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Abstract Medial axis transform of a pocket with free-

form closed boundaries is a completed, compact repre-

sentation of the pocket geometric shape and topology. It is

very useful to multiple cutters selection and their tool paths

generation for CNC machining of complex pockets. In the

past decades, much research has been successfully con-

ducted on the topic of finding the medial axis of a shape

domain bounded with a polygon or simple geometries, e.g.,

lines and circles. Currently, more pockets with free-form

boundaries are adopted in mechanical parts; however, the

prior medial axis generation methods cannot handle this

type of pockets well, resulting in long computation time

and low medial axis accuracy. To address this problem, an

efficient, accurate approach to calculating the medial axis

transforms of these pockets is proposed in this work. An

original optimization model of bisectors is established, and

a new optimization method—the hybrid global optimiza-

tion method—is developed to efficiently and accurately

solve the optimization model of bisectors. The new opti-

mization model and solver have been applied to many

examples, and the testing results have demonstrated the

advantages of this innovative approach over the prior

medial axis methods. It can be an effective solution to the

medial axis transforms of complex pockets.

Keywords Medial axis transform � Free-form pocket

medial axis � Global optimization free-form pocket

machining

1 Introduction

As a new type of geometric feature, pockets with closed

free-form boundary curves are often adopted in mechanical

parts, and it is always in high demand to efficiently

machine these pockets in industry. However, due to their

complex shape, it is quite challenging to select appropriate

cutters and plan tool paths for them to achieve high

material removal rates [1]. Medial axis (MA) of the

pockets can be an effective tool to solve this technical

challenge. Basically, the medial axis of a planar domain is

the locus of centers of all the largest circles that are

bounded by the domain boundaries at the contact points

and are scattered in the domain along its boundaries. In this

paper, the medial axis transform (MAT) refers to these

circles centers, radii, and contact points. Due to its wide

applications, MA has been a topic under extensive research

in the past decade. For pockets with polygon boundaries,

many works adopted Voronoi diagrams of the pockets to

easily and accurately find their MAs, and the results were

acceptable. But, for free-form boundaries, they often

encountered the problem of low accuracy of medial axis

points. Then the analytical methods were proposed to find

the bisector equations between two curves. However, these

methods are very difficult to implement and computing

time is long. The objective of this research is to develop a

new approach to generating the medial axis transforms of

free-form pockets, which include non-uniform rational

B-spline (NURBS) boundary curves.

Among the accurate mathematical methods of finding

MA [2–7], the differential and topological properties of the

MAT were studied and the exact MATs of pocket bound-

aries with piecewise lines and circular arcs were constructed

in an analytical way [2, 3]. A trimming procedure was

proposed to identify parametric sub-segments of variable
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distance offsets that constitute true bisectors of point/curve

and curve/curve [4, 5]. Elber and Kim [6] represented the

correspondence between the foot points on two planar

rational curves as a bi-variate B-spline function. Moreover,

Culver et al. [7] developed a tracing algorithm to compute

the exact medial axes of polyhedrons. The approaches are

accurate; however, their solutions could be complicated and

the computing time normally is quite long.

Many researchers have conducted research on generating

Voronoi diagrams to approximate MAs. In computational

geometry, the technique of computing the Voronoi diagram

of a group of point sites is matured [8, 9], and several

efficient algorithms of complexity O ðn � log nÞ are available

together with their free source codes [10]. Brandt [11] found

that the Voronoi diagram of a shape can properly converge

if its boundary is continuous. Dey and Zhao [12] approxi-

mated a medial axis with a Voronoi diagram in a scale- and

density-independent manner, and convergence of this

approximation was guaranteed. Chou [13] developed a

tracing algorithm to calculate Voronoi diagrams for closed

planar shapes with boundaries of free-form curves. Rama-

murthy and Farouki [14, 15] presented an approach for

computing Voronoi diagrams by adding a single boundary

segment in each step, based on point/curve and curve/curve

bisectors. They clearly stated in [14] that ‘‘it might seem

that an easy ‘practical’ approach to domains with free-form

boundary curves is to first approximate the boundaries,

within a prescribed tolerance, by polygonal or piecewise-

linear/circular curves, and then invoke the currently avail-

able algorithms for such boundary curves. However, this

approach yields qualitatively incorrect results.’’ Alt et al.

[16] presented a randomized incremental algorithm to

compute the Voronoi diagrams of curved objects by

breaking up the curves into ‘‘harmless’’ pieces, which

include line segments, circular arcs and spiral arcs. Unfor-

tunately, the methods of approximating bisector curves with

Voronoi diagrams are challenged for shape domains with

free-form boundaries. Seong et al. [17] calculated the crit-

ical structures of the Voronoi diagrams by solving a system

of nonlinear piecewise rational equations in the parametric

space. However, this method is very complicated.

Besides the main stream MA methods mentioned above,

Gursoy and Patrikalakis [18, 19] introduced a wave front

propagation method by determining inward offset distances

and the associated branch points at which the contour topol-

ogy changes. Their method analytically defines the MA in

terms of conic sections, and free-form boundary curves are

approximated within a prescribed tolerance using line and

circular arc segments. Likewise, Hassouna and Farag [20]

rendered a wave front propagation method. The front prop-

agates at each object point in a speed that is proportional to its

Euclidean distance from the boundary. The motion of the

front is governed by a nonlinear partial differential equation

and is solved using level set methods. Then, the medial axis is

computed by tracking the propagating front points of the

maximal positive curvature. Aichholer et al. [21] approxi-

mated the boundary spline with spiral biarcs and found the

medial axis based on the biarcs. Kosinka and Juttler [22]

computed the medial surfaces of spatial boundary surfaces in

the Minkowski space. However, a major problem of these

methods is that the medial axis of the fitting biarcs could

largely deviate from the ideal medial axis of the spline

boundary even though they fit the boundary very well. The

main reason is that the fitting arcs can be quite different from

the boundary with regard to the tangent at two points on them,

the corresponding medial axis points could be far from each

other. This is an inherited problem of these methods and has

not received much attention.

