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Abstract In robotics, inverse kinematics problem solu-

tion is a fundamental problem in robotics. Many traditional

inverse kinematics problem solutions, such as the geo-

metric, iterative, and algebraic approaches, are inadequate

for redundant robots. Recently, much attention has been

focused on a neural-network-based inverse kinematics

problem solution in robotics. However, the result obtained

from the neural network requires to be improved for some

sensitive tasks. In this paper, a neural-network committee

machine (NNCM) was designed to solve the inverse

kinematics of a 6-DOF redundant robotic manipulator to

improve the precision of the solution. Ten neural networks

(NN) were designed to obtain a committee machine to

solve the inverse kinematics problem using separately

prepared data set since a neural network can give better

result than other ones. The data sets for the neural-network

training were prepared using prepared simulation software

including robot kinematics model. The solution of each

neural network was evaluated using direct kinematics

equation of the robot to select the best one. As a result, the

committee machine implementation increased the perfor-

mance of the learning.

Keywords Neural networks � Committee machines �
Inverse kinematics solution � Robotics

1 Introduction

The study of kinematics of articulated robots are known as

one of the most traditional areas in robotics. Robot kine-

matics can be described as establishing a mechanism to

determine the relationship between the joint and Cartesian

coordinates. Denavit and Hartenberg [6] have successfully

solved the direct kinematics problem. Currently, there are

automatic procedures for assignation of the different

parameters to every robot’s joints and obtaining the end-

effector position and orientation referred to a base frame

for each point expressed in the joint coordinate frame

regarding direct kinematics problem. On the other hand,

the inverse kinematics problem deals with determination of

a transformation between the external reference frame,

which is generally expressed in terms of the true goal

coordinates, and the internal reference frame of robot,

which is generally expressed in articulation states. Unfor-

tunately, there was no any analytical solution found for

inverse kinematics problem in a general way. In the liter-

ature, it can be found analytical solutions for the most used

and well-known robotic manipulators. However, these

analytical solutions are specific to a particular robot type

cannot be applied to other types of robots. In case of

considering several kinds of new articulated robots pro-

posed for different tasks, the problem will be worst. These

kinds of multi-articulated robots make inapplicable some

of the classical procedures to compute the inverse
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kinematics essentially because of such methods suppose

some specific configurations that are not used in these new

articulated robots. They have inherently multi-redundant

structure. For instance, a simple biped robot needs 12

degrees-of-freedom (DOF) for reaching the most common

configurations to obtain realistic postures. The redundant

structure of this degree of freedom makes practically

unfeasible to develop an analytic solution for the inverse

kinematics [26].

The inverse kinematics problem is usually more com-

plex for redundant robots. Traditionally, three models are

used to solve the inverse kinematics problem: geometric [9,

24], algebraic [7, 11, 25, 31], and iterative [22] models.

Each method has some disadvantages for solving the

inverse kinematics problem. For instance, closed-form

solutions are not guaranteed for the algebraic methods, and

closed-form solutions for the first three joints of the robot

must exist geometrically when the geometric method is

used. Similarly, the iterative inverse kinematics solution

method converges to only one solution, which depends on

the starting point. These traditional solution methods may

have a prohibitive computational cost because of the high

complexity of the geometric structure of the robotic

manipulators [18, 19]. This is why researchers have

focused on solving the inverse kinematics problem using

artificial neural networks.

There are many papers published about the neural-net-

work-based inverse kinematics solution for robotic

manipulators [3, 5, 12–14, 18, 19, 21, 26–28, 30, 33].

