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Abstract In this study, a new metaheuristic optimization

algorithm, called cuckoo search (CS), is introduced for

solving structural optimization tasks. The new CS algorithm

in combination with Lévy flights is first verified using a

benchmark nonlinear constrained optimization problem. For

the validation against structural engineering optimization

problems, CS is subsequently applied to 13 design problems

reported in the specialized literature. The performance of the

CS algorithm is further compared with various algorithms

representative of the state of the art in the area. The optimal

solutions obtained by CS are mostly far better than the best

solutions obtained by the existing methods. The unique

search features used in CS and the implications for future

research are finally discussed in detail.

Keywords Cuckoo search � Structural optimization �
Engineering design � Metaheuristic algorithm

1 Introduction

Most design optimization problems in structural engineer-

ing are highly nonlinear, involving many different design

variables under complex constraints. These constraints can

be written either as simple bounds such as the ranges of

material properties or as nonlinear relationships including

maximum stress, maximum deflection, minimum load

capacity, and geometrical configuration. Such nonlinearity

often results in multimodal response landscape. Subse-

quently, local search algorithms such as hill-climbing and

Nelder-Mead downhill simplex methods are not suitable;

only global algorithms should be used so as to obtain

optimal solutions [1].

Metaheuristic algorithms can be defined as upper level

general methodologies (templates) that can be used as

guiding strategies in designing underlying heuristics to

solve specific optimization problems [2]. Two important

characteristics of metaheuristics are intensification and

diversification [3]. Intensification intends to search around

the current best solutions and select the best candidates or

solutions. Diversification makes sure that the algorithm

can explore the search space more efficiently, often by

randomization.

Modern metaheuristic algorithms have been developed

with an aim to carry out global search with three main

purposes: solving problems faster, solving large problems,

and obtaining robust algorithms [2]. Genetic algorithms

(GA) and particle swarm optimization (PSO) are typical

examples of these algorithms. The efficiency of metaheu-

ristic algorithms can be attributed to the fact that they

imitate the best features in nature, especially the selection

of the fittest in biological systems which have evolved by

natural selection over millions of years. Timeline of main

metaheuristic algorithms is shown in Fig. 1.

As shown in Fig. 1, cuckoo search (CS) is a new

metaheuristic search algorithm. This algorithm is based on

the obligate brood parasitic behavior of some cuckoo

species in combination with the Lévy flight behavior of
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some birds and fruit flies. It is developed by Yang and Deb

[4] and the preliminary studies show that it is very prom-

ising and could outperform existing algorithms such as GA

and PSO [4]. In this paper, the CS algorithm is further

validated against various structural engineering optimiza-

tion problems including stochastic test functions. The

introduced search strategy is compared with other popular

optimization algorithms. Finally, the unique features of CS

are discussed and topics for further studies are proposed.

2 Cuckoo search algorithm

In order to describe the CS algorithm more clearly, let us

briefly review the interesting breed behavior of certain

cuckoo species. Then, we will outline the basic ideas and

steps of the CS algorithm.

2.1 Cuckoo breeding behavior

Cuckoos are fascinating birds, not only because of the

beautiful sounds they can make, but also because of their

aggressive reproduction strategy. Some species such as the

ani and guira cuckoos lay their eggs in communal nests,

though they may remove others’ eggs to increase the

hatching probability of their own eggs [5]. Quite a number

of species engage the obligate brood parasitism by laying

their eggs in the nests of other host birds (often other

species). There are three basic types of brood parasitism:

intraspecific brood parasitism, cooperative breeding, and

nest takeover. Some host birds can engage direct conflict

with the intruding cuckoos. If a host bird discovers the eggs

are not its own, it will either throw these alien eggs away or

simply abandon its nest and build a new nest elsewhere.

Some cuckoo species such as the new world brood-para-

sitic Tapera have evolved in such a way that female par-

asitic cuckoos are often very specialized in the mimicry in

color and pattern of the eggs of a few chosen host species

[5]. This reduces the probability of their eggs being

abandoned and thus increases their reproductively.

Furthermore, the timing of egg-laying of some species is

also amazing. Parasitic cuckoos often choose a nest where

the host bird just laid its own eggs. In general, the cuckoo

eggs hatch slightly earlier than their host eggs. Once the

first cuckoo chick is hatched, the first instinctive action it

will take is to evict the host eggs by blindly propelling the
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Fig. 1 Timeline of main metaheuristics algorithms

Cuckoo Search Algorithm 

begin 
   Objective function  f(x), x=( x1,…, xd)

T; 
   Initial a population of n host nests xi (i=1,2,…,n);

while (t < Maximum Generation) or (stop criterion); 
          Get a cuckoo (say i) randomly  

   and generate a new solution by Lévy flights; 
          Evaluate its quality/fitness; Fi

          Choose a nest among n (say j ) randomly; 
if (Fi > Fj),  

                 Replace j by the new solution; 
end 

          Abandon a fraction (Pa) of worse nests 
[and build new ones at new locations via Lévy flights]; 

           Keep the best solutions (or nests with quality solutions); 
          Rank the solutions and find the current best; 

end while 
       Post process results and visualization; 
end 

Fig. 2 Pseudo code of the Cuckoo Search method
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eggs out of the nest, which increases the cuckoo chick’s

share of food provided by its host bird [5]. Studies also

show that a cuckoo chick can also mimic the call of host

chicks to gain access to more feeding opportunity.

2.2 Lévy flights

In nature, animals search for food in a random or quasi-

random manner. In general, the foraging path of an animal

is effectively a random walk because the next move is

based on the current location/state and the transition

probability to the next location. Which direction it chooses

depends implicitly on a probability which can be modeled

mathematically. For example, various studies have shown

that the flight behavior of many animals and insects

has demonstrated the typical characteristics of Lévy flights

[6, 7].

A recent study by Reynolds and Frye [8] shows that fruit

flies or Drosophila melanogaster explore their landscape

using a series of straight flight paths punctuated by a

sudden 90o turn, leading to a Lévy-flight-style intermittent

scale-free search pattern. Studies on human behavior such

as the Ju/’hoansi hunter-gatherer foraging patterns also

show the typical feature of Lévy flights. Even light can be

related to Lévy flights [9]. Subsequently, such behavior

has been applied to optimization and optimal search, and

preliminary results show its promising capability [10].

2.3 Cuckoo search

For simplicity in describing the new CS method [4], we

now use the following three idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a

randomly chosen nest.

• The best nests with high quality of eggs (solutions) will

carry over to the next generations.

• The number of available host nests is fixed, and a host

can discover an alien egg with a probability Pa [ [0, 1].

In this case, the host bird can either throw the egg away

or abandon the nest so as to build a completely new nest

in a new location.

