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Abstract In this paper, a novel approach to automatically

sub-divide a complex geometry and apply an efficient mesh

is presented. Following the identification and removal of

thin-sheet regions from an arbitrary solid using the thick/thin

decomposition approach developed by Robinson et al. [1],

the technique here employs shape metrics generated using

local sizing measures to identify long-slender regions within

the thick body. A series of algorithms automatically partition

the thick region into a non-manifold assembly of long-

slender and complex sub-regions. A structured anisotropic

mesh is applied to the thin-sheet and long-slender bodies,

and the remaining complex bodies are filled with unstruc-

tured isotropic tetrahedra. The resulting semi-structured

mesh possesses significantly fewer degrees of freedom than

the equivalent unstructured mesh, demonstrating the effec-

tiveness of the approach. The accuracy of the efficient

meshes generated for a complex geometry is verified via a

study that compares the results of a modal analysis with the

results of an equivalent analysis on a dense tetrahedral mesh.

Keywords Automatic decomposition �
Geometric reasoning � Efficient meshing � Metric field �
Anisotropic meshing � Structured meshing

1 Introduction

A major advantage of applying unstructured tetrahedral

meshes to complex geometries for structural problems is

the robustness of the current automatic tetrahedral mesh

generators. One disadvantage is their limited capability for

generating appropriate anisotropic stretched meshes. Ele-

ment aspect ratio is a measure of the longest dimension of

an element or region to the shortest dimension. For some

CFD problems, meshes with very large aspect ratios can be

generated and adaptively refined [2]. However, in struc-

tural problems a mesh density of one or two elements

through the thickness of a thin sheet, or across the cross-

section of a long-slender region, is often sufficient. This

means that local, mesh-based approaches to anisotropic

refinement are difficult. Alternatively, by generating a

‘‘mixed’’ or ‘‘hybrid’’ mesh consisting of structured meshes

on specific regions of the model, combined with unstruc-

tured meshes on more complex areas, it is possible to

achieve a dramatic reduction in degrees of freedom (dof)

and thereby improve the efficiency of the analysis. This

requires a process to partition the model into sub-regions

where the different meshing strategies may be applied. This

may be achieved by identifying easily mappable regions,

and sweepable volumes such as thin sheets or long-slender

sections, to which structured anisotropic pentahedral or

hexahedral meshes may be applied. The remaining vol-

umes in the model are referred to as being complex as

structured meshes cannot be used to represent them. These

may be filled with unstructured tetrahedral elements, which

when combined with the structured meshes in the

remainder of the model produce an efficient, semi-struc-

tured, mesh of the component.

Geometric properties of solids such as the medial axis

transform have been used in the past to decompose com-

plex geometries into thick and thin sheet sub-regions [1].

A structured shell mesh was applied to the thin-sheet

regions and merged with isotropic unstructured elements in

the adjoining thick regions. Even though a significant

reduction in dof was achieved when using this approach for
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thin-walled component models, it was less than expected as

the long-slender areas of the thick region consumed a lot of

nodes when meshed with tetrahedra. However, if these

long-slender regions could be identified, instead of being

tetrahedral meshed they could be filled with a structured,

swept mesh comprising anisotropic pentahedral or hexa-

hedral elements, thereby reducing the dof even further.

The objective of this research is to develop an automatic

approach that uses an a priori knowledge of shape prop-

erties to identify thin-sheet and long-slender regions in

complex solids for the application of an efficient semi-

structured mesh. Local sizing measures such as edge length

and curvature, face width and curvature and local 3D

thickness are employed to generate metric tensor fields

which identify meshable sub-regions within complex vol-

umes. Intelligent routines interrogate the geometry and

automatically partition the body, isolating the long-slender

regions from residual complex regions. Appropriate

meshing strategies are applied to the respective sub-regions

and the metric fields are used to grade the mesh in the

structured mesh regions, ensuring a smooth transition with

isotropic elements in residual complex areas. The effec-

tiveness of the approach is demonstrated, with a substantial

reduction in dof achieved.

