using PSO-GA is fully described in Sect. 3.
The performance of the proposed meta-heuristic with com-
parative study with other heuristics is given in Sect. 4.
Finally, the work is concluded in Sect. 5.

2 � Multiprocessor DAG scheduling problem

This section focuses on the multiprocessor task schedul-
ing problem with precedence constraint and communica-
tion amongst the tasks [1, 18]. All the parameters, related
to the problem are assumed to be deterministic. Also, it is
assumed that there are M homogeneous processors in the
multiprocessor system and N tasks. Job/tasks, can be rep-
resented in form of directed acyclic graph (DAG) as G (V,
E), where V and E denote the set of nodes and the set of
directed edges, respectively. A node ni ∈ V represents task
number followed by some weight w (ni) depicting process-
ing time of the task ni. A directed edge (ni, nj) ∈ E repre-
sents the communication and the precedence between the
two tasks ni and nj. Precedence (ni, nj) indicates that node
nj cannot start its execution before ni. An edge (ni, nj) is
assigned some weight w (ni, nj) which represents the com-
munication between ni and nj. If tasks ni and nj are assigned
to the same processor, communication becomes zero i.e.,
nj can start its execution latest by finish time (ni). Other-
wise nj will start its execution on some other processor lat-
est by finish time (ni)+ w

(

ni, nj
)

. The objective is to assign
N number of DAG tasks onto M number of homogeneous
processors with the given precedence and communication
constraints such that makespan of the DAG is minimized.

Figure 1 shows a DAG with 9 nodes (tasks) represented
by oval inside which node number and processing time is
shown. Each edge denotes the precedence relation between
the nodes along with the communication cost. Figure 2
shows a feasible schedule with respect to the DAG of Fig. 1
on two homogeneous processors that gives makespan of 25
time units each.

n1,2

n2,3 n3,3

n4,4

n5,5
n6,4

n7,4

n8,4

n9,1

10

10

10
10

1
1

1

1

1

1

5

5

5

20

4

(Task ID, Processing time)

Fig. 1   Directed acyclic graph

37Engineering with Computers (2016) 32:35–47	

1 3

3 � The proposed meta‑heuristic

In this section, the proposed hybrid meta-heuristic (PSO-
GA) with complete flowchart describing its various fea-
tures is demonstrated. It begins by exploring discrete solu-
tions using PSO which further are exploited using GA for a
global best (Gbest), instantly. The process is repeated until a
termination condition of PSO (Sect. 3.2.1) is met.

3.1 � Framework

The algorithmic flowchart of the proposed hybrid meta-
heuristic (PSO-GA) for task scheduling in multiprocessor
system is presented in Fig. 3. It starts with random initial
population (particles). Smallest position value (SPV) rule
[1, 5] is applied thereafter to produce sequence vector cor-
responding to each particle. The fitness of each particle is
calculated and personal best (Pbest) and global best (Gbest)
are updated. If at least one termination condition of PSO
is met, the algorithm terminates otherwise it continues.
Consequently, all the parameters including inertia weight,
velocity vector, position vector and Pbest of each particle
are updated. To update the Gbest, t number of best particles
(with minimum fitness) are extracted using a module min_
fitness() and submitted to the GA part of the meta-heuristic
as an initial population of GA. GA operators, crossover
and mutation [18], are applied to exploit these submit-
ted particles. Using SPV rule, each solution is scored and
using a selection method [18] again t best solutions are for-
warded to the next GA generation. The best solution of the
GA (Bsol) out of them is updated. For each PSO iteration,
same GA procedure is repeated until a termination condi-
tion of GA (Sect. 3.2.1) is met. When it exits from the GA
part, Gbest is updated. The PSO–GA hybrid meta-heuristic
repeatedly continues until at least one predefined termina-
tion condition of PSO (Sect. 3.2.1) is met.

3.2 � PSO‑related terms

This section introduces PSO and its related terms and
operators embedded into the proposed PSO–GA hybrid
meta-heuristic.

3.2.1 � Basic terms

Kennedy et al. [19] proposed PSO as an optimization
technique that mimics the behavior of social creatures
i.e., particles in food searching [1, 5]. In this technique,
all particles search food in multidimensional search space
based on their two important characteristics; position
(suggested solution) and velocity (rate of change of par-
ticle position). If any particle finds optimal path to food
location, it attracts other particles to follow its path. The
optimal path is determined by fitness function. All parti-
cles move toward the optimal solution updating their per-
sonal best (Pbest) and global best (Gbest) solution. Finally,
all particles reach to the destination following the most
optimal path.