To address the technical challenge of the prior MA

methods, an efficient, accurate approach to the medial axis

transforms of pockets with closed free-form boundary curves

is proposed. As the basics, the properties of the free-form

boundary curves of pockets and terminologies and definitions

of MAT are provided in Sect. 2. The optimization model of

bisector point is formulated in Sect. 3, and a new global

optimization method—a hybrid global optimization

method—is developed in Sect. 4 to solve the optimization

problem for bisector points of the MA. In Sect. 5, several

examples are provided to compare the results of MAs found

with a Voronoi diagram generation method and this new

approach, in order to demonstrate advantages of this

approach. This work is concluded in Sect. 6.

2 Medial axis transforms of pockets with closed free-

form boundary curves

Since the main research objective is to generate medial axis

transforms of pockets of mechanical parts for their CNC

machining, the geometric properties and definitions of the

pocket boundaries and their medial axis transforms are first

rendered in this section.

2.1 Properties of the free-form boundaries of pockets

of mechanical parts

To design pockets of mechanical parts with CAD software,

composite curves including line, arc, and NURBS curve

segments are often used to define the external boundaries

of the recess domains and boundaries of the internal

islands, if any [1]. The external boundary is closed with its

component curves head-to-toe connected one-by-one. All

component curves are regular curves, i.e., their first

derivatives exist, and are represented in a parametric form.

In this work, a pocket boundary generally includes external

and internal boundaries, and it is defined in the following.
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Definition 2.1 A pocket boundary is defined as a com-

posite parametric curve BðuÞ : R! R
2 consisting of n

component curves, BiðuÞ :¼ BxiðuÞ;
�

ByiðuÞ�T; i ¼ 1; 2; . . .; n, where their parameter

u 2 ui
min; ui

max

� �
. The boundary generally can be repre-

sented as BðuÞ :¼
Sn

i¼1 BiðuÞ. The component curves can

be lines, circular arcs and NURBS curves with the fol-

lowing properties:

• Bi ui
max

� �
¼ Biþ1 uiþ1

min

� �
; i ¼ 1; 2; . . .; n� 1ð Þ; and

B1 u1
min

� �
¼ Bn un

max

� �
;

• The unit tangent vector of a component curve as TiðuÞ :

¼ TxiðuÞ; TyiðuÞ
� �T

; and

• The unit normal vector of a component curve as NiðuÞ :

¼ NxiðuÞ; NyiðuÞ
� �T

; and the vector NiðuÞ pointing

inside of the pocket.

For the external boundary of a pocket, its component

curves and their directions are arranged counter-clockwise.

For an internal boundary of the pocket, its component

curves and their directions are arranged clockwise. Each of

these boundaries is stored as an ordered list of the com-

ponent curves.

Generally, at a point on a component curve, there exist

infinite circles tangent to this curve and on the pocket side,

which can be defined in the following way. First, for any

point P with parameter uP on a component line BiðuÞ,
ui

min� u� ui
max, its position vector Bi

P can be computed as

Bi
P ¼ Bi uPð Þ, and the corresponding unit normal of BiðuÞ is

Ni
P :¼ Ni uPð Þ, where NiðuÞ is the unit normal function. If the

point P is the starting point Bi
S uP ¼ ui

min

� �
, the unit normal

vector at this point is on its right-hand side, denoted as

Ni uPð Þ :¼ Ni uþPð Þ :¼ Ni ui
min

� �
; likewise, if the point P is the

ending point Bi
E uP ¼ ui

max

� �
, the unit normal at this point is

on its left-hand side as Ni uPð Þ :¼ Ni u�P
� �

:¼ Ni ui
max

� �
.

Therefore, the center of a tangent circle HPðrÞ is represented

as OHP :¼ Bi
P þ r � Ni

P, where the circle radius r [ 0. This

type of tangent circles is defined as HP rð Þ :¼
uP; rð Þ : Bi

P;O
HP ; r

� �
.

Second, for a point P on a circular arc BiðuÞ of center

OBi

and radius rBi

, the point parameter uP is within its

domain, ui
min� uP� ui

max. It is easy to understand that the

largest circle tangent to the arc at this point Bi
P and inside

the arc is the corresponding circle of the arc. Thus, the

largest tangent circle Hmax
P is the circular arc BiðuÞ, whose

center OHmax
P is OBi

and radius rHmax
P is rBi

. If the point P is

at the starting point, the unit normal vector Ni
P can be

calculated as

Ni
P :¼ Ni uþP

� �
¼ Ni ui

min

� �
¼ � cos ui

min

� �

� sin ui
min

� �
� 	

; ð1Þ

and if the point P is at the ending point, the unit normal

vector Ni
P can be calculated as Ni

P :¼ Ni u�P
� �

¼ Ni ui
max

� �
:

Third, for a point P of parameter uP on a NURBS

component curve BiðuÞ, its unit tangent vector Ti
P :¼

Ti uPð Þ and unit normal vector Ni
P :¼ Ni uPð Þ can be cal-

culated. The curvature jP :¼ j uPð Þ of this curve at this

point can be found using the following equation,

d

du
TiðuÞ
� �

¼ jðuÞ � d

du
BiðuÞ











 � N
iðuÞ; and u ¼ uP:

ð2Þ

When jP [ 0, the largest circle Hmax
P tangent to the

NURBS curve at Bi
P is the osculating circle of the NURBS

curve at this point, and its radius rHmax
P is fixed at 1=jP, and

the equation of the circle center is

OHmax
P :¼ Bi

P þ rHmax
P � Ni

P ¼ Bi
P þ

1

jP

� Ni
P: ð3Þ

When jP\0, the tangent circle HPðrÞ is not unique, and the

circle center is OHP :¼ Bi
P þ r � Ni

P, where the circle radius is

r [ 0.