The remainder of this paper is organized as follows:

Sect. 2 reviews related work on geometric reasoning for

meshing applications; Sect. 3 explains how the metric

fields are generated using local sizing measures; Sect. 4

describes the approach for identifying the long-slender

regions and partitioning the body into a non-manifold

assembly of meshable sub-regions. It also details the

mesh produced for two benchmark models of reasonable

complexity and makes a comparison between the semi-

structured and the equivalent unstructured tetrahedral

meshes; Sect. 5 presents work on the automatic decom-

position and efficient meshing of a gas turbine compressor

inter-casing model; Sect. 6 reports on the results of a

validation study that compares the results of modal

analyses conducted on the efficient mesh, a coarse tetra-

hedral mesh with a similar number of dof and a dense

tetrahedral mesh; Sect. 7 gives a discussion of the results

and Sect. 8 presents conclusions.

2 Literature review

Thakur et al. [3] gives a comprehensive summary of the

state of the art in CAD model simplification techniques

for meshing. Research of particular note to the work in

this paper is the prototype thick/thin decomposition pro-

cess developed by Robinson et al. [1], which provided a

capability for locating thin-sheet regions in complex solid

geometries. This functionality is now available in the

commercial CAE tool CADfix, by TranscenData [4]. The

approach uses the 3D medial object (MO) [5] of the CAD

geometry to determine the local thickness followed by a

2D MO computation on the midsurfaces. By comparing

the diameter of the inscribed disc which traced the 2D

MO (which is an approximation of the lateral dimensions

of the object) to the diameter if the inscribed sphere

which traced the 3D MO (which is an approximation of

object thickness), it is possible to determine if the region

is a thin sheet or not. If the diameter of the inscribed

circle on the 2D MO is large in comparison to the

thickness, the region will be considered a thin sheet.

Robinson et al. [1] also devised a method of predicting

the reduction in dof which can be achieved using ele-

ments of large aspect ratio (m) by computing a ‘‘dof

saving ratio’’. For thin sheets, a reduction in the order of

m2 is expected, whereas for long-slender volumes the

reduction is proportional to m. Luo et al. [6] addressed the

similar problem of finding thin sections for the generation

of prismatic p-version finite element meshes, using an

octree-based approach to identify medial surface points

and local thin sections.

Although efficiently meshing the thin-sheet regions

significantly reduces the dof in the model, it was noticed

that there were still a lot of dof consumed when long-

slender regions such as flanges were filled with an

unstructured tetrahedral mesh. Price et al. [7, 8] proposed a

logical approach to firstly partition a complex 3D object

into meshable regions and secondly apply a structured

mesh to these regions. The medial surface was used to sub-

divide the solid into hex-meshable sub-regions known as

primitives. After all the subregions have been formed, each

primitive is meshed using a midpoint subdivision technique

[9]. Mesh compatibility between the primitives can be

controlled by an integer programming technique described

by Tam et al. [10]. However, the approach has limitations

as it relies on a robust 3D medial object computation which

is currently not achievable for all geometries. Moreover, a

comprehensive treatment of all possible shape features has

not been developed.

Tchon et al. [11] used an a priori knowledge of model

geometry to generate a Riemannian metric based on local

curvature and thickness. An isotropically refined octree

grid is used as a support medium to generate the shape

metrics. The anisotropic sizing information provided by

the metrics is then used to refine the mesh. Some

impressive results have been achieved with this approach

with a dramatic reduction in element count. However, the

quality of the elements generated after the refinement

process is questionable as their shape is not perfectly

cubical. Other authors have reported similar geometry-
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based methods for mesh adaption and refinement [12, 13].

However, all of them relate to the relocation or refine-

ment of an initial mesh. The focus here has been to use

similar shape measures to identify regions of the model

on which to apply structured meshing, rather than local

mesh adaption.

Zhao et al. [14, 15] proposed a technique for the adap-

tive generation of an initial mesh based on the geometric

features of a solid model. A special refinement field based

on curvature and thickness was constructed to control mesh

size and density distribution. The boundary of the adapted

mesh produced was matched to the boundary of the solid

model using a threading method. Although the resultant

mesh on a complex model possessed fewer dof than a

structured swept mesh applied to a manually sub-divided

version, the quality of the mesh produced was not satis-

factory as a significant number of mesh singularities were

evident.

