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Abstract Metamodeling or surrogate modeling is

becoming increasingly popular for product design optimi-

zation in manufacture industries. In this paper, an extended

Gaussian Kriging method is proposed to improve the pre-

diction performance of widely used ordinary Kriging in

engineering design. Unlike the forgoing approaches, the

proposed method places a variance-varying Gaussian prior

on the unknown regression coefficients in the mean model

of Kriging and makes prediction at untried design points

based on the principle of Bayesian maximum a posterior.

The achieved regression mean model is adaptive, therefore

capable of capturing more effectively the overall trend of

computer responses and leading to a more accurate meta-

model. Particularly, the regression coefficients in the mean

model are estimated by a fast numerical algorithm, making

extended Gaussian Kriging implemented roughly as effi-

cient as ordinary Kriging. Experiment results on several

examples are presented, showing remarkable improvement

in prediction using extended Gaussian Kriging over

ordinary Kriging and several other metamodeling methods.

Keywords Computer experiments � Metamodeling �
Kriging � Gaussian stochastic process �
Design of experiments

1 Introduction

Currently, computer modeling and experiments are

becoming increasingly popular for product design optimi-

zation in manufacture industries, in order to produce better

and cheaper products more quickly. However, the cost of

running computer simulation experiments is nontrivial in

spite of the continued growing computing power. For some

computer experiments, 12 h or even considerably longer

time are required to produce one single simulation

response. For example, it is reported that Ford Motor

Company takes about 36–160 h to perform one crash

simulation [1]. Another known example in literature is the

piston slap noise experiment, taking 24 h for every run of

computer experiments [2]. In the past 20 years, to improve

the computational efficiency and reduce the cost of

experiments, meta-modeling techniques have been devel-

oped to produce a metamodel or surrogate model, i.e.,

‘‘model of the model’’, as an approximation of the complex

and expensive computer code.

In literature, existing metamodels include: polynomial

regressions [3, 30], radial basis functions [4, 31, 33, 35],

multivariate adaptive regressive splines [54], Gaussian

stochastic process models [4, 6, 13, 14, 18], artificial neural

networks [5, 55, 56], and support vector regression [57].

Among these methods, the polynomial regressions are

probably the most mature and the easiest metamodeling

W. Shao (&)

Department of Management Science and Engineering,

Nanjing University of Science and Technology,

200 Xiaolingwei, Nanjing 210094, China

e-mail: shaowenze1010@yahoo.com.cn

H. Deng

School of Mathematics and Statistics, Nanjing Audit University,

Nanjing 211815, China

Y. Ma

Department of Management Science and Engineering,

Nanjing University of Science and Technology,

Nanjing 210094, China

Z. Wei

School of Computer Science and Technology,

Nanjing University of Science and Technology,

Nanjing 210094, China

123

Engineering with Computers (2012) 28:161–178

DOI 10.1007/s00366-011-0229-7



techniques and have been utilized extensively in combi-

nation with the Taguchi approach in engineering design

[5]. In more recent years, Gaussian stochastic process

models, also known as Gaussian Kriging [6, 7], have also

been studied extensively in the statistical communities. The

popularity of Kriging consists in that, computer experi-

ments are often deterministic and Kriging is able to provide

an interpolating approximation model. However, the Kri-

ging method has found limited use in engineering design

optimization compared against polynomial regressions.

Lack of readily available software to fit Kriging models in

early days is one inherent reason [5]. While, the key reason

lies in that fitting a Kriging model is more complex than

fitting a regression polynomial. The low level of robustness

of the approach to sampled points is also an important

reason. Nevertheless, when the computer simulators in

engineering are deterministic, and in particular, highly

nonlinear in a great number of factors (more than 50 or

even 100), polynomial regression modeling becomes

insufficient and Kriging modeling may be a better choice in

spite of the added complexity [5, 8].

A basic Kriging model is universal Kriging, consisting

of a Gaussian stochastic process model and a regression

mean model. The basis functions or important variables in

the regression mean are assumed to be known, which is not

feasible in practical applications. As a result, ordinary

Kriging becomes the most commonly used Kriging method

[8–14]. Ordinary Kriging utilizes a constant mean to cap-

ture the overall trend of computer simulation responses,

however, resulting in a poor prediction at new design

points if there are some strong trends [14]. Till now, Kri-

ging has been used to approximate and analyze different

computer experiments in engineering design. As examples,

[15] uses Kriging for the design of a High Speed Civil

Transport airport, [16] uses Kriging for the helicopter rotor

structural design, and [17] uses Kriging for the design of a

variable thickness piezoelectric bimorph actuator.

To improve the prediction accuracy of Kriging, several

advanced Kriging metamodeling approaches are proposed

more recently. For example, Joseph et al. [18] proposed a

metamodel called blind Kriging. Blind Kriging achieves

higher prediction accuracy compared against ordinary

Kriging and universal Kriging. However, a scheme of

computationally intensive Bayesian forward selection is

involved in the process of estimation. In addition, the

correlation parameters in blind Kriging have to be esti-

mated two times, making the computational complexity of

blind Kriging at least twice as that of ordinary Kriging.

Linkletter et al. [19] also proposed a meta-modeling

approach through combining Bayesian variable selection

with Kriging. Although the variable selection procedure

therein is easy to implement, it is computationally

demanding as involving Kriging, too. Besides, Linkletter

et al. [19] focused primarily on screening of important

design factors, rather than the objective of improvement in

prediction. Joseph [20] deduced a metamodel called limit

Kriging. Limit Kriging may be viewed as the limit of

ordinary Kriging to a certain degree, however, achieving

limited improvement in prediction and appearing to be

somewhat numerically unstable as claimed. Besides, Li and

Sudjianto [2] proposed a penalized likelihood approach,

i.e., smoothly clipped absolute deviation (SCAD) penalized

Kriging, to improve ordinary Kriging. Their research

motivation is that, the correlation parameters in ordinary

Kriging are often obtained by the maximum likelihood

approach where the likelihood function near the optimum

may be flat in some situations, often leading to estimates of

the parameters having quite large variance. Notice that,

however, the penalized likelihood approach is essentially

rooted in ordinary Kriging, where the mean is just a

constant.