As all the pocket component curves are regular curves,

at an interior curve point, whose parameter is uP, the unit

tangent vectors on both sides of the point are the same,

i.e., Ti u�P
� �

¼ Ti uþPð Þ. So there is only one unit normal

vector Ni
P at this point. In this work, the composite curves

of the pocket boundaries connect one by one with at least

position continuity. Some pair of curves is smoothly

connected, sharing the same tangent direction at their

joint; while some pair is not smoothly connected, having

different tangent directions at their joint. Thus, for the

unit tangent vectors of the two curves at the left and the

right of the joint are the same, i.e.,

Ti ui
max

� �
¼ Tiþ1 uiþ1

min

� �
, there is only one unit normal

vector, i.e., Ni ui
max

� �
¼ Niþ1 uiþ1

min

� �
. However, for the non-

smooth link of two component curves, the joint is a cusp

and the unit normal vector at the joint is defined here. If

the tangent vectors of the two curves at the joint meet the

following condition,

Ti ui
max

� �
�Tiþ1 uiþ1

min

� �� �
z
¼ Txi ui

max

� �
Tyi ui

max

� �

Txiþ1 uiþ1
min

� �
Tyiþ1 uiþ1

min

� �










[0;

ð5Þ

which means this joint is a concave corner, no unit normal

vector at the joint is defined. Otherwise, the angle hmin

starting from Ni ui
max

� �
to Niþ1 uiþ1

min

� �
can be calculated as
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hmin ¼ � cos�1 Ti ui
max

� �
� Tiþ1 uiþ1

min

� �� �
; ð6Þ

where �p\hmin\0. The valid unit normal vector at the

joint can be defined as

Ni ui
max; h

� �
:¼ Niþ1 ui

min; h
� �

:

¼ cos h � sin h
sin h cos h

� 	
� Ni ui

max

� �
; ð7Þ

where h 2 hmin; 0
�½ �. Hence, any unit normal vector

between Ni ui
max

� �
and Niþ1 uiþ1

min

� �
is a valid unit normal

vector at the joint (see Fig. 1).

2.2 Terminologies and definitions of medial axis

transform

The medial axis transform (MAT) of the domain of a

pocket is a completed shape descriptor, which concisely

represents the domain shape and is very useful to manip-

ulate the complex pocket domain (see Fig. 2). The MAT is

based on the medial axis (MA), which geometrically

bisects the pocket domain and becomes the pocket skele-

ton. Although MA has been defined in the published arti-

cles, we update its definition in our work for clarity. For

this purpose, locally inscribed circle (LIC) is first intro-

duced. As before, the external and internal boundaries are

denoted as BiðuÞ with parameter u, and a locally inscribed

circle at a boundary point u, its center and radius are

denoted as UðuÞ, OU, and rU, respectively.

Definition 2.2 Given a pocket domain X � R
2 and its

boundary BðuÞ, at a boundary point P with parameter u, a

locally inscribed circle UðuÞ of center OU and radius rU

is defined if and only if a circle meets four conditions:

(1) UðuÞ 	 X, (2) 8½P1;P2; . . .;Pj; . . .;Pm� : ¼UðuÞ\
BðuÞ; m
 1, OUP1



 

 ¼ OUP2



 

 ¼ � � � ¼ OUPj



 

 ¼ � � � ¼
OUPm



 

, (3) 8Pj :¼Bi uj

� �
, OUPj �Ti uj

� �
¼0, j¼1;2;...;m,

and (4) the radius rU is the maximum. Here, the locally

inscribed circle (LIC) is represented as U uð Þ :¼
OU uð Þ;rU uð Þ;U OU;rU

� �
;

�
P1;P2;...;Pm½ �g (see Fig. 2). At

any boundary point, its LIC is the largest circle tangent to

the boundary inside the pocket without any intersection

with the boundary.
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2 contact 
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( )i uB
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( )max
i iuN

( )1 1
min

+ +i iuN
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( )Φ 1
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Fig. 1 An illustrative diagram for finding valid unit normal vectors

at a cusp between two adjacent component curves
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End 
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Fig. 2 Illustration of local inscribed circles and the basic elements of the MA of a pocket
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Definition 2.3 The MA definition is that the MA of a

pocket domain X is the locus of the center of the locally

inscribed circle (disk) U uð Þ moving along the pocket

boundary B uð Þ to cover the whole domain, which is rep-

resented as MA :¼ OU : OU 2 U uð Þ;[U uð Þ ¼ X
� �

(see

Fig. 2).

Remarks The LIC varies in size at different locations as it

best fits the local area bounded by the pocket boundary at

any location. The MA is a ‘‘middle’’ axis bisecting the

pocket domain. In this work, the pocket MA is represented

with a set of end and branch points connected by bisector

curves, which are defined in the following.