For simplicity, this last assumption can be approximated

by a fraction Pa of the n nests being replaced by new nests

(with new random solutions at new locations). For a

maximization problem, the quality or fitness of a solution

can simply be proportional to the objective function. Other

forms of fitness can be defined in a similar way to the

fitness function in GA.

Based on these three rules, the basic steps of the CS can

be summarized as the pseudo code as follows:

When generating new solutions x(t?1) for, say cuckoo i,

a Lévy flight is performed

x
ðtþ1Þ
i ¼ x

ðtÞ
i þ a� L�evyðkÞ ð1Þ

where a[ 0 is the step size which should be related to the

scales of the problem of interest. In most cases, we can use

a = O (1). The product � means entry-wise multiplications.

Lévy flights essentially provide a random walk, while their

random steps are drawn from a Lévy distribution for large

steps

L�evy� u ¼ t�k; 1\k� 3ð Þ ð2Þ

which has an infinite variance with an infinite mean. Here,

the consecutive jumps/steps of a cuckoo essentially form a

random walk process which obeys a power-law step-length

distribution with a heavy tail. Pseudo code of the cuckoo

search algorithm is presented in Fig. 2.

3 Implementation and numerical experiments

3.1 Validation

Before solving the structural engineering problems, the CS

was benchmarked using a well-known problem, namely,

Himmelblau’s problem. This problem has originally been

proposed by Himmelblau’s [11] and it has been widely used

as a benchmark nonlinear constrained optimization prob-

lem. In this problem, there are five design variables [x1, x2,

x3, x4, x5], six nonlinear inequality constraints, and ten

boundary conditions. The problem can be stated as follows:

Minimize : f ðXÞ
¼ 5:3578547x2

3 þ 0:8356891x1x5

þ 37:293239x1 � 40792:141 ð3Þ

Subject to 0 B g1 B 92, 90 B g2 B 110, and 20 B g3 B

25 where

g1 ¼ 85:334407þ 0:0056858x1x5 þ 0:0006262x1x4

� 0:0022053x3x5 ð4Þ

g2 ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2

� 0:0021813x2
3 ð5Þ

g2 ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3

� 0:0019085x3x4 ð6Þ

and

78� x1� 102; 33� x2� 45; and 27� x3; x4; x5� 45:

The best-known optimum for the Himmelblau’s

problem obtained by CS is depicted in Table 1.

The problem was solved by Himmelblau [11] using

generalized gradient method. This problem was also solved

using several other methods such as GA (Gen and Cheng

[12], Homaifar et al. [13]), harmony search algorithm (Lee

and Geem [14], Fesanghary et al. [15]), and PSO (He et al.
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[16], Shi and Eberhart [17]). Table 2 illustrates the results

obtained by CS, as well as those published in the literature.

It is obvious from Table 2 that the result obtained using CS

is better than the best feasible solution previously reported.

3.2 Structural optimization problems

Structural optimization problems are complex, sometimes

even the optimal solutions of interest do not exist. In order

to see how the CS algorithm performs, 12 standard struc-

tural engineering test problems are solved.

3.2.1 Case I. Structural design of a pin-jointed

plane frame

The first case is design of a pin-jointed plane frame with a

fixed base for minimum weight utilizing CS. This case

study is originally presented by Majid [20]. Figure 3a

shows the frame. The vertical deflections at joints 1 and 2

are limited to 5 mm. All members of the frame have the

same cross-sectional area (A) equal to 100 mm2; the ver-

tical forces P1 and P2 are, respectively, 100 and 50 kN, and

the length of the base (l) is 1,000 mm. The frame is

Symmetric and therefore, just half of the frame is consid-

ered, as illustrated in Fig. 3b. Thus, member 3 has half the

cross-sectional area of the other members. Joints 1 and 2

move vertically, and the joint displacement vector is

D = (D1, D2)T. As shown in Fig. 3b, the angles of mem-

bers 1 and 2 (h1 and h2) specify the design and define the

structure of this frame.

Then the lengths of the members can be calculated using

the following equations:

l1 ¼
l

2 cos h1ð Þ
ð7Þ

l2 ¼
l

2 cosðh2Þ
ð8Þ

l3 ¼
l

2 cosðh1Þcosðh2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ðh1Þ þ cos2ðh2Þ � 2 cosðh1Þ cosðh2Þcosðh1� h2Þ
p

ð9Þ

The materials and cross-sectional areas of all the

members are assumed to be the same. Hence, the weight

of the frame is a linear function of the total length of the

members. Thus, the objective function of the problem for

the three member frame (NM is the Number of Members)

will be as follows:

Minimize : f ðh1; h2Þ ¼
X

NM

i¼1

li ð10Þ

subject to displacements less than 5:

D1ðh1; h2Þj j � 5 ð11Þ
D2ðh1; h2Þj j � 5 ð12Þ

where -p/3 B h1, h2 B p/3 and the displacements

D = (D1, D2)T can be derived as

KD ¼ F or F ¼ K�1F and K ¼ BT kB

Table 1 CS results for the Himmelblau’s problem

X [x1, x2, x3, x4, x5] Fmin No. cuckoos No. evals. Ave. time (s)

[78.00000, 33.00000, 29.99616, 45.00000, 36.77605] -30665.233 25 5,000 3.2664

Table 2 Statistical results for the Himmelblau’s problem

Author(s) Year SD Best 0 B g1 B 92 90 B g2 B 110 20 B g3 B 25

Himmelblau [11] 1972 N/A -30373.9490 N/A N/A N/A

Homaifar et al. [13] 1994 N/A -30005.7000 91.65619 99.53690 20.02553

Gen and Cheng [12] 1997 N/A -30183.5760 N/A N/A N/A

Shi and Eberhart [17] 1998 N/A -31025.5610 93.28533a 100.40473 19.99997

Coello [18] 2000 73.6335 -31020.8590 93.28381 100.40786 20.00191

He et al. [16] 2004 70.0400 -30643.9900 93.28536 100.40478 20.00000

Lee and Geem [14] 2004 N/A -30665.5000 92.00004 98.84051 19.99994

Fesanghary et al. [15] 2008 N/A -31024.3160 93.27834 100.39612 20.00000

Omran and Salman [19] 2009 N/A -31025.5560 93.28536 100.40478 20.00000

Present study 11.6231 -30665.2327 91.99996 98.84067 20.00036

SD standard deviation
a Bold sets are violated sets
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where

k ¼

EA
l1

0 0

0 EA
l2

0

0 0 EA
l3

2

6

4

3

7

5

ð13Þ

and

B ¼
sin h1ð Þ 0

0 sin h2ð Þ
1 �1

2

4

3

5 ð14Þ

Therefore, the displacements D for the problem are

given by KD = F, which is

EA
sin2ðh1Þ

l1
þ 1

2l3
� 1

2l3

� 1
2l3

sin2ðh2Þ
l2
þ 1

2l3

" #

D1

D2

� �

¼
P1

2
P2

2

� �

ð15Þ

The assumption is that two frames are remarkably

different if their shapes are significantly different. This

criterion is characterized by the angles of the members.