In this paper, an extended Gaussian Kriging method is

proposed to improve the prediction accuracy of Kriging

metamodeling. Unlike the forgoing approaches, the new

method imposes a variance-varying Gaussian prior on the

unknown regression coefficients in the mean function of

universal Kriging and makes prediction at untried design

points based on the principle of Bayesian maximum a

posterior. The achieved regression mean model is adaptive,

thereby able to capture more effectively the overall trend of

computer responses and lead to a more accurate meta-

model. The underlying parameters in Kriging are estimated

iteratively, and particularly, the regression coefficients are

estimated by a fast numerical algorithm; the benefit of

exploiting the fast algorithm is that the computational

complexity in fitting extended Gaussian Kriging is roughly

the same as that of the most commonly used ordinary

Kriging. Experimental results on several examples are

presented, showing remarkable improvement in prediction

using extended Gaussian Kriging over ordinary Kriging

and several other metamodeling methods.

One more point is to claim that our proposed method is

particularly suitable to those much complex computer

experiments. In such situations, collecting a large sample

may be very much difficult, and a more accurate approxi-

mation model from a small sample size becomes crucial.

The extended Gaussian Kriging is just one of such potential

choices. However, as the sample size of computer runs

increases, the efficiency of our proposed method as well as

ordinary Kriging is to decrease due to the inversion of the

large-scale correlation matrix involved in fitting Kriging.

The remainder of the paper is organized as follows:

Sect. 2 gives a brief review of metamodeling methodolo-

gies for computer experiments. In Sect. 3, a Bayesian

Kriging metamodeling approach is proposed using Bayes-

ian modeling and posterior inference. Section 4 describes a
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fast algorithm solving the regression coefficients and other

related computational aspects. Section 5 gives experimen-

tal results on several empirical applications, validating the

performance of our proposed method. Conclusions are

finally given in Sect. 6.

2 Metamodeling methods for computer experiments

in engineering design

This study concentrates on the deterministic computer

experiments in many engineering design fields; that is, the

same input settings yield the same computer responses.

Suppose a vector of design variable is denoted as

x ¼ ðx1; x2; . . .; xpÞ0 2 D � Rp, and the true nature of a

computer analysis code is denoted as y ¼ f ðxÞ. Then the

general metamodeling problem can be stated in the fol-

lowing: Given a set of computer runs ðxð1Þ; xð2Þ; . . .; xðnÞÞ
produced by the corresponding expensive computer code,

the aim is to seek an accurate and computationally inex-

pensive surrogate model y ¼ gðxÞ over a given design

domain D, satisfying

yk ¼ gðxðkÞÞ ¼ f ðxðkÞÞ; k ¼ 1; 2; . . .; n: ð1Þ

That is, the model y ¼ gðxÞ is an interpolating global

metamodel of the true deterministic computer code. In

general, metamodeling is determined by two key issues,

namely, the experimental designs and the metamodeling

procedures.

An experimental design represents a sequence of experi-

ments to be performed, expressed in terms of factors (design

variables) set at specified levels (predefined values) and

represented by a matrix where the rows denote experiment

runs and the columns denote factor settings [5]. The exper-

imental design techniques were originally developed for

physical experiments and now are being applied to the design

and analysis of computer experiments (DACE). Classical

experimental designs for analysis of physical experiments

include [1, 5] full factorial design, fractional factorial design,

Plackett-Burman designs, central composite designs (CCD),

Box-Behnken designs, and orthogonal arrays. As [1] wrote,

‘‘these classic methods tend to spread the sample points

around boundaries of the design space and leave a few at the

center of the design space’’. While, as deterministic com-

puter experiments involve systematic error rather than ran-

dom noise as in physical experiments, researchers advocate

that experimental designs for computer experiments should

be space filling [21]. Unlike those classical methods, the

space-filling methods tend to fill the design space equally

rather than to concentrate on the boundary. Koehler and

Owen described several Bayesian and Frequentist space-

filling designs [22], including maximum entropy designs,

mean squared-error designs, minimax and maximin designs,

Latin hypercube designs, randomized orthogonal arrays, and

scrambled nets. Four types of space-filling methods are rel-

atively more often used in the literature. They are, respec-

tively, Latin hypercube designs [23, 24], uniform designs

[25], Hammersley sequences [26], and orthogonal arrays

[27, 28]. A comparison of these methods can be referred to

ref. [29]. Besides, sequential and adaptive sampling meth-

odologies have recently gained popularity because of the

difficulty of knowing the ‘‘appropriate’’ sampling size a pri-

ori. Jin et al. [21] compared several different sampling

methods, finding that sequential sampling allows engineers

to control the sampling process and it is generally more

efficient than one-stage sampling.

Though many metamodeling approaches have been

proposed for computer experiments in engineering design,

we review here the three that are most prevalent in the

literature: polynomial regressions, radial basis functions,

and Kriging.

2.1 Polynomial regressions

In this article, PR refers to the low-order polynomial

regressions: first-order (linear) and second-order (qua-

dratic) polynomials, which have been used successfully for

prediction in many engineering design applications [30].

By now, polynomial regressions are probably the fastest

and simplest metamodeling technique. For low curvature, a

linear polynomial (LP) can be used as in (2); for significant

curvature, a quadratic polynomial (QP) including all two-

factor interactions can be used as in (3):

PR� LP: y ¼ gðxÞ ¼ b0 þ
Xp

k¼1

bkxk ð2Þ

PR� QP: y ¼ gðxÞ ¼ b0 þ
Xp

k¼1

bkxk þ
Xp

k¼1

bkkx2
k

þ
Xp

k¼1

Xp

j¼kþ1

bkjxkxj ð3Þ

The parameters in (2) and (3) are unknown coefficients

usually determined by the least squares approach. How-

ever, a PR merely produces a regression fit rather than an

interpolative fit satisfying (1); it is not suitable for creating

global metamodels for those highly non-linear, multi-

modal, and multi-dimensional response surfaces which are

frequently encountered in engineering design, either [1].