Definition 2.4 The definition of end point VE is that the

center of the LIC U uð Þ is an end point if and only if it

meets one of the three conditions: (1) the component curve

Bi uð Þ that the LIC U uð Þ touches is a circular arc, (2) at a

concave corner, the radius rU of the LIC is zero at P1,

where the unit normal vector is invalid, and (3) 8P1 :2
U uð Þ \ B uð Þ and P1 :¼ Bi

P1
, its curvature jP1

is positive

and maximal in the local region of P1 (see Fig. 3).

Remarks The three conditions in the definition of end

point infer to three special cases of LIC. These special

circles are the circle of a component arc, the degenerated

circle—a point—at the joint of two component curves

forming a sharp concave corner, and the osculating circle

of a NURBS component curve at a point having the

maximum curvature in its neighborhood.

Definition 2.5 The definition of branch point VB is that

the center of an LIC U uð Þ is a branch point if and only if

this circle touches the pocket boundary at more than two

points (see Fig. 4).

Remarks If an LIC contacts the boundary n times

n [ 2ð Þ, the circle center is a branch point where n bisec-

tors are connected (see Fig. 4). Generally, the LIC at a

branch point touches the pocket boundary at three discrete

points (Fig. 5).

Definition 2.6 The definition of bisector point is that the

center OU of the LIC U uð Þ is a bisector point if and only if

this circle contacts the pocket boundary B uð Þ at two points

P1;P2½ �. Thus, the bisector curve OU uð Þ is a set of bisector

points and connects a pair of end-and-branch or branch

points.

Definition 2.7 The medial axis transform (MAT) refers

to the MA, the radii and centers of the LICs and the contact

points between these circles and the boundaries. Thus, the

Pocket 
domain

Pocket 
boundary

Bisector

LIC: arc circle

End 
point

Component: 
circular arc

Concave corner

Pocket 
boundary

Bisector

LIC: Osculating circle

End point
Component: 

NURBS

Contact point P1

End point

P1
ΦO

P1

1

Φ
P1 κ=r

(a)

(b)

Fig. 3 Diagram of end points in three conditions: a for the first and

the second conditions, and b for the third condition

 

Bisector
Branch 
Point

Pocket 
domain

Bisector

LIC

Contact point

Pocket 
boundary

Bisector
Contact point

Contact point

Pocket boundary

Fig. 4 Diagram of the branch point definition

Pocket boundary

Pocket boundary

Bisector

Pocket 
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Bisector 
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Locally 
inscribed 
circle

Contact point

Contact point

( )uΦ

1P

2P
( )uB

( )uB

ΦO
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Fig. 5 Diagram of the bisector point definition
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MAT is defined as MAT :¼ U uð Þ [U uð Þ ¼ Xj½ �, and it can

be simply represented as [ VE;VB
� �

;OU uð Þ
� �

.

To find the MAT of a pocket, it is crucial to calculate the

LIC of a bisector point accurately and efficiently. This

work proposes a new mathematical model of the LIC.

3 A mathematical model of LIC

The essential element of the MAT is the LICs, and an

innovative mathematical model of LIC is established in the

section.

3.1 The maximal tangent circle

At a point of the pocket boundary where various tangent

circles H exist, the LIC U is unique among the circles.

These circles H can be found using the equations rendered

in Sect. 2. To facilitate finding the LIC U, the maximal

tangent circle is defined.

Definition 3.1 For a point P1 on a boundary component

curve Bi uð Þ with parameter uP1
, the unit normal at this

point is valid and the boundary curve is not a circular arc.

The normal vector intersects the opposite boundary B uð Þ
first at point Q1 with parameter uQ1

. Sometimes, the

opposite boundary B uð Þ could be the curve Bi uð Þ itself. The

tangent circle HP1
rð Þ determined with the diameter line

P1Q1 is defined as the maximal tangent circle Hmax
P1

:¼
HP1

1
2

P1Q1j jð Þ in this work. If the component curve Bi uð Þ is

a circular arc of radius rBi

, the arc circle is the maximal

tangent circle, Hmax
P1

rBi
� �

¼ Bi uð Þ.

Lemma 3.2 At a point P1 with parameter uP1
on a compo-

nent curve BiðuÞ, its LIC UP1
:¼ U uP1

ð Þ is within or, in some

special cases, is its maximal tangent circle Hmax
P1

(see Fig. 6).

Proof The proof covers two cases: the first case is that the

component curve BiðuÞ of the pocket boundary BðuÞ is not

a circular arc, while the second case is that curve BiðuÞ is a

circular arc. For the first case, at the point P1 on curve

BiðuÞ with parameter uP1
, its unit normal vector Ni

P1
and its

tangent circles HP1
ðrÞ in different size can be found.

Suppose the unit normal vector intersects the boundary at

point Q1, the maximal tangent circle Hmax
P1

is determined

with diameter P1Q1. Assume the boundary traverses the

maximal tangent circle once with two intersection points

Q1 and Q2, leaving a boundary segment within the circle

and bounded by these points. By continuously reducing

radius r of the tangent circle HP1
ðrÞ at the point P1 to

shrink it, the intersection points Q1ðrÞ and Q2ðrÞ gradually

come closer and the boundary segment inside the circle

becomes shorter (see Fig. 6). By doing this, it is guaranteed

that the radius r can reach a critical value rU so that the

points Q1ðrÞ and Q2ðrÞ converge to one point P2 and the

boundary touches the tangent circle. According to Defini-

tion 2.2, this circle is the LIC UP1
,

OU uP1
ð Þ; rU uP1

ð Þ;U OU; rU
� �

; P1;P2½ �
� �� �

. Therefore, it is

within the maximal tangent circle (see Fig. 6). If the

boundary traverses the maximal tangent circle m times,

there are m pairs of intersection points, Q1;Q2ð Þ, Q3;Q4ð Þ,
…, Q2m�1;Q2mð Þ. For each pair of the intersection points, a

critical circle of radius r j; j ¼ 1; 2; . . .;m can be found.