Position vector �X referred as position vector of length
N, where N represents the number of dimensions or nodes
in the task graph. It is represented by �X = [x1 . . . xi . . . xN],
where xi represents the position value in the ith
dimension.

Velocity vector �V referred as velocity vector of length
N, where N represents the number of dimensions or
nodes in the task graph. Velocity vector is represented by
−→
V = [v1 . . . vi . . . vN], where, vi represents velocity value in
the ith dimension.

Inertia weight ωk , an important parameter, used to con-
trol the impact of pervious velocity on the current velocity
(kth iteration).

Personal best Pbestki represents the local best fitness
position of ith particle until kth iteration.

Global best Gk
best represents globally best fitness position

achieved by global best particle until kth iteration.
Termination condition Two different termination

conditions are used; one is the given number of itera-
tions and the other is the convergence of the solution.
In PSO, convergence is checked as Gbest of the PSO
component equal to the CP length (critical path dis-
cussed in next subsection). In GA, convergence is
checked as Bsol of the GA component (shown in Fig. 3)
equal to the CP length. Number of iterations is differ-
ent for both PSO and GA components and are decided
empirically.

Fig. 2   A feasible schedule cor-
responding to Fig. 1

P2
n1 n2 n6 n4 n7 n8 n9

n5 n3P1

 0 2 3 5 8 9 11 13 16 20 24 25 time

38	 Engineering with Computers (2016) 32:35–47

1 3

3.2.2 � Other related terms

Few other important related terms that may not belong to
general PSO but specially used in this meta-heuristic, are
as follows.

Smallest position value (SVP), a heuristic proposed by
Tasgetiren et al. [5], is used to convert continuous value
vector of PSO into a discrete value vector so that it may
apply to all sequencing class kind of problems. This con-
cept is similar to the random keys concept proposed by
Bean [31] for genetic algorithm. With this heuristic, it
is easy to convert the continuous position value vector
of wandering particles into discrete activity vector. Con-
clusively, this heuristic finds the discrete value sequence

vector i.e.
−→
S by sorting particle’s continuous value posi-

tion vector �X in ascending order. The detailed descrip-
tion for SPV is given in [1, 5] and the pseudo-code is as
follows.

{
Sort Xk

ij in ascending order
Enumerate Skij with discrete values where

Skij = dimention
(

Xk
ij

)

}
A demonstration of SPV rule is given in Table 1 in which

the values corresponding to Skij represent the ascending

SPV(Xk
ij)

Fig. 3   Flowchart of the proposed hybrid PSO–GA

39Engineering with Computers (2016) 32:35–47	

1 3

order of the activities of the ith particle in jth dimension at
kth iteration corresponding to their position values.

Critical path length CP length is a source to sink node
path having highest makespan [1, 5] as represented in
Eq. 1. The motive of CP length is to provide a bound to the
optimal solution [1, 20].

Wj is processing time of task j belonging to the critical
path, j ⊂ N and N is the number of tasks in the directed acy-
clic graph (DAG). To parallelize this DAG, at least M mini-
mum number of processors is required which is obtained
using Eq. 2.

According to Eqs. 1 and 2, CP length is equal to the
optimal schedule if there is M minimum number of proces-
sors available and the communication cost is negligible.

3.2.3 � Initial particle generation

Initially, position and velocity of the particles is generated
randomly. X0

ij depicts the position vector for the ith particle
corresponding to jth dimension at 0th iteration and is gen-
erated using Eq. 3.

Where, Xmin and Xmax have values 0.0 and 4.0, respec-
tively to make the procedure random and r takes uniform
random values between 0 and 1 as given in literature [1, 5].

The velocity vector for ith particle corresponding to jth
dimension at 0th iteration is generated using Eq. 4.

Where, Vmin and Vmax have values −4.0 and 4.0, respec-
tively and r is defined as uniform random value between 0
and 1. These values are taken for randomization purpose as
given in [1, 5].

Sequencing vector
−→
S0i denotes the continuous posi-

tion vector value of each particle i which is converted
into discrete value permutation vector using SPV rule.
Fitness, Fi of the ith particle, is evaluated using fitness

(1)CP length =
∑

Wj

(2)M =

∑

Wi

CPlength
1 ≤ i ≤ N

(3)X0
ij = Xmin +

(

Xmax − Xmin

)

∗ r

(4)V0
ij = Vmin +

(

Vmax − Vmin

)

∗ r

function (Sect. 3.4). Personal best is initialized for each
i particle i.e., Pbesti = Xi. Global best is initialized as
Gbest = Xb;b = argmini{Fi}.