To improve the prediction accuracy of PR, various local or

successive methods have been developed to overcome the

deficiency of the global PR in the past several decades, at

the expense of additional sampling points and/or repre-

senting only a small portion of design space [31]. These

methods, however, are not appropriate to the
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computationally expensive computer simulators, such as

the case of vehicle crash simulations [32]. For these rea-

sons, global metamodels with high accuracy and limited

sampling points are highly desirable. A more complete

discussion of response surfaces and least squares fitting can

be referred to ref. [30]. We use the PR in our comparative

study in Sect. 5 purely as a benchmark approach, consid-

ering its popularity and widespread use in the industry.

2.2 Radial basis functions

The RBF are methodologies for exact interpolation of data

in multi-dimensional space [33], originally developed for

fitting irregular topographic contours of geographical data

[34]. The RBF is a family of models constructed by the

same methodology but distinguished by the either linear or

nonlinear basis functions. Specifically, a general form of

RBF approximation to the true computer code y ¼ f ðxÞ can

be formulated as

y ¼ gðxÞ ¼
Xn

k¼1

bkc x� xðkÞ
�� ��
� �

ð4Þ

where the term jjx� xðkÞjj is the Euclidean norm, c is a

basis function, and bk is the coefficient for the kth basis

function. From (4), it is observed that a RBF model is an

interpolative approximation, thus satisfying (1). The over-

all accuracy of RBF essentially depends on the selected

basis function for a given set of data samples. The most

widely used basis functions include linear, cubic, thin-plate

spline (TPS), Gaussian, multi-quadric (MQ), and inverse

MQ functions [31]. In recent years, multiple comparative

studies have demonstrated that the RBF are particularly

appropriate to highly nonlinear problems, in both case of

large or limited number of samples, and more accurate than

polynomial regressions in general [31, 35].

The RBF are good for highly nonlinear responses;

however, they are shown to be inappropriate for linear

responses [36]. Thus, an augmented RBF model is pro-

posed through adding a linear polynomial, given as [31, 36]

y ¼ gðxÞ ¼
Xn

k¼1

bkc x� xðkÞ
�� ��
� �

þ
Xp

j¼1

kjbj xð Þ ð5Þ

where bj(x) is a linear polynomial function, and kj is the

corresponding unknown coefficient. Since (5) is

underdetermined, the orthogonality condition is further

imposed on kj j ¼ 1; 2; . . .; pð Þ so that

Xn

k¼1

bkbj xðkÞ
� �

¼ 0; for j ¼ 1; 2; . . .; p ð6Þ

Combining (5) and (6), coefficients b ¼ ½b1; b2; . . .; bn�0

and k ¼ ½k1; k2; . . .; kp�0 can be estimated by the following

system of equations:

! B
B0 0

� �
b
k

� �
¼ Y

0

� �
ð7Þ

where Y ¼ ½y1; y2; . . .; yn�0;!j;k ¼ c jjxðjÞ � xðkÞjj
� �

, and

Bj;k ¼ bj xðkÞ
� �

. In addition, Mullur and Messac [37]

recently developed an extended RBF model by adding

extra terms to a regular RBF model. It has been shown that

the extended RBF is more flexible, in that it provides better

smoothing properties and generally it yields more accurate

metamodels than the typical RBF [37, 38].

2.3 Kriging

Recently, Kriging is particularly recommended if the

computer code to be studied is deterministic and highly

nonlinear [5], in that Kriging is capable of dealing with a

great number of design factors (more than 50 or even 100)

and providing an interpolating approximation model. More

importantly, Kriging is by now the least assuming method

in this paper in terms of the range of function forms it can

approximate. The general form of Kriging metamodel is to

represent the true computer analysis code y = f(x) as a

combination of a polynomial model plus departures of the

form

y ¼ f ðxÞ ¼ lðxÞ þ ZðxÞ ð8Þ

In (8), l(x) is a regression function modeling the drift of

the process mean over the design space. Particularly, when

the mean term l(x) is a linear combination of some known

function of x as in Eq. (9), the resulting Kriging model is

called universal Kriging.

lðxÞ ¼
XJ

k¼0

bkwkðxÞ ð9Þ

In (9), the terms {wk(x)}k=0
J are some known functions, e.g.,

low-order polynomial functions, and {bk}k=0
J are unknown

parameters to be estimated.

The second term in (8), i.e., Z(x), is a stationary

Gaussian stochastic process modeling residuals from the

linear regression, with mean 0, and covariance

covðZðxðlÞÞ; ZðxðkÞÞÞ ¼ r2uðxðlÞ � xðkÞÞ ð10Þ

In most cases, u in (10) is a prespecified correlation

function of the ‘‘distance’’ between x(l) and x(k), controlling

the smoothness of the resulting Kriging model, the

influence of other nearby points, and the differentiability

of the surface. Koehler and Owen [22] provided an

insightful review of four functions commonly utilized in

Kriging when approximating a deterministic computer

model and the impact of parameter selection on the

properties of these functions. In this paper, the correlation

function is chosen as the Gaussian function
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wðxðlÞ � xðkÞÞ ¼
Yp

j¼1

exp �hjjxðlÞj � x
ðkÞ
j j

2
� �

ð11Þ

where {hj}j=1
p are the correlation parameters.

The parameters {bk}k=0
J , {hj}j=1

p and r2 in (8) are fre-

quently estimated by the maximum likelihood approach [4,

6, 13, 14, 18]. The corresponding predictor of universal

Kriging can be formulated as

y ¼ gðxÞ ¼ w0ðxÞbþ u0ðxÞU�1ðhÞðy�WbÞ ð12Þ

where w(x) = [w0(x), w1(x),…,wJ(x)]
0
, u(x) = [u(x –

x(1)), u(x - x(2)),…,u(x - x(n))]
0
,U(h) is the correlation

matrix with elements Ul,k = u(x(l) - x(k)), and

b ¼ W0U�1W
� ��1

W0U�1Y ð13Þ

Furthermore, given {hj}j=1
p and r2, the variance of the

predictor (12) can be obtained as

sðxÞ ¼ r2 1þ u0 W0U�1W
� ��1

u� u0U�1u
� �

ð14Þ

where u = W
0
U-1u - w.