Among them, if only one circle is the minimal, it is the LIC

and within the maximal tangent circle. The center of this

circle is a bisector point of the MA. In some special cases,

several circles are the same and in the minimal size; thus,

this minimal circle is the LIC whose center is a branch

point of the MA. Occasionally, if the maximal tangent

circle contacts the boundary right at the point Q1 without

any boundary crossing, this maximal circle itself is an LIC.

The center of this circle is a bisector point of the MA.

For the second case that the component curve is a

circular arc, the maximal tangent circle of a point on this

curve is the arc circle. Similarly, if the boundary traverses

Pocket boundary

The maximum 
tangent circle: 

LIC

LIC

Pocket 
domain

Pocket boundary

Contact point 1P

The maximum 
tangent circle

1Q

2Q

Contact point 1P

1Q ( )2P

Pocket domain

1
1 12 PQ

P1
ΦO

( )1
1 12 +P Q

P1
Φ

r

r
2P

( )2 uQ

( )1 uQ

P1
Φ 1

1 12=r PQ

( )P1
Φ 1

1 12= +O P Q

Fig. 6 Diagram of the maximal tangent circle and its relationship

with the LIC
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this circle, an LIC can be found by reducing the radius of

the tangent circle. It is evident that the LIC is within the

maximal tangent circle (see Fig. 6). Otherwise, the max-

imal tangent circle is the LIC, whose center is an end point

of the MA. h

Remarks The maximal tangent circle can facilitate find-

ing the LIC. By checking the boundary segments inside the

maximal tangent circle, the LIC can be efficiently found,

instead of exhaustively searching the whole boundary.

3.2 Optimization model of calculating a bisector point

A mathematical model of LIC is very important for the

accuracy and efficiency of computing the MA of a pocket.

In general, a MA consists of a set of end and branch points

and a group of bisector curves, and each curve connects a

pair of end and branch points or two branch points. Since

closed-form equations of the bisector curves cannot be

derived, discrete bisector points should be computed to

represent the bisector curves. Thus, a new and accurate

model of calculating a bisector point is proposed in this

section, in which an innovative idea of formulating the LIC

at a boundary point is to shrink the maximal tangent circle

until the tangent circle touches the boundary.

To formulate this model, assuming a point P1 of parameter

uP1
on the component curve BiðuÞ of the boundary BðuÞ, the

position vector is P1 ¼ Bxi uP1
ð Þ;Byi uP1

ð Þ½ �T, and the unit

normal vector Ni
P1
¼ Nxi uP1

ð Þ;Nyi uP1
ð Þ½ �T can be found

using the equations in Sect. 2. The first intersection point Q1

between the unit normal and the boundary BðuÞ can be easily

calculated; its parameter is uQ1
and the position vector is

Q1 ¼ Bx uQ1

� �
;By uQ1

� �� �T
. Therefore, the diameter of the

maximal tangent circle is P1Q1, and the center is

OHmax
P1 ¼ 1

2
P1 þQ1ð Þ. The maximal tangent circle Hmax

P1

1
2

P1Q1j jð Þ is found (see Fig. 7). For a bisector point, the

simple, general situation is that the boundary traverses the

maximal tangent circle once with a segment inside the circle.

Based on Lemma 3.2, the LIC is within the maximal tangent

circle.

To attain a smaller tangent circle at point P1, select a test

point P with parameter u on the boundary segment inside

the maximal tangent circle; P ¼ BxðuÞ; ByðuÞ½ �T and

POHmax
P1








\1

2
P1Q1j j. Here, the test point P cannot be the

point P1, so u 6¼ uP1
. A tangent circle of point P1 and

passing though point P can be constructed after finding its

center in two steps: (1) connecting the two points with PP1,

and (2) drawing the mid-section line of PP1 and inter-

secting P1Q1 at point OHP1 . Thus, the center of the tangent

circle HP1
rðuÞð Þ is OHP1 , and the circle radius rðuÞ can be

calculated as

rðuÞ ¼ 1

2

� BxðuÞ � Bxi uP1
ð Þ½ �2þ ByðuÞ � Byi uP1

ð Þ½ �2

BxðuÞ � Bxi uP1
ð Þ½ � � Nxi uP1

ð Þ þ ByðuÞ � Byi uP1
ð Þ½ � � Nyi uP1

ð Þ :

ð17Þ

By changing the point P along the boundary segment

inside the maximal tangent circle, the radius of the tangent

circle can gradually be reduced. Ultimately, when point P

reaches a special point P2, the radius is the minimum, and,

besides point P1, the tangent circle only contacts the

boundary at this point. Therefore, this tangent circle is the

LIC UP1
of point P1. The optimization model of the LIC is

Minimize rðuÞ¼ 1
2

� BxðuÞ�Bxi uP1
ð Þð Þ2þ ByðuÞ�Byi uP1

ð Þð Þ2

BxðuÞ�Bxi uP1
ð Þð Þ �Nxi uP1

ð Þþ ByðuÞ�Byi uP1
ð Þð Þ �Nyi uP1

ð Þ

Subject to

u 6¼uP1

POHmax
P1








\1

2
P1Q1j j

8
<

:
:

ð18Þ

However, in many cases, the boundary traverses the

maximal tangent circle several times and leaves several

segments inside the circle (see Fig. 8). According to

Lemma 3.2, the LIC is within the maximal tangent

circle and touches one of the boundary segments,

without the boundary traversing inside the circle. As

the test point P moves along the boundary segments,

the radius of the tangent circle changes in a highly

non-linear way. It is clear that in this case the LIC

model is a difficult global optimization problem. To

solve this problem efficiently and consistently, the

hybrid global optimization method is developed and

introduced in the next section.