A representation of encoding of ith particle with jth
dimensions is shown in Table 1. Where 1 ≤ j ≤ (N = 7).
First row of the table represents the node numbers of the
DAG. Second and third rows represent the position and
velocity values generated randomly corresponding to the
nodes of the DAG, respectively. Last row of the table rep-
resents the sequence position vector, produced using SPV
rule. According to the SPV rule, position vector

(

X0
i,j

)

 is
sorted in ascending order corresponding to its values and
SPV (S0ij) is the sequences of nodes with respect to sorted
indexed (jth) nodes (tasks) as shown in Table 1. This
sequence vector, as a solution, is evaluated using fitness
function (Sect. 3.4) considering all problem constraints. The
values in SPV (S0ij) represent the node numbers of the DAG.

3.2.4 � PSO updating rules

After initialization, a predefined number of iterations are
performed in which the particles evolve to achieve optimal
solution. According to standard PSO procedure, updating
rules for inertia weight and velocity, position of the parti-
cles are required. Updating rules used in this work, are as
follows [1, 5].

Inertia weight updating rule: ωk at kth iteration is
updated using Eq. 5 as follows.

Where, ω is predefined as ω = 0.9 and α is a decrement-
ing factor randomly generated between 0 and 1.

Velocity vector updating rule: The velocity at kth itera-
tion is updated using Eq. 6.

Where, c1 and c2 are self-recognition and social con-
stant, respectively and r1, r2 are uniform random number
between 0 and 1.

Position vector updating rule: At kth iteration, position
of the particle is updated using Eq. 7.

(5)ωk = ωk−1 ∗ α

(6)

−→
Vk = ω ∗

−−→
Vk−1 + c1r1

(−−−−−→
Pbestk−1 −

−−→
Xk−1

)

+ c2r2

(−−→
Gbest −

−−→
Xk−1

)

(7)
−→
Xk =

−−→
Xk−1 +

−→
Vk

Table 1   Particle encoding
representation

J 1 2 3 4 5 6 7

X0

ij
2.12 0.54 1.56 2.42 0.94 0.34 3.3

V0

ij
0.34 −0.84 −1.83 1.34 3.83 −3.2 0.92

S0ij 6 2 5 3 1 4 7

40	 Engineering with Computers (2016) 32:35–47

1 3

3.3 � GA‑related terms and operators

This section briefly introduces GA, its related terms
and operators specific to the proposed hybrid PSO-GA
meta-heuristic.

GA is a well-known search technique applied for com-
binatorial problems in search of optimal solution [18, 21].
It is based on the principal of evolution and natural genet-
ics. It works efficiently for large search space. It starts with
a set of initial random generated solutions called initial
population consisting of chromosomes. Each chromosome
represents a potential solution to the specified problem and
is composed of string of genes. Genes may be represented
using binary {0, 1}, integer or real values depending upon
the applications. Genetic operators such as crossover, muta-
tion, and selection are iteratively applied to the population.
Over the number of generation, GA converges to a near
optimal solution.

Encoding Input for the GA component of the proposed
PSO–GA meta-heuristic is the position vector (real val-
ues) of PSO-generated solution. This encoding is shown in
Table 2. A chromosome for 10 real values is shown depict-
ing the particle values at the corresponding position.

Crossover operator The work uses a random crossover
which generates new ‘individuals’ by combining the por-
tions of the parents’ (solutions) genetic material [18]. A
random two-point crossover is used and all the positions
of string between randomly generated two points of both
the parents are remapped. The overall procedure is shown
in Fig. 4.

An illustration of the random crossover operator, which
consists of three steps, is given in Fig. 5. In step 1, two cut-
ting points are randomly selected for the substrings str1 and
str2 from both the parents. Sorting Priorities (SP) corre-
sponding to the values of substrings is generated in increas-
ing order. The values of substring str1 are exchanged accord-
ing to the sorted priority of str2 and vice versa as shown in
step 2. In step 3, output offspring v1’ and v2’ are obtained.