It is observed that, universal Kriging uses known

functions to capture the trend of various computer simu-

lators. However, we seldom have a priori knowledge of

the trends in the data and specifying them using known

functions may introduce inaccuracies. Therefore, ordinary

Kriging as shown in (15) becomes the most popular

Kriging model, which uses only a constant to capture the

overall trend

y ¼ f ðxÞ ¼ l0ðxÞ þ ZðxÞ ð15Þ

However, ordinary Kriging will lead to a poor prediction

at new design points if there are some strong trends [14].

Thereby, neither universal Kriging nor ordinary Kriging is

satisfactory. And it is for this reason that several

improved Kriging metamodeling approaches are recently

reported in the literature [2, 18–20], as commented in the

Sect. 1

3 Extended Gaussian Kriging: Bayesian modeling

and inference for Kriging

From the above, we know that neither universal Kriging

nor ordinary Kriging is satisfactory to capture the overall

trend of computer responses. In fact, the basis functions

in universal Kriging can be viewed as the variables

greatly affecting the computer responses. Thus, the

drawbacks of universal Kriging and ordinary Kriging may

be addressed as follows: in practical applications, uni-

versal Kriging can seldom avoid including the unimpor-

tant variables in the mean function of universal Kriging,

while ordinary Kriging has completely ignored the

important variables. To improve the prediction accuracy

of Kriging metamodeling, an extended Gaussian Kriging

method is proposed to balance between ordinary Kriging

and universal Kriging. In this section, low-order basis

functions are still assumed in the mean model of the

extended Gaussian Kriging; however, they are considered

to be no more uniformly important as in universal Kri-

ging. Specifically, unlike previous improved Kriging

methods, the new method imposes a straightforward

variance-varying Gaussian prior density on the unknown

regression coefficients in the mean model, making us

more adaptively capture the overall trend of computer

responses, and therefore leading to a more accurate Kri-

ging metamodel.

3.1 Bayesian modeling for the adaptive mean function

In this subsection, the specification of the prior p(b) is

considered, relying on our prior knowledge on the regres-

sion coefficients. Ideally, p(b) should reflect our expecta-

tion of adaptively choosing the important variables from

{Wk(x)}k=0
J for a more accurate mean model. In other

words, the estimated regression coefficients are expected to

be sparse, i.e., p(b) is a sparseness-promoting Bayesian

prior. Commonly exploited sparse priors in the literature

include the student’s t distribution and the double expo-

nential distribution [39–41]. However, they are not effi-

cient for the final Bayesian inference in this paper. On the

one hand, intensive computation is desired to estimate

parameters involved in the above distributions. As we

know, three parameters are to be estimated in the student’s

t distribution, i.e., the degrees of freedom, the location, and

the scale parameters; and a scale parameter is to be esti-

mated in the double exponential distribution which has no

analytical solution. On the other hand, neither the student’s

t distribution nor the double exponential distribution allows

for a tractable Bayesian analysis, since neither one is

conjugate to the Gaussian likelihood to be specified in the

next subsection.

In this paper, we choose p(b) to be the relevance vector

machine or sparse Bayesian learning [42], denoted by

pðbjcÞ ¼
YJ

k¼0

pðbkjckÞ ¼
YJ

k¼0

Nðbkj0; c�1
k Þ ð16Þ

In (16), c ¼ ðc0; c1; . . .; cJÞ0;Nðbkj0; c�1
k Þ is a zero-mean

Gaussian prior placed on bk with varying inverse variance

ck. Notice that the similar prior density has also been

applied to signal compressed sensing more recently [43,

44]. The rationality of (16) is interpreted as follows. In fact,

each ck in (16) may be considered to be a random variable,

and a Gamma prior can be imposed independently on each

unknown inverse variance, obtaining
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pðcja; bÞ ¼
YJ

k¼0

Cðckja; bÞ ð17Þ

In the theory of Bayesian statistics, p(c|a, b) is called

hyperprior, and a, b are hyperparameters to be estimated.

By marginalizing over the inverse variances c, the overall

prior on b is then evaluated as

pðbjcÞ ¼
YJ

k¼0

Z1

0

Nðbkj0; c�1
k ÞCðckja; bÞdck ð18Þ

When bk plays the role of observed data and N bkj0; c�1
k

� �

is a likelihood function, the hyperprior C ckja; bð Þ is the

conjugate prior for ck, and consequently, the integral in

(18) can be evaluated analytically, corresponding to a

student’s t distribution [42]. With appropriate choices of a

and b, the student’s t distribution is strongly peaked about

bk = 0, and therefore the prior in (18) favors most bk being

zero, i.e., it is a sparseness-promoting prior. Therefore, (16)

is a simplified version of the above two-level hierarchical

modeling, i.e., a uniform density is imposed for each

inverse variance. Yet, the simplified hierarchical modeling

much releases us estimating the hyperparameters.

3.2 Prediction via Bayesian inference and analysis

Given computer outputs y = (y1,…,yn)
0

collected at n

design points{x(1),…,x(n)}, the aim is to make prediction at

an untried design point x0. Specifically, the prediction can

be formulated as

y0 ¼ gðx0Þ ¼ arg max
y0

pðy0jy; b; h; r2Þ ð19Þ

Because {y1,…,yn} are realizations of a stationary Gaussian

stochastic process, p(y|b, h, r2) is the multivariate Gaussian

likelihood function of the computer outputs y¼ðy1;...;ynÞ0.
That is,

pðyjb; h; r2Þ ¼ 1

ð2pr2Þn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UðhÞj j

p exp

� y�Wbð Þ0U�1ðhÞ y�Wbð Þ
2r2


 �
ð20Þ

Therefore, it is not hard to obtain the joint distribution of

y0 ¼ gðx0Þ and y ¼ ðy1; . . .; ynÞ0 as follows:

y0

y

� �����b; h; r
2�N

w0ðx0Þ
W

� �
b; r2 1 u0ðx0Þ

uðx0Þ U

� �� �

ð21Þ

where wðx0Þ ¼ ½w0ðx0Þ;w1ðx0Þ; . . .;wJðx0Þ�0, and uðx0Þ ¼
½uðx0 � xð1ÞÞ;uðx0 � xð2ÞÞ; . . .;uðx0 � xðnÞÞ�0. Then, based

on the conditional distribution of the multivariate normal

[4], pðy0jy; b; h; r2Þ can be formulated as follows:

y0
��y;b; h; r2�N w0ðx0Þbþ u0ðx0ÞU�1ðy�WbÞ; 1� u0ðx0ÞU�1uðx0Þ

� �

ð22Þ

Hence, the maximizer in (19) is just the expectation of the

multivariate normal distribution in (22), that is,

y0 ¼ gðx0Þ ¼ w0ðx0Þbþ u0ðx0ÞU�1ðy�WbÞ ð23Þ

Similar to (14) in universal Kriging, the prediction variance

of the proposed predictor (23) can be also clarified. It only

needs firstly formulating the density pðy0jy; h; r2Þ, and then

calculating the variance. Specifically, pðy0jy; h; r2Þ can be

written as

pðy0jy; h; r2Þ ¼
Z

pðy0; bjy; h; r2Þdb

¼
Z

pðy0jy; b; h; r2Þpðbjy; h; r2Þdb ð24Þ

It is observed that (23) relies on the correlation

parameters h and the regression coefficients b. Hence,

parameters b, h, r2 need estimating to achieve the final

prediction in (23). Based on the principle of Bayesian

maximum a posterior (MAP), the parameters b, h, r2 can

be estimated by

fb; h; r2g ¼ arg max
b;h;r2

pðb; h; r2jyÞ

¼ arg max
b;h;r2
fpðyjb; h; r2ÞpðbÞpðhÞpðr2Þg ð25Þ

From the above, it is known that pðyjb; h; r2Þ corresponds

to a multivariate Gaussian likelihood function of the

computer outputs y, and pb is chosen as a multivariate

normal distribution with varying variance in Subsect. 3.1.

Thereby, only p(h) and pðr2Þ need specifying in the

following. For computational efficiency, the two priors are

expected to be parameter-free. Any reasonable non-

informative prior densities may be imposed on the two

parameters, such as Jeffrey’s noninformative prior [40,

45], constant prior [39, 40], and so on. In this paper, a

constant prior is, respectively, placed on the two

parameters; that is,

pðhÞ ¼
Yp

j¼1

pðhjÞ� 1 ð26Þ

pðr2Þ� 1 ð27Þ

Substituting (16), (20), (26), and (27) into (25), parameters

b, h and r2 can be then estimated by

bjc ¼ arg max
b
fpðyjb; h; r2ÞpðbjcÞg ð28Þ
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r2 ¼ arg max
r2

pðyjb; h; r2Þ ð29Þ

h ¼ arg max
h

pðyjb; h; r2Þ ð30Þ

Besides, the inverse variances c can be estimated by the

following evidence maximization procedure, formulated as

c ¼ arg max
c

log pðy; cjh; r2Þ ð31Þ

where

LðcÞ¼D log pðy; cjh; r2Þ ¼ log

Z
pðyjb; h; r2ÞpðbjcÞdb

ð32Þ

4 Computational issues and fast algorithm

This section mainly focuses on the implementation of the

optimization problems formulated in Sect. 3. In particular,

a fast suboptimal iterative algorithm is presented for the

extended Gaussian Kriging. Other detailed computational

issues are also to be discussed and clarified in this section.

4.1 Computation and optimization

Above all, reformulate (20) to ease the computation in the

following. Since the correlation function u in U(h) is of

Gaussian type, U(h) is symmetric and positive definite,

implying that U(h) can be rewritten in a factorized form

using the Cholesky decomposition

UðhÞ ¼ CðhÞC0ðhÞ

where C(h) is an upper triangular matrix, called the

Cholesky factor. Multiply the factor C-1 on both sides of

the equation y = Wb ? z, where z = (z1,…, zn)0 are the

realizations of the Gaussian stochastic process z(x) at

design points {x(1),…,x(n)}, and obtain

C�1y ¼ C�1Wbþ C�1z

Denote ~y ¼ C�1y; ~W ¼ C�1W; ~z ¼ C�1z, and obtain

~y ¼ ~Wbþ ~z ð33Þ

Then, ~y is distributed to a multivariate normal PDF with an

identity covariance matrix; (20) can be reformulated as

pð~yjb; h; r2Þ ¼ 1

ð2pr2Þn=2
exp �

~y� ~Wb
� �0

~y� ~Wb
� �

2r2

( )

ð34Þ

Now, consider (28) for the Bayesian MAP estimate of

the regression coefficients b. Since the likelihoods (20) and

(34) are equivalent to each other as given b, h, r2, (28) can

be reformulated as

bjc ¼ arg max
b
fpð~yjb; h; r2ÞpðbjcÞg

Because the prior density pðbjcÞ is conjugate to the

likelihood pð~yjb; h; r2Þ, it is easy to find that the

Bayesian posterior for the regression coefficients can be

expressed analytically as a multivariate normal

distribution, i.e.,

pðbj~y; h; r2; cÞ / pð~yjb; h; r2ÞpðbjcÞ / N l;
X� �

where

l ¼ r�2
X

~W0~y;
X
¼ Kþ r�2 ~W0 ~W
� ��1

;