White et al. [16] developed an algorithm for automati-

cally decomposing multi-sweep volumes into volumes that

can be swept meshed. This is achieved by discretising the

linking faces of volumes with quad elements which provide

a layering system in the transverse direction. Target faces

are pushed through the volume onto opposing source faces

providing an imprint that governs the decomposition of the

solid. The newly generated volumes are all sweep mesh-

able with a single target face. However, the major limita-

tion with the approach is that it can only be applied to

sweepable geometries and cannot be used to decompose

more complex models. Consequently, this identifies a

requirement for a more robust technique for the automatic

decomposition of complex models that will successfully

partition any dumb solid geometry into an assortment of

sub-regions, including sweepable volumes, where various

structured meshing strategies may be applied.

3 Geometric reasoning using local sizing measures

The approaches and methodology reported in the forth-

coming sections have been implemented in the CADfix

software package using an API based on the Python pro-

gramming language. Assuming that the thin-sheet regions

have been identified and partitioned out using the thick/thin

decomposition tool available in CADfix [4], decomposition

of the remaining thick region into long-slender and

Table 1 Ellipsoid

classification
Ellipsoid type Diagram Criteria

Long-slender V3 � V1

V3 � V2

V1 & V2

Thin sheet V3 � V1

V2 � V1

V2 & V3

Isotropic V1 & V2 & V3
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complex bodies may be achieved using a shape metric

sized using the following steps.

3.1 Metric classification

The goal is to generate, within the CAD model, ellipsoids

representing the shapes of different regions. The principal

axes of an ellipsoid may be used to define the target ele-

ment size in three directions [17].

If an ellipsoid has one principal direction that is much

greater than the other two, this identifies a long-slender

region where the mesh can be extruded in the direction

of the largest principal axis. Areas of the model where

each axis is similar in magnitude, and the ellipsoid is

approximately spherical, identify regions where the tar-

get element size will be similar in all directions, and

should be meshed using an unstructured isotropic tetra-

hedral mesh. The three main types of ellipsoids are

displayed in Table 1. The criteria described assumes that

V3 [ V2 [ V1. Note that regions represented by thin-

sheet ellipsoids will have been removed from the model

by the thick/thin tool prior to implementing the approach

presented here.

Within the procedures an ellipsoid is generated on every

edge with its centre at the midpoint of the edge. The edge

length and curvature are used to determine the length of the

ellipsoid axis along the edge direction. In terms of long-

slender ellipsoids, this sizing measure is normally

employed to gauge the size of the largest principal axis

which provides the sweep direction for the extruded mesh.

The other sizing measures of face width and curvature, and

local 3D thickness are employed to determine the extent of

the remaining two principal axes. If a face is planar, the

length of an axis may be calculated using the 2D medial

axis on the face or an approximation to it. The axis length

on non-planar surfaces may be determined using a curva-

ture-based sag value, d. For other scenarios ray casting is

used to assess axis length by giving an approximation of

the local thickness of the part.

3.2 Metric sizing using edge length and curvature

The use of local sizing measures based on edge length and

curvature for mesh sizing applications is well documented

[18]. In this work, if the edge is straight, then half the edge

length is used for the extent of the ellipsoid axis by default,

as shown in Fig. 1. However, if an edge is curved, it is

necessary to employ a curvature sensitive approach to

check the size of the ellipsoid axes along curved edges and

surfaces. Along an edge, the change in tangent vector, Ti,

quantified by the angle a defined in Eq. (1), is used to

Fig. 1 1D metric generated using edge length and curvature

Fig. 2 Metric sizing using

edge curvature

Fig. 3 Sizing of ellipsoid axis

using surface curvature and face

width
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determine the size of the first ellipsoid axis, Vi, shown in

Fig. 2. When a reaches a user-defined tolerance value the

ellipsoid axis vector Vi can be determined.

a ¼ cos�1 Ti � Tiþ1

Ti1j j Tiþ1j j

� �
: ð1Þ

3.3 Metric sizing using face width and curvature

If the faces adjoining an edge are curved, a similar strategy

is applied to assess the size of the second and third axes.