Thus, the distance between two frames can be specified

using the Euclidean distance between them in design space.

The CS algorithm was run to find the global optima of the

above design problem. With 25 cuckoos, CS had located

two global optima at a computational cost of 500 function

evaluations per solution. The results of this study and the

best results reported in [21] are presented in Table 3 and the

frame shapes are shown in Fig. 4. Note that h1 = h2 for

both global solutions. This is to be expected, because the

weight (total length) is selected as the objective function.

Before CS was used to solve this problem, its objective

function was thought to be multimodal with two global

solutions. The results indicate that the CS algorithm has

successfully obtained two global solutions, as expected. As

it can be seen from Table 3, the CS results are better than

the solution obtained by Li et al. [21] using GA.

3.2.2 Case II. Minimize the vertical deflection of an I-beam

The capability of the CS algorithm in solving real engi-

neering design problems is tested using another design

problem including four variables. This case is modified

from the original problem reported in [22]. The goal is to

minimize the vertical deflection of an I-beam (see Fig. 5).

It simultaneously satisfies the cross-sectional area and

stress constraints under given loads.

Minimize the vertical deflection f(x) = PL3/48EI when

length of the beam (L) and modulus of elasticity (E) are,

respectively, 5,200 cm and 523,104 kN/cm2. Thus, the

objective function of the problem is considered to be as

follows:

Minimize : f ðb; h; tw; tfÞ ¼
5000

twðh�2tfÞ3
12

þ bt3
f

6
þ 2btf

h�tf
2

� �2

ð16Þ

Subject to cross section area less than 300 cm2

g1 ¼ 2btw þ twðh� 2tfÞ� 300 ð17Þ

If allowable bending stress of the beam is 56 kN/cm2 the

stress constraint is as follows:

g1 ¼
18h� 104

twðh� 2tfÞ3 þ 2btwð4t2
f þ 3hðh� 2tfÞÞ

þ 15b� 103

ðh� 2tfÞt3
w þ 2twb3

� 6 ð18Þ

where the initial design spaces are 10 B h B 80,

10 B b B 50, 0.9 B tw B 5, and 0.9 B tf B 5.

For this case study, by increasing the number of function

evaluations to 5,000 or 25,000, the results do not improve

much. The CS method achieved a solution that satisfies the

constraints and it reaches the best solution, possibly the

unique global optimum. CS outperforms the previous other

methods in terms of minimum objective function value.

Table 4 presents the results obtained by CS. As it is seen,

the CS method requires 25 cuckoos and 200 iterations to

reach the optimum.

This nonlinear constrained problem has been solved

with other optimization methods such as adaptive response

surface method (ARSM) and improved ARSM [23]. A

comparison of the results obtained CS, ARSM, and

improved ARSM is shown in Table 5. As it is seen, CS

performs superior than the ARSM-based methods.

θ1

1

22

1 3

θ2

2
1P

2
2P

1

2

2

1 3

1P

2P

(a) (b)
Fig. 3 Pin-jointed plane frame

example

Engineering with Computers (2013) 29:17–35 21

123



3.2.3 Case III. Piston lever

This problem was first presented in [24]. The main objec-

tive is to locate the piston components, H, B, D, and X by

minimizing the oil volume when the lever of the piston is

lifted up from 0o to 45o as shown in Fig. 6. The objective

function of the problem is given as follows:

Minimize : f ðH;B;D;XÞ ¼ 1

4
pD2ðL2 � L1Þ ð19Þ

Subject to:

g1 ¼ QL cos h� RF� 0 at h ¼ 45� ð20Þ

g2 ¼ QðL� XÞ �Mmax� 0 ð21Þ
g3 ¼ 1:2ðL2 � L1Þ � L1� 0 ð22Þ
g4 ¼ D=2� B� 0 ð23Þ

where

R ¼ �XðX sin hþ HÞ þ HðB� X cos hÞj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � BÞ2 þ H2

q ð24Þ

F ¼ pPD2=4 ð25Þ

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � BÞ2 þ H2

q

ð26Þ

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX sin 45þ HÞ2 þ ðB� X cos 45Þ
q 2

ð27Þ

where the payload is P = 10,000 lbs, the lever is L = 240

in, the maximum allowable bending moment of the lever is

6 max M = 1.8 9 10 lbs in, and the oil pressure is given as

1,500 psi. A number of inequality constraints are imposed.

Force equilibrium, maximum bending moment of the lever,

minimum piston stroke, and geometrical conditions are

considered. The best solutions obtained by CS are pre-

sented in Table 6.

Table 3 Statistical results of the pin-jointed plane frame example

Method Shape (a) Shape (b)

h1 (rad) h2 (rad) Fmin h1 (rad) h2 (rad) Fmin

Li et al. [21] GA 0.475784 0.472764 1125.98 -0.478625 -0.479701 1127.59

Present study CS 0.477459 0.477446 1125.92 -0.478069 -0.476997 1126.64

(a) (b)Fig. 4 Optimal frame shapes

Q

b

h

tf

tw

L

PFig. 5 A beam design problem

(P = 5600 kN and Q = 550

kN)

Table 4 Best solution results for the vertical deflection of an I-beam example using CS

Best Mean Worst SD No. cuckoos No. evals.

0.0130747 0.0132165 0.01353646 0.0001345 25 5,000

Table 5 Statistical results of the vertical deflection of an I-beam

example

CS ARSM Improved ARSM

h 80.000000 80.00 79.99

b 50.000000 37.05 48.42

tw 0.900000 1.71 0.90

tf 2.3216715 2.31 2.40

Fmin 0.0130747 0.0157 0.131

22 Engineering with Computers (2013) 29:17–35
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The best results obtained by the CS algorithm with

linear adjusting over 50 independent runs have been

compared with those reported in [25]. The performance of

each of the algorithms is summarized in Table 7. In this

example problem, the performance of CS is remarkable in

terms of maximum, minimum, and mean values.

3.2.4 Case IV. Corrugated bulkhead design

This problem is as an example of minimum-weight design

of the corrugated bulkheads for a tanker (Kavlie et al. [26]).