and K ¼ diagðc0; c1; . . .; cJÞ. Hence, provided the

transformed outputs ~y and the parameters h; c; r2, the

MAP estimate of the regression coefficients is

bjc ¼ arg max
b
fpð~yjb; h; r2ÞpðbjcÞg ¼ r�2

X
~W0~y ð35Þ

For the standard deviation r2 and correlation parameters

h, due to their being placed on the constant prior, the

optimization in (29) and (30) corresponds to the maximum

likelihood estimation as in universal Kriging. The MAP

estimates of parameters r2, h are therefore given by

r2 ¼ 1

n
ð~y� ~WbÞ0ð~y� ~WbÞ ð36Þ

h ¼ arg min
h

log
1

n
ð~y� ~WbÞ0ð~y� ~WbÞ

� �
þ 1

n
logðdetðUÞÞ


 �

ð37Þ

Obviously, there is no analytical solution to (36). In the

literature, several numerical algorithms have been exploi-

ted to solve (36), e.g., the Newton–Raphson method [2],

the quasi-Newton method [46], the Fisher scoring algo-

rithm [2], adaptive simulated annealing [46], and the pat-

tern search method [46, 47]. The former three methods use

gradient information and yield local optimizers. Though

the pattern search is not directly gradient-based, it is still a

local optimization method. Notice that the pattern search

method tends to be better appropriate to highly nonlinear or

discontinuous functions. Comparatively, adaptive simu-

lated annealing is more robust in finding solutions to

functions where multimodal and long near-optimal ridge

features exist, e.g., (37). While, adaptive simulated

annealing is computationally intensive as it is a Monte

Carlo method [46]. Considering both issues of computa-

tional efficiency and accuracy, the Fisher scoring algorithm

and the pattern search are chosen as candidate optimization

algorithms for solving (37).

To estimate the inverse variances c, one has to com-

pute the function L(c) as in (32). Since we have
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pð~yjb; h; r2ÞpðbjcÞ / Nðl;
P
Þ; LðcÞ can be written as

follows:

LðcÞ¼D log

Z
pð~yjb; h; r2ÞpðbjcÞdb

¼ log
1

2p

� �n=2

jr2In�n þ ~WK�1 ~W0j�1=2

(

� exp � 1

2
~y0ðr2In�n þ ~WK�1 ~W0Þ�1~y


 ��

¼ log
1

2p

� �n=2

jXj�1=2 � exp � 1

2
~y0X�1~y


 �( )

where In�n is an identity matrix, X ¼ r2In�n þ ~WK�1 ~W0,
and

jXj ¼ jKj�1 � jr2In�nj � jKþ r�2 ~W0 ~Wj ¼ jKj�1

� jr2In�nj �
X�1
�����

�����;

X�1 ¼ ðr2In�n þ ~WK�1 ~W0Þ�1

¼ r�2In�n � r�2 ~WðKþ r�2 ~W0 ~WÞ�1 ~W0r�2

¼ r�2In�n � r�2 ~W
X

~W0r�2:

Thus,

ck ¼ arg max
ck

LðcÞ ¼ 1� ck

P
kk

lk

ð38Þ

where lk is the kth element of l, and
P

kk is the kth

diagonal element of
P

.

Finally, using (35), (36), (37) and (38), an iterative

algorithm for proposed extended Gaussian Kriging can be

obtained by updating each of the parameters c, b, r2, h per

iteration.

4.2 Fast algorithm

In Subsect. 4.1, estimation of parameters c, b, r2, h requires

iterative computation of (35), (36), (37), and (38). Notice

that r2 is easy to calculate utilizing (36), and the correlation

parameters h can be calculated by the efficient Fisher scoring

algorithm or the pattern search method. However, the esti-

mation of b and c is not cheap because matrix inversion in

(35) and (38) requires O((J ? 1)3) computations. Therefore,

the algorithm presented in Sect. 4.1 cannot be directly

applied to practical metamodeling tasks, but is able to serve

us as the starting point in developing a fast algorithm in the

following. The kernel idea of the fast algorithm is the

reduction of the dimension of R in (35) and (38). According

to the expectation that the regression coefficients b are

sparse and most inverse variances of {ck}k=0
J should be set

equal to zero, thus leading to a lower dimension matrix R.

Therefore, the fast algorithm can be implemented by starting

an empty matrix W (that is, all the inverse variances are

equal to zero), and iteratively and adaptively adding a single

variable every time to the matrix W.

The fast algorithm is presented as follows: consider the

function L(c) (omitting a constant)

LðcÞ ¼ � 1

2
log jXj � 1

2
~y0X�1~y ð39Þ

To estimate each inverse variance ck while holding other

inverse variances fixed, (39) is rewritten as

LðcÞ ¼ � 1

2
log jX�kj þ ~y0X�1

�k ~y
 �

þ 1

2
log ck � logðck þ skÞ þ

q2
k

ck þ sk

� �

¼D Lðc�kÞ þ lðckÞ ð40Þ

where X-k denotes that the contribution of kth basis in

~W ¼ ½~w0;
~w1; . . .; ~wJ �, i.e., ~wk, is not included, and

X ¼ r2In�n þ ~WK�1 ~W0 ¼ r2In�n þ
XJ

k¼0

c�1
k

~wk
~w0k

¼ X�k þ c�1
k

~wk
~w0k;

X�1 ¼ X�1
�k �

X�1
�k

~wk
~w0kX

�1
�k

ck þ ~w0kX
�1
�k

~wk

;

jXj ¼ jX�kj � j1þ c�1
k

~w0kX
�1
�k

~wkj;

Besides, sk, qk in (40) are defined as sk ¼ ~w0kX
�1
�k

~wk; qk ¼ ~w0kX
�1
�k ~y. Thus, ck can be estimated by just

maximizing l(ck) since L(c-k) does not depend on ck.