Pocket
boundary

Contact
point 1P

Pocket
domain

The maximum
tangent circle

1Q

2Q
P

max
P1

Θ 1
1 12O (P + Q )

max
P1

Θ 1
1 12r PQ

r

P1
Θ

O Tangent
circle

1PΘ
Middle
section

line

i (u)B

1P
iN

1

max
PΘ

(u)

Ω

Fig. 7 Diagram of formulating the mathematical model of calculat-

ing a bisector point
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4 The hybrid global optimization method

For the LIC at a boundary point P1, solving the above

optimization problem actually is to search the boundary for

point P2 that the circle contacts the boundary. However,

due to the complex pocket shape, finding point P2 can take

a long time and result in non-consistent solutions by using

either a prior global or a local optimization method. With

regard to the current global optimization methods, their

salient feature is that they can intelligently and efficiently

search for the region of the exact solution; however, it

often takes intolerably long time to pin-point the solution.

As comparison, the local optimization methods are not able

to globally search the solution; while, if the solution region

is initially provided, they can converge at the solution in

very short time. To take the advantages of the global and

local optimization methods, this work develops an effective

hybrid optimization method that integrates a global and a

local optimization method. In the first step, the discrete

particle swarm optimization (PSO) method is employed to

narrow down the solution region from the whole boundary;

and in the second step, Newton’s gradient method is

applied to locate the exact solution.

4.1 The discrete particle swarm optimization method

The problem of locating point P2 on the boundary for the LIC

at point P1 actually is to search for P2 in the 1-D continuous

range of the boundary parameter. As an outstanding feature,

the population-based intelligent search of the present PSO

method is to have a swarm of particles scattering across the

problem domain, searching and sharing the objective function

values in an iterative process, in order to efficiently find out the

global solution [23, 24]. Thus, the PSO method is an effective

tool to solve the problem. To push the limit of searching effi-

ciency in this work, an improvement is to represent the whole

continuous domain with a fairly large number of discrete points

and modify the current PSO method to search among these

points for the finite boundary piece around point P2.

To find out the finite boundary piece where point P2 lies, a

large number of sample points (the number is NS) are taken on

the pocket boundary BðuÞ; u 2 umin; umax½ �. For example, the

points are evenly distributed along the boundary with the

same parameter interval Du ¼ umax � uminð Þ= NS � 1ð Þ, and

the point parameters are u1; u2; . . .; uj; . . .uNS

� �
where

uj ¼ umin þ j� 1ð Þ � Du. In this work, the points are sampled

on the boundary with approximately the same arc length

between two adjacent points. The points are denoted as Bj :

¼ B uj

� �
where j ¼ 1; 2; . . .;NS. The finite boundary piece

around point Bj is denoted as Bj. In this problem, due to the

constraint that only the boundary points within the maximal

tangent circle are the candidates of the solution in this step, all

the points Bj are checked against the in-equation,

BjO
Hmax

P1








\1

2
P1Q1j j. Then, the boundary points inside the

maximal tangent circle define the problem sub-domainsR1 ¼

us
R1
; . . .; ue

R1

h i
; . . .;Rl ¼ us

Rl
; . . .; ue

Rl

h i
; . . .;RND

¼

us
RND

; . . .; ue
RND

h i
, for example,

u1; u2; u3; u4|fflfflfflfflffl{zfflfflfflfflffl}
R1

; . . .; uj�1; uj; ujþ1; . . .
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Rl

; . . .; . . .; uNS�1; uNS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
RND

2

64

3

75. In

order to quickly find the piece of the solution point P2, a

discrete particle swarm optimization (PSO) method is

developed in this work (see Fig. 8).

Here, the discrete PSO method is introduced. Given the

boundary BðuÞ in non-continuous sub-domains as

R1; . . .;Rl; . . .RND
, and many discrete points Bj in the sub-

domain are calculated (see Fig. 8). At beginning of the

search, a swarm of particles with a number of NP is ran-

domly selected among the discrete points in the domains.

The particles are denoted as Bs kð Þ and their parameters are

denoted as us kð Þ where k ¼ 1; 2; . . .;NP refers to the parti-

cles and s kð Þ refers to the sequence number of the sample

points. The initial velocity vk of each particle is also

determined with a random number. In the searching iter-

ation, the velocity of each particle vk and a parameter

value for this particle u are computed using the equation

below,

vk ¼ w � vk þ c1 � rand � u�k � usðkÞ
� �

þ c2 � rand � u� � usðkÞ
� �

u ¼ usðkÞ þ vk

8
><

>:
; ð19Þ

us
4

= (B )

ue
4

= (B )

ue
3

= (B )

us
3

= (B )

( )

ue
2

= (B )

us
2

= (B )

ue
1

= (B )

us
1

= (B )