The variables of the problem are width (b), depth (h),

length (l), and plate thickness (t). The minimum-weight

requires the solution of the following optimization

problem:

Minimize : f ðb; h; l; tÞ ¼ 5:885tðbþ lÞ
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 � h2Þ
p ð28Þ

Subject to:

g1 ¼ th 0:4bþ l

6

� �

� 8:94ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 � h2Þ
p

Þ	 0 ð29Þ

g2 ¼ th2 0:2bþ l

12

� �

� 2:2 8:94 bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � h2ð Þ
p

	 
	 
4
3	 0

ð30Þ
g3 ¼ t � 0:0156b� 0:15	 0 ð31Þ
g4 ¼ t � 0:0156l� 0:15	 0 ð32Þ
g5 ¼ t � 1:05	 0 ð33Þ
g6 ¼ l� h	 0 ð34Þ

where 0 B b, h, l B 100 and 0 B t B 5. The minimum-

weight and the statistical values of the best solution obtained

by the CS algorithm are given in Table 8. CS requires 25

cuckoos and 200 iterations to reach the optimum.

For this problem, Ravindran et al. [27] reported the

minimum value of 6.84241 using a random search method.

A comparison of the results clearly shows that CS notably

improves the results obtained by the random search

method.

3.2.5 Case V. Cantilever beam

This case is related to the weight optimization of a canti-

lever beam with square cross section (see Fig. 7) [28]. The

beam is rigidly supported at node 1, and there is a given

vertical force acting at node 6. The design variables are the

Fig. 6 Piston problem

Table 6 Best solution results for the piston lever example using CS

H (in) B (in) X (in) D (in) Fmin No. cuckoos No. evals. Time of each run (s)

0.0500 2.0430 120.000 4.0851 8.4271 50 50,000 14.90

Table 7 Statistical results of the piston lever example

CS PSO DE GA HPSO HPSO with Q-learning

Max 168.5920 294 199 216 197 168

Min 8.4271 122 159 161 162 129

Mean 40.2319 166 187 185 187 151

SD 59.0552 51.7 14.2 18.2 13.4 13.4

DE differential evolution, HPSO hybrid PSO

Engineering with Computers (2013) 29:17–35 23

123



heights (or widths) of the different beam elements, and the

thickness is held fixed (here t = 2/3). The bound con-

straints are set as 0.01 B xj B 100. This problem can be

expressed analytically as follows:

Minimize : f ðXÞ ¼ 0:0624 x1 þ x2 þ x3 þ x4 þ x5ð Þ ð35Þ

Subject to : gðXÞ ¼ 61

x3
1

þ 37

x3
2

þ 19

x3
3

þ 7

x3
4

þ 1

x3
5

� 1� 0 ð36Þ

The best solutions obtained using CS and various

methods [29] for solving this problem are listed in

Table 9. As it is seen, the solution found out by the CS

approach is slightly better than those of other methods. In

this problem, the CS terminated after 2500 searches with

50 cuckoos.

3.2.6 Case VI. Tubular column design

Figure 8 presents an example for designing a uniform

column of tubular section to carry a compressive load

P = 2,500 kgf at minimum cost [30]. The column is made

of a material with a yield stress (ry) of 500 kgf/cm2, a

modulus of elasticity (E) of 0.85 9 106 kgf/cm2, and a

density (q) equal to 0.0025 kgf/cm3. The length (L) of the

column is 250 cm. The stress included in the column

should be less than the buckling stress (constraint g1) and

the yield stress (constraint g2). The mean diameter of the

column is restricted between 2 and 14 cm (constraint g3

and g4), and columns with thickness outside the range 0.2–

0.8 cm are not commercially available (constraint g5 and

g6). The cost of the column includes material and con-

struction costs. It is taken as the objective function. The

optimization model of this problem is given as follows:

Minimize : f ðd; tÞ ¼ 9:8dt þ 2d ð37Þ

Table 8 Statistical results of the corrugated bulkhead design example

b (cm) h (cm) l (cm) t (cm) Best Average Worst SD

37.1179498 33.0350210 37.1939476 0.7306255 5.894331 5.988257 6.126749 0.064360

Fig. 7 Cantilever beam

Table 9 Best results of the cantilever beam design example

Methods x1 x2 x3 x4 x5 Fmin

CONLIN 6.0100 5.3000 4.4900 3.4900 2.1500 NC

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(I) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(II) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

CONLIN CONvex LINearization, MMA method of moving asymptotes, GCA generalized convex approximation, NC not converge

d

0d

AA

Section

−

id

t

A A

P

l

Fig. 8 The tubular column
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Subject to

g1 ¼
P

pdtry
� 1� 0 ð38Þ

g2 ¼
8PL2

p3Edtðd2 þ t2Þ � 1� 0 ð39Þ

g3 ¼
2:0

d
� 1� 0 ð40Þ

g4 ¼
d

14
� 1� 0 ð41Þ

g5 ¼
0:2

t
� 1� 0 ð42Þ

g6 ¼
t

0:8
� 1� 0 ð43Þ

Table 10 illustrates the statistical results for the best

objective value by CS. Table 11 compares the results

obtained by CS with those reported in the literature

[30, 31]. It can be observed from Table 11 that the best

objective values by other methods are not feasible because

the second constraint (g2) is violated. Thus, the CS algo-

rithm provides the best results.

3.2.7 Case VII. A three-bar truss design

This case considers a 3-bar planar truss structure shown in

Fig. 9. This problem was first presented by Nowcki [32].

The volume of a statically loaded 3-bar truss is to be

minimized subject to stress (r) constraints on each of the

truss members. The objective is to evaluate the optimal

cross sectional areas (A1, A2). The mathematical formu-

lation is given as below:

Minimize : f ðA1;A2Þ ¼ ð2
ffiffiffiffiffiffiffiffi

2A1

p

þ A2Þ � l ð44Þ

Subject to

g1 ¼
ffiffiffi

2
p

A1 þ A2
ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0 ð45Þ

g2 ¼
A2

ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0 ð46Þ

g3 ¼
1

A1 þ
ffiffiffi

2
p

A2

P� r� 0 ð47Þ

where

0�A1� 1 and 0�A2� 1; l ¼ 100 cm; P

¼ 2KN=cm2; and r
¼ 2KN=cm2

This design problem is a nonlinear fractional program-

ming problem. The statistical values of the best solution

obtained by the CS algorithm are given in Table 12. The

solution by CS is (A1, A2) = (0.78867, 0.40902) with the

objective value equal to 263.97156. Table 13 presents

the solutions obtained by CS and those reported by Ray and

Saini [33] and Tsai [34]. As it is seen, the best objective

value reported by Tsai [34] is not feasible because the first

constraint (g1) is violated. Hence, it can be concluded that

the results obtained by CS are better than those of the

previous studies.