Mutation Operator Simple swap mutation operator is
used in this work. Two positions are randomly selected and
their contents are swapped as shown in Fig. 7. This proce-
dure guarantees to generate legal offspring. The swap muta-
tion operator usually converts less effective solution to more
effective solution. The overall processor is shown in Fig. 6.

Selection Roulette wheel selection [18, 22] is used
in this meta-heuristic. All solutions are placed on rou-
lette wheel where better solution has larger portion on the
wheel. This gives a fair chance to each individual to be a

potential parent in proportion to their fitness value. Best
probability of selecting a parent is generated by a spinning
roulette wheel along with the size of its slots for every par-
ent. Obviously, parents with bigger fitness value (larger slot
sizes) have higher probability to be chosen.

3.4 � Fitness function

The motive of the work is to optimize the scheduling length
of the given problem represented as DAG. Hence, the solu-
tion can be scored by makespan which is the complete
scheduling length as defined in Eq. 8.

Where, FT(n)i,j represents the finish time of task ni on
best suitable processor pj and 1 ≤ i ≤ N, 1 ≤ j ≤ M.

(8)makespan = max
(

FT(n)i,j
)

Table 2   GA encoding

Chromosome 0.6 2.4 3.6 0.4 0.65 0.86 0.77 0.78 0.09 0.1

Procedure: Crossover

Input: parent v1,v2, number of tasks N

Output: offspring: v1’, v2’

begin

 Point1 = random[1, N-1];

 Point2 = random[point1,N];

 Length = point2 – point1;

for i = 1 to length

 str1[i] = v1[Point1+i];

 str2[i] = v2[Point2+i];

str1[.] = sorting(str1[.]);

str2[.] = sorting(str2[.]);

 v1’ = v1[1: Point1]// v2[Point1: Point2]// v1[Point2+1:N];

 v2’ = v2[1: Point1]// v1[Point1: Point2]// v2[Point2+1:N];

end for

 for i = 1 to length

 for j = 1 to length

 if v1’[Point1+i] = str2[j] then

 v1’[Point1+i] = str1[j];

 end if

 end for

 for j = 1 to length

 if v2’[Point1+i] = str1[j] then

 v2’[Point1+i] = str2[j];

 end if

 end for

end for

end

Fig. 4   Random crossover procedure [18]

41Engineering with Computers (2016) 32:35–47	

1 3

This fitness function evaluates the solution using serial
schedule scheme (SSS) [32]. The SSS is used when the
generated solutions i.e., particles or chromosomes are

invalid (not following dependency constraint). Basically,
SSS schedules all the activities sequentially until a valid
or feasible solution is achieved. The detailed description of
the SSS procedure is given in [32].

4 � Experimental studies

This section details the performance of the PSO–GA
hybrid meta-heuristic applied for task scheduling in mul-
tiprocessor. It has been compared with some other heuris-
tics as proposed in literature [2, 6–14, 25]. The compared
nine heuristics/meta-heuristics are: Min–Min, Chaining,
A*search, Simulated Annealing, Tabu Search, HLFET,
ISH, GA and PSO. The DAG for job/task is generated for
two standard linear algebra problems. Some random DAG
is also used. The proposed PSO–GA meta-heuristic is sim-
ulated in Matlab.

4.1 � Test bed

There are no commonly used and standard tasks set
benchmarks available to study the performance of the
heuristics/meta-heuristics on task scheduling problems
[23]. Researchers have often used random task graphs of
known optimal schedules [1, 23]. For effective compara-
tive study, two well-known standard problems of linear
algebra; LU decomposition [2] and Gauss–Jordan elimi-
nation (GJE) [2, 24] have been used. These are tested on

Fig. 5   An Illustration of ran-
dom crossover operator

Step 1: Select two cutting points (C-P)

Parent v1 0.3 0.5 0.4 0.6 0.2 0.8 0.9 0.1 0.7 0.1

Parent v2 0.5 0.3 0.1 0.4 0.8 0.7 0.1 0.2 0.9 0.6

Step 2: Mapping relationship based on sorting priorities (SP)

Step 3: Legalize the offspring based on step 2

Parent v1’ 0.3 0.5 0.2 0.4 0.6 0.8 0.9 0.1 0.7 0.1

Parent v2’ 0.5 0.3 0.4 0.8 0.1 0.7 0.10 0.2 0.9 0.6

S.p. 2 1 3

values 0.4 0.6 0.2

S.p. 3 2 1

values 0.2 0.4 0.6

S.p. 3 2 1

values 0.1 0.4 0.8

S.p. 2 1 3

values 0.4 0.8 0.1

C-P

Procedure: Swap Mutation

Input: chromosome v, number of task N

Output: v’

begin

 x = random[1,N-1];

 y = random[x+1,N];

 v’ = v[1:x-1]//v[y]//v[x+1:y-1]//v[x]//v[y+1:N];

end

Fig. 6   Swap mutation operator [18]

Parent v 0.3 0.5 0.4 0.6 0.2 0.8 0.9 0.1 0.7 0.1

Parent v’ 0.3 0.5 0.9 0.6 0.2 0.8 0.4 0.1 0.7 0.1

Exchangin
g points

Fig. 7   Illustration of the swap mutation operator

42	 Engineering with Computers (2016) 32:35–47

1 3

nine heuristics as defined in [1, 2]. Figure 8a, b depict the
pictorial representation of LU decomposition and GJE
problem.

Further, to study the behavior of the proposed PSO–GA
on large sizes of task graphs, few experiments are done on

random generated task graphs. Random task graphs are pic-
torially represented in Fig. 8c.

4.2 � Experimental analysis

For the performance analysis of the PSO–GA, two set of
experiments have been performed in this section. In the
first subsection, the PSO-GA is evaluated on two well-
known linear algebra problems i.e., GJE and LU decompo-
sition graphs along with some known optimal solutions of
different heuristics/meta-heuristics [1, 2]. Next subsection
demonstrates the comparative results of the PSO–GA with
PSO [1] and GA [25] on randomly generated graphs.

4.2.1 � Benchmark task graphs experiments

This subsection depicts comparative results of the proposed
PSO–GA meta-heuristic on GJE and LU decomposition
graphs with other available heuristics. The parameters to
generate task graphs corresponding to GJE and LU decom-
position problems and input parameters of the PSO–GA are
given in Table 3 and Table 4, respectively. All the param-
eters and number of iterations in both the tables are taken
from other contemporary meta-heuristics [1, 2] for the pur-
pose of fair comparative study. Inter-process communica-
tion cost on the edges of GJE and LU decomposition DAGs
is taken same as in the models [1, 2, 23]. For random task
graph experiments (Sect. 4.2.2), it is randomly generated
between certain ranges as given in Table 5. The constants
C1 and C2 (self-recognition and social constant, respec-
tively) are taken as 2 against the suggested value of 2.05
in “standard” PSO [27]. The second and third rows details
about the processing time (in time unit) taken by each node
of the task graph and communication cost (in time unit) of
the edges, respectively in both the tables.

Comparative result of all the heuristics with the PSO–
GA meta-heuristic is shown in Figs. 9 and 10 correspond-
ing to GJE and LU decomposition graphs, respectively.

Fig. 8   Pictorial representation of GJE, LU decomposition and random graphs

Table 3   GJE task graphs experimental details

Number of tasks (N) 15 21 28 36

Processing time 40/task 40/task 40/task 40/task

Communication cost 100/edge 100/edge 100/edge 100/edge

Processors (M) 4 4 4 4

Population size 30 42 56 72

PSO-iterations 50 50 50 50

GA-iterations 10 10 10 10

C1 2 2 2 2

C2 2 2 2 2

ω 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15

Table 4   LU decomposition task graphs experimental details

Number of tasks (N) 14 20 27 35

Processing time 10 s bottom layer task, plus 10 s for every
layer

Communication cost 80/edge 80/edge 80/edge 80/edge

Processors (M) 4 4 4 4

Population size 28 40 54 70

PSO-iterations 50 50 50 50

GA-iterations 10 10 10 10

C1 2 2 2 2

C2 2 2 2 2

ω 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15

43Engineering with Computers (2016) 32:35–47	

1 3

From the experimental results of Figs. 9 and 10, it is
observed that the proposed PSO–GA meta-heuristic outper-
forms all the other heuristics/meta-heuristics for GJE and

LU decomposition problem. The experimental analysis also
exhibit that GA and PSO are popular and most competing
heuristics to solve large and complex problems. Hence, for

Table 5   Input values for
random task graphs experiment

Tasks (N) 100 200 500 800 1,000 2,000

Iterations for GA [25] 3,000 3,000 4,000 4,000 5,000 5,000

Iterations for PSO [1] 3,000 3,000 4,000 4,000 5,000 5,000

Iterations for proposed hybrid PSO–GA PSO-150 PSO-150 PSO-200 PSO-200 PSO-250 PSO-250

GA-20 GA-20 GA-20 GA-20 GA-20 GA-20

Population 150 250 300 300 400 500

Communication cost 10–50 1–50 10–100 10–100 20–150 20–150

Processing time 10–30 10–30 10–60 10–60 20–90 20–90

Processors (M) 4 4 8 8 16 16

C1 2 2 2 2 2 2

C2 2 2 2 2 2 2

ω 0.9 0.9 0.9 0.9 0.9 0.9

Crossover rate 0.7 0.7 0.7 0.7 0.7 0.7

Mutation rate 0.15 0.15 0.15 0.15 0.15 0.15

Fig. 9   Comparative study of 10
heuristics on GJE graphs

Fig. 10   Comparative study of
10 heuristics on LU decomposi-
tion graphs

44	 Engineering with Computers (2016) 32:35–47

1 3

further experimentation, we select these two techniques for
the comparison purpose.

The experimental results shown in Figs. 9 and 10 are
limited to four numbers of processors and same size
of problems (i.e. task graphs). This is to make a fair

comparative study with other existing state of the arts
heuristics [1, 2] as these have been applied for the same
configuration. The results shown in the Figs. 9 and 10
are overlapping because of limited problem size and high
precedence constraints among the nodes of DAGs. Also

Fig. 11   Comparative study
of three meta-heuristics using
GJE taskgraph-465 with varied
number of processors

Fig. 12   Comparative study
of three meta-heuristics using
GJE taskgraph-820 with varied
number of processors

Fig. 13   Comparative study of
three meta-heuristics using LU
decomposition taskgraph-464
with varied number of proces-
sors

45Engineering with Computers (2016) 32:35–47	

1 3

results cannot be further optimized increasing the number
of processors because of limited problem size and prece-
dence constraints among the nodes and the proposed PSO–
GA has improved the quality of the solution to its max
using the same configuration.

To further evaluate the performance of the PSO–GA in
comparison to the dominating meta-heuristics i.e., GA and
PSO, experiments have been performed by varying num-
bers of processors and using large sizes of JGE and LU
decomposition graphs. Results are shown in in Figs. 11,
12, 13 and 14. To do this set of experiments, all the param-
eters except initial population and numbers of processors
for GJE and LU decomposition task graphs are taken from
Tables 3 and 4, respectively. For all the experiments, initial
population is taken as 150 and numbers of processors are
shown in the respective figures.

Figures 11 and 12 shows the performance of the
PSO–GA in comparison to PSO and GA with varied
number of processors on GJE task graphs of 645 and 820
nodes, respectively. From the results, it is observed that
when numbers of processors are increased with respect
to the large size of task graphs, the performance of the
proposed PSO-GA is rapid improving in comparison to
others.

To make it more clear, the impact of increasing numbers
of processors on the proposed PSO–GA, an experimental
analysis on large sizes of LU decomposition task graphs
of 464 and 819 nodes is also done and results are shown
in Figs. 13 and 14, respectively. The results infer that the
PSO–GA again outperforms other heuristics with the var-
ied number of processors corresponding to large sizes of
LU decomposition task graphs.

The Figs. 13 and 14 exhibit the similar pattern as that
of small sizes of DAGs. To observe the performance of the
model on random task graphs, the next section presents an
experimental analysis of the PSO-GA model using random
task graphs.

4.2.2 � Random task graphs experiment

In this experiment, the performance of the PSO–GA is
studied by comparing it with PSO [1] and GA [25] over
the large size random DAGs. The PSO-GA meta-heuristic
is also tested by varying the number of processors. Table 5
represents the input parameters for random task graphs
and meta-heuristic techniques used in random task graph
experiments.

On the basis of the given input parameters (Table 5), six
large sizes of random DAGs are generated with 100, 200,
500, 800, 1,000, and 2,000 tasks. Most of the parameters
conforms to that of Tables 3 and 4 suitable for heuristics
implementation and comparison with various state of the
art. For a fair comparison, all the parameters, number of
iterations and fitness function etc. are taken to be the same.
The comparative results of GA, PSO and PSO–GA for ran-
dom task graphs are shown in Fig. 15.

The parameters are taken for these experiments are
shown in Table 5. From the Fig. 15, it is observed that the
performance of the PSO–GA is far better than other meta-
heuristics. This set of experiments also proves that the pro-
posed hybrid PSO–GA meta-heuristic effectively outper-
forms PSO [1] and GA [25] in all the cases.

5 � Conclusion

The paper proposes a hybrid PSO–GA meta-heuristic using
PSO and GA meta-heuristics to solve the multiprocessor
DAG scheduling problem using homogenous multipro-
cessor system. In the proposed PSO–GA meta-heuristic,
PSO works as a solution builder and GA works as a solu-
tion refiner. Novelty of the proposal is the way GA is used
inside the PSO i.e., good generated PSO solutions are fur-
ther refined using GA. Moreover, at each iteration of the
PSO, few best of these particles with their updated position

Fig. 14   Comparative study of
three meta-heuristics using LU
decomposition taskgraph-819
with varied number of proces-
sors

46	 Engineering with Computers (2016) 32:35–47

1 3

and velocity is fed to the GA component of the model and
refined. Global best solution of PSO is updated using a best
solution suggested by GA part of the model. The compu-
tational results of the PSO–GA are compared with other
heuristics/meta-heuristics [1, 2] on two well-known linear
algebra problems; GJE, LU decomposition and random-
generated graphs. Initially, the results are compared with
nine other states of the art using GJE and LU decomposi-
tion tasks graphs and few numbers of processors. From the
results, it is observed that the PSO–GA outperforms nine
states of the arts heuristics. Further, to test the behavior of
the PSO–GA on larger sizes of GJE, LU tasks graphs on
large number of processors, some experiments are done.
The results are compared with two well-known and most
effective meta-heuristics (for large search space problem)
i.e., GA and PSO and it is found that the proposed PSO–
GA meta-heuristic is effective and scalable to solve the
large sizes of problems also. The performance of the PSO–
GA is also tested on various large sizes of random tasks
graphs with varying number of processors. Again, results
proof the effectiveness of the proposed model.

Thus, it is concluded that PSO–GA hybrid meta-heuris-
tic is a promising candidate for multiprocessor task sched-
uling problem. The proposed PSO–GA meta-heuristic can
also be applied to solve other larger and complex combina-
torial optimization problems effectively.

References

	 1.	 Al Badawi A, Shatnawi A (2013) Static scheduling of directed
acyclic data flow graphs onto multiprocessors using particle
swarm optimization. Comput Oper Res 40:2322–2328

	 2.	 Jin Shiyuan, Schiavone Guy, Turgut Damla (2008) A perfor-
mance study of multiprocessor task scheduling algorithms. J
Supercomput 43:77–97

	 3.	 Chow YC, Kohler WH (1979) Meta-heuristics for dynamic load
balancing in a heterogeneous multiple processor system. IEEE
Trans Comput c-28:354–361

	 4.	 Sinnen O (2007) Task scheduling for parallel systems, 1st edn.
Wiley, Hoboken

	 5.	 Tasgetiren MF, Sevkli M, Liang YC, Gencyilmaz G (2004) Par-
ticle swarm optimization algorithm for single machine total
weighted tardiness problem. Proc IEEE Congr Evol Comput
2:1412–1419

	 6.	 Ibarra O, Kim C (1977) Heuristic algorithms for scheduling inde-
pendent tasks on non-identical processors. J Assoc Comput Mach
24(2):280–289

	 7.	 Djordjevic G, Tosic M (1996) A heuristic for scheduling task
graphs with communication delays on to multi processors. Paral-
lel Comput 22(9):1197–1214

	 8.	 Kafil M, Ahmad I (1997) Optimal task assignment in heteroge-
neous computing systems. In: Proceedings of 6th Heterogeneous
Computing Workshop, HCW 97, pp 135–146

	 9.	 Eliasi R, Elperin T, Bar-Cohen A (1990) Monte Carlo thermal
optimization of populated printed circuit board. IEEE Trans
Compon 13:953–960

	10.	 Tian Y, Sannomiya N, Xu Y, Tabu A (2000) Search with a new
neighborhood search technique applied to flow shop scheduling
problems. In: Proceedings of the 39th IEEE Conference On Deci-
sion And Control. 5: 4606–4611

	11.	 Porto S, Ribeiro C (1995) A tabu search approach to task sched-
uling on heterogeneous processors under precedence constraints.
Int J of High-Speed Comput 7(1):45–71

	12.	 Adam T, Chandy K, Dickson J (1974) A comparison of list sched-
ules for parallel processing systems. ACM Commun 17:685–690

	13.	 Kruatrachue B, Lewis T (1987) duplication scheduling heuristic
dsh: a new precedence task scheduler for parallel processing sys-
tems, Ph.D. thesis, Oregon State University, Corvallis, OR

	14.	 Kruatrachue B, Lewis T (1998) Grain size determination for par-
allel processing. IEEE Softw 5(1):23–32

	15.	 Ahmad I, Kwok Y (1998) On exploiting task duplication in
parallel program scheduling. IEEE Trans Parallel Distrib Syst
9(9):872–892

	16.	 Akpınara S, Mirac Bayhanb G, Baykasoglub A (2013) Hybrid-
izing ant colony optimization via genetic algorithm for
mixed-meta-heuristic assembly line balancing problem with
sequence dependent setup times between tasks. Appl Soft Com-
put 13:574–589

Fig. 15   Comparative Study of
three meta-heuristics on random
graphs

47Engineering with Computers (2016) 32:35–47	

1 3

	17.	 Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid meta-heu-
ristics in combinatorial optimization: a survey. Appl Soft Comput
11(6):4135–4151

	18.	 Hwang Reakook, Genb Mitsuo, Katayama Hiroshi (2008) A
comparison of multiprocessor task scheduling algorithms with
communication costs. Comput Oper Res 35:976–993

	19.	 Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence, 1st
Morgan Kaufmann, San Francisco, USA

	20.	 Shatnawi A, Ahmad MO, Swamy MNS (2002) Optimal schedul-
ing of digital signal processing data-flow graphs using shortest-
path algorithm. Br Comput Soc 45(1):88–100

	21.	 Vidyarthi DP, Sarker BK, Tripathi AK, Yang LT (2009) Schedul-
ing in distributed computing systems, Springer, ISBN 978-0-387-
74480-3, 2009

	22.	 Holland J (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor

	23.	 Kwok YK, Ahmad I (2003) Benchmarking the task graph sched-
uling algorithms. In: HKUST

	24.	 Gerasoulis A, Yang T (1994) Performance bounds for column-
block partitioning of parallel Gaussian-elimination and Gauss-
Jordan methods. Appl Numer Math 16:283–297

	25.	 Hou E, Ansari N, Ren H (1994) A genetic algorithm for multipro-
cessor scheduling. IEEE Trans Parallel Distrib Syst 5(2):113–120

	26.	 Premalatha K, Natarajan AM (2009) Hybrid PSO and GA
for global maximization. Int J Open Problems Comput Math
2(4):597–608

	27.	 Bratton D, Kennedy J (2007) Defining a standard for particle
swarm optimization. In: 2007 IEEE warm intelligence sympo-
sium, SIS, pp 120–127

	28.	 Juang C-F (2004) A hybrid of genetic algorithm and particle
swarm optimization for recurrent network design. IEEE Trans
Syst Man Cybern: Part B Y Bernetics 34(2):997–1005

	29.	 Kao Yi-Tung, Zahara Erwie (2008) A hybrid genetic algorithm
and particle swarm optimization for multimodal functions. Appl
Soft Comput 8:849–857

	30.	 Shi XH, Liang YC, Lee HP, Lu C, Wang LM (2005) An improved
GA and a novel PSO-GA-based hybrid algorithm. Inf Process
Lett 93:255–261

	31.	 Bean JC (1994) Genetic algorithms and random keys for
sequencing and optimization. ORSA J Comput 6(2):154–180

	32.	 Jia Qiong, Seo Yoonho (2013) An improved particle swarm opti-
mization for the resource-constrained project scheduling prob-
lem. Int J Adv Manuf Technol 67:2627–2638

	33.	 Premalatha K, Natrajan AM (2009) Hybrid PSO and GA
for global maximization. Int J Open Problems Compt Math
2(4):597–608 ISSN 1998-6262

	A novel hybrid PSO–GA meta-heuristic for scheduling of DAG with communication on multiprocessor systems
	Abstract
	1 Introduction
	2 Multiprocessor DAG scheduling problem
	3 The proposed meta-heuristic
	3.1 Framework
	3.2 PSO-related terms
	3.2.1 Basic terms
	3.2.2 Other related terms
	3.2.3 Initial particle generation
	3.2.4 PSO updating rules

	3.3 GA-related terms and operators
	3.4 Fitness function

	4 Experimental studies
	4.1 Test bed
	4.2 Experimental analysis
	4.2.1 Benchmark task graphs experiments
	4.2.2 Random task graphs experiment

	5 Conclusion
	References