3

3

1

4

Fig. 8 Diagram of the discrete particle swarm optimization method

in this work
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where the inertia weight w is 0.9, the acceleration

coefficients c1 and c2 are 0.2 and 2.0, respectively, and

r and is the uniform distribution function that can generate

random numbers between 0 and 1. If the in-equation

u 2 Rl and
uj�1 þ uj

2
\u� uj þ ujþ1

2
ð20Þ

is true, sðkÞ ¼ j and usðkÞ ¼ uj. If the in-equation

usðkÞ 2 Rl and ue
Rl
� u� us

Rlþ1
ð21Þ

is true, sðkÞ is the sequence number of the point with

parameter us
Rlþ1

, and usðkÞ ¼ us
Rlþ1

. If the in-equation

usðkÞ 2 Rl and ue
Rl�1
� u� us

Rl
ð22Þ

is true, sðkÞ is the sequence number of the sample point

with parameter ue
Rl�1

, and us kð Þ ¼ ue
Rl�1

. Then, by using

Eq. 18, the radii r us kð Þ
� �

of the tangent circles for all the

particles are calculated. For each particle, if the radius is

less than r u�k
� �

in the previous iteration, the best parameter

value of the particle u�k ¼ usðkÞ. If the radius is less than

r u�ð Þ, the best parameter value of the swarm u� ¼ usðkÞ,

where k ¼ 1; 2; . . .;NP. After many iterations, the particles

will converge to point Bj with parameter uj in the sub-

domains.

Since the boundary domain is divided into several

sub-domains with discrete sample points based on the

constraint, the search range of the particles has been sig-

nificantly reduced, thus, it is very quick to find out the

solution point P2. The finite boundary piece of this point is

the piece where the exact solution lies, and this point is the

input for searching with Newton’s gradient method.

4.2 Accurate Newton’s optimization method

By using the discrete PSO method, the finite boundary

piece of the exact solution can be found. Because the piece

is very short, the objective function in the region of this

piece is in a uniform concave shape, and the Newton’s

gradient method can guarantee converge to the solution.

The first derivative of the objective function in terms of the

parameter u is

With the closed-form equation of the first derivative of the

objective function, the linear search method is applied, and

the solution can be found in several steps.

To show the super efficiency of this new optimization

solver, the NURBS boundary curve shown in Fig. 8 is

employed as an example, and our method and a related

program of commercial geometric kernel software [25] are

applied to this example to find the LICs at 1,000 locations

on the boundary. The commercial program takes 4,286 ms

to compute all the LICs. In our optimization method, 2,000

sample points are taken from the boundary. It takes

1,919 ms to compute 1,000 LICs at the same locations.

Although we do not know the algorithm used in the com-

mercial program, the testing result shows that the hybrid

optimization method is more efficient than this program.

This newly proposed hybrid global optimization method

uses the discrete PSO method to globally search for the

local region of the solution in the large problem domain,

and feed the search result to the Newton’s local optimi-

zation method for the exact solution. This method takes the

advantages of the global and local optimization methods

and gets rid of their weakness. It is very efficient to solve

highly non-linear optimization problems, including the

problem in this work.

5 Medial axis approximation

By using this new approach, a bisector point of an LIC at a

boundary point can be accurately found; which is the main

contribution of this work. Now, to generate the MA with

high accuracy, a practical method is proposed, which

includes (1) a large number of bisector points are computed

and are fit with a curve to approximate the MA, and (2) a

number of different bisector points are calculated and are

compared to the MA approximation for the MA errors; if

an error is larger than the tolerance, these bisector points,

together with the previous bisector points, are used to

re-generate the MA approximation. This is a numerical

way to globally bind the error of the MA approximation.

Since the MA equations cannot be established, this prob-

lem is very difficult to address, and further study is needed.

r0ðuÞ ¼ BxðuÞ � Bxi uP1
ð Þ½ � � BxðuÞ0 þ ByðuÞ � Byi uP1

ð Þ½ � � ByðuÞ0

BxðuÞ � Bxi uP1
ð Þ½ � � Nxi uP1

ð Þ þ ByðuÞ � Byi uP1
ð Þ½ � � Nyi uP1

ð Þ�

BxðuÞ � Bxi uP1
ð Þð Þ2þ ByðuÞ � Byi uP1

ð Þð Þ2
h i

� Nxi uP1
ð Þ � BxðuÞ0 þ Nyi uP1

ð Þ � ByðuÞ0
� �

2 � BxðuÞ � Bxi uP1
ð Þð Þ � Nxi uP1

ð Þ þ ByðuÞ � Byi uP1
ð Þð Þ � Nyi uP1

ð Þ½ �2

ð23Þ
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6 Applications

This new approach has been implemented into our in-house

software by using the C?? programming language.

A Windows PC with an AMD Athlon 2.7 GHz CPU is

used. To demonstrate that it is more efficient and accurate

than the prior MA methods, this new approach is applied to

a thin, long pocket with a closed free-form boundary shown

in Fig. 9. Among the current MA methods, the most pop-

ular MA method, the Voronoi diagram generation method,

is selected to find the MA of the pocket. The results by

using the two methods are explained in detail and are

compared to confirm the advantage of our approach.

By using the new approach to finding the bisector of the

pocket, 40 points are sampled on the pocket boundary, and

40 bisector points are accurately calculated, at which the

location errors are less than 1.0e-7. Then, a curve is fit to

the bisector points to represent the bisector curve of the

pocket shown in Fig. 9a. So, the location error of the

bisector curve with regard to every boundary points,

instead of at the 40 sample points, can be calculated. The

error graph is plotted in Fig. 9b, and the maximum error is

5.84e-3 mm. Since the location errors at the 40 discrete

bisector points are much less than the maximum error, the

new approach to calculating bisector points is accurate, and

the bisector curve error mainly is the bisector fitting error.

Therefore, when more boundary points are sampled, more

bisector points are attained, and the bisector curve is more

accurate.