3.2.8 Case VIII. Gear train design

Gear train design problem is an unconstrained optimiza-

tion. This problem has four integer variables and was

Table 10 Statistical results of the best model for tubular column design example

No. cuckoos No. evals. Best Average Worst SD Time of each run

25 15,000 26.53217 26.53504 26.53972 0.00193 2.56919

Table 11 Best solutions for the tubular column example

Hsu and Liu [31] Rao [30] Present study

d 5.4507 5.44 5.45139

T 0.292 0.293 0.29196

g1 -7.8 9 10-5 -0.8579 -0.0241

g2 0.1317a 0.0026 -0.1095

g3 -0.6331 -0.8571 -0.6331

g4 -0.6107 0 -0.6106

g5 -0.3151 -0.7500 -0.3150

g6 -0.6350 0 -0.6351

Fmin 25.5316 26.5323 26.53217

a Bold sets are violated sets

P

H

H H

1A
2A

31 AA =

Fig. 9 Three-bar truss
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introduced by Sandgran [35]. It consists of the minimiza-

tion of the cost of the gear ratio of the gear train shown in

Fig. 10. The gear ratio is defined as follows:

Gear ratio ¼ TdTb

TaTf

ð48Þ

where Ti denotes the number of teeth of the gearwheel i and

they are all integers varying in the range 12–60. The

mathematical formulation is as follows:

f ðTd;Tb; Ta; TfÞ ¼
1

6:931
� TdTb

TaTf

� �

ð49Þ

Table 14 shows the statistical results for the best

objective value by CS. The obtained solution by CS is (Td,

Tb, Ta, Tf) = (19, 16, 43, 49) with the objective value

2.70095.712 9 10-12. The computational results obtained

using different methods are shown in Table 15. As can be

observed from this table, the CS results are significantly

better than those reported by Sandgren [35] and Kannan

and Kramer [36]. It can also be seen that CS provide

similar results to those obtained by Deb and Goyal [37].

3.2.9 Case IX. Speed reducer design

Cs is applied to the design of a speed reducer which is a

benchmark structural optimization problem [38] (see in

Fig. 11), with the face width (b), module of teeth (m),

number of teeth on pinion (z), length of shaft 1 between

bearings (l1), length of shaft 2 between bearings (l2),

diameter of shaft 1 (d1), and diameter of shaft 2 (d2). The

objective is to minimize the total weight of the speed

reducer. The constraints involve limitations on the bending

stress of the gear teeth, surface stress, transverse deflections

of shafts 1 and 2 due to transmitted force, and stresses in

shafts 1 and 2.

The mathematical formulation can be summarized as

follows:

Minimize : f ðb;m; z; l1; l2; d1; d2Þ
¼ 0:7854bm2ð3:3333z2 þ 14:9334z� 43:0934Þ
� 1:508bðd2

1 þ d2
2Þ þ 7:477ðd3

1 þ d3
2Þ

þ 0:7854ðl1d2
1 þ l2d2

2Þ
Subject to :

ð50Þ

g1 ¼
27

bm2z
P� 1� 0 ð51Þ

g2 ¼
397:5

bm2z2
� 1� 0 ð52Þ

g3 ¼
1:93

mzl3
1d4

1

� 1� 0 ð53Þ

g4 ¼
1:93

mzl3
1d4

2

� 1� 0 ð54Þ

g5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

745l1
mz

	 
2

þ1:69� 106

r

110d3
1

� 1� 0 ð55Þ

Table 12 Statistical results of the best three-bar truss model

No.

cuckoos

No.

evals.

Best Average SD Time of each

run (s)

25 15,000 263.97156 264.0669 0.00009 0.52808

Table 13 Best solutions for the three-bar truss design example

Ray and Saini [33] Tsai [34] Present study

A1 0.795 0.788 0.78867

A2 0.395 0.408 0.40902

g1 -0.00169 0.00082a -0.00029

g2 -0.26124 -0.2674 -0.26853

g3 -0.74045 -0.73178 -0.73176

fmin 264.3 263.68 263.9716

a Bold sets are violated sets

Fig. 10 Gear train
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g6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

745l1
mz

	 
2

þ157:5� 106

r

85d3
2

� 1� 0 ð56Þ

g7 ¼
mz

40
� 1� 0 ð57Þ

g8 ¼
5m

B� 1
� 1� 0 ð58Þ

g9 ¼
b

12m
� 1� 0 ð59Þ

The corresponding statistical values of the Best CS

model and the simple bounds of the speed reducer problem

are presented in Table 16.

Table 17 presents a comparison of the results obtained

by CS and other methods. As it is seen, the CS results are

better than those reported by Akhtar et al. [41]. Although

the best objective values derived by Ray and Saini [39] and

Kuang et al. [40] are better than those of CS, the reported

values are not feasible. This is because the fifth and sixth

constraints (g5, g6) are significantly violated in the results

of Ray and Saini [33]. The 6th constraint (g6) was violated

in the results by Kuang et al. [40]. It should be noted that

some previous studies consider the simple bound of x5 like

x4 so they are not considered in the comparison study.

Table 14 Statistical results of the gear train model by CS

No. cuckoos No. evals. Best Average Worst SD Time of each run

25 5,000 2.7009 9 10-12 1.9841 9 10-9 2.3576 9 10-9 3.5546 9 10-9 3.25003

Table 15 Comparison results

of the best solutions for the gear

train design example

Sandgren [35] Kannan and Kramer [36] Deb and Goyal [37] Present study

Td 18 13 19 19

Tb 22 15 16 16

Ta 45 33 49 43

Tf 60 41 43 49

Gear ratio 0.146667 0.144124 0.144281 0.144281

fmin 5.712 9 10-6 2.146 9 10-8 2.701 9 10-12 2.701 9 10-12

Fig. 11 Speed reducer

Table 16 Statistical results of the speed reducer design example

Bound Value

b (2.6–3.6) 3.5015

m (0.7–0.8) 0.7000

z (17–28) 17.0000

l1 (7.3–8.3) 7.6050

l2 (7.8–8.3) 7.8181

d1 (2.9–3.9) 3.3520

d2 (5.0–5.5) 5.2875

Objective function value 3000.9810

No. cukoos 50

No. iterations 5,000

Time of each run (s) 0.65081
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3.2.10 Case X. A reinforced concrete beam design

A simplified optimization of the total cost of a reinforced

concrete beam, shown on Fig. 12, was presented by Amir

and Hasegawa [42]. The beam is assumed to be simply

supported with a span of 30 ft and subjected to a live load

of 2.0 klbf and a dead load of 1.0 klbf, including the

weight of the beam. The concrete compressive strength

(rc) is 5 ksi, and the yield stress of the reinforcing steel

(ry) is 50 ksi. The cost of concrete is $0.02/in2/linear ft

and the cost of steel is $1.0/in2/linear ft. The area of the

reinforcement (As), the width of the beam (b), and the

depth of the beam (h) have to be determined such that

the total cost of structure is minimized. Herein, the cross-

sectional area of the reinforcing bar (As) is taken as a

discrete type variable that must be chosen from the

standard bar dimensions listed in [42]. The width of

concrete beam (b) is assumed to be an integer variable.