Methods for metric generation based on surface curvature

and proximity are discussed by Quadros et al. [19]. The

surface curvature is used to determine the size of the

ellipsoid axis based on a sag value, d. For a pre-defined

d value, the size of the vector orthogonal to the tangent

vector at the centre point on the edge can be calculated,

shown as V2 in Fig. 3. In cases where the surface is planar,

or for surfaces with slight curvature with a maximum sag

value less than d, the 2D medial object is used to determine

the local face width and the length of the ellipsoid axis in

this direction.Fig. 4 Metric sizing for a given sag value on a parametric surface

Fig. 5 Metric sizing by assessing local 3D thickness. a Ray casting through the thickness to establish the shortest ellipsoid axis. b Oversized

ellipsoid causing interference with adjacent ellipsoid. c Resizing of large ellipsoid to remove interference
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On a parametric surface, as shown in Fig. 4, for a given

tangent vector, T and normal vector N at point P on a given

edge, the sag value, d at point Q on the surface is equiv-

alent to the projection of PQ onto N, as

d ¼ PQ � N: ð2Þ

d can also be described as the perpendicular distance from

Q to the tangent plane at P. In parametric terms, P and Q

can be represented by the points xðu; vÞ and xðuþ du; vþ dvÞ.
Consequently, using Taylor’s theorem [20], Eq. (2) can be

modified to give

d ¼ 1

2
d2x � N þ Oðdu2 þ dv2Þ: ð3Þ

Thus, for a pre-defined sag value, d, Eqs. (2) and (3) can

be used to determine the location of point Q and the extent

of the ellipsoid axis, V.

3.4 Metric sizing using local thickness

Local 3D thickness is also considered as a sizing measure

to gauge the extent of the ellipsoid axis. In the past,

Quadros et al. [21] employed disconnected 3D skeletons to

measure 3D proximity in metric generation. However, for

this approach, ray casting is employed to assess the local

thickness of the body.

As shown in Fig. 5a, ray casts are fired in the direction

V3 and V4, which are in the opposite directions to axes V1

and V2 generated using the 2D medial object. An axis

length based on the thickness of the body (|V3| or |V4|) is

compared to an axis length generated using the alternative

sizing measures (|V1| or |V2|), and the shortest axis is

selected for the ellipsoid in that direction. However, the

ellipsoids generated using the aforementioned sizing mea-

sures may be too large resulting in the interference between

adjacent ellipsoids, as shown in Fig. 5b. In this case, the

size of the ellipsoid is reduced to eliminate interference, as

shown in Fig. 5c.

4 Automatic partitioning of complex geometry

After a thick/thin decomposition has been performed on a

complex geometry, as shown in Fig. 6a, a search is per-

formed on the resulting thick body (darker shading in

Fig. 6b) for long-slender regions by generating the ellip-

soids described in Sect. 3 at the midpoint of every edge.

Fig. 6 Thick/thin

decomposition of complex

model. a Dumb solid model,

b sub-divided model

Fig. 7 Selection process for 1D ellipsoids using a critical aspect

ratio
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4.1 Identification of long-slender regions

The aspect ratio of an ellipsoid compares the length of its

longest axis to the length of its other axes. Critical aspect

ratio (CAR) is a user-specified ratio value that is used to

determine when an ellipsoid axis is considered to be much

longer than the other two. For a pre-defined critical aspect

ratio, all long-slender ellipsoids are identified using the

algorithm detailed in Fig. 7. Here D represents the

dimension of the ellipsoid (for long-slender ellipsoids

D ¼ 1), and V1, V2 and V3 are the vectors defining the

three principal axes of the ellipsoid. A is the vector with the

greatest magnitude and B defines a set of vectors excluding

the vector with the greatest magnitude. The thick region on

the model shown in Fig. 6 is shown in Fig. 8 along with all

of the long-slender ellipsoids computed.

After all the long-slender ellipsoids are generated, a

‘‘closed-loop’’ searching algorithm is initiated that uses the

ellipsoids to look for closed loops of surfaces which each

bound a long-slender section. For any given edge on which

a long-slender ellipsoid is located, the algorithm searches

for an adjoining surface that has another long-slender

ellipsoid on one of its bounding edges. If such an ellipsoid

exists, this establishes a direction in which to continue the

search, in either a clockwise or anti-clockwise fashion. The

search is repeated for the other adjacent surface and if

successful the process continues until a surface is located

that contains an edge with the ellipsoid that was used for

Fig. 8 Long-slender ellipsoids

on the thick region of complex

model

Fig. 9 Long-slender regions

identified on complex model
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the initial iteration. At this point, a long-slender region

comprising a closed loop of surfaces is identified and these

surfaces are then removed from the search. A new edge is

selected and the process is repeated until all closed-loop

surface groups have been identified in the model. The

results of the closed-loop search are shown in Fig. 9.