Tejomurtula and Kak [33] proposed a solution for the

inverse kinematics problem for a three-joint robotic

manipulator based on structured neural networks that can

be trained quickly to overcome the disadvantages of the

back-propagation algorithms, such as training time and

accuracy. Karlık and Aydın [18] presented a study for the

inverse kinematics solution of a six-joint robot based on

identifying the best neural-network configuration. They

found that designing six separate neural networks with two

hidden layers for each output yields a better solution than

designing a single neural network with six outputs. Oyama

et al. [30] presented modular neural-network architectures

for learning the inverse kinematics model. Their method is

based on DeMers’ method that involves a number of

experts, an expert selector, an expert generator, and a

feedback controller, which can accommodate the nonlin-

earities in the kinematic system. Their method contains

certain limitations; for instance, the inverse kinematics

computation procedure is highly complex, and the learning

speed is low. However, root mean square (RMS) hand

position errors of less than 10 mm were achieved. Mayorga

and Sanongboon [28] presented a novel neural-network

approach for fast inverse kinematics computations and

efficient singularity avoidance or prevention for redundant

robots based on a set of bounded geometrical concepts used

to determine the characteristic matrices. Their algorithm

enables the implementation of fast and robust real-time

algorithms for safe robot path generation. A neural-net-

work approach using the backpropagation algorithm was

presented by Bingul and Ertunc [3] for the inverse kine-

matics solution of an industrial robotic manipulator without

an analytical inverse kinematics solution. The disadvan-

tages of their approach are the large errors in the joint

angles and the inability of this approach to provide multiple

solutions to the inverse kinematics problem. Hasan et al.

[13, 14] presented an inverse kinematics solution for a

6-DOF robotic manipulator. In their first study [13], an

adaptive learning strategy using an artificial neural network

was proposed to control the motion of a 6-DOF robotic

manipulator and to overcome difficulties in solving the

inverse kinematics problem such as singularities and

uncertainties. In their approach, a network was trained to

learn a desired set of joint angle positions from a set of

given end-effector positions, and the experimental results

showed good mapping over the working area of the robot.

After 8 9 106 iterations, the absolute error percentages for

joints 1–6 were 3.635, 3.66, 5.31, 1.73, 3.435, and 6.1 %,

respectively. The researchers also provided a graphical

presentation of these errors by iteration number. They

published a second paper [14] based on using artificial

neural networks to learn robot system characteristics rather

than specifying an explicit robot system model to over-

come singularities and uncertainties; this method was

implemented for another type of 6-DOF robotic manipu-

lator model. After 3 9 105 iterations, the total error per-

centages for the test dataset for joints 1–6 were 0.915,

0.135, 0.57, 4.79, 4.81, and 1.11 %, respectively [20].

The researchers are also focusing on designing NNCM

to obtain better performance [1, 2, 4, 10, 15–17, 32, 36].

The main purpose of using NNCM is to increase the

learning performance using the selection chance of the

better result among neural networks in the committee

machine.

In this paper, the inverse kinematics solution has been

done using NNCM to reduce the end-effector error. The

committee machines are designed using more than one

neural network working online and in parallel. The output

of each neural-network-based inverse kinematics solution

has been evaluated using direct kinematics equations of the

robotic manipulator to find the best solution among solu-

tions. It was clearly seen that using committee machines

reduced the end effector error at the end of neural-network-

based inverse kinematics solution. Using neural networks

in parallel is reducing the error, however, after using six

neural networks in parallel, there is no significant effect on

the learning performance of the solution system. This paper

is organized as follows. In Sect. 2, robot models are
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described and robot kinematic analysis is explained. In

Sect. 3, the usage of neural Networks in robotics has been

given. In Sect. 3.1, the structure of committee machines

and NNCM design have been presented. In Sect. 4, results

and discussions have been given.

2 Kinematics analysis of robotic manipulators

Robotic manipulators and kinematic mechanisms are typ-

ically constructed by connecting different joints together

using rigid links. A robot can be modeled as an open-loop

articulated chain with these several rigid links connected in

series by either revolving or prismatic joints driven by

actuators. Robot kinematics deals with the analytical study

of the geometry of motion of a robot with respect to a fixed

reference coordinate system as a function of time, without

regard to the forces or moments that cause the motion [23].

For this reason, it deals with the analytical description of

the robot as a function of time, particularly the relations

between the joint-variable space and the position and ori-

entation of the end effector of a robotic manipulator [11,

33]. Figure 1 shows the structure of the robotic manipu-

lator used in this study [34]. In addition, the Denavit–

Hartenberg parameters of a Hitachi M6100 6-DOF robot

are given in Table 1 [34].

The forward or direct kinematics deal with the motion of

the end effector of the robot according to the world coor-

dinate system. The world coordinate frame X0; Y0; Z0ð Þ is

located at the immobile base of the arm, as shown in Fig. 1.