The variable h denoting the depth of the beam is a con-

tinuous variable. The effective depth is assumed to be

0.8x2.

The structure should be proportioned to have a required

strength based upon the ACI building code 318-77 as

follows:

Mu ¼ 0:9Asryð0:8hÞ 1:0� 0:59
Asry

0:8bhrc

� �

	 1:4Md

þ 1:7Ml ð60Þ

in which Mu, Md and Ml are, respectively, the flexural

strength, dead load, and live load moments of the beam. In

Table 17 Statistical results of the speed reducer design example

Kuang et al. [40] Akhtar et al. [41] Ray and Saini [33] Montes and Coello [39] Present study

Best 2876.117623 3008.08 2732.9006 3025.005 3000.9810

b 3.6 3.506122 3.514185 3.506163 3.5015

m 0.7 0.700006 0.700005 0.700831 0.7000

z 17 17 17 17 17.0000

l1 7.3 7.549126 7.497343 7.460181 7.6050

l2 7.8 7.85933 7.8346 7.962143 7.8181

d1 3.4 3.365576 2.9018 3.3629 3.3520

d2 5 5.289773 5.0022 5.3090 5.2875

g1 -0.0996 -0.0755 -0.0777 -0.0777 -0.0743

g2 -0.2203 -0.1994 -0.2012 -0.2013 -0.1983

g3 -0.5279 -0.4562 -0.0360 -0.4741 -0.4349

g4 -0.8769 -0.8994 -0.8754 -0.8971 -0.9008

g5 -0.0433 -0.0132 0.5395 -0.0110 -0.0011

g6 0.1821a -0.0017 0.1805 -0.0125 -0.0004

g7 -0.7025 -0.7025 -0.7025 -0.7022 -0.7025

g8 -0.0278 -0.0017 -0.0040 -0.0006 -0.0004

g9 -0.5714 -0.5826 -0.5816 -0.5831 -0.5832

g10 -0.0411 -0.0796 -0.1660 -0.0691 -0.0890

g11 -0.0513 -0.0179 -0.0552 -0.0279 -0.0130

Mean NA 3012.1200 2758.8878 3088.7778 3007.1997

Max NA 3028.2800 2780.3071 3078.5918 3.0090

SD NA NA NA NA 4.9634

a Bold sets are violated sets

h

b

As

3k lbf

30 ft

Fig. 12 Illustration of

reinforced concrete beam
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this case, Md = 1,350 in kip and Ml = 2,700 in kip. The

depth to width ratio of the beam is restricted to be less than

or equal to 4. The optimization problem can be expressed

as

Minimize : f ðAs; b; hÞ ¼ 2:9As þ 0:6bh ð61Þ

subject to:

g1 ¼
h

b
� 4� 0 ð62Þ

g2 ¼ 180þ 7:375
A2

s

b
� Ash� 0 ð63Þ

The variables bound are As: {6.0, 6.16, 6.32, 6.6, 7.0,

7.11, 7.2, 7.8, 7.9, 8.0, 8.4} in2, bwith fuzzy logic

controller: {28, 29, 30, 31, …, 38, 39, 40} in, and

5 B h B 10 in. The constrained functions of g1 and g2 as

derived by Liebman et al. [43], then, is used in by Amir and

Hasegawa [42] and here.

The CS method requires 25 cuckoos and 200 iterations

to reach the optimum. Table 18 presents the optimum

designs of this problem and the parameters used. One can

see that the performance of the CS method is very good, as

compared with the results reported in [42].

3.2.11 Case XI. Parameter identification of structures

Estimation of structural parameter is the art of reconciling an

a priori finite-element model (FEM) of the structure with

nondestructive test data. It has a great potential for use in

FEM updating. Saltenik and Sanayei [46] developed a

parameter estimation example using measured strains for

simultaneous estimation of the structural parameters. The

parameter estimation objective function is defined as follows:

Minimize :
X

NMS

i¼1

ð½ea
m;i � ½ea
a;iÞ
½e
m;i

�

�

�

�

�

�

�

�

�

�

ð64Þ

where [ea]m is the measured strains, [ea]m = number of

measurements (NMS) 9 number of loading states (NLS),

and [ea]a is the analytical strains.

The static FEM equation for a structural system is

½F
 ¼ ½K
½U
. Thus, the analytical strains are calculated as

follows:

½e
 ¼ ½B
½K
�1½F
 ð65Þ

It is not required to measure all the strains, therefore,

Eq. (65) is partitioned based on measured strain a and

unmeasured strain b:

Table 18 Statistical results of the reinforced concrete beam example

Reference Amir and Hasegawa [42] Shih and Yang [44] Yun [45] Present study

Method SD-RCa GHN-ALMb GHN-EPc GA FLC-AHGAd CS

fmin 374.2 362.2455 362.00648 366.1459 364.8541 359.2080

As 7.8 6.6 6.32 7.20 6.16 6.32

b 31 33 34 32 35 34

h 7.79 8.495227 8.637180 8.0451 8.7500 8.5000

g1 -4.2012 0.0159e -0.7745 -2.8779 -3.6173 -0.2241

g2 -0.0205 -0.1155 -0.0635 -0.0224 0 0

a Hybrid discrete steepest descent and rotating coordinate directions methods (SD-RC)
b Generalized Hopfield network based augmented Lagrange multiplier approach (GHN-ALM)
c GHN based extended penalty approach (GHN-EP)
d Adaptive hybrid GA with fuzzy logic controller (flc-aHGA)
e Violated set

Fig. 13 Frame structure used

for parameter identification

example
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ea

eb

� �

¼ Ba

Bb

� �

½K
�1½F
 ð66Þ

Since there is no need for unmeasured strains [eb] is

eliminated as

½ea
 ¼ ½Ba
½K
�1½F
 ð67Þ

In this work, the case study is a frame example

presented by Saltenik and Sanayei [46] (see Fig. 13). The

identified parameter in this example is moment of inertia

(I) for each member.

A 445-N load is applied to degrees of freedom of 2, 5, 8,

and 11, and each load set is composed of only one force.

Strains are measured on 3, 6, and 7 for each load set. The

cross-sectional areas are, respectively, 484 cm2 and

968 cm2 for the horizontal and inclined members. The

Elastic modulus is 206.8 GPa for all elements. The optimal

solution is obtained at I (cm4) = [869, 869, 869, 869, 869,

1,320, 1,320] with corresponding function value equal to

f*(x) = 0.00000. The statistical results for this case study

provided by CS are presented in Table 19.

The analytical algorithm proposed by Saltenik and

Sanayei [46] is not applicable to this problem since a sin-

gularity. Arjmandi [47] solved this problem using GA. A

comparison of the results obtained by GA and CS with the

measured values is illustrated in Fig. 14. The results show

that CS has found the global optimum and identified all the

parameters without any error.