Here, a group of tests has been conducted by using this

new approach. In each test, by sampling a different number

of points on the boundary, their corresponding bisector

points are computed, and the bisector curve is found. Then,

the maximum error of the bisector curve is calculated. The

results are listed in Table 1. When 390 points are sampled,

the 390 bisector points are very accurate, thus, the bisector

curve accuracy (8.11e-7 mm) is quite high and the com-

puting time (359 ms) is very quick.

In this work, the Voronoi diagram generation method is

employed to find the MA of the pocket. First, 82 points are

sampled on the pocket boundary to form a polygon as its

new discrete representation, and the Voronoi diagram is

then found with 136 Voronoi points. In Fig. 10, the pocket

boundary points and the corresponding Voronoi diagram

points are plotted. Among all the Voronoi points, 80

bisector points inside the pocket can be found and shown in

this diagram.

However, the 80 computed Voronoi points, which are

used to approximate 80 bisector points, deviate from their

corresponding true ‘‘middle’’ points (true medial axis

points), so the distance between a computed Voronoi point

and its corresponding true medial axis point is defined as a

Voronoi location error. To show this problem with the
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Fig. 9 a A group of accurate bisector points calculated with this new

approach and an approximated bisector curve fitting these points, and

b the error between the approximate bisector curve and the true

bisector curve

Table 1 Results of a group of tests by using this new approach

Bisector

points

Computing time with our new

approach (ms)

Max error of bisector

curve (mm)

40 38 5.84e-3

98 86 1.68e-4

196 171 1.08e-5

390 359 8.11e-7

-20 0 20 40 60 80 100 120 140 160
-20

0

20

40

60

80

Fig. 10 The Voronoi diagram of the polygon approximating the

pocket boundary
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Voronoi diagram, four Voronoi points and their errors are

closely examined as shown in Fig. 11. At Voronoi point

OU
1 , the distances from this point to the boundary curves

are not equal, and no circle centered at this point can be

drawn to contact the boundary at two points. In Fig. 11, the

location error is 0.176617 mm. Similarly, Voronoi points

OU
2 , OU

3 and OU
4 are off their true medial axis points, and

their errors are 0.18392, 0.230038, and 0.183921 mm, and

shown in Fig. 11, respectively. As a consequence, the

location errors of the Voronoi points in terms of the true

bisector points are large, and the maximum error of the

bisector curve fitting these Voronoi points are large.

Unfortunately, these bisector curves cannot be used for

high precision tool path planning.

To fully represent the bisector curve, a group of discrete

Voronoi points are computed to approximate bisector
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Fig. 11 The bisector point

errors by using the Voronoi

diagram and their detailed

illustrations
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points, and then a B-spline curve is fit to these points as the

result. Thus, the bisector error is defined as the maximum

deviation between the calculated and the true bisector

curves. Eight tests with a different number of bisector

points, which are extracted from the Voronoi points, are

carried out; unfortunately, the bisector errors are quite

large, which are listed in Table 2. For example, when the

number of the bisector points is 41, the bisector error is

0.922 mm, while the error of the bisector curve that is fit to

40 bisector points found with our approach is 0.00584 mm.

It is evident that the error of the bisector calculated with the

Voronoi method is much greater than that of the bisector

found with our approach. Since the curve fitting method is

the same, the main reason for the large errors of the

bisector points generated with the Voronoi method is that

the Voronoi points are not accurate and the bisector points

computed with our method are accurate, with regard to the

true bisector points. It is easy to see that the computing

time by using our new approach is much less that the time

needed by using a MATLAB program of the Voronoi

diagram method.

By using our in-house software, the MATs of three

pockets with very complex shape are calculated and shown

in Fig. 12, and the results are listed in Table 3. The above

examples demonstrate the robustness and effectiveness of

the proposed algorithms when dealing with complex

shapes.

7 Conclusions

In this work, an efficient, accurate approach to medial axis

transforms of pockets with closed free-form boundary has

been proposed. Compared to the prior medial axis gener-

ation methods, this new approach is able to handle pocket

domains bounded with lines, circular arcs, and B-spline

curves. It does not need to identify and eliminate curve/

curve intersections, thus, it takes less time to compute

MATs, compared to the analytical MA methods. It uses

accurate boundary curves information to achieve much

higher accuracy, compared to the Voronoi diagram

approximation methods. The main contributions of this

work include (1) an innovative optimization model of

bisector points, which is able to accurately calculate any

bisector point, and (2) a new global optimization method, a

hybrid optimization method of the particle swarm optimi-

zation and the gradient optimization methods, which is able

to efficiently pin-point any bisector point. This approach

Table 2 Results of a group of tests by using the Voronoi diagram

generation method

Sample points

of the boundary

polygon

Bisection

points

(Voronoi

points)

Computing

time with

MATLAB

(ms)

Max error of

the bisection

curve (mm)

41 39 (67) 93 9.22e-1

82 80 (136) 120 2.92e-1

203 201 (343) 171 7.54e-2

405 403 (686) 317 3.18e-2

807 805 (1,370) 764 1.24e-2

2,014 2,012 (3,429) 3,441 4.34e-3

4,026 4,024 (6,931) 13,484 1.79e-3

8050 8,047 (14,274) 57,562 9.06e-4

Table 3 Data of finding the MAs of the three pockets by using our

in-house software

Pockets Boundary arc length

(mm)

Bisector

points

Number of bisector

curves

(a) 553 322 19

(b) 556 316 7

(c) 1,068 604 11

(a) (b) (c)

Fig. 12 The MAs of a group of

testing examples with closed

free-form pocket boundaries
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substantially improves the technique of computing the

medial axis transforms of pockets. It can be directly used to

multiple cutters selection and their path generation for

aggressive rough machining of pockets.
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