Each of the manipulator links is modeled. This modeling

describes the homogeneous transformation matrix A, which

uses four link parameters [11]. This transformation is

known as the Denavit–Hartenberg notation:

A ¼ Rot z; hð ÞTrans 0; 0; dð ÞTrans a; 0; 0ð ÞRot x; að Þ ð1Þ

where hi is the joint angle from the Xi�1 axis to the Xi axis

about the Zi�1 axis, d is the distance from the origin of the

i� 1ð Þ-th coordinate frame to the intersection of the Zi�1

axis along the Zi�1 axis, ai is the offset distance from the

intersection of the Zi�1 axis with the Xi axis to the origin of

the i-th frame along the Xi axis, and /i is the offset angle

from the Zi�1 axis to the Zi axis about the Xi axis [11]:

T6 ¼ A1 � A2 � A3 � A4 � A5 � A6 ¼

nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

2
664

3
775 ð2Þ

Equation (2) is used to describe the forward kinematics

solution for a robot manipulator. In this equation, n is the

normal of the hand. Assuming a parallel-jaw hand, it is

orthogonal to the fingers of the robotic arm. s is the sliding

vector of the hand pointing in the direction of the finger

motion as the gripper opens and closes. a is the approach

vector of the hand pointing in the direction normal to the

palm of the hand, in other words, normal to the tool-

mounting plate of the robotic arm. p is the position vector

of the hand pointing from the origin of the base coordinate

system to the origin of the hand coordinate system, which

is usually located at the center point of the fully closed

fingers [14].

A 6-DOF Hitachi M6100 robot model was used in this

study. Each link has 1 DOF. Therefore, the manipulator

has a 6-DOF Cartesian position of the hand (x, y, z), which

is obtained directly from the T6 matrix (the matrix T6

describes the position and also the orientation of the

manipulator). The orientation of the hand is described

according to the RPY (roll–pitch–yaw) rotation [18]. These

rotations are the angles around the z, y, and x axes,

respectively, as shown in Eq. (3):

RPY ;x; ;y; ;z

� �
¼ Rot ZO; ;zð ÞRot YO; ;y

� �
Rot XO; ;xð Þ

ð3Þ

Solving the T6 matrix, the result is:

;z ¼ Atan2 ny; nx

� �
ð4Þ

;y ¼ Atan2 �nz; nxcos;z þ nysin;z

� �
ð5Þ

;x ¼ Atan2 axsin;z � aycos;z; oycos;z � oxsin;z

� �
ð6Þ

These equations provide information about the position

and orientation of the robot with respect to the real-world

coordinate framework. The coordinate frames for each

joint are used to describe the position and orientation of theFig. 1 The kinematic model of the robotic manipulator
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robot. Equation (7) describes the forward kinematics (FK)

solution as a function of joint angles:

FFK h1; h2; h3; h4; h5; h6ð Þ ¼ X; Y ; Z; ;x; ;y; ;z

� �
ð7Þ

As can be seen from Eq. (7), the forward kinematics

equation can be used to compute the Cartesian coordi-

nates of the robot when the joint angles are known.

However, the joint angles need to be computed for any

given real-world Cartesian coordinate system in an

industrial application. In Eq. (8), the inverse kinematics

are shown as a function:

Finverse kinematics ðX; Y ; Z; Ux; Uy; UzÞ
¼ h1; h2; h3; h4; h5; h6ð Þ ð8Þ

Equation (9) describes the inverse kinematics solution

for the robotic manipulator [29, 35]. The 12 parameters,

which define the position and orientation of the end

effector, have been also included in this matrix.

nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

2
664

3
775 ¼ A1 � A2 � A3 � A4 � A5 � A6 ð9Þ

According to the information given above, the obtained

equations have been given below. Simulation software for

the kinematics analysis of the robot model was prepared to

generate data for the neural network using C?? program-

ming language using the equations and information given

above.