3.2.12 Case XII. Pressure vessel design

A cylindrical pressure vessel capped at both ends by hemi-

spherical heads is presented in Fig. 15. This compressed air

tank has a working pressure of 3000 psi and a minimum

volume of 750 ft3, and is designed according to the ASME

boiler and pressure vessel code. The total cost, including a

combination of single 60� welding cost, material and

forming cost, is to be minimized. The involved variables are

the thickness (Ts), thickness of the head (Th), the inner radius

(R), and the length of the cylindrical section of the vessel

(L). The thicknesses of the variables are discrete values

which are integer multiples of 0.0625 inch.

Then, the optimization problem can be expressed as

follows:

Minimize : f ðTs; Th;R;LÞ ¼ 0:6224TsRLþ 1:7781ThR2

þ 3:1661T2
s Lþ 19:84T2

h L

ð68Þ

Subject to:

g1 ¼ �Ts þ 0:0193R� 0 ð69Þ
g2 ¼ �Th þ 0:0095R� 0 ð70Þ

g3 ¼ �pR2L� 4

3
pR3 þ 1; 296; 000� 0 ð71Þ

g4 ¼ L� 240� 0 ð72Þ

where 1 9 0.0625 B Ts, Th B 99 9 0.0625, and 10 B R,

L B 200. The minimum cost and the statistical values of

the best solution obtained by CS are reported in Table 20.

It is notable that the CS method requires 25 cuckoos and

15,000 searches to reach the optimum.

This problem has previously been solved by many

researchers as a benchmark structural optimization prob-

lem. The comparisons of results for several approaches for

the pressure vessel design example are shown in Tables 21,

22. As it is seen, the results obtained by the CS algorithm

are better than the available solutions in nearly all cases.

Table 19 Best solutions for the parameter identification example using CS

Best Mean Worst SD No. cuckoos No. evals.

5.39 9 10-14 4.970 9 10-10 2.289 9 10-4 2.302 9 10-5 50 25,000

600

700

800

900

1000

1100

1200

1300

1400

1 2 3 4 5 6 7

I (
cm

4 )

Element No.

Real Moment of Enertia

Predicted by GA

Predicted by CS

Fig. 14 Parameter identification results using GA and CS

Fig. 15 Pressure vessel
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Table 20 Statistical results of the best pressure vessel model obtained by CS

Ts Th R L Best Ave. time (s)

0.8125 0.4375 42.0984456 176.6365958 6059.7143348 2.50472

Table 21 Statistical results of the pressure vessel design example by different model

Author(s) Best Mean Worst SD

Lee and Geem [14] 7198.433 NA NA NA

Coello [18] 6288.745 6293.843 6308.15 7.4133

Sandgren [35] 7980.894 NA NA NA

Kannan and Kramer [36] 7198.042 NA NA NA

Akhtar [41] 6171 6335.05 6453.65 NA

Yun [45] 7198.424 NA NA NA

Tsai et al. [48] 7079.037 NA NA NA

Cao and Wu [49] 7108.616 NA NA NA

Deb [50] 6410.381 NA NA NA

Coello [51] 6228.744 NA NA NA

Sandgren [52] 8129.104 NA NA NA

Coelho [53] 6059.714 NA NA NA

Zhang and Wang [54] 7197.7 NA NA NA

Coello and Cortés [55] 6061.123 6734.085 7368.06 457.9959

Homaifar et al. 6295.11 8098.03 9528.07 831.69

Joines and Houck [56] 6273.28 8092.87 10382.1 1017.99

Michalewicz and Attia [57] 6572.62 8164.56 9580.51 789.65

Hadj-Alouane and Bean [58] 6303.5 8065.66 10569.65 821.3

Fu et al. [59] 8048.6 NA NA NA

Li and Chou [60] 7127.3 NA NA NA

Cai and Thierauf [61] 7006.931 NA NA NA

He et al. [62] 6059.714 6289.929 NA 305.78

Coello and Montes [63] 6059.946 6177.253 6469.322 130.9297

Cao and Wu [64] 7108.616 NA NA NA

Hu et al. [65] 6059.131 NA NA NA

Huang et al. [66] 6059.734 6085.23 6371.046 43.013

Zahara and Kao [67] 5930.314 5946.79 5960.056 9.1614

He and Wang [68] 6061.078 6147.133 6363.804 86.4545

Litinetski and Abramzon [69] 7197.7 NA NA NA

Wu and Chow [70] 7207.494 NA NA NA

Lee and Geem [71] 7198.433 NA NA NA

Cagnina et al. [72] 6059.714 NA NA NA

Coello [55] 6734.085 NA NA 457.9959

Coello [73] 6263.793 NA NA 97.9445

Coello [74] 6177.253 NA NA 130.9297

Ray and Liew [75] 6171 6335.05 NA NA

Montes et al. [76] 6059.702 6059.702 NA 0

Parsopoulos and Vrahatis [77] 6544.27 9032.55 11638.2 995.573

Shih and Lai [78] 7462.1 NA NA NA

Li and Chang [79] 7127.3 NA NA NA

Kaveh and Talatahari [80] 6059.73 6081.78 6150.13 67.2418

Present study 6059.714 6447.736 6495.347 502.693
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Note that the best objective value obtained by Zahara and

Kao [67] is not feasible since the first and second constrains

are violated. The results obtained by Hu et al. [65] and

Mezura-Montes et al. [76] also violate the first and third

constrains, respectively. Thus, the best feasible solution is

f = 6059.714 which is provided by CS and also obtained by

Coelho [53], He et al. [62] and Cagnina et al. [72].

3.2.13 Case XIII. Car side impact design

Design of car side impact is also used as a benchmark

problem of the proposed FA. The FEM model of this

problem is illustrated in Fig. 16. On the foundation of

European Enhanced Vehicle-Safety Committee (EEVC)

procedures, a car is exposed to a side-impact. Here, we

want to minimize the weight using nine influence para-

meters including, thicknesses of B-Pillar inner, B-Pillar

reinforcement, floor side inner, cross members, door beam,

door beltline reinforcement and roof rail (x1–x7), materials

of B-Pillar inner and floor side inner (x8 and x9) and barrier

height, and hitting position (x10 and x11). The car side

problem is stated by Gu et al. [81] and as an optimization

problem it can be formulated as follows:

Minimize : f ðxÞ ¼ Weight; ð73Þ

Subject to:

g1ðxÞ ¼ Faðload in abdomenÞ � 1 kN; ð74Þ
g2ðxÞ ¼ V � Cu (dummy upper chest) � 0 : 32 m=s;

ð75Þ
g3ðxÞ ¼ V � Cm dummy middle chest � 0 : 32 m=s;