After careful calculation, we obtain

ck ¼
s2

k

q2
k � sk

; if q2
k � sk [ 0

ck ¼ 1; if q2
k � sk � 0

ð41Þ

As ck ¼ 1;wk is pruned out from the matrix W, and bk is

set equal to zero. Notice that, similar to [39, 48], sk, qk can

be efficiently calculated by

Sk ¼ r�2 ~w0k ~wk � r�4 ~w0k ~W
X

~W0~wk

Qk ¼ r�2 ~w0k~y� r�4 ~w0k ~W
X

~W0~y

sk ¼ ckSk=ðck � SkÞ
qk ¼ ckQk=ðck � SkÞ

where R and ~W include only the columns that have been

included in the regression matrix ~W. Since the inverse

variances c can be easily estimated by (41), b can be cal-

culated rather efficiently by (35) with low dimensional

matrices R and ~W. Additionally, the initial values of

parameters c; b; r2; h to the fast algorithm are given as

follows: cð0Þ ¼ 0, bð0Þ ¼ 0, r2ð0Þ ¼ 0, hð0Þ ¼ 0.
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4.3 Discussion on computational complexity

Another important issue is the computational complexity of

the overall extended Gaussian Kriging. It is noticed that the

related parameters in extended Gaussian Kriging are esti-

mated iteratively; and particularly, the regression coeffi-

cients are estimated adaptively by a fast algorithm in

Subsect. 4.2. However, since the correlation parameters in

extended Gaussian Kriging are estimated by the Fisher

scoring algorithm or pattern search method as in ordinary

Kriging, the computational efficiency of extended Gaussian

Kriging and ordinary Kriging is to decrease as the sample

size of computer runs increases, due to the inversion of the

correlation matrix involved in the process of fitting Kri-

ging. As a matter of fact, the similar problem also exists in

other recent Kriging metamodeling methods, e.g., limit

Kriging [20], SCAD penalized Kriging [2], blind Kriging

[18], and so on. However, it is believed that the prediction

performance of extended Gaussian Kriging can be still

superior to that of ordinary Kriging and universal Kriging.

That is because extended Gaussian Kriging can provide a

more accurate mean model adaptively capturing the overall

trend of computer responses.

Actually, our extended Gaussian Kriging is particularly

appropriate to those much more complex computer

experiments. In such situations, collecting a large or

moderate sample may be very difficult, and a more efficient

and accurate approximation model from a small sample

becomes much crucial. To be specific, our extended

Gaussian Kriging has competitive computational efficiency

compared against ordinary Kriging, in that a fast algorithm

is exploited to estimate the regression coefficients in the

mean model and the correlation parameters are estimated

only once as ordinary Kriging. More importantly, experi-

mental results in Sect. 5 demonstrate that extended

Gaussian Kriging is capable of achieving higher prediction

accuracy. However, the correlation parameters in blind

Kriging have to be estimated two times [18], making the

computational complexity of blind Kriging at least twice as

that of ordinary Kriging. In the meanwhile, a scheme of

computationally intensive Bayesian forward variable

selection is also involved in the process of estimation.

Though limit Kriging [20] achieves the similar computa-

tional efficiency as ordinary Kriging, the improvement in

prediction accuracy is rather limited. Furthermore, SCAD

penalized Kriging [2] improves ordinary Kriging at the cost

of estimating the tuning parameters involved in the

penalized likelihood. As for non-Kriging metamodeling

methods in Sect. 2, model construction can be more effi-

cient than ordinary Kriging because there only needs esti-

mating the regression coefficients in PR and (augmented)

RBF. Nevertheless, less efficiency both in computation and

prediction is to be expected as applied to those more

complex problems with high dimension and highly non-

linear performance [5].

5 Examples

5.1 Example 1: piston slap noise experiment

Automobile customer satisfaction depends highly on the

level of satisfaction that a customer has with the vehicle’s

engine. The noise, vibration, and harshness characteristics

of an automobile and its engine are the critical elements of

customer dissatisfaction. Specifically, piston slap noise is

focused in this case study. Generally, the piston slap noise

results from the piston secondary motion which is caused

by a combination of transient forces and moments acting

on the piston during engine operation and presence of

clearances between the piston and the cylinder liner. The

combination results in both a rotation and a lateral move-

ment of the piston, causing the piston to impact the cyl-

inder wall at regular intervals. It is just these impacts

resulting in the objectionable engine noise known as piston

slap. A thorough and detailed description on the experi-

ment can be found in Hoffman et al. [49].

For this study, a computer experiment needs performing

by varying variables to minimize the piston slap noise. In

the experiment, the piston slap noise (y) is taken as the

output variable, and the clearance between the piston and

the cylinder liner (x1), the location of peak pressure (x2),

the skirt length (x3), the skirt profile (x4), the skirt ovality

(x5), and the pin offset (x6) are taken as the input variables.

It is to be noted that the clearance between the piston and

the cylinder liner (x1) and the location of peak pressure (x2)

are noise factors. Besides, the uniform design [25] is used

to construct an experimental design for the computer

experiment with 12 runs. The designed inputs and outputs

of the computer experiment are given in Table 1. More

details on the experimental setup can be found in Li et al.

[2].

In the following, extended Gaussian Kriging is used to

construct a metamodel as an approximation to the com-

putationally expensive computer experiment. The candi-

date basis functions in the mean model are assumed to be

the linear and quadratic polynomial functions, as well as

the two-factor interactions, that is,

w0ðxÞ ¼ 1; w1ðxÞ ¼ x1; . . .; wpðxÞ ¼ xp;

wpþ1ðxÞ ¼ x2
1; . . .; w2pðxÞ ¼ x1xp;

w2pþ1ðxÞ ¼ x2
2; . . .; w3pðxÞ ¼ x2xp; . . .; wpðpþ3Þ=2ðxÞ ¼ x2

p

ð42Þ

Since there are six factors in the piston slap noise experi-

ment, there are hence totally 28 variables in the regression
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mean model. Besides, ordinary Kriging, universal Kriging,

SCAD penalized Kriging [2], and blind Kriging [18] are

also implemented for comparison. In the following, uni-

versal Kriging is denoted as universal Kriging-LP as linear

polynomial functions are chosen as candidate variables,

and denoted as universal Kriging-QP as (42) is chosen.

For all the Kriging methods, the correlation parameters

are estimated by the Fisher scoring algorithm [2]. Aug-

mented radial basis functions (A-RBF) using several

commonly used basis functions are also tried for this

example, including linear, cubic, Gaussian, multi-quadric,

and inverse multi-quadric functions [31]. The related

parameters in these basis functions are tuned to be optimal.

Besides, PR–LP and PR–QP are implemented for com-

parison, considering their popularity and widespread use in

the industry.