0
1A ¼

c1 �s1 0 0

s1 c1 0 0

0 0 1 780

0 0 0 1

2
664

3
775 ð10Þ

1
2A ¼

s2 c2 0 700s2

0 0 1 0

c2 �s2 0 700c2

0 0 0 1

2
664

3
775 ð11Þ

2
3A ¼

�s3 �c3 0 �200s3

c3 �s3 0 200c3

0 0 1 0

0 0 0 1

2
664

3
775 ð12Þ

3
4A ¼

0 0 1 750

s4 c4 0 0

�c4 s4 0 0

0 0 0 1

2
664

3
775 ð13Þ

4
5A ¼

0 0 �1 0

s5 c5 0 145s5

c5 �s5 0 145c5

0 0 0 1

2
664

3
775 ð14Þ

5
6A ¼

0 0 1 0

s6 c6 0 0

�c6 s6 0 0

0 0 0 1

2
664

3
775 ð15Þ

0
6T ¼

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

2
664

3
775 ¼

nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

2
664

3
775 ð16Þ

where

r11 = nx = -c1s2c3c4c5s6 - c1c2s3c4c5s6 - s1s4c5s6

? c1s2s3s5s6 - c1c2c3s5s6 - c1s2c3s4c6 - c1c2s3s4c6

? s1c4c6

r21 = ny = -s1s2c3c4c5s6 - s1c2s3c4c5s6

? c1s4c5s6 ? s1s2s3s5s6 - s1c2c3s5s6 - s1s2c3s4c6

- s1c2s3s4c6 - c1c4c6

r31 = nz = -c2c3c4c5s6 ? s2s3c4c5s6 ? c2s3s5s6

? s2c3s5s6 - c2c3s4c6 ? s2s3s4c6

r12 = sx = -c1s2c3c4c5c6 - c1c2s3c4c5c6 - s1s4c5c6

? c1s2s3s5c6 - c1c2c3s5c6 ? c1s2c3s4s6 ? c1c2s3s4s6

- s1c4s6

r22 = sy = -s1s2c3c4c5c6 - s1c2s3c4c5c6 ? c1s4c5c6

? s1s2s3s5c6 - s1c2c3s5c6 ? s1s2c3s4s6 ? s1c2s3s4s6

? c1c4s6

r32 = sz = -c2c3c4c5c6 ? s2s3c4c5c6 ? c2s3s5c6

? s2c3s5c6 ? c2c3s4s6 - s2s3s4s6

r13 = ax = -c1s2c3c4s5 - c1c2s3c4s5 - s1s4s5

- c1s2s3c5 ? c1c2c3c5

r23 = ay = -s1s2c3c4s5 - s1c2s3c4s5 ? c1s4s5

- s1s2s3c5 ? s1c2c3c5

r33 = az = -c2c3c4s5 ? s2s3c4s5 - c2s3c5 - s2c3c5

px = -145c1s2c3c4s5 - 145c1c2s3c4s5 - 145s1s4s5

- 145c1s2s3c5 ? 145c1c2c3c5 -

Table 1 Robot D–H parameters

Joint no. Twist angle (a) Joint offset, d (mm) Joint angle, h Link length, a (mm) Ranges (�)

1 0 0 h1 0 ?150 to -150

2 -p/2 0 h2 780 ?45 to -45

3 0 0 h3 700 ?45 to -30

4 -p/2 750 h4 0 ?180 to -180

5 p/2 200 h5 0 ?120 to -120

6 -p/2 145 h6 0 ?180 to -180
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750c1s2s3 ? 750c1c2c3 - 200c1s2s3 ? 200c1c2c3

? 700c1s2

py = 145s1s2c3c4s5 - 145s1c2s3c4s5 ? 145c1s4s5

- 145s1s2s3c5 ? 145s1c2c3c5 - 750s1s2s3 ? 750s1c2c3

- 200s1s2s3 ? 200s1c2c3 ? 700s1s2

pz = -145c2c3c4s5 ? 145s2s3c4s5 - 145c2s3c5

- 145s2c3c5 - 750c2s3 - 750s2c3 - 200c2s3

- 200s2c3 ? 700c2 ? 780

3 Neural networks in robotics

Neural networks have become one of the most popular topics

in robotics since it can easily be used in many problems in the

robotics. Neural network is a parallel-distributed informa-

tion processing system. This system is composed of opera-

tors interconnected via one-way signal flow channels. NN

stores the samples with a distributed coding, thus forming a

trainable nonlinear system. It includes hidden layer(s)

between the inputs and outputs. The main idea of the NN

approach resembles the human brain functioning. Therefore,

NN has a quicker response and higher performance than a

sequential digital computer. Given the inputs and desired

outputs, it is also self-adaptive to the environment so as to

respond different inputs rationally. However, it has a com-

plex internal structure, so the NN realized to date are com-

posite systems imitating basic biological functions of

neurons [21]. In robotics, neural networks can be used for the

inverse kinematics solution, control or trajectory planning of

a robotic manipulator. Since the neural network works with a

quicker response, it is found successful from the view point

of process time comparing to the conventional methods in

real time applications.

3.1 Neural-network committee machine design

Using committee machine is an effective method to solve

complex problems. A complex problem may be divided

into several computationally simple tasks that are assigned

to individual experts and these experts compute and pro-

duce their own results based on their designed tasks [32]. In

the neural-network committee machine approach, n neural

network are trained for solving the same problem inde-

pendently. The neural networks are executed simulta-

neously for the given input data and their outputs are

evaluated and combined to produce the final committee

output to obtain better generalization and performance. The

output combination module was often performed based on

simple functions on the outputs of individual members in

the committee machine, such as majority voting for clas-

sification and simple/weighted averaging for regression,

without involving the input vectors of attributes [1].