Figure 10 describes the closed-loop searching algorithm

for long-slender extruded regions. The algorithm successfully

identifies five long-slender regions shown in Fig. 9, where

each region is highlighted in a different shade of grey. Note

that the bottom-left arm of the model is composed of two

separate long-slender regions denoted by 1 and 5. The

different surfaces identifying those regions are in different

colours on the left and right image. All possible long-

slender regions have been automatically identified for this

example. Since the closed-loop search is initiated at all

Fig. 10 Closed-loop searching

algorithm. a Select an ellipsoid,

b locate an ellipsoid on the edge

of an adjoining surface,

c continue the search in the

search direction, d stop when a

closed loop is formed

Fig. 11 Automatic generation

of cutting planes
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edges having long-slender ellipsoids, the search for long-

slender regions is comprehensive.

4.2 Automatic partitioning into meshable sub-regions

After the groups of surfaces that define each long-slender

region have been identified, the next stage of the process

involves generating meshable long-slender bodies by par-

titioning the surface groups using cutting planes. Open

ended long-slender regions, which do not require any cut-

ting planes, can be identified because the ‘capping’ surface

shares an edge with all of the surfaces bounding the

sweepable region. Cutting planes are generated using the

edge tangent and surface normal at an offset (calculated as

a fraction of the shortest edge length) away from the long-

slender-complex region interface, as shown in Fig. 11. The

cutting plane(s) for each edge are grouped into a set and

given an ID based on the surface group.

After associating each surface group with a cutting

plane, the body is automatically partitioned into a non-

manifold assembly of long-slender and residual complex

bodies using a series of cutting commands. The cutting

plane ID’s are then used to identify if a body is complex or

long-slender. Any body that lies between the cutting planes

in a set is deemed to be a long-slender body. The result of

the automatic partitioning process is shown in Fig. 12.

Finally, by combining the partitioned thick region gen-

erated using the procedures here with the thin region

generated from the thick/thin decomposition it is possible

to achieve the complete decomposition of the model into

long-slender, thin-sheet and residual complex sub-regions,

as shown in Fig. 13.

4.3 Detection of non-sweepable regions

On application of the aforementioned automatic partition-

ing technique to more complex geometries, such as that

shown in Fig. 14, limitations were exposed in the process

used to position the cutting planes. From the thick/thin

decomposition of the above model, it became evident that

certain long-slender regions of the thick body exhibit end

features which are not sweepable due to their complex

topology, as displayed in Fig. 15. To detect complex ends

on long-slender regions the 2D medial object on the

Fig. 12 Automatic partitioning

into long-slender and complex

sub-regions

Fig. 13 Full decomposition of complex model
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surfaces comprising each closed loop was used, as shown

in Fig. 16.

Given a starting point at the midpoint of the shortest

edge along the length of a closed loop of surfaces, a chain

of inscribed circles on the 2D medial object of each surface

was built up around the periphery of the 1D region. This

chain of inscribed circles eventually forms a so-called

‘‘bracelet’’, when the touching point on the last surface

meets the original starting point. The bracelet is then re-

formed at intervals along the length of the 1D region in

opposite directions away from the edge midpoint. As the

bracelet traverses along the 1D region, if it encounters a

complex piece of geometry (a surface that is not bounded

by all closed-loop surfaces) an inscribed circle will be

Fig. 14 Thick/thin

decomposition of casing

section. a Thick regions

between mounts and thin sheet.

b Thick regions on leading and

trailing edge

Fig. 15 A non-sweepable,

complex end on a long-slender

region

Fig. 16 Complex end

detection via 2D medial bracelet

search
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formed on a non-closed-loop surface and the bracelet will

be broken. At this point it is considered that a complex end

has been detected, which will be partitioned out at a given

offset, as shown in Fig. 17. The offset distance is user

defined, typically as a fraction of a characteristic size of the

cross-section.