To assess the performance of different metamodeling

approaches, additional 100 runs are provided by another

designed computer experiments. Two criteria are used to

measure how well the prediction performs. They are,

respectively, the root mean square error (RMSE) and the

median of absolute error (MAR), defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðŷðxðiÞÞ � yðxðiÞÞÞ2
vuut

MAR ¼ medianfjŷðxðiÞÞ � yðxðiÞÞj; i ¼ 1; 2; . . .;Ng

where N is the number of total testing design points

fxð1Þ; . . .; xðNÞg, ŷðxÞ is the predicted response at a design

point x, and yðxÞ is the true response. The RMSE and MAR

of different metamodeling methods are listed in Tables 2

and 3. Besides, estimated regression coefficients of dif-

ferent approaches and correlation parameters in different

Kriging methods are outlined in Tables 4 and 5.

The RMSE for extended Gaussian Kriging is 1.1174,

and equals 1.2807, 1.4813, 1.7307, 1.4864, and 4.5407 for

blind Kriging, SCAD penalized Kriging, and ordinary

Kriging, universal Kriging-LP, and universal Kriging-QP.

The MAR for extended Gaussian Kriging is 0.7852, and

MAR equals 0.8560, 1.0588, 1.3375, 1.1730, and 3.2739

for blind Kriging, SCAD penalized Kriging, and ordinary

Kriging, universal Kriging-LP, and universal Kriging-QP.

Both the RMSE and MAR demonstrate that extended

Gaussian Kriging achieves a fairly better prediction per-

formance than other Kriging methods. Though SCAD

penalized Kriging focuses on the more careful calculation

of correlation parameters, it is still limited in improving the

prediction accuracy due to its mean function just a con-

stant. It is also observed that extended Gaussian Kriging

performs slightly better than blind Kriging though a

Table 1 Design points and

outputs of Piston slap noise

experiment for metamodeling

Run x1 x2 x3 x4 x5 x6 y

1 71 16.80 21.00 2.00 1.00 0.98 56.75

2 15 15.60 21.80 1.00 2.00 1.30 57.65

3 29 14.40 25.00 2.00 1.00 1.14 53.97

4 85 14.40 21.80 2.00 3.00 0.66 58.77

5 29 12.00 21.00 3.00 2.00 0.82 56.34

6 57 12.00 23.40 1.00 3.00 0.98 56.85

7 85 13.20 24.20 3.00 2.00 1.30 56.68

8 71 18.00 25.00 1.00 2.00 0.82 58.45

9 43 18.00 22.60 3.00 3.00 1.14 55.50

10 15 16.80 24.20 2.00 3.00 0.50 52.77

11 43 13.20 22.60 1.00 1.00 0.50 57.36

12 57 15.60 23.40 3.00 1.00 0.66 59.64

Table 2 RMSE and MAR of Kriging and polynomial regression

methods in Piston slap noise experiment

Methodology RMSE MAR

Extended Gaussian Kriging 1.1174 0.7852

Blind Kriging 1.2807 0.8560

SCAD penalized Kriging 1.4813 1.0588

Ordinary Kriging 1.7307 1.3375

Universal Kriging-LP 1.4864 1.1730

PR-LP 2.6435 2.1827

Universal Kriging-QP 4.5407 3.2739

PR-QP 6.4818 3.6618

Table 3 RMSE and MAR of augmented radial basis functions

(A-RBF) using several basis function in piston slap noise experiment

Basis function name RMSE MAR

Linear 1.8027 1.2465

Cubic 1.8656 1.3308

Gaussian 1.4856 1.1730

Multi-quadric 1.8090 1.2480

Inverse multi-quadric 1.4856 1.1730
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Bayesian forward variable selection strategy has been

specifically incorporated into Kriging. And universal

Kriging-QP has achieved the worst performance among

several Kriging methods, in that there are many unimportant

variables included in the mean model as shown in Table 4,

which actually deteriorate the prediction performance. That is

also why universal Kriging-LP has performed better than

universal Kriging-QP in this example.

The RMSE for PR-LP is 2.6435, and the MAR equals

2.1827. The RMSE for PR-QP is 6.4818, and the MAR equals

3.6618. Compared against the Kriging methods, it is clear that

PR-LP (QP) achieves poorer prediction performance than

universal Kriging-LP (QP). The reason lies in that there is a

Gaussian stochastic process modeling residuals from the

linear regression in universal Kriging-LP (QP). Besides,

Kriging is interpolative, whereas PR is not. Compared against

A-RBF, PR is of also lower prediction accuracy. The RMSE

for the linear basis function is 1.8027 and equals 1.8656,

1.4856, 1.8090, and 1.4856 for the cubic, Gaussian, multi-

quadric, and inverse multi-quadric basis functions. Their

MAR equals 1.2465, 1.3308, 1.1730, 1.2480, and 1.1730,

correspondingly. The superiority of A-RBF to PR also con-

sists in that a RBF model passes through all the sampling

points exactly, whereas PR does not. In the meanwhile, it is

observed that Gaussian and inverse multi-quadric basis

functions achieve the same RMSE and MAR and perform a

little better than other three basis functions.

Observed from the RMSE and MAR of all the methods

discussed in this example, it is obvious that extended

Gaussian Kriging achieves the best performance, not only

lower in the global RMSE but also lower in the local MAR.

Observed from the estimated regression coefficients shown

in Table 4, there are many more zeros in the regression

mean model of extended Gaussian Kriging than other

Kriging and non-Kriging methods. Hence, extended

Gaussian Kriging has obtained a more adaptive regression

mean, thereby leading to a more accurate metamodel for

expensive computer simulators.

Furthermore, Fig. 1 plots the sorted absolute residuals

(AR) from universal Kriging-LP, SCAD penalized Kriging,

blind Kriging, and extended Gaussian Kriging versus the AR

from ordinary Kriging. From these plots, we see that SCAD

penalized Kriging, blind Kriging, and extended Gaussian

Kriging have uniformly improved ordinary Kriging, and

extended Gaussian Kriging performs more effectively than

SCAD penalized Kriging and blind Kriging. It is also

observed that universal Kriging-LP achieves similar per-

formance as SCAD penalized Kriