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Abstract This paper presents a novel octree-based dual

contouring (DC) algorithm for adaptive triangular or tet-

rahedral mesh generation with guaranteed angle range.

First, an adaptive octree is constructed based on the input

geometry. Then the octree grid points are adjusted such

that we can maintain a minimum distance from the grid

points to the input boundary. Finally, an improved DC

method is applied to generate triangular and tetrahedral

meshes. It is proved that we can guarantee the obtained

triangle mesh has an angle range of (19.47�, 141.06�) for

any closed smooth curve, and the tetrahedral mesh has a

dihedral angle range of (12.04�, 129.25�) for any closed

smooth surface. In practice, since the straight line/planar

cutting plane assumption inside each octree leaf is not

always satisfied, there is a small perturbation for the lower

and upper bounds of the proved angle range.

Keywords Guaranteed quality � Octree � Dual

contouring � Triangular mesh � Tetrahedral mesh

1 Introduction

Due to its simplicity and convenience, triangular and tet-

rahedral meshing is the most common form of 2D/3D

unstructured mesh generation in the application of finite

element analysis and computer graphics. Octree-based [17,

22], Delaunay-based [2, 3, 16, 18, 19] and advancing front

[9, 10, 11, 12, 15] methods are the three most popular

techniques currently in use. Among the octree-based

methods, the marching cubes (MC) technique is widely

used, but it often results in cracks between adjacent octree

cells at different levels, which need to be resolved with

additional work. In contrast, the dual contouring (DC)

method can produce crack-free contours on any quadtree or

octree grid. It is also capable of reproducing sharp geom-

etry features when Hermite data are available. However,

the traditional DC method cannot guarantee mesh quality.

For the octree method, only a few algorithms can guarantee

the angle range. The isosurface stuffing method [5] gen-

erates tetrahedral meshes with all the dihedral angles

between 10.78� and 164.74�, but it requires a uniform mesh

on the boundary surface. For non-uniform tetrahedra on the

boundary surface, the angle bounds become 1.66� and

174.72�. Later, an improved algorithm [20] was developed

to guarantee a minimal dihedral angle 5.71� for an adaptive

tetrahedral mesh.

In this paper, we introduce a novel DC algorithm for

adaptive triangular or tetrahedral mesh generation with a

better angle range guaranteed. This algorithm is based on

quadtree or octree structure, and can generate interior and

exterior meshes with conformal boundary. It is proved that

following the three steps of our algorithm, we can guar-

antee the obtained triangle mesh has an angle range of

(19.47�, 141.06�) for any given closed smooth curve, and

the tetrahedral mesh has a dihedral angle range of (12.04�,

129.25�) for any given closed smooth surface. In practice,

since the straight line/planar cutting plane assumption is

not always satisfied, there is a small perturbation for the

lower and upper bounds of the proved angle range. This

algorithm provides a fundamental study on guaranteed-

quality mesh generation, which is suitable for computer

graphics or visualization. For real finite element applica-

tions, adjustments need to be made to meet various

requirements from different physical problems.
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The reminder of this paper is organized as follows: Sect.

2 reviews related previous work. Section 3 explains the

detailed algorithm for guaranteed-quality triangular mesh-

ing using DC. Section 4 extends the 2D DC method to 3D

tetrahedral meshing. Section 5 shows some application

results. Finally, Sect. 6 presents our conclusion and future

work.

2 Previous work

Most triangular and tetrahedral meshing techniques cur-

rently in use can be classified into three main categories:

octree, Delaunay and advancing front. The octree technique

[17, 22] subdivides the bounding cube recursively until the

stopping criterion is reached. Tetrahedra are constructed

from both the irregular cells on the boundary and the regular

internal cells. The Delaunay triangulation technique [2, 3,

16, 18, 19] is based on a criterion called ‘‘empty circle’’ or

‘‘empty sphere’’, which requires that no node is contained

within the circumcircle of any triangle or the circumsphere

of any tetrahedra within the mesh. Advancing front is

another popular triangular and tetrahedral mesh generation

algorithm [11, 12]. In this method, tetrahedra are built

progressively inward from the surface. An active front is

maintained where new tetrahedra are formed. As the algo-

rithm progresses, the front will advance to fill the remainder

of the area. Various advancing front algorithms have been

developed for tetrahedral meshing [9, 10, 11, 15].