Fig. 17 Partitioned complex

end on long-slender region

Fig. 18 Decomposition of

complex model into thin-sheet,

long-slender and residual

complex volumes

Fig. 19 Efficient meshing of

decomposed complex model 1
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By applying this approach to the rest of the model, it is

possible to detect and partition out all non-sweepable

complex features on the long-slender regions of the thick

body. Also, combining the 1D/3D decomposition of the

thick region with the adjacent thin-sheet bodies results in a

full decomposition of the complex casing model into an

assembly of long-slender, thin-sheet and complex bodies,

each of which has a different meshing strategy applied, as

shown in Fig. 18. This illustrates the approach as a valid

means to automatically subdivide complex geometries into

cells for the application of semi-structured mesh.

4.4 Meshing

After the model has been sub-divided a structured swept

mesh can be applied to the long-slender and thin-sheet

bodies. The complex volumes can be meshed with

unstructured isotropic tetrahedral elements. In transition

areas where non-conforming mesh types meet (e.g. hexa-

hedral meet tetrahedral), pyramid elements are automati-

cally inserted to ensure full conformity. Figures 19 and 20

display meshes which were automatically generated on the

models described earlier in the section.

The ellipsoids are not only used to partition the model

but can also grade the mesh in the long-slender regions.

Each ellipsoid on the edge of a 1D sweepable region is

used to define a ‘‘source field’’ on the model in CADfix.

These source fields control the growth of the mesh and

ensure a smooth transition between the 1D and 3D regions.

The number of dof in the swept meshes was compared with

an unstructured tetrahedral mesh with the element size set

to the thin-sheet thickness. Overall, for model 1 shown in

Fig. 19, a 69 % reduction in dof is achieved. For model 2

shown in Fig. 20, a 63 % reduction in dof is observed.

5 Automatic decomposition and efficient meshing

of aero-engine casing geometry

The approach was applied to a representative industrial

model. The CRESCENDO [22] compressor inter-casing

casing, shown in Fig. 21a, is an example of an aero-engine

Fig. 20 Efficient mesh of

decomposed complex model 2

Fig. 21 CRESCENDO

compressor inter-casing.

a Original model, b thick/thin

decomposition
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Fig. 22 Full decomposition of

the CRESCENDO compressor

inter-casing into long-slender,

thin-sheet and residual complex

regions

Fig. 23 An efficient, structured

mixed solid mesh of the

CRESCENDO compressor

inter-casing

Fig. 24 Sectional views of the

efficient mesh
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component with large areas of thin-sheet, long-slender

regions and complex details. As before, the first stage of

the decomposition process was to partition the model using

CADfix’s thick/thin sub-division tool, the result of which is

shown in Fig. 21b.

After performing a thick/thin decomposition on the

model, the approach successfully identified and partitioned

a total of 18 long-slender regions in the thick body as

shown in Fig. 22. Here dark shaded areas represent long-

slender regions, medium shaded areas represent thin-sheet

regions and light shaded areas represent residual complex

regions.

Again a structured swept mesh could be applied to the

long-slender and thin-sheet regions of the model. The

resulting mesh of the assembly was generated in Abaqus/

CAE [23], and consisted of several second-order element

types. All thin-sheet volumes were meshed with hexahedral

elements. The majority of long-slender regions were

meshed with pentahedral elements, and all complex regions

with tetrahedral elements, as shown in Figs. 23 and 24.

Overall an 89 % reduction in dof is observed, from

approximately 2,000,000 nodes in an unstructured dense

tetrahedral mesh (with an element size of the order of the

thickness of the thin sheet) to approximately 215,000 nodes

in the efficient mixed solid mesh. To verify the accuracy of

the structured mesh, a modal analysis was conducted on the

respective models.

6 Analysis and validation of efficient mesh

A free–free modal analysis was conducted on both the

efficient structured mesh, a coarse tetrahedral mesh with

approximately the same number of dof, and a dense tet-

rahedral mesh (with an element size of the order of the

thickness of the thin sheet) using Abaqus/CAE v6.11. The

efficient structured mesh was composed of C3D20R

hexahedral elements, C3D15 pentahedral elements and

C3D10 tetrahedral elements. The tetrahedral meshes used

in the complex regions were entirely composed of C3D10

elements. The material properties used are shown in

Table 2. The mass and centre of mass of the respective

meshes are given in Table 3. Table 4 compares the number

of dof which occupy the long-slender and thin-sheet

regions of the inter-casing for both the efficient mesh and

reference dense tetrahedral mesh.

Tie constraints were used at non-conforming 1D–3D

and 2D–3D mesh interfaces. A comparison was made

between the modal shape and frequency for the first 20

elastic modes. All mode shape plots, such as that shown in

Fig. 25, show no noticeable difference in shape. In each

Table 2 Material properties

Material property Value

Density 7,850 kg/m3

Poisson’s ratio 0.30

Young’s modulus 200 GPa

Table 3 Mass properties

Model Mass (kg) Centre of mass (mm)

Dense tetrahedral mesh 191.35 (4,542.2, 0.00090, 4.8088)

Efficient mesh 192.08 (4,542.4, 0.00078, 4.7897)

Coarse tetrahedral mesh 191.50 (4,542.1, 0.018931, 4.8048)

Table 4 Number of degrees of freedom (dof) for long-slender, thin-

sheet and complex volumes

Mesh type Long-slender region Thin-sheet region

Efficient mesh 128,490 248,970

Dense tetrahedral mesh 1,473,150 3,939,294

Fig. 25 Comparison of mode shapes for mode 7
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case, the deformation in the mode shape plot is normalised

such that the maximum component of displacement is

unity. A graph is displayed in Fig. 26 comparing the

discrepancy in modal frequency of the efficient mesh and

the coarse tetrahedral mesh relative to the dense tetrahedral

mesh of the inter-casing model.

7 Discussion

The approach developed here uses a priori geometric rea-

soning about shape to subdivide a complex 3D CAD model

into thin-sheet, long-slender and residual complex sub-

volumes. For elliptic partial differential equations such as

elasticity, the solution variation through thin sheets or along

the length of a long-slender shape is relatively simple

compared to the variation in the other dimensions. There-

fore, for these problems it can be assumed that elements

with high aspect ratio can satisfactorily capture the solution.

Where a long-slender region ends in a complex region, the

elements need to become isotropic in shape in the locality of

the complex region. Similarly, where a thin-sheet region is

bounded by a long-slender one, the shape of the elements

needs to transition from being large in the long-slender

length direction only, to being large in both lateral dimen-

sions towards the centre of the thin sheet, see Fig. 20.

The process was tested on realistic aero-engine geom-

etry components. In general, a good correlation exists

between the results of the modal analyses for the dense

tetrahedral mesh and the efficient mesh of the inter-casing.

Fig. 26 Comparison between

discrepancy in modal frequency

of the efficient and coarse

tetrahedral meshed models

Fig. 27 Deformation of the efficient mesh of the inter-casing vanes at mode 7. a Undeformed mesh, b deformed mesh
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The modal frequencies correspond with the greatest

discrepancy of 3.5 % recorded at mode 7. There are sig-

nificant differences in modal frequencies between the ref-

erence dense tetrahedral mesh and coarse tetrahedral

meshed models, particularly for modes 7, 14 and 15 with a

maximum discrepancy of 20 % recorded for mode 7. On

inspection of the corresponding mode shapes, it is evident

that a high degree of deformation of the vanes is apparent

for each mode, and in particular for mode 7, as shown in

Fig. 27.

Consequently, the unusually large disparity at mode 7

and to a lesser extent at modes 14 and 15 may be attributed

to poor element shape on the vanes which connect the outer

and inner casings.

In terms of mode shapes, for the vast majority of modes

the different casing meshes exhibit a similar shape, with

the exception of mode 23 where a slightly different shape is

observed for the dense tetrahedral model. There is an

insignificant deviation of 0.4 and 0.1 % in mass of the

efficient mesh and coarse tetrahedral meshes models,

respectively, from the dense tetrahedral mesh. The centre

of mass deviates by 0.2 and 0.1 mm for the efficient mesh

and coarse tetrahedral mesh, respectively, which is negli-

gible considering the diameter of the casing is approxi-

mately 800 mm. According to the statistics reported in

Table 4, for an aspect ratio, m, of 4.1, there appears to be a

reduction in the number of dof in the thin-sheet regions of

the order of m2 which is in agreement with Robinson et al.

[1]. In the long-slender regions the ‘‘dof saving ratio’’ is

significantly different to the m predicted by Robinson et al.

[1]. In fact, there appears to be an even greater reduction in

dof in the long-slender regions with over 60 % fewer dof

than initially predicted using 1/m. This may be attributed to

a better mesh structure in the long-slender regions of the

efficient mesh compared to the dense tetrahedral mesh.

Overall, the modal analyses reveals that the efficient mesh

is significantly more accurate than the coarse tetrahedral

mesh with the same number of dof.

In terms of simulation analysis time, using an 8-core

processor workstation with 72 GB RAM, the efficient mesh

proved the most time efficient, as the modal analysis was

completed in \8 min. The coarse tetrahedral mesh had a

slightly longer analysis time of 11 min. As expected, the

dense tetrahedral mesh model took the longest time to

converge to a solution, with an analysis time in excess of

40 min.

The time taken to produce a fully decomposed model

comprising long-slender, thin-sheet and complex sub-

regions is largely dependent on the complexity of the

source geometry. As described, the procedures detailed

here make use of the CADfix thin/thick tool to identify and

subdivide out the thin-sheet bodies. As the underlying

technology for the thick/thin subdivision process is the 3D

medial axis transform, which is computationally expensive,

the vast majority of the process time for automatic parti-

tioning is attributed to its calculation. It should be noted

that any other tool which is capable of identifying and

partitioning out the thin-sheet regions can be used instead.

In contrast, the process time for the partitioning of the thick

region is much quicker as the approach does not require a

3D medial object. For the inter-casing model, the thick/thin

sub-division took approximately 3 h in comparison to the

partitioning of the thick bodies into long-slender and

complex regions which took approximately 10 min.

Despite the relatively large processing time required to

produce the full decomposition of a complex model, the

approach is automatic and therefore reduces the manual

effort and preparation time during the pre-processing

stages of an analysis. This also reduces the skill set

required to mesh the model efficiently.

The performance of the coarse tetrahedral mesh was a lot

better than expected with 17 out of 20 modes exhibiting a

discrepancy in modal frequency of\5 % in comparison to

the reference dense tetrahedral mesh. There are other types

of analysis which have not yet been explored where the

discrepancy in the results could be much greater. The

meshes generated using this method were efficient but it

still relies on tetrahedral meshes for the complex regions.

There are certain applications where hexahedral meshes are

essential. For example in transient dynamic simulation

applications such as ‘‘Fan Blade-Off’’ analysis, all areas of

interest must be meshed with good-quality hexahedral. The

efficient meshes generated from the automatic decomposi-

tion process presented in this paper provide a partial solu-

tion to this problem, as the majority of thin-sheet and long-

slender regions have a structured hexahedral mesh applied.

Apart from the obvious advantages a fully decomposed

model offers to mixed solid meshing applications, the

decomposition can also be idealised into dimensionally

reduced representations for automatic shell-beam meshing

applications. In whole engine modelling, at the preliminary

design stage, there is great demand for technologies which

will enable rapid creation of inexpensive, idealised models

that are cheap to run in processes requiring quick solutions

for a large number of design variations. The relative lack of

detail in the CAD model at this stage of the design process

also means that the MO computation required for the thick/

thin tool should be more robust and inexpensive, as the

problematic areas which lead to difficulties in generating

the MO are no longer present. For this particular applica-

tion, all thin-sheet bodies can be easily replaced with a

mid-surface shell mesh, and all long-slender bodies can be

represented by a series of beam elements. Any complex

volumes can be approximated by a point.
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8 Conclusions

This paper has described an automatic approach for sub-

dividing complex geometries into meshable sub-regions, to

which efficient, structured meshes may be applied. It has

been shown that:

• ellipsoids, sized using shape metrics based on local

sizing measures, can be used to identify long-slender

regions in a model,

• by applying a different meshing strategy to each region

in the assembly of thin-sheet, long-slender and complex

bodies, a semi-structured mesh can be generated,

• meshes produced in this way have significantly fewer

dof, enhancing the efficiency of the numerical analysis,

• results of the modal analyses conducted on a realistic

gas turbine engine compressor inter-casing indicate a

good correlation between the efficient and dense

tetrahedral meshes, thereby validating the effectiveness

of the approach.
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