ð76Þ
g4ðxÞ ¼ V � Cl (dummy lower chest) � 0 : 32 m=s; ð77Þ
g5ðxÞ ¼ Durðupper rib deflectionÞ � 32 mm; ð78Þ
g6ðxÞ ¼ Dmrðmiddle rib deflectionÞ � 32 mm; ð79Þ
g7ðxÞ ¼ Dlrðlower rib deflectionÞ � 32 mm; ð80Þ
g8ðxÞ ¼ FðPubic forceÞp � 4 kN; ð81Þ

g9ðxÞ ¼ VMBPðVelocity of V-Pillar at middle point) � 9

: 9 mm/ms; ð82Þ

g10ðxÞ ¼ VFDðVelocity of front door at V-PillarÞ � 15

: 7 mm/ms; ð83Þ

with simple bounds

Table 22 Statistical results of the car side impact design example by different methods

Method PSO DE GA FA CS

Best objective 22.84474 22.84298 22.85653 22.84298 22.84294

x1 0.50000 0.50000 0.50005 0.50000 0.50000

x2 1.11670 1.11670 1.28017 1.36000 1.11643

x3 0.50000 0.5000 0.50001 0.50000 0.50000

x4 1.30208 1.30208 1.03302 1.20200 1.30208

x5 0.50000 0.50000 0.50001 0.50000 0.50000

x6 1.50000 1.50000 0.50000 1.12000 1.50000

x7 0.50000 0.50000 0.50000 0.50000 0.50000

x8 0.34500 0.34500 0.34994 0.34500 0.34500

x9 0.19200 0.19200 0.19200 0.19200 0.19200

x10 -19.54935 -19.54935 10.3119 8.87307 -19.54935

x11 -0.00431 -0.00431 0.00167 -18.99808 -0.00431

Mean objective 22.89429 23.22828 23.51585 22.89376 22.85858

Worst objective 23.21354 24.12606 26.240578 24.06623 23.25998

SD 0.15017 0.34451 0.66555 0.16667 0.07612

Fig. 16 Car side impact model [82]
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0:5� x1; x3; x4� 1:5; 0:45� x2� 1:35;

0:875� x5� 2:625; 0:4� x6; x7� 1:2;

x8; x9 2 f0:192; 0:345g; 0:5� x10; x11� 1:5;

For solving this problem CS run with 20 fireflies and

1000 iterations. This case study has also been solved using

well-known GA, PSO, DE, and firefly algorithm (FA)

methods by Gandomi et al. [83] and the results are used to

compare with the CS method. Table 22 shows the statis-

tical results for the car side impact design problem using

the proposed CS method and other well-known methods

after 20,000 searches. As it can be seen from Table 22, in

comparison with other heuristic algorithms, the proposed

algorithm is far better than GA and slightly better PSO,

DE, and FA with the same number of evaluations and runs.

4 Discussions and conclusions

In the present study, the new CS algorithm in combination

with Lévy flights is employed for solving structural opti-

mization problems. The CS algorithm has been validated

first using several benchmark structural engineering prob-

lems and found to be very efficient. The extensive com-

parative study conducted reveals that CS performs superior

to different existing algorithms. This is partly due to the

fact that there are fewer parameters to be fine-tuned in CS

than in other algorithms such as GA and PSO. In fact, apart

from the population size n, there is essentially one

parameter Pa. Inspecting the CS algorithm carefully, there

are essentially three components: selection of the best,

exploitation by local random walk, and exploration by

randomization via Lévy flights globally. The selection of

the best by keeping the best nests or solutions is equivalent

to some form of elitism commonly used in GAs, which

ensures the best solution is passed onto the next iteration

and there is no risk that the best solutions are cast out of the

population. The exploitation around the best solutions is

performed by using a local random walk:

xtþ1 ¼ xt þ aet ð84Þ

If et obeys a Gaussian distribution, this becomes a

standard random walk indeed. This is equivalent to the

crucial step in pitch adjustment in harmony search. If et is

drawn from a Lévy distribution, the step of move is larger

and could be potentially more efficient. However, if the

step is too large, there is risk that the move is too far away.

Fortunately, the elitism by keeping the best solutions

makes sure that the exploitation moves are within the

neighborhood of the best solutions locally. Another way of

improving this local search slightly is to replace xt by the

current best, so that the intensive local exploitation step is

focused on the local search around the current best found

so far, and the radius or the step of such local search can be

chosen appropriately to reflect the scalings of the problem.

On the other hand, in order to sample the whole search

space effectively so that new solutions to be generated are

diverse enough, a simple way of achieving this is to ensure

the generated search locations/solutions are uniformly

distributed in the search space. However, this near-uniform

approach is not necessarily efficient. A better and more

efficient way to carry out the exploration step is to use

Lévy flights. In contrast, most metaheuristic algorithms use

either uniform distributions or Gaussian to generate new

explorative moves [3, 4]. If the search space is large, Lévy

flights are usually more efficient. A good combination of

the above three components can thus lead to an efficient

algorithm such as CS.

Furthermore, from our simulations by varying the

algorithm-dependent parameters, we observed that the

convergence rate is insensitive to the algorithm-dependent

parameters such as Pa. This can be viewed from the bal-

anced combination of the selection of the best and efficient

exploration of possible new solutions. The elitism-style

selection makes sure that a fraction of the best solutions in

the population are guaranteed to remain the population,

while the discovery of alien eggs with non-zero probability

makes sure that some of the worse solutions are discarded

and replaced by new ones. Such insensitivity also means

that there is no need to fine tune these parameters for a

specific problem. Subsequently, CS is more generic and

robust for many optimization problems, compared with

other metaheuristic algorithms.

In principle, this potentially powerful optimization

strategy can easily be extended in the similar fashion as

extending population-based algorithms such as PSO and

genetic algorithms to study multi-objective optimization

applications with various constraints, including NP-hard

problems. Further studies can focus on the sensitivity and

parameter studies and their possible relationships with the

convergence rate of the algorithm. In addition, hybridiza-

tion with other popular algorithms such as PSO will also be

potentially fruitful. Another possible and yet easy exten-

sion is to formulate a discrete version of Cuckoo Search so

as to solve combinatorial optimization problems such as

traveling salesman problem and job scheduling.

From an analytical point view, as for most metaheuristic

algorithms, mathematical analysis of the algorithm struc-

tures is highly needed. At the moment, no such framework

exists for analyzing metaheuristics in general. The analysis

of trajectory-based algorithms such as simulated annealing

can be dealt with in the framework of Markov chains

Monte Carlo (MCMC). In some way, CS can be viewed as

an evolutionary system with multiple interacting Markov

chains selected and biased towards global optimality. Any

progress in this area will potentially provide new insight
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into the understanding of how and why metaheuristic

algorithms work. It will also help us to design more effi-

cient, often hybrid, algorithms to solve a wider class of

tough optimization problems.
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