
ORIGINAL PAPER

A parallel log-barrier method for mesh quality improvement
and untangling

Shankar P. Sastry • Suzanne M. Shontz

Received: 21 July 2013 / Accepted: 9 April 2014 / Published online: 13 May 2014

� Springer-Verlag London 2014

Abstract The development of parallel algorithms for

mesh generation, untangling, and quality improvement is

of high importance due to the need for large meshes with

millions to billions of elements and the availability of su-

percomputers with hundreds to thousands of cores. There

have been prior efforts in the development of parallel

algorithms for mesh generation and local mesh quality

improvement in which only one vertex is moved at a time.

But for global mesh untangling and for global mesh quality

improvement, where all vertices are simultaneously

moved, parallel algorithms have not yet been developed. In

our earlier work, we developed a serial global mesh opti-

mization algorithm and used it to perform mesh untangling

and mesh quality improvement. Our algorithm moved the

vertices simultaneously to optimize a log-barrier objective

function that was designed to untangle meshes as well as to

improve the quality of the worst quality mesh elements. In

this paper, we extend our work and develop a parallel log-

barrier mesh untangling and mesh quality improvement

algorithm for distributed-memory machines. We have used

the algorithm with an edge coloring-based algorithm for

synchronizing unstructured communication among the

processes executing the log-barrier mesh optimization

algorithm. The main contribution of this paper is a generic

scheme for global mesh optimization, whereby the gradient

of the objective function with respect to the position of

some of the vertices is communicated among all processes

in every iteration. The algorithm was implemented using

the OpenMPI 2.0 parallel programming constructs and

shows greater strong scaling efficiency compared to an

existing parallel mesh quality improvement technique.

Keywords Parallel mesh quality improvement and

untangling �Mesh quality improvement �Mesh untangling �
Global algorithm � Log-barrier method � Edge coloring-

based parallel transfer

1 Introduction

Scientific simulation codes are typically run on meshes

with millions to billions of mesh elements (e.g., [1–3]).

Meshes with billions of elements are becoming more and

more common due to the advent of supercomputers and

shared-memory machines. Meshing algorithms should take

advantage of parallelism to efficiently handle such meshes.

Parallel meshing algorithms can be run in a distributed

manner on a parallel cluster to be effective both in terms of

time and memory. Alternatively, they can be performed on

a shared-memory machine; however, memory contention

of the shared resources is a challenge that must be over-

come in the latter case. Alternatively, hybrid algorithms

can be designed that use OpenMP and MPI for intra- and

inter-core parallelism, respectively.

There are numerous parallel mesh generation algorithms

in existence [4]. We focus on those used to generate tri-

angular and tetrahedral meshes in this paper. In regard to

the generation of such meshes, several parallel Delaunay

mesh generation algorithms have been developed (e.g., [5–

11]). In contrast, only a few parallel advancing front

methods [12–15] have been developed. Parallel edge sub-

division methods [15–20] have also been designed for

S. P. Sastry (&)

University of Utah, Salt Lake City, UT 84112, USA

e-mail: sastry@sci.utah.edu

S. M. Shontz

Mississippi State University, Mississippi State, MS, USA

e-mail: sshontz@math.msstate.edu

123

Engineering with Computers (2014) 30:503–515

DOI 10.1007/s00366-014-0362-1

generation of triangular and tetrahedral meshes. The

algorithm that currently generates the largest meshes is an

exascale mesh generator (which generates meshes with up

to 1018 elements) and is due to Chrisochoides et al. [21].

For large meshes, it is also important that other mesh

operations (e.g., smoothing and untangling which we

focus on in this article), be performed in parallel. There

are only four algorithms that have been developed for

parallel mesh smoothing. Freitag, Jones, and Plassmann

developed a parallel mesh optimization technique which

employed a parallel nonsmooth optimization technique

which smoothed independent sets of vertices simulta-

neously [22]. Their parallel mesh smoothing algorithm

was designed for a parallel random access machine

(PRAM) model. This technique performs local vertex

movement in which each vertex is moved at a time. In

order to void conflicting updates to vertex positions, a

vertex-coloring scheme has been used in these algorithms.

The positions of vertices of a single color are optimized

first, and their new positions are communicated before the

positions of vertices of other colors are optimized. The

unstructured communication of vertex positions is carried

out through a root process.

More recently, Jiao et al. developed a parallel feature-

preserving mesh smoothing algorithm for preservation of

features, such as corners and creases, in surface meshes.

Most recently, Gorman and collaborators developed a

parallel hybrid OpenMP/MPI anisotropic mesh smoothing

algorithm [23]. To date, only one parallel mesh untangling

technique has been developed [24]. This algorithm has

been developed for shared-memory processors.

Since there are very few parallel mesh smoothing

algorithms and only one parallel mesh untangling algo-

rithm, we also review serial algorithms developed for

these purposes. The vast majority of the mesh smoothing

algorithms employ optimization techniques to improve the

quality of the mesh by adjusting the positions of the

vertices (e.g., [25–32]). Other authors have developed

physics-based approaches to mesh smoothing. Approaches

have been developed based on a torsion-spring sys-

tem [33, 34] and an electrical system [35]. A force-based

mesh smoothing method based on graphs was developed

by Djidjev [36]. The vast majority of these methods

perform average mesh quality improvement. However,

there are a few methods that have been proposed that

improve the quality of the worst element in the mesh

(instead of the average mesh quality) [31, 32, 37, 38]. For

example, Freitag and Plassmann [37] developed an active

set method for improving the worst quality element in the

mesh; however, the quality metric employed must lead to

a convex objective function. In addition, Park and Sho-

ntz [38] developed derivative-free mesh optimization

algorithms for improving the worst quality element; their

algorithms were based on pattern search and multidirec-

tional search methods. The latter optimization methods do

not use the gradient of the objective function and hence

are slower to converge. In collaboration with Stephen

Vavasis, the authors of this paper have developed log

barrier mesh quality improvement and untangling tech-

niques for improvement of the worst quality mesh ele-

ments [31, 32]. These techniques were more general in

that they could perform mesh quality improvement

employing any shape-based geometric mesh quality met-

ric. In addition, more improvement was typically seen

than with the other methods [31, 32].

Improving the quality of the worst element in the mesh

is more challenging in that it involves solving a nonsmooth

optimization problem. However, doing so is typically more

beneficial from the viewpoint of the associated finite ele-

ment solver in that it improves its stability, accuracy,

convergence, and efficiency [39].