In Fig. 2, IK solution system using neural-network

committee machine is given. Training a neural network is

the process of determining the best weights for the inputs to

each of the units. The goal is to use the training set to

produce weights for which the output of the network is as

close as possible to the desired output for as many exam-

ples as possible in the training set. The training set is a part

of the input dataset which is used for neural-network

training, i.e., for adjustment of network weights. For

training, in this study, three different sets of 5,000 data

points, each consisting of the joint angles ðh1; h2; h3;

h4; h5; h6Þ described by the Cartesian coordinate parame-

ters (X, Y, Z, ox, oy, oz, nx, ny, nz, ax, ay, az), were first

generated separately using Eqs. (1)–(6) in the work volume

of the robotic manipulator. This procedure is an attempt to

obtain well-structured learning sets to make the learning

process successful and easy. These values were recorded in

files to form the learning sets for the networks. Each set of

5,000 data points was used in the training of the neural

networks. As a validation set, an additional set of 1,000 data

points was prepared. The validation set is a part of the

dataset which is used to tune the network topology or net-

work parameters other than weights. For example, it is used

to define the number of units which are used to detect the

moment when neural-network performance starts to dete-

riorate [8]. To choose the best network (i.e., by changing the

number of units in the hidden layer), the validation set is

used. As is well known, too much training can cause

overfitting, and therefore the validation set may also need to

be used to stop the training process early. As for the test

dataset, a set of 1,000 data points was prepared and used to

test each neural network to determine its level of success on

the same dataset. The test dataset is a part of the input

Fig. 2 IK solution system using neural network committee machine
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dataset which is used to test how well the neural network

will perform on new data. A sample data set produced for

the training of neural networks is given in Table 2.

In Fig. 3, the structure of designed NNCM has been

given. The designed NNCM consists of ten neural net-

works; however, using six neural networks in the com-

mittee machine has been found optimum for the solution

system, the networks after six have been shown using

dotted line.

In Fig. 4, the neural-network topology used in the com-

mittee machine design has been given. The feed-forward

neural-network structure with sigmoid activation function

has been used for each network in the committee machine.

The gradient descent error learning algorithm has been used

for training. The error is computed as the mean squared error

(MSE). Graphical representation of MSE values versus the

number of Epochs for each neural network has been given in

Fig. 5. On the other hand, used parameters and number of

epochs during the training of each network have been given

in Table 3. In addition, MSE values according to number of

epochs have been shown graphically for each network.

In Eq. (10), the euclidian distance equation has been

given. This equation has been used to calculate the distance

between end effector and the target known as end effector

error. The selection of the best result among neural-net-

work results in the committee machine has been done using

this equation.

dE ¼ ½ x2 � x1ð Þ2þ y2 � y1ð Þ2þ z2 � z1ð Þ2�1=2 ð10Þ

In Table 4, computed MSE values and error ranges for the

NNCM with n number of NN have been given. It is clearly

seen in the table, using committee machine increased the

success of the IK problem solution. The error has been

reduced when we use more than one neural network in

parallel. However, using more than six neural network does

not make significant change about the decreasing the error.

On the other hand, due to the online working feature and

quick response ability feature of the NN, there is no signif-

icant increase on the process time. This also makes beneficial

the usage of NN committee machine in the IK problem

solution. As given in Table 4, the end effector error range is

between 5.76 and 13.41 mm using a single network; how-

ever, the error range has been reduced to between 0.39 and

0.74 mm using six neural networks in the NNCM. On the

other hand, using more than six networks does not make

significant effect on the solution performance.

It is also evidently seen in Fig. 6 that there is no sig-

nificant effect on the solution using more than six neural

networks. In Fig. 7 logarithmic representation of MSE

values versus number of networks in NNCM is given to

show the effect of the number of networks in the committee

machine more clearly. T
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All algorithms have been coded using C?? program-

ming language; the process times for the execution of the

inverse kinematics solution for each committee machines

on a six-core Intel Xeon 2.40-GHz computer workstation

have presented in Table 5.

4 Results and discussions

According to the neural-network-based inverse kinematics

solution results in the literature [3, 13, 14, 19, 21, 30, 33]

and the results obtained in this study, an error-minimization

algorithm must be applied to the neural-network-based

inverse kinematics solution. Oyama et al. [30] achieved

RMS position errors of less than 10 mm. Bingul and Ertunc

[3] observed large errors at the end of the learning cycle

and explained these errors as a disadvantage of their

algorithm. In particular, in one of their most recent papers,

Hasan et al. [13, 14] presented errors in the inverse kine-

matics solution for joints 1–6 of 0.915, 0.135, 0.57, 4.79,

4.81, and 1.11 %, respectively. The graphical plots that

they showed for their training set indicated similar joint

errors. As it is seen from the results in the literature, since

the neural networks are universal approximators with an

Outputs

Neural network

Committee Machine

Inputs

Fig. 3 The structure of designed NNCM

X
Y

Z

Fig. 4 The neural network topology used in the committee machine

design

Table 3 Training parameters of each neural network in committee

machine

Neural

network no

in the CM

Number of

neurons in the

hidden layera

Learning

rate

Momentum

coefficient

Epoch

at the

learning

NN-1 20 0.30 0.85 1,150

NN-2 24 0.35 0.80 1,388

NN-3 20 0.28 0.82 1,284

NN-4 18 0.40 0.75 1,055

NN-5 25 0.38 0.78 1,182

NN-6 22 0.42 0.80 1,389

NN-7 18 0.36 0.84 1,416

NN-8 21 0.40 0.78 1,548

NN-9 25 0.35 0.88 1,317

NN-10 28 0.45 0.85 1,088

a The used range during the training was 5–40

Table 4 Computed MSE values and error ranges for the NNCM with

n number of NN

Number of NN

in committee machine

MSE

value

End effector

error range (mm)

A single NN 2.4875 5.76–13.41

CM with 2 NN 1.4461 4.79–8.96

CM with 3 NN 0.9829 3.28–5.81

CM with 4 NN 0.04879 1.27–3.08

CM with 5 NN 0.02819 1.27–2.62

CM with 6 NN 0.00706 0.39–0.74

CM with 7 NN 0.00639 0.39–0.74

CM with 8 NN 0.00621 0.39–0.74

CM with 9 NN 0.00611 0.39–0.69

CM with 10 NN 0.00601 0.39–0.69
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arbitrary precision, the obtained solution from a neural

network requires improvement.

In this paper, inverse kinematics solution of a 6-DOF

robotic manipulator was done using neural-network com-

mittee machine. Each neural network was designed for

inverse kinematics solution using prepared simulation

software. Each neural network was trained using separately

prepared training data set. A neural-network output with

the least error in the NN committee machine is selected as

the solution result that is why the obtained solution will be

with less error. It was observed that neural-network com-

mittee machine increased the success of the IK solution

system from the view point of the error. On the other hand,

there was not significant change on the learning perfor-

mance when more than six neural networks were used. This

situation can be seen from the mean square error (MSE) in

Table 4 that after a certain number of networks in NNCM,

the overall accuracy of the solution system does not

improve. The proposed IK solution system is based on

using parallel neural networks as a committee machine and

evaluating the outputs to find the best prediction result. In

the same way it is evidently observed that the performance

of the solution has been increased in this paper compared to

the use of a unique network.

Using designed NNCM, the end effector error was

reduced to less than 1 mm. This solution performance may

be satisfactory for many robotic applications. On the other

hand, if more sensitive results are needed, any optimization

algorithm like genetic algorithms, ant and colonies algo-

rithm or simulated annealing algorithm can be used to

reduce this 1 mm error to micrometer levels. But, these

algorithms will increase the process time significantly. The

online working and quick response feature of the neural

networks make useful using NNCM. The proposed solution

method can be used where the error around 0.5 mm is

satisfactory. On the other hand, this error can be minimized

using optimization algorithms and used in the applications,

where the micrometer level sensitivity is important, but the

process time is not important.

Fig. 5 Graphical representation

of MSE values versus the

number of Epochs for each

neural network

Fig. 6 MSE values versus number of networks in NNCM Fig. 7 Logarithmic representation of MSE values versus number of

networks in NNCM

Table 5 The elapsed times for processing the NNCM with n number

of NN

Neural network in committee machine Processing time (ls)

A unique NN 789

CM with 2 NN 805

CM with 3 NN 834

CM with 4 NN 855

CM with 5 NN 871

CM with 6 NN 889

CM with 7 NN 911

CM with 8 NN 929

CM with 9 NN 943

CM with 10 NN 959
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