For the octree method, there are two popular techniques

based on isocontouring: MC and DC. The classic MC

algorithm [14] classifies cubic cells into 14 unique cases

after considering symmetry and complementary. For each

case, an approximation of the isosurface is created. MC is

straightforward and easy to implement, but it has several

drawbacks. First, it requires a uniform octree structure.

Second, vertices are located on the cell edges, which can

easily produce many elements with small angles. Finally,

because of the uncategorized ambiguities in MC, it is

possible to have discrepancy in connecting the shared face

of two adjacent cells. Extended MC has been developed to

solve the above problems [21, 13, 26]. The DC method

combines SurfaceNets [3] and the extended MC algorithm,

and has the capability to handle adaptive octree. It was first

introduced for the isocontouring from Hermite data [4] and

then extended to tetrahedral and hexahedral mesh genera-

tion [24, 23]. DC can also work on domains with hetero-

geneous materials [25].

However, only a few octree-based algorithms can

guarantee the angle range. By using the body centered

Fig. 1 Flow chart of triangular meshing with guaranteed quality. a
Curve decomposition, b adaptive quadtree construction, c grid points

adjusting, d improved dual contouring method and e the final result.

In (c), pink grid points are moved toward the curve, and yellow grid

points are moved away from the curve
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cubic tetrahedral lattice and adjusting the cutting points, an

isosurface stuffing method [5] guarantees that all the

dihedral angles are between 10.78� and 164.74� for a

uniform boundary, and between 1.66� and 174.72� for an

adaptive boundary. Later, another method was developed

in [20] to guarantee a minimal dihedral angle 5.71� for an

adaptive tetrahedral mesh. In this paper, we will introduce

an improved DC method, which can guarantee a better

dihedral angle range.

3 Triangular meshing with guaranteed quality

For a given planar and closed smooth curve C, we introduce

an algorithm to generate an adaptive triangular mesh for

the regions enclosed by C with guaranteed angle bounds.

Three steps are designed as shown in Fig. 1, including (1)

adaptive quadtree construction, (2) grid points adjusting,

and (3) improved DC method.

3.1 Adaptive quadtree construction

Similar to [6, 7], we first decompose the input curve C into

a set of non-uniform points X based on its local curvature,

which satisfies two requirements: the angle formed by any

three neighboring points is 2 ½180� � e; 180� þ e�, where

e� 10�; and the approximation error of each line segment

is less than a given threshold d (here d = 0.05). Figure 1a

shows an example.

For the obtained non-uniform points X , a function is

first defined as s(i) = min(dij), where dij is the distance

between two points, and j ði; j 2 X and i = j). Then, the

points X are enclosed in a bounding box, which corre-

sponds to the root of the quadtree. This box is either a

square cell or a rectangle with multiple square cells. A cell,

c, is defined as crowded if its size is greater than s(i) of any

point i within c or if the quadtree level difference around

c is more than one. By splitting any crowded cell recur-

sively until there is no more crowded cell, we obtain an

adaptive quadtree, see Fig. 1b. If the input C consists of

multiple components or narrow regions, we need to ensure

that no any cell in the quadtree intersects with more than

one curve. Otherwise, these cells need to be further refined,

such that the topology of the input can be preserved during

mesh generation.

3.2 Grid points adjusting

In previous work [24], a triangular mesh can be immedi-

ately generated using the DC method. However, no angle

range can be guaranteed in the resulting mesh. When some

grid points in the quadtree are very close to the curve C,
triangles with small angles may be constructed. To obtain

guaranteed-quality meshes, we need to adjust these grid

points.

A size function grid(i) is defined for each grid point i,

which represents the shortest edge length from all the edges

sharing i. We also define dist(i) as the distance between

point i and the curve C. Then we compare grid(i) with

dist(i). If distðiÞ� 1
4

gridðiÞ, point i is moved toward C, see

Fig. 2a. Otherwise, if 1
4

gridðiÞ\distðiÞ\ 1
2

gridðiÞ, pointi is

moved away from the curve along the normal direction

such that distðiÞ ¼ 1
2

gridðiÞ, see Fig. 2b. Here 1
4

and 1
2

are

heuristically chosen. By doing this, we can guarantee each

grid point off the curve has a minimum distance of 1
2

gridðiÞ
to the curve, as shown in Fig. 1c.

Fig. 4 Triangle element construction. a For the inner edge, connect it

with one minimizer and b for the sign change edge, connect each grid

node with two adjacent minimizers

Fig. 3 Minimizer calculation. a The inner element with four interior

nodes, b the element with one exterior node, c the element with two

exterior nodes, and d special case. Node denoted as plus symbol is an

interior node, node denoted as minus symbol is an exterior node. Grey

circle is original minimizer located in the center, and red circle is the

recalculated minimizer

Fig. 2 Grid points adjusting. a Case 1: |AA0| \ 0.25 |AE|, point A is

moved to A0 and b case 2: 0.25 |AE| \ |AA0| \ 0.5 |AE|, point A is

moved to A00 along the normal direction (at A0) such that |A0A00 | = 0.5

|AE|. A0 is the projection of A onto the input curve
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3.3 Improved dual contouring method for 2D

In the traditional DC method, each cell needs a minimizer.

There are various methods to calculate the position of

minimizers [24]. In this paper, we use the projection

method. First, all the grid points are classified into three

types: interior node (with a ‘‘?’’ sign), exterior node (with

a ‘‘-’’ sign), and boundary node (with a ‘‘o’’ sign). For

each cell, if all its nodes have the same sign, the minimizer

point locates at the cell center; otherwise, we choose the

projection of the cell center to the curve as the minimizer.

Figure 3 illustrates the process for minimizer calculation.

Usually the projected minimizer is inside the cell. If it is

outside the cell, we calculate the middle of the two inter-

secting points, and project the middle point to the curve as

the minimizer, see Fig. 3(d).

Then, we need to build the triangular mesh by con-

necting the minimizers with grid points. An edge-based

connecting method is adopted in this paper. For each inner

edge whose two ending nodes have the same sign, a tri-

angle is constructed by connecting this edge with an

adjacent minimizer, see Fig. 4a. For each sign change edge

whose two ending nodes have different signs, a triangle is

generated by connecting an ending node with two adjacent

minimizers, see Fig. 4b. Note that for an inner cell whose

four nodes have the same sign, it can be simply split into

two triangles without adding a minimizer.

Only one minimizer point is allowed for each cell in the

traditional DC method. In adaptive triangular meshing,

small element angles can be induced, see Fig. 5a, c, since

the minimizer is very close to the edges. In this paper, we

improve the DC method by allowing an extra minimizer

point for the cells whose minimizer has a distance to the

cell center greater than 1/4 of the edge length of the cell

(outside the dash circle in Fig. 5b, d). The extra minimizer

is initially placed at the center, but can be adjusted within

the circle to ensure a good minimum angle. When con-

necting to the sign change edge or the interior edge, for the

two minimizers inside the cell, we always choose the one

that can provide a better angle range.

As to be proved in Sect. 3.4, the minimum angle we can

achieve is 19.47�. In Fig. 6, the original minimizer point

Fig. 5 Extra minimizer insertion. a Case 1: before improvement,

b case 1: after improvement (D is inserted), c case 2: before

improvement and d case 2: after improvement (E is moved to E0 and

E0 is inserted). The radius of the circle is 1/4 of the edge length

Fig. 6 Example for minimizer adjusting. Grey dot is the original

minimizer, red dot is the adjusted minimizer, squares are the

projection points of Points A and B. C is moved to C0 for better angles

Fig. 7 Uniform quadtree. a Inner edge and b sign change edge.

Green lines are the input curve, red square points are minimizers,

circle points are original grid points and solid points are adjusted grid

points

Fig. 8 Adaptve quadtree. a Case 1 and b case 2. Green lines are the

input curve, triangle points are intersecting points, red square points

are minimizers, circle points are original grid points, and solid points

are adjusted grid points

214 Engineering with Computers (2014) 30:211–222

123



C for the yellow cell may form an angle \ACD\19:47� or

\BCE\19:47�. In this special case, the minimizer C is

adjusted along the curve to a new position C0 such that

|AD|/|C0D| = |BE|/|C0E|, resulting in both \AC0D and

\BC0E� 19:47�.

3.4 Proof of guaranteed angle bounds

Based on the above three steps, we are able to prove that

our algorithm offers a guaranteed angle range for the

generated mesh.

Proposition 1 The angle range for a triangular mesh

generated using the above method is (30�, 120�) for uni-

form quadtree, and (19.47�, 141.06�) for adaptive

quadtree.

Proof In the following proof, we assume that the curve

inside each leaf cell is locally straight. For the uniform

mesh, we only need to consider two cases: inner edge and

sign change edge. For the inner edge, it can be verified that

the worst case happens in an inner cell with one or more

nodes adjusted. As shown in Fig. 7a, we only need to

consider that D0 moves on the circle and we check the

minimal angle in triangles ABD0 and BCD0. D0 shown here

indicates the case with the minimal angle \AD0B. Here,

|D0D| = 0.25|CD|, |AD| = |CD|, and \ADD0 ¼ 135�. Then

we get jAD0j2 ¼ jADj2 þ jDD0j2 � 2jADjjDD0jcosð\ADD0Þ
and |AD0| & 1.19|CD|. Since jADj=sinð\AD0BÞ ¼
jAD0j=sinð\ADD0Þ, we have \AD0B ¼ arcsinðjADj�
sinð\ADD0Þ=jAD0jÞ 	 36:46�. So, for the inner edge case,

the minimal angle is about 36.46�.

For the sign change edge, as shown in Fig. 7b, the

dashed circles are the adjusted areas, in which the radius

|CC0| = |DD0| = 0.25|CD|. The worst case happens when

the input curve tangents with the two dashed circles C and

D. As required in Sect. 3.2, C and D move away from the

curve, and reach C0 and D0. Then we need to find out the

minimal angle in triangles D00EF and C0FE ð\D0EFÞ.
Obviously, D0E//CD, |D0E| = |CD|, and |D0F| = 2|DF| =

2*0.25|CD| = 0.5|CD|, therefore, we have |D0F| =

0.5|D0E|. Because D0F \ EF, we can obtain that

\D0EF ¼ 30�. Therefore, for the sign change edge case,

the minimal angle is 30�.

Now we will figure out the angle range for the adaptive

quadtree. The worst case comes from the sign change edge.

For the sign change edge without a hanging node, see

Fig. 8a, the input curve DEF tangents to the two circles

A and C. Points D, E, and F are the minimizer points. Two

triangles A0DE and C0EF are generated, which are identi-

cal. We need to check the minimal angle \A0ED.

Obviously, we have AD \ DE, DE \ BE and

\ABE ¼ 45�. Since |A0D| = 0.25 |AB|, and jDEj ¼
1=2jACj ¼

ffiffiffi

2
p

=2jABj, we have the minimum angle

\A0ED ¼ arctanðjA0Dj=jDEjÞ 	 19:47�.
For the sign change edge with a hanging node, see Fig.

8b, the worst case happens when cricles A and E are

tangential to the input curve FG at F and I. Their radius

jAFj ¼ jEIj ¼ 1
4
jAEj ¼ 1

8
jCDj. The minimizer point G is

the projection point of the center J on the input curve.

Therefore, |EJ| = 0.5|CD| and \JGI ¼ 90�. In this case,

two triangles E0FG and A0GF are generated and we need to

check the minimal angle in them, which is \A0GF. Similar

to the proof of the sign change edge in a uniform quadtree

in Fig. 7b, we can obtain \EHI ¼ \E0FI ¼ 30�. Consid-

ering that triangle EIK is similar to triangle JGK and also

triangle HIE, it is easy to obtain that \IEK ¼
\GJK ¼ \EHI ¼ 30�, and jGIj ¼ jGKj þ jKIj ¼ jKJj
sinð\GJKÞ þ jEKjsinð\IEKÞ ¼ ðjKJj þ jEKjÞsin30� ¼
0:5jEJj ¼ 0:25jCDj. Since triangle AFH is identical to

Fig. 9 Minimizer calculation in 3D. a The interior cell, b the cell

with one interior grid node, c the cell with two interior grid nodes,

d the cell with three interior grid nodes and e–f the cells with four

interior grid nodes. Node denoted as plus symbol is an interior node,

node denoted as minus symbol is an exterior node. Red circle is the

minimizer

Fig. 10 Tetrahedral element construction. a For the inner edge, build

a tetrahedron by connecting it with two minimizers, b for the sign

change edge shared by four elements, build a pyramid by connecting

the interior node with four adjacent minimizers and c for the sign

change edge shared by three elements, build a tetrahedron by

connecting the interior node with three adjacent minimizers
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triangle EIH, we can obtain \AHF ¼ \EHI ¼ 30� and

jFHj ¼ jHIj ¼ jAFj � ctanð\AHFÞ ¼ 1=8jCDj � ctan30�

	 0:2165jCDj. Then, we have |FG| = |FH| ? |HI| ?

|GI| = (0.2165 ? 0.2165 ? 0.25)|CD| = 0.683|CD| and

\A0GF ¼ arctanðjA0Fj=jFGjÞ ¼ arctanð1=4jCDj=0:683

jCDjÞ 	 20:10�. Therefore, for this case, the minimal

angle is about 20.10�.

In summary, we can conclude that the minimum angle is

30� for a uniform mesh, and 19.47� for an adaptive mesh.

Similarly, we can derive that the maximum angle is 120�
for uniform quadtree, and 141.06� for adaptive quadtree.

Therefore, the angle range for the triangular mesh is (30�,

120�) for uniform meshing, and (19.47�, 141.06�) for

adaptive meshing. Note that this conclusion is based on the

straight line assumption which may not be satisfied in real

models. A small perturbation is expected. h

4 Tetrahedral meshing with guaranteed quality

The algorithm in the previous section can be extended to

3D adaptive tetrahedral meshing with some modifications.

There are still three steps: adaptive octree construction,

grid points adjusting, and improved DC.

4.1 Adaptive octree construction

For a given triangular/quadrilateral surface mesh, we

choose the approach described in [18] to build the adaptive

octree. As the first step, we generate a large cube (or a row

of several cubes) which bounds the given surface mesh.

This cube is defined as the root of the octree and marked as

level 0. Cells constructed after refining the ith-level cell

will be marked as level (i ? 1). To decide whether a cell

needs to be refined or not, a feature sensitive error function

[24] is defined: ERROR ¼
P27

i¼1
jf iþ1ðPÞ�f iðPÞj
jrf iðPÞj , in which

fi(P) is the distance from node P at level i to the surface.

This error function estimates the surface difference

between two neighboring levels by measuring a total of 27

nodes for each cell. For a cell at level i, the function values

of the 8 vertices are calculated directly, and the function

values of 12 edge middle points, 6 face middle points and 1

center point can be obtained through a trilinear interpola-

tion. For a preset error tolerance e, we refine any cell if its

ERROR [ e. Moreover, to preserve the original topology,

it is not allowed to have any cell intersecting with more

than one cutting plane. Otherwise, such cells need to be

refined. Note that in our algorithm, we do not consider non-

manifold surface. In addition, to generate meshes with

good aspect ratio, we enforce the octree to be strongly

Fig. 11 Extra minimizer insertion for 3D. a Before inserting an extra

minimizer, and b after inserting an extra minimizer. Red dots are

minimizers on the surface S, green dots are interior cell centers, and

yellow dots are extra minimizers

Fig. 12 a The worst shape for an interior edge in the uniform grid,

with a dihedral angle range of (13.10�, 128.70�); b the worst shape for

an interior edge in the adaptive grid, with a dihedral angle range of

(12.04�, 129.25�); c the worst shape for a sign change edge shared by

four same-size elements, with a dihedral angle range of (14.55�,

125.39�); d the worst shape for a sign change edge shared by four

different-size elements, with a dihedral angle range of (12.84�,

128.48�) and e the worst shape for a sign change edge shared by three

different size elements, with a dihedral angle range of (18.63�,

122.17�)
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balanced, which limits the level difference between adja-

cent cells to be no more than one. Finally, we obtain an

adaptive octree.

4.2 Grid points adjusting

The grid points adjusting in 3D is similar to that in 2D. We

need to adjust grid points close to the input surface S. We

use the same definition for grid(i), and redefine dist(i) as the

distance between point i and the surface S. Then we still

compare grid(i) with dist(i). If distðiÞ� 1
4

gridðiÞ, point i is

moved toward S. Otherwise, if 1
4

gridðiÞ\distðiÞ
\ 1

2
gridðiÞ, point i is moved away from the curve along the

normal direction such that distðiÞ ¼ 1
2

gridðiÞ. By doing that,

we can guarantee each grid point i off the surface has a

minimum distance of 1
2

gridðiÞ to the surface.

4.3 Improved dual contouring method for 3D

In this step, the main differences between 2D and 3D DC

are the minimizer calculation, and the insertion of extra

minimizers.

In Sect. 4.1, we enforce that the cutting plane inside

each boundary cell is planar, and each cell is limited to

have at most one cutting plane. As a result, for the mini-

mizer calculation in a boundary cell, we only need to

consider five cases, as shown in Fig. 9, in which there are

0, 1, 2, 3 or 4 interior grid points, respectively. For the

interior cell, we choose the cell center as the minimizer.

For each boundary cell, we first calculate the intersecting

plane, and then choose the projection of the geometric

center onto the intersecting plane as the minimizer.

Then, we adopt the edge-based connecting method to

construct the tetrahedral mesh by connecting the mini-

mizers with grid points. For each inner edge whose two

ending nodes have the same sign, we build a tetrahedron by

connecting this edge with two adjacent minimizers, see

Fig. 10a. For each sign change edge whose two ending

nodes have different signs, there are two cases we need to

take into consideration. For the sign change edge shared by

four elements, one pyramid (the yellow one in the top) is

built by connecting the interior ending node with four

adjacent minimizers separately, see Fig. 10b, then this

pyramid is split into two tetrahedra by connecting the

diagonal which can maximize the minimum dihedral

angles of the tetrahedra. For the sign change edge shared

by three elements, which happens only in the adaptive

octree, a tetrahedron (the yellow one in the top) is con-

structed by connecting the interior ending nodes with three

adjacent minimizers, see Fig. 10c. For exterior mesh gen-

eration, the bottom pyramid in Fig. 10b and the bottom

tetrahedron in Fig. 10c are constructed.

Similar to the triangular DC, we also need to insert extra

minimizers in the adaptive octree to improve the minimal

dihedral angle of the generated tetrahedral elements. Figure

11a shows an example with only one minimizer. We can

observe that some tetrahedra have very sharp angles.

Therefore, an extra minimizer is inserted in the larger cube,

as shown in Fig. 11b. We insert an extra minimizer if the

distance from the minimizer to the cell center is greater

than 1/4 of the edge length. The extra minimizer is initially

positioned at the center of the cube, but can be adjusted for

optimization. The insertion of the extra minimizer pro-

duces better dihedral angles with a few more elements.

In the above illustrations, for simplification, we only

consider interior and exterior grid points. For grid points

lying on the curve, they can be treated as either interior or

exterior points. When connected with interior points, they

are considered as an interior point, vice versa.

Fig. 13 Triangular mesh for an S curve with an angle range of (19.4�,

125.9�)

Fig. 14 Triangular mesh for a mousy curve with an angle range of

(18.8�, 133.8�)
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4.4 Proof of guaranteed angle bounds

Based on the above three steps, our method offers a

guaranteed dihedral angle range for the generated mesh, as

shown in the following proposition.

Proposition 2 All the dihedral angles in the generated

adaptive tetrahedral mesh are in the range of (12.04�,

129.25�).

Proof Because there are an infinite number of possible

positions for the grid points and minimizers, here we utilize

a computer-aided proof method to numerically verify the

dihedral angle range, and thus simplify the analysis. There

are five cases we need to take into consideration:

1. An interior edge shared by two same-size cells;

2. An interior edge shared by two different-size cells;

3. A sign change edge shared by four same-size cells;

4. A sign change edge shared by four different-size cells;

5. A sign change edge shared by three different-size cells.

For each case, we first assume a planar plane inside each

cell, then adjust the grid points according to Sect. 4.2, and

generate the minimizers (and extra minimizers if required)

according to Sect. 4.3. Then we can construct tetrahedra,

and obtain the corresponding dihedral angle range. An

arbitrary planar plane can be formed by three non-colinear

sampling points in three different cells. If the testing case

has only two cells, we place two points in one cell and the

third point in the other cell. By testing all the possible

cutting plane, we are able to identify the worst cases for the

above five cases, and illustrate them in Fig. 12. The

corresponding dihedral angle bounds are also given in the

figure.

In summary, we can conclude that the overall dihedral

angle range for an adaptive tetrahedral mesh is (12.04�,

129.25�). Note that in the above proof, the planar cutting

plane assumption is applied, which may not be satisfied

for arbitrary models. Therefore, a perturbation is

expected. This can happen because the input surface is

a triangular mesh, and the dihedral angle of two adjacent

triangles is usually not 180�. In the extreme case when

sharp features exist in the surface S, our algorithm may

not guarantee the dihedral angle range in the sharp feature

regions. h

4.5 Discussion

In 2D triangular meshing, we theoretically proved that

the minimal angle of the obtained mesh is 19.47�, which

is the optimal angle we can achieve. Differently, in 3D

tetrahedral meshing, we utilized a computer-aided

approach to numerically determine the minimal angle.

Since we have tested all the possible cutting planes inside

a cell, the obtained minimal angle should also be an

optimal one.

5 Results

The presented triangular and tetrahedral meshing algo-

rithms have been implemented in Visual C??, and were

tested on a PC configured with a 2.93 GHz Intel X3470

CPU and 8 GB of Memory. We have applied our algorithm

to a variety of 2D and 3D models.

For adaptive triangular meshing, we have applied our

algorithm to three models: an S curve in Fig. 13, a mouse

in Fig. 14, and the China map in Fig. 15. Statistics of these

meshes are listed in Table 1. We can observe that all the

three models have an angle range of (19.47�, 141.06�), with

a 1.27� perturbation. This perturbation is induced by the

restriction of the quadtree level we preset in the code which

limits the number of vertices and elements generated in the

final mesh. However, this restriction makes the straight

cutting line assumption invalid for some cells, and enlarges

the angle range in a small amount. This is a trade-off

between the mesh size and angle range. This happens to the

adaptive tetrahedral meshing algorithm as well. Due to the

Fig. 15 Triangular mesh for China map with an angle range of

(18.2�, 134.3�)

Table 1 Mesh statistics of the triangular meshing models

Model Mesh size (vertex;

element)

Angle (smallest;

biggest)

Time (s)

S curve (5,769; 4,127) (19.4�, 125.9�) 0.3

Mousy curve (22,982; 15,911) (18.8�, 133.8�) 5.8

China map (83,880; 62,220) (18.2�, 134.3�) 39.0
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property of quadtree, the interior elements have angles of

45� or 90�, instead of the ideal 60� for triangles, see

Fig. 16.

For adaptive tetrahedral meshing, we have also applied

our approach to three models: the bladder in Fig. 17, a head

model in Fig. 18, and the Igea model in Fig. 19. Corre-

sponding mesh information is given in Table 2. We can

observe that all the three models have a dihedral angle

range of (12.04�, 129.25�), with 2.5� perturbation. As

mentioned above, this perturbation is cause by the

incomplete enforcement of planar cutting plane condition.

Furthermore, due to the property of octree and DC, most of

the interior tetrahedra have dihedral angles of either 60� or

90�, see Fig. 20.

Since projection is adopted for minimizer calculation,

the boundary of the meshes automatically conform to the

given curve/surface, demonstrating a good fidelity to the

original input. We can also conclude from Tables 1 and 2

that the time complexity of our algorithm depends on the

obtained mesh size and the geometric complexity of the

input.

Note that in the three steps of our algorithm, no cou-

pling exists between octree cells and no propagation is

required. Therefore, it is easy to parallelize the imple-

mentation. We tested Fig. 15 as a 2D example and

Fig. 19 as a 3D example using different threads. The

parallel performance of our algorithm is shown in

Fig. 21. We can observe that a nearly linear speed-up is

achieved for two threads. However, the performance

curve is flattened out and converges to a constant value

with the increase of threads. This is because a small

portion of the implementation cannot be parallelized,

which limits the overall performance according to the

Amdahl’s Law [1].

Fig. 16 Angle histograms. a The S curve, b the mousy curve and c the China map. Span size is 1� for all the three histograms

Fig. 17 Tetrahedral mesh for the bladder model, with the dihedral angle range of (13.3�, 130.1�)
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6 Conclusion

In this paper, we introduce a novel octree-based DC algo-

rithm for adaptive triangular or tetrahedral mesh generation.

Using this algorithm, we can guarantee the obtained triangle

mesh has an angle range of (19.47�, 141.06�) for any given

closed smooth curve, and the tetrahedral mesh has a

Fig. 18 Tetrahedral mesh for the head model, with the dihedral angle range of (12.0�, 130.2�)

Fig. 19 Tetrahedral mesh for the Igea model, with the dihedral angle range of (11.4�, 131.9�)

Table 2 Mesh statistics of the tetrahedral meshing models

Model Mesh size

(vertex; element)

Dihedral angle

(worst; best)

Time (s)

Bladder (22,793; 48,311) (13.3�, 130.1�) 75.7

Head (32,522; 67,691) (12.0�, 130.2�) 109.4

Igea (32,718; 66,113) (11.4�, 131.9�) 59.0
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dihedral angle range of (12.04�, 129.25�) for any given

closed smooth surface. In practice, since the straight line/

planar cutting plane assumption is not always satisfied,

there is a small perturbation for the lower and upper bounds

of the proved angle range. Our adaptive tetrahedral meshing

algorithm can provide a better dihedral angle range than the

algorithms presented in [5] in which the dihedral angle

range is (1.66�, 174.72�), and in [20] in which the minimal

dihedral angle is 5.71�. Generally speaking, the resulting

mesh quality is not affected by the input mesh much once it

can define a good boundary surface. However, if the input

mesh quality is not good, it may result in more elements in

the final mesh. This algorithm cannot handle face-interior

point constraints. Sharp feature was not considered either.

In the future, we will include sharp feature in our algorithm

and explore the possible angle range we can achieve.
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