In regard to triangular or tetrahedral mesh untangling,

optimization techniques are often used to untangle the

mesh and generate valid mesh elements [32, 40–43]. The

majority of these optimization-based mesh untangling

techniques converge to a local optima of the objective

function; however, the method in [40] converges to the

global optimum. Agarwal et al. [44] has developed a

remeshing procedure for mesh untangling. Bhowmick and

Shontz [45] recently designed a graph-based mesh untan-

gling approach. In addition, Remacle et al. [46] and Jiao

et al. [47] and his students have proposed mesh untangling

schemes for curvilinear meshes and high-order surface

triangulations, respectively. Although parallel local mesh

untangling algorithms have not been formally studied,

Freitag and Plassmann’s [37] optimization-based untan-

gling algorithm, for example, can be implemented in par-

allel in a similar way to their parallel mesh quality

improvement technique [22].

Several approaches have recently been developed that

combine various aspects of mesh smoothing and untan-

gling [43, 48–50]. A parallel algorithm combining mesh

smoothing and untangling has also been developed [24].

Such combined approaches are appealing in that it is

sometimes the case that one optimization problem can be

solved in lieu of solving two or more optimization prob-

lems separately to smooth or untangle the mesh.

In this paper, we describe a parallel log-barrier algo-

rithm for global mesh quality improvement and untan-

gling. We first review the serial log-barrier algorithm [31,

32] and discuss the techniques for its parallel imple-

mentation on distributed-memory machines. As we have

described before (in [32]), and as we shall see in Sect. 2,

the log-barrier method is an efficient global untangling

and mesh quality improvement technique in which all the

vertices are moved simultaneously. Parallel global mesh

504 Engineering with Computers (2014) 30:503–515

123

quality improvement methods communicate the gradient

of the vertices to neighboring processes. For this purpose,

a new use of a coloring technique for synchronization of

the data communication is employed to ensure a consis-

tent and efficient execution of our parallel algorithm. We

use an edge-based coloring communication synchroniza-

tion technique in which edges corresponding to a graph of

communicating processes (NOT mesh edges) are colored

to synchronize the communication. Note that our edge

coloring-based technique can be used for local mesh

quality improvement or any other parallel algorithm

with an unstructured communication requirement.

Related node-based versions of such algorithms have

been used before to synchronize communication in

wireless networks [51]. We carry out numerical exper-

iments to determine the strong scaling efficiency of our

algorithm as applied to mesh untangling and mesh

quality improvement on a distributed-memory machine

with two large meshes. We also carry out a numerical

experiment to examine the weak scaling efficiency of

our algorithm. The numerical experiments in which we

evaluate the strong and weak scaling efficiency of our

algorithm and the associated results are discussed in

Sect. 3. In Sect. 4, we conclude the paper and provide

future research directions.

2 Parallel algorithm for mesh quality improvement

and untangling and its implementation

In this section, we describe our parallel algorithm and its

implementation in detail. We first recall the mesh untan-

gling and quality improvement algorithm developed in our

earlier papers [31, 32] and then describe the challenges and

modifications necessary for efficient execution of our par-

allel algorithm in the subsequent subsections.

2.1 The log-barrier method for mesh untangling

and quality improvement

In this paper, the quality of a mesh is improved by a

numerical optimization algorithm that dictates the vertex

movement in unstructured meshes. In particular, we use the

log-barrier method in which the quality of the worst ele-

ment is improved by maximizing an objective function that

uses logarithmic barrier terms. Our previous papers [31,

32] describe the mathematical formulation and serial mesh

untangling and mesh quality improvement algorithms in

detail. Here, we simply provide the algorithm along with

some intuition behind it. The serial algorithm is provided in

Algorithm 1 below.

The main differences between earlier mesh quality

improvement methods and the log-barrier method is the use

of the log-barrier objective function and a nonsmooth

objective function. Earlier methods used some composite

functions such as the average value or the root-mean-

squared value of the qualities of all the elements in the

mesh. Such objective functions improved the average mesh

quality, but the quality of the worst element was not

guaranteed to be improved. Our method solves a refor-

mulation of the nonsmooth unconstrained optimization

problem of improving the quality of the worst element as a

smooth constrained optimization problem through the use

of the following log-barrier objective function:

Fðl; tÞ ¼ t þ l
Xm

i¼1

log ðqi � tÞ;

where qi is the quality of element i, l and t\qi are aux-

iliary terms, and m is the number of elements in the mesh.

Note that the constraints are added to the objective

function.

In this paper, we use the smooth aspect ratio quality

metric,

qi ¼
vol

ð
P6

j¼1 l2
j Þ

3=2
;

where vol is the volume of the mesh element and lj,

1� j� 6, are the lengths of the sides of the tetrahedron. We

assume that a larger quality qi for an element i implies that

it is of better quality. We lower l after every iteration and

maximize Fðl; tÞ so that we ultimately end up maximizing

t. We wish to maximize t so that the quality of the elements

also improves to some value greater then t. Note that, due

Engineering with Computers (2014) 30:503–515 505

123

to the log-barrier term, the method has a greater incentive

to improve elements with qualities close to t rather than

elements that are already of good quality. Thus, our algo-

rithm preferentially improves the quality of poor elements.

In order to untangle meshes, we compute a hybrid

quality metric [32] that assumes the signed area or volume

of an element as its quality if the element in inverted or

assumes the aspect ratio as the quality of an element if it is

not inverted. The aspect ratio is usually a function of the

signed volume and the lengths of the sides of the element.

The hybrid metric can be made smooth through a sigmoid

function that provides relative weights for the signed vol-

ume and aspect ratio as shown below:

Qi ¼ wvolvoli þ wqualqi;

where Qi is the hybrid quality, voli is the signed volume of the

element, qi is the signed quality of the elements, and wvol and

wqual are sigmoid weights. The sigmoid weights are given by

wvol ¼
1

1� eavoli
and wqual ¼

1

1� ebqi
;

where a and b are scaling factors. If the hybrid quality of

all elements is improved from a negative value to a positive

value, the mesh is untangled.

We have also shown that the log-barrier method con-

verges to a stationary point by satisfying the Kuhn–Ka-

rush–Tucker (KKT) conditions [52]. The KKT conditions

for a generic constrained optimization problem are

described below. Consider a constrained optimization

problem of maximizing f ðxÞ, while respecting the k con-

straints ciðxÞ� 0, 8i 2 ½1; k�. The Lagrangian is given by

Lðx; kÞ ¼ f ðxÞ þ kcðxÞ;

where k is a vector of Lagrange multipliers. The active set

is given by

AðxÞ ¼ fijciðxÞ ¼ 0g:

For a given point x, linear independence constraint

qualification (LICQ) holds if the active set gradients

frciðxÞji 2 AðxÞg are linearly independent.

Suppose that x� is a solution to our constrained opti-

mization problem and that LICQ holds at x�. Then, there is

a Lagrange multiplier vector k� such that the following

conditions (i.e., the KKT conditions) are satisfied at (x�,

k�):

– stationarity condition:

rxLðx�; k�Þ ¼ 0

– primal feasibility:

ciðx�Þ� 0; 8i 2 ½1; k�

– dual feasibility:

k�i � 0; 8i 2 ½1; k�

– complementarity condition:

k�i ciðx�Þ ¼ 0; 8i 2 ½1; k�:

In addition, the satisfaction of the KKT conditions at a

point is a first-order necessary condition for the algorithm

to converge to a stationary point.

The results from our experiments indicate that the

quality improvement by our methods is better then those

seen by local mesh quality improvement techniques for

some cases. In fact, our technique is able to untangle

meshes in less time than existing techniques.

2.2 A parallel algorithm in a distributed-memory

environment

In order to develop a parallel algorithm for a distributed-

memory system, the following questions must be

answered: (a) how should the data be distributed, (b) is the

algorithm ‘‘embarrassingly’’ parallel, (c) if not, how can

each step of the algorithm be implemented in parallel, and

(d) which data need to be communicated from one process

to another for correct execution of the algorithm.

In the context of mesh untangling and quality

improvement, the data can be distributed through a suitable

mesh partitioning technique in which each contiguous part

of a mesh is assigned to a process. In particular, each vertex

is assigned to a process, and the elements that contain the

vertex are also assigned to the process. Note that an ele-

ment can be assigned to more than one process because it

may contain vertices that are assigned to different pro-

cesses. It must be ensured that only one of these processes

computes the quality of the element when the log-barrier

objective function is computed during mesh quality eval-

uation. Also, ‘‘ghost’’ vertices, which are assigned to one of

the processes and are also neighbors of vertices in some

other process, are also present in all the relevant processes.

Clearly, the entire algorithm is not embarrassingly par-

allel, but some of the steps in the algorithm can be easily

implemented in parallel, whereas other steps require syn-

chronization. It is possible for each process to compute the

gradient of the objective function of its own vertices, but

each process also needs the gradient of the neighboring

vertices during the line search. The gradients can be

communicated among the processes at the beginning of

each iteration. If a nonlinear conjugate gradient algorithm

is being employed to compute the descent direction, the

norm of the gradient and the descent direction in the pre-

vious iteration are required. Such reduction operations

(finding the sum, finding the minimum/maximum element

in a vector, etc.) are easily supported in several parallel

506 Engineering with Computers (2014) 30:503–515

123

programming constructs. All the processes can indepen-

dently move the vertices during the line search step.

Reduction operations are again used to compute the new

log-barrier objective function value and appropriate deci-

sions are taken to increase or decrease the step size during

this step. Since the same deterministic technique is used by

all processes to adaptively change the step size, this can

also occur in parallel. After the line search, l is updated by

multiplying it with a constant factor, and a new t is com-

puted. The computation of t is carried out using the

bisection method to determine t such that

oFðl; tÞ
ot

� 0:

This step also requires reduction operations which we

describe below.

2.3 Edge coloring-based synchronized, unstructured

communication

Reduction operations are usually carried out in a structured

manner, where a value is communicated from every pro-

cess to some other process, and the required ‘‘reduced’’

value is communicated back to every process through a

series of steps optimized for the network architecture.

There is also a need for unstructured communication in

which each process transfers the gradient of its boundary

nodes to the corresponding neighboring processes in our

algorithm. Some processes may communicate with just one

other process, whereas some processes may communicate

with five or more processes. We must ensure that every

process is aware of the processes with which it needs to

communicate and to ensure that the order of communica-

tion does not result in a deadlock.

We propose to use a greedy, edge coloring-based algo-

rithm to synchronize the unstructured communication.

Based on the vertex connectivity, it is easy to compute a

graph of communicating processes. Such coloring algo-

rithms have been used to synchronize communication in

wireless networks [51]. A detailed analysis of such algo-

rithms can also be found in [51, 53]. In our implementation,

we use an edge coloring algorithm. Prior implementations

have used node coloring algorithms. A node in the graph

corresponds to a process, and an edge represents a com-

munication requirement. We employ a greedy algorithm to

color the edges such that no two edges incident on a node

have the same color. We carry out a breadth first search

(BFS) of the graph and choose an independent set of edges

and prioritize the corresponding communication. The BFS

is repeated until all the edges are accounted for. Since the

communication takes place among independent edges,

deadlocks do not occur, and the communications happen in

parallel. Note that the number of processes are very low

compared to the size of the mesh, and the coloring has to be

computed only once. Thus, a serial implementation of the

algorithm will suffice for our purposes.

2.4 Distributed data structure for synchronized

communication

In our implementation, serial steps at the beginning of the

algorithm involve (a) reading a mesh and its vertex parti-

tion (after another algorithm is used to partition the mesh),

(b) determining the inter-process communication network

and the corresponding edge coloring, (c) determining the

vertices whose gradients must be communicated, (d) con-

structing a data structure that facilitates a deadlock-free

synchronized communication, and (e) distributing the data

structure to all the processes. Steps (a)–(c), and (e) are all

straightforward to implement. Below, we discuss the con-

struction of a data structure that is used to determine the

vertex gradients which are communicated to other pro-

cesses and the order of the communication.

The vertex connectivity information is used to determine

the list of vertices whose gradients must be communicated

to other processes. For each process, a separate array with

the indices of the vertices is used to denote the list. Simi-

larly, vertices whose gradient has to be obtained from other

processes is also listed using separate arrays for each

process. Based on the edge coloring, an ordered list of

processes is determined for each process. For a particular

process, the gradient commutation should take place with

other processes in that order. Since the edge coloring

determines the priority of the edge communication, a local

list of processes for each process that respects the same

priority does not result in a deadlock. The serial steps of the

algorithm are described in Algorithm 2 below.

Engineering with Computers (2014) 30:503–515 507

123

2.5 MPI-based parallel implementation

Our detailed parallel mesh optimization algorithm based on

the discussion above is presented in Algorithm 3. Every

process executes the algorithm until convergence. We have

used message passing interface (MPI) constructs in our

C?? implementation of the parallel algorithm. Specifi-

cally, we used MPI_Allreduce() for our reduction opera-

tions and MPI_Send() and MPI_Recv() for the gradient

communication. In Algorithm 3,‘‘use reduction’’ is speci-

fied in parentheses for those steps for which the reduction

operation is necessary. In the pseudocode, lines 1–4 obtain

the data from the root process. Lines 5–11 and lines 15–23

are identical to the serial algorithm except for the use of the

reduction operator whenever necessary. In lines 12–15, the

computed gradient in the previous steps is communicated

to neighboring processes in an orderly manner. All the

steps are executed in parallel by all the processes.

3 Numerical experiments

In this section, we describe the experimental setup and

report on the strong and weak scaling efficiency of our

algorithm. We compare the strong and weak scaling effi-

ciency to that of Mesquite’s [54] implementation of a

parallel, MPI-based local mesh quality improvement

algorithm. Mesquite’s implementation is based on Freitag

et al.’s algorithm [22]. Both the log-barrier method and the

local mesh quality improvement method compute the

gradient of the objective function with respect to the

positions of the vertices and carry out a line search to

optimize an objective function. Although our objective

function is designed to untangle meshes, the types of

computations being performed in both algorithms are

identical. Thus, the comparison of the strong and weak

scaling efficiency of the two algorithms is appropriate.

3.1 Setting up of the experiments

We implemented our parallel algorithm in C?? using MPI

constructs. The same mesh and mesh partitioning were

used by both the local mesh quality improvement technique

and by our global log-barrier technique.

The algorithm used in Mesquite has been developed for

local smoothing, i.e., when one vertex is optimized at a

time. Thus, a vertex coloring algorithm is used to deter-

mine an independent set of vertices to be moved in parallel.

Also the new positions of vertices are communicated to all

processes through the main process. Thus, the communi-

cation is a serial process, i.e., every process communicates

the information to the main process, and the main process

sends the information to all the other processes that need

the information. Our parallel algorithm is developed for

global smoothing, i.e., all the vertices are moved together.

We use an edge coloring algorithm to identify an inde-

pendent set of communicating processes. In every iteration,

the gradient of vertex positions with respect to each axis is

communicated to the neighboring partitions. This com-

munication happens in parallel.

3.1.1 Generation and partitioning of meshes

We generated meshes containing 371,013 nodes and

1,867,366 elements on the support domain and 1,515,275

nodes and 8,911,929 elements on the flange domain

(Fig. 1). Both domains were obtained from Inria’s surface

mesh database [55] for mechanical objects. Tetgen [56]

was used to generate the meshes, and Metis [57] was used

to partition them. The objective of the Metis partitioner

was to lower the number of edge cuts as well as to lower

the maximum degree of partition connectivity so that the

508 Engineering with Computers (2014) 30:503–515

123

number of MPI send and receive operations employed in

every iteration is minimized. Metis ensures that the parti-

tioning is well balanced, i.e., the number of vertices

assigned to each partition does not vary by more than 3 %

between any two partitions.

3.1.2 Parallel architecture

An Intel Xeon CPU E-7-4870 cluster was used to execute

our algorithm on the meshes above for a fixed number of

iterations. The cluster contains 80 cores each with a clock

speed of 2.40 GHz and 750 GB of RAM, and it runs the

OpenSUSE 12.2 (x86_64) operating system. GCC 4.7 and

OpenMPI 2.0 were used to compile our code. Note that

Mesquite [54] also uses the same compilers.

3.2 Results

For our experiments, we report the time taken to execute

the code excluding the time taken for input/output opera-

tions and the time taken to distribute the mesh among the

processes. There are three main parts of the code which

contribute to the running time: (a) reading the mesh,

(b) distributing the mesh partitions, and (c) running the

parallel algorithm. We denote the time taken for (a) and

(b) as initialization time. For a single-process execution,

the time taken for (b) is not applicable.

We carried out numerical experiments for both meshes

on 1, 2, 4, 8, 16, 32, and 64 cores. For the support mesh, we

carried out 40 iterations of mesh quality improvement, and

for the flange mesh, we carried out ten iterations of mesh

optimization. The number of iterations were chosen so that

sufficient computation cycles were present in the execution

to eliminate the effect of other factors that may affect the

running time of the code. In addition, convergence was

obtained for this many iterations. Note that the effective-

ness of our algorithm has been discussed in detail in our

previous two papers [31, 32]. In particular, we proved that

our mesh optimization algorithm satisfies the Karush–

Kuhn–Tucker (i.e., KKT) conditions for constrained opti-

mization and hence converges to a stationary point [31,

32]. Our optimization method explicitly checks to be sure

that it moves the mesh vertices in a direction of ascent (i.e.,

in order to maximize the objective function). In addition,

our mesh quality improvement technique can be used with

any smoothly varying mesh quality metric [31, 32]. Our

mesh untangling technique can be used with any smoothly

varying metric for which the gradient of the objective

function points towards the ideal element and the magni-

tude of the gradient is proportional to the distance from the

ideal element [31]. Thus, we will focus mainly on the

strong scaling efficiency of our parallel algorithm in this

paper. We define the strong scaling efficiency of our

algorithm as follows:

T1

ðp	 TpÞ
	 100 %;

where p is the number of processes, Tp is the time taken to

complete the execution of code for p processes, and T1 is

the time taken by a single process to complete the execu-

tion of the code.

A weak scaling efficiency analysis is useful when the

number of floating point operations for an algorithm has a

direct correlation with the size of the problem. For our

problem, the number of floating point operations is not

directly related to the size of the problem. Specifically,

during the line search to determine the step length by which

the vertices must be moved, it is not possible to determine

the number of required function evaluations in advance.

The number of function evaluations depends on the prob-

lem itself in addition to its size. For mesh quality

improvement, to carry out a reasonable weak scaling effi-

ciency analysis, the number of function evaluations during

the line search has to be kept constant. We carry out weak

scaling efficiency tests in our paper and briefly describe the

results at the end of this section; however, weak scaling

efficiency is not the main focus of this paper. We define the

weak scaling efficiency of our algorithm as follows:

T1

Tp

	 100 %;

where Tp is the time taken to complete the execution of

code for p processes and T1 is the time taken by a single

process to complete the execution of the code. Note that the

problem size should be proportional to the number of

processes to compute the weak scaling efficiency.

(a)

(b)

Fig. 1 The two domains on which we constructed large meshes to

examine the strong and weak scaling efficiency of our parallel

algorithm. The domains were obtained from the Inria database [55].

a Support domain, b flange domain

Engineering with Computers (2014) 30:503–515 509

123

To examine the strong scaling efficiency of our algo-

rithm, we compare it against that of the parallel local mesh

quality improvement algorithm [22] implemented in Mes-

quite [54]. The quality versus iteration plot of this exper-

iment is provided in Fig. 2. We see that the mesh quality

has converged. The strong scaling efficiency results of the

experiments are provided in Fig. 3. In Fig. 3a, the timing

results for the support mesh are shown for all the parallel

executions. The objective was to improve the root-mean-

square quality of the mesh elements. The mesh quality was

improved from 0.49 to 0.64, where the quality was nor-

malized to be 1 for an equilateral element and 0 for a

degenerate element. For a single-core execution, the time

taken was 23 min and 48 s. The strong scaling efficiency is

close to 100 % until about 16 cores, but soon drops off to

50 % for 32 and 64 cores. This is probably due to the

serialized communication technique used in their imple-

mentation. For the flange mesh, the results are shown in

Fig. 3b. The results follow the same trend. The time taken

for a single-core execution in this case is 30 min and 47 s,

and the root-mean-square mesh quality was improved from

0.33 to 0.61. Note that Mesquite expects the input mesh is

already partitioned and split into several files that each

process independently reads.

Table 1 provides the time taken by all the processes to

read the file containing its own partition. The time mostly

reduces with the increase in number of partitions because

the mesh has already been partitioned, and the connectivity

and neighborhood information is provided as part of the

input. Thus, each process has to read smaller files with the

increase in the number of partitions. Figure 6 provides the

time taken by both local and global techniques for support

and flange meshes. The figures excludes the initialization

and file I/O time, and the data from the table have been

used in Figs. 3 and 5.

For the log-barrier mesh quality improvement and

untangling method, we first randomly perturbed the

boundary nodes of the mesh by a small amount so that

some of the mesh elements were inverted. Our algorithm

was then used to untangle the resulting mesh. The worst

element quality versus iteration plots are provided in

Fig. 4. The initial worst element quality is negative

because the mesh is inverted. The hybrid quality metric

assumes the signed volume of the element as the quality of

the element. As soon as the mesh is untangled, the shape-

based aspect ratio is assume to be the quality of the ele-

ment. Hence, there appears a discontinuity in the plot. The

0 10 20 30 40
0.45

0.5

0.55

0.6

0.65

Number of Iterations

A
ve

ra
ge

 E
le

m
en

t Q
ua

lit
y

0 2 4 6 8 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Iterations

A
ve

ra
ge

 E
le

m
en

t Q
ua

lit
y

(a)

(b)

Fig. 2 The average quality vs. number of iterations plot of the

parallel local mesh quality improvement algorithm in [58]. a Support

mesh, b flange mesh

1 2 4 8 16 32 64
0

20

40

60

80

100

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)
1 2 4 8 16 32 64

0

20

40

60

80

100

Number of Processes
E

ffi
ci

en
cy

 (
in

 %
)

(a)

(b)

Fig. 3 The strong scaling efficiency of the parallel local mesh quality

improvement algorithm in [58] for the two meshes for 1–64

processes. a Support mesh, b flange mesh

510 Engineering with Computers (2014) 30:503–515

123

worst element quality of the mesh converges, but other

poor quality elements in the mesh are still being improved

during those iterations. The strong scaling efficiency results

for our experiments for the log-barrier method are provided

in Fig. 5. In Fig. 5a, the timing results for the support mesh

are shown for all the parallel executions. It took 25 itera-

tions to successfully untangle the mesh. Forty iterations

were carried out in total for the purpose of evaluation of

our code. For a single-core execution, the time taken was

24 min and 46 s. The strong scaling efficiency for the

parallel executions is very close to 100 % until eight cores.

The strong scaling efficiency starts to slowly drop after

eight cores to about 60 % for 64 cores.

The strong scaling efficiency results for the flange mesh

are provided in Fig. 5b. It took six iterations for our

algorithm to successfully untangle the mesh. Ten iterations

of untangling and mesh quality improvement were carried

out in this experiment for the purpose of evaluation. This is

a larger mesh, and better strong scaling efficiency is

observed. This is because the volume of gradient

communication is proportional to the number of mesh

vertices that border two partitions. Typically, it grows

slower than the total number of mesh vertices. For this

case, a single-core execution took 42 min and 58 s. For 2,

4, 8, and 16 cores, the strong scaling efficiency is[100 %.

This is due to availability of additional resources, such as

the cache memory space, with the greater number of cores.

As the number of partitions increases, the partition size

gets smaller. Therefore, it is more likely that the partition

fits in the cache memory. As a result, the memory access

time reduces, and sometimes, the strong scaling efficiency

is [100 %. For more cores, the strong scaling efficiency

drops gradually to about 80 % for 64 cores. Thus, for larger

problems, the strong scaling efficiency is better for a large

number of cores.

Table 1 provides the initialization time that includes the

time taken to read the file containing the entire mesh, the

time taken to read the file containing the vertex partitioning

information, the time taken to distribute the mesh among

all the processes, and the time taken to construct the data

structure that facilitates the synchronized unstructured

communication. For a single-process execution, only the

time taken to read the mesh is applicable. Since this is a

0 10 20 30 40
0

5

10

15

20
x 10

−4

Number of Iterations

W
or

st
 E

le
m

en
t Q

ua
lit

y

0 2 4 6 8 10
0

1

2

3

4

5
x 10

−4

Number of Iterations

W
or

st
 E

le
m

en
t Q

ua
lit

y

(a)

(b)

Fig. 4 The worst element quality vs. iterations plot for the parallel

log-barrier algorithm. The data points that appear very close to zero

are negative qualities associated with the signed volume of the

inverted elements. As soon as the mesh is untangled, the quality

improves drastically, as the shape-based aspect ratio quality is

improved. a Support mesh, b flange mesh

1 2 4 8 16 32 64
0

20

40

60

80

100

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)

1 2 4 8 16 32 64
0

20

40

60

80

100

120

Number of Processes
E

ffi
ci

en
cy

 (
in

 %
)

(a)

(b)

Fig. 5 The strong scaling efficiency of the parallel log-barrier mesh

quality improvement and untangling algorithm for the two meshes for

1–64 processes. a Support mesh, b flange mesh

Engineering with Computers (2014) 30:503–515 511

123

single-process execution, the time taken to read the entire

mesh is the same for any number processes used to execute

the algorithm.

As opposed to the local vertex movement case, the time

taken increases with the number of partitions because the

mesh has to be divided among the processes, and the

connectivity and neighborhood information has to be

explicitly evaluated. In fact, we use the same code to

partition a mesh and write the partitioned mesh files for

Mesquite’s parallel local smoothing algorithm. Therefore,

the timing results provided in Table 1 must be interpreted

accordingly. For the local vertex movement case, the

timing results are for cases where the mesh is already

partitioned, and for the global vertex movement case, the

timing results are for a case where the mesh is partitioned

from a single file and then distributed among various

processes. Note that we had partitioned the mesh separately

using Metis [57] and stored the results in a separate file.

We use the separate file in our implementation to distribute

Table 1 The time taken (in seconds) for the initialization steps for the mesh quality improvement algorithms

Vertex movement Domain Number of processes

1 2 4 8 16 32 64

Local Support 7.75 6.46 3.81 3.17 3.46 4.48 4.83

Flange 39.23 32.53 13.80 5.81 6.13 5.60 5.90

Global Support 2.90 6.98 7.12 6.95 7.65 12.26 15.93

Flange 14.15 34.17 35.43 30.57 32.93 44.44 56.23

For the local vertex movement, the mesh has already been partitioned, and each partition was written into separate files. The table provides the

time taken by all processes to read its own partition. For global vertex movement, the root process reads the file containing the mesh and the

vertex partitioning and then distributes the mesh to other processes. The times also include the time taken for constructing the data structure that

facilitates the synchronized unstructured communication

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Number of Processes

T
im

e
(in

 s
ec

on
ds

)

support
flange

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Number of Processes

T
im

e
(in

 s
ec

on
ds

)

support
flange

(a)

(b)

Fig. 6 The time taken (in seconds) for a parallel local mesh quality

improvement [58] and b parallel log-barrier mesh quality improve-

ment and untangling algorithms (excluding the I/O and initialization

time). For the support mesh, 14 iteration were executed, and for the

flange mesh, ten iterations were executed. These data was used for the

bar plots in Figs. 3 and 5. Note that the y-axis is logarithmic

Table 2 The number of vertices for which the gradient information

was transferred to neighboring partitions for both the support and

flange mesh for various number of partitions

Domain Number of processes

2 4 8 16 32 64

Support 2,308 5,162 8,818 14,241 22,804 34,984

Flange 15,395 27,031 48,797 74,183 115,888 169,042

Table 3 Results from the numerical experiment to determine the

weak scaling efficiency of our algorithm

Mesh size Number of

processors

Time of

execution
of

vertices

of

elements

196,288 836,443 1 200

390,748 1,991,752 2 419

788,300 4,450,220 4 807

1,592,272 9,408,742 8 661

3,184,281 19,329,705 16 816

6,380,652 39,371,494 32 789

12,583,782 78,536,484 64 738

The meshes were generated on the Flange domain. Ideally, the time

taken should be constant as the size of the mesh is proportional to the

number of processors. In our experiments, we find the time taken is

around 800 s when more than four processors are used

512 Engineering with Computers (2014) 30:503–515

123

the mesh among the processes. The timing for Metis is not

included because Mesquite does not include it. Both local

and global mesh quality improvement algorithms can use

either form of input described above.

As the number of mesh partitions increases, the volume

of gradient communication increases, as there are more

vertices on the partition boundary. The number of

neighboring partitions for a given partition is likely to

stabilize to a constant value as the number of partitions

increases. As a result, the effect of network latency is

likely to become constant as the number of partitions

increases. Since the volume of data to be communicated

increases, the strong scaling efficiency of our parallel

algorithm drops with the increase in number of processes

used for the execution. Table 2 provides the number of

vertices whose gradients were communicated to neigh-

boring partitions when the meshes were divided into

various number of submeshes. It can be clearly seen that

the number of vertices increases with the number of

partitions.

We also carried out a set of numerical experiments for

examining the weak scaling efficiency of our algorithm.

We generated meshes on the Flange domain of various

sizes that were proportional to the number of processors

on which the mesh quality improvement algorithm was

executed. Table 3 provides the mesh sizes and the

number of processors used to improve their quality. We

executed our global mesh quality improvement and

untangling algorithm for 25 iterations. The table also

provides the results for our experiments. Ideally, the time

for execution should remain a constant as the number of

processors increases proportionally to the size of the

mesh. In our experiment, the time for execution increases

as we move from one processor to four processors and

then oscillates up to 64 processors. The reason for the

increase in the time is possibly due to additional com-

munication requirements as we increase the number of

processors and the necessary synchronization operations.

Since the same problem is not being solved, oscillation

in the time taken to complete the execution is seen in our

experiments. The results are comparable to the results

reported in [58]. Since the problems we solve are

unstructured in nature, it is very difficult to obtain a

constant running time as the number of processors and

the problem size are proportionally increased. Oscillation

in the reported solution times are hard to model in

unstructured problems because of factors such as the

volume of communication, load balancing, and uncer-

tainty in the number of floating point operations required

to solve the problem. Also, the communication latency

and bandwidth between any two processors vary as a

function of their physical proximity and the network

topology on the chip.

4 Conclusions and future work

We have proposed a parallel mesh optimization algorithm

based on a log barrier technique and implemented in MPI

and C??. As shown in [31, 32], our algorithm satisfies the

KKT conditions and converges to a stationary point of the

objective function. Our method explicitly checks to see that

it moves the mesh vertices in a direction of ascent (i.e., so

that the objective function is maximized). Also, our mesh

quality improvement algorithm can be used with any

smoothly varying mesh quality metric [31, 32]. Any

smoothly varying metric for which the gradient of the

objective function points towards the ideal element and the

magnitude of the gradient is proportional to the distance

from the ideal element can be used with our mesh untan-

gling algorithm [31]. All of these properties also hold for

our parallel mesh optimization algorithm.

In this paper, we demonstrated the effectiveness of our

global algorithm on mesh untangling and mesh quality

improvement of 3D tetrahedral volume meshes. In par-

ticular, our results demonstrate the strong scaling effi-

ciency of the parallel implementation of our log-barrier

mesh untangling and mesh quality improvement algo-

rithm. We have compared the strong scaling efficiency of

our algorithm with that of the parallel local mesh quality

improvement algorithm by Freitag et al. [22] and have

observed an increase in the performance. The strong

scaling efficiency of our algorithm can be mainly attrib-

uted to the edge coloring-based synchronized parallel

communication technique we employed which was not

present in earlier work. The algorithm in [22] relied on a

serial communication strategy where all the data was first

sent to the root node and then distributed to the respective

nodes.

We found that our parallel mesh optimization algorithm

achieves about 60 % strong scaling efficiency for 64 pro-

cesses for smaller meshes and about 80 % strong scaling

efficiency for larger meshes. We also found that the strong

scaling efficiency is more then 100 % for a small number

of cores for large meshes. We also found that our algorithm

has reasonable weak scaling efficiency beyond four pro-

cessors, i.e., the time of execution oscillates around 800 s

when the size of mesh is proportional to the number of

processors used to execute the algorithm. Thus, we expect

that the parallel algorithm will scale well for meshes

stemming from real-world applications that are employed

in large-scale scientific computation codes on machines

with hundreds of cores.

For future work, we plan to further reduce the runtime of

our parallel mesh smoothing and untangling algorithms by

improving the partition of the constraints similar to the

approach in [59]. We will also investigate parallel Newton-

based and primal-dual Newton-based approaches, which

Engineering with Computers (2014) 30:503–515 513

123

may result in faster convergence. We also plan to study

other edge coloring techniques to synchronize unstructured

communication seen in scientific computing applications.

In order to reduce the additional time due to network

latency, vertex gradients may be communicated through

intermediate processes when the volume of communication

is small. Finally, we plan to use our parallel mesh

smoothing and untangling techniques in parallel simula-

tions involving dynamic meshes arising from applications

in medicine and mechanical engineering.

Acknowledgments The authors are indebted to Thap Panitanarak

for the use of his partitioned mesh data structure from his MPI

implementation of a parallel log-barrier mesh warping algorithm

(PLBWARP) in [60]. The work of the first author was supported by

the NIH/NIGMS Center for Integrative Biomedical Computing Grant

2P41 RR0112-553-12 and DOE NET DE-EE0004449 Grant. The

work of the second author is supported in part by NSF CAREER

Grant ACI-1330056 (formerly ACI-1054459). The authors would also

like to thank the three anonymous referee for their comments which

improved the paper.

References

1. Tautges T, Jain R (2012) Creating geometry and mesh models for

nuclear reactor core geometries using a lattice hierarchy-based

approach. Eng Comput 28:319–329

2. Aliabadi S, Johnson A, Abedi J, Zellars B (2002) High perfor-

mance computing of fluid-structure interactions in hydrodynam-

ics applications using unstructured meshes with more than one

billion elements. In: Proceedings of the 2002 conference on high

performance in computing, lecture notes in computer science, vol

2552. pp 519–533

3. Komatitsch D, Tsuboi S, Ji C, Tromp J (2003) A 14.6 billion

degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simula-

tion on the earth simulator. in: Proceedings of the ACM/IEEE

SC2003 conference. pp 1–58113-695, 1 March 2003

4. Chrisochoides N (2006) A survey of parallel mesh generation

methods. In: Bruaset A, Tveito A (eds) Numerical solution of

partial differential equations on parallel computers. Springer,

Berlin

5. Nave D, Chrisochoides N, Chew L (2004) Guaranteed-quality

parallel Delaunay refinement for restricted polyhedral domains.

Comput Geom Theor Appl 28:191–215

6. Galtier J, George P (1997) Prepartioning as a way to mesh sub-

domains in parallel. in: Proceedings of the ASME/ASCE/SES

summer meeting, special symposium on trends in unstructured

mesh generation. pp 107–122

7. Linardakis L, Chrisochoides N (2006) Delaunay decoupling

method for parallel guarantee quality planar mesh refinement.

SIAM J Sci Comput 27:1394–1423

8. Chew L, Chrisochoides N, Sukup F (1997) Parallel constrained

Delaunay meshing. In: Proceedings of the ASME/ASCE/SES

summer meeting, special symposium on trends in unstructured

mesh generation. pp 89–96

9. Chernikov A, Chrisochoides N (2004) Parallel guaranteed quality

planar Delaunay mesh generation by concurrent point insertion.

In: Proceedings of the 14th fall workshop on computational

geometry. pp 55–56

10. Chernikov A, Chrisochoides N (2004) Practical and efficient

point insertion scheduling method for parallel guaranteed quality

Delaunay refinement. In: Proceedings of the 18th annual inter-

national conference on supercomputing. ACM Press, pp 48–57

11. Chrisochoides N, Antonopoulos C, Blagojevic F, Chernikov A,

Nikolopoulos D (2009) A multigrain Delaunay mesh generation

method for multicore SMT-based architectures. J Parallel Distrb

Comput

12. Löhner R, Cebral J (1999) Parallel advancing front grid genera-

tion. In: Proceedings of the 8th international meshing roundtable.

pp 67–74

13. Löhner R, Camberos J, Marsha M (1990) Unstructured scientific

compuation on scalable multiprocessors. In: Hehrotra P, Saltz J

(eds) Parallel unstructured grid generation. MIT Press, Cam-

bridge, pp 31–64

14. Löhner R (2013) A 2nd generation parallel advancing front grid

generator. In: Proceedings of the 21st international meshing

roundtable. pp 457–474

15. De Cougny H, Shephard M (1999) Parallel refinement and co-

rasening of tetrahedral meshes. Int J Meth Eng 46:1101–1125

16. Castanos J, Savage J (1999) PARED: a framework for the

adaptive solution of PDEs. in: Proceedings of the 8th IEEE

symposium on high performance, distributed computing

17. Oliker L, Biswas R, Gabow H (2000) Parallel tetrahedral mesh

adaptation with dynamic load balancing. Parallel Comput

26:1583–1608

18. Rivara M, Pizarro D, Chrisochoides N (2004) Parallel refinement

of tetrahedral edges using terminal-edge bisection algorithm. in:

Proceedings of the 13th international meshing roundtable

19. Williams R (1991) Adaptive parallel meshes with complex

geometry. In: Numerical grid generation in computational fluid

dynamics and related fields

20. Rivara M, Carlderon C, Pizaro D, Fedorov A, Chrisochoides N

(2005) Parallel decoupled terminal-edge bisection algorithm for

3D meshes. Eng Comput

21. Chrisochoides N, Chernikov A, Fedorov A, Kot A, Linardakis L,

Foteinos P (2009) Towards exascale parallel Delaunay mesh

generation. In: Proceedings of the 18th international meshing

roundtable. pp 319–336

22. Freitag L, Jones M, Plassmann P (1999) A parallel algorithm for

mesh smoothing. SIAM J Sci Comput 20(6):2023–2040

23. Gorman G, Southern J, Farrell P, Piggott M, Rokos G, Kelly P (2012)

Hybrid OpenMP/MPI anisotropic mesh smoothing. In: Proceedings

of the 2012 international conference on computational science,

ICCS 2012, procedia computer science, vol 9. pp 1513–1522

24. Benı́tez D, Rodrı́guez E, Escobar J, Montenegro R (2013) Per-

formance evaluation of a parallel algorithm for simultaneous

untangling and smoothing of tetrahedral meshes. In: Proceedings

of the 22nd international meshing roundtable. Springer Interna-

tional Publishing, pp 579–598

25. Canann S, Stephenson M, Blacker T (1993) Optismoothing: an

optimization-driven approach to mesh smoothing. Finite Elem

Anal Des 13:185–190

26. Parthasarathy V, Kodiyalam S (1991) A constrained optimization

approach to finite element mesh smoothing. Finite Elem Anal Des

9:309–320

27. Shephard M, Georges M (1991) Automatic three-dimensional

mesh generation by the finite octree technique. Int J Numer Meth

Eng 32:709–749

28. Bank R, Smith R (1997) Mesh smoothing using a posteriori error

estimates. SIAM J Numer Anal 34:979–997

29. Staten M, Canann S, Tristano J (1998) An approach to combined

Laplacian and optimization-based mesh smoothing for triangular,

quadrilateral, and quad-dominant meshes. in: Proceedings of the

7th international meshing roundtable. Sandia National Labora-

tories, pp 479–494

30. Knupp P (1999) Achieving finite element mesh quality via

optimization of the Jacobian matrix norm and associated

514 Engineering with Computers (2014) 30:503–515

123

quantities. Part 1—a framework for surface mesh optimization,

technical report SAND 99–0110J, Sandia National Laboratories

31. Sastry S, Shontz S, Vavasis S (2011) A log-barrier method for

mesh quality improvement. In: Proceedings of the 20th interna-

tional meshing roundtable. pp 329–346

32. Sastry S, Shontz S, Vavasis S (2012) A log-barrier method for

mesh quality improvement and untangling. Eng Comput 1–15

33. Xu H, Newman T (2006) An angle-based optimization approach

for 2D finite element mesh smoothing. Finite Elem Anal Des

42:1150–1164

34. Zhou T, Shimada K (2000) An angle-based approach to two-

dimensional mesh smoothing. In: Proceedings of the 9th inter-

national meshing roundtable. Sandia National Laboratories,

pp 373–384

35. Mezentsev A (2004) A generalized graph-theoretic mesh opti-

mization model. in: Proceedings of the 13th international mesh-

ing roundtable. Sandia National Laboratories, pp 255–264

36. Djidjev H (2000) Force-directed methods for smoothing

unstructured triangular and tetrahedral meshes. in: Proceedings of

the 9th international meshing roundtable. Sandia National Lab-

oratories, pp 395–406

37. Freitag L, Plassmann P (2000) Local optimization-based simpli-

cial mesh untangling and improvement. Int J Numer Meth Eng

49:109–125

38. Park J, Shontz S (2010) Two derivative-free optimization algo-

rithms for mesh quality improvement. In: Proceedings of the

2010 international conference on computational science, vol 1.

pp 387–396

39. Shewchuk J (2002) What is a good linear element? Interpolation,

conditioning, and quality measures. In: Proceedings of the 11th

international meshing roundtable. pp 115–126

40. Knupp P (2001) Hexahedral and tetrahedral mesh untangling.

Eng Comput 17:261–268

41. Freitag L, Plassmann P (2000) Local optimization-based simpli-

cial mesh untangling and improvement. Int J Numer Meth Eng

49:109–125

42. Freitag L, Plassmann P (2001) Local optimization-based untan-

gling algorithms for quadrilateral meshes. In: Proceedings of the

10th international meshing roundtable. Sandia National Labora-

tories, pp 397–406

43. Vachal P, Garimella R, Shashkov M (2004) Untangling of 2D

meshes in ALE simulations. J Comput Phys 196:627–644

44. Agarwal P, Sadri B, Yu H (2008) Untangling triangulations

through local explorations. In: Proceedings of the 2008 sympo-

sium on computational geometry (SoCG 2008)

45. Bhowmick S, Shontz S (2010) Towards high-quality, untangled

meshes via a force-directed graph embedding approach. In:

Proceedings of the 2010 international conference on computa-

tional science, procedia computer science, vol 1. pp 357–366

46. Toulorge T, Geuzaine C, Remacle J, Lambrechts J (2013) Robust

untangling of curvilinear meshes. J Comput Phys 254:8–26

47. Clark B, Ray N, Jiao X (2013) Surface mesh optimization,

adaption, and untangling with high-order accuracy. In: Proceed-

ings of the 21st international meshing roundtable. pp 385–402

48. Wilson T, Sarrate J, Roca X, Montenegro R, Escobar J (2012)

Untangling and smoothing of quadrilateral and hexahedral

meshes. in: Topping B (ed) Proceedings of the 8th international

conference on engineering computational technology

49. Kim J, Panitanarak T, Shontz S (2013) A multiobjective mesh

optimization framework for mesh quality improvement and

untangling. Int J Numer Meth Eng 94:20–42

50. Garanzha V, Kudriavtseva L (2011) Gradient projection based

optimization methods for untangling and optimization of 3D

meshes in implicit domains. In: Proceedings of the II interna-

tional conference on optimization and applications (OPTIMA

2011)

51. Parthasarathy S, Gandhi R (2004) Distributed algorithms for col-

oring and domination in wireless adhoc networks. In: Lodaya K,

Mahajan, M (eds) FSTTCS 2004: foundations of software tech-

nology and theoretical computer science, vol 3328 of lecture notes

in computer science. Springer, Berlin Heidelberg, pp 447–459

52. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn.

Springer, New York

53. Durand D, Jain R, Tseytlin D (1994) Distributed scheduling

algorithms to improve the performance of parallel data transfers.

SIGARCH Comput Archit News 22(4):35–40

54. Brewer M, Freitag Diachin L, Knupp P, Leurent T, Melander D

(2003) The Mesquite mesh quality improvement toolkit. In:

Proceedings of the twelfth international meshing roundtable.

Sandia National Laboratories, pp 239–250

55. Inria Mesh Database. http://www-roc.inria.fr/gamma/gamma/

download/download.php

56. Si H (2007) TetGen: a quality tetrahedral mesh generator and

three-dimensional Delaunay triangulator

57. Karypis G, Kumar V (2009) MeTis: unstructured graph parti-

tioning and sparse matrix ordering system, version 4.0. http://

www.cs.umn.edu/*metis

58. Freitag L, Jones M, Plassmann P (1995) An efficient parallel

algorithm for mesh smoothing. In: Proceedings of the 4th inter-

national meshing roundtable. pp 1–18

59. Xu Y, Chen Y (2008) A framework for parallel nonlinear opti-

mization by partitioning localized constraints. in: Proceedings of

the international symposium on parallel architectures, algorithms,

and programming (PAAP-08)

60. Panitanarak T, Shontz S (2014) A parallel log-barrier based mesh

warping algorithm for distributed memory machines (in

preparation)

Engineering with Computers (2014) 30:503–515 515

123

http://www-roc.inria.fr/gamma/gamma/download/download.php
http://www-roc.inria.fr/gamma/gamma/download/download.php
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis

	A parallel log-barrier method for mesh quality improvement and untangling
	Abstract
	Introduction
	Parallel algorithm for mesh quality improvement and untangling and its implementation
	The log-barrier method for mesh untangling and quality improvement
	A parallel algorithm in a distributed-memory environment
	Edge coloring-based synchronized, unstructured communication
	Distributed data structure for synchronized communication
	MPI-based parallel implementation

	Numerical experiments
	Setting up of the experiments
	Generation and partitioning of meshes
	Parallel architecture

	Results

	Conclusions and future work
	Acknowledgments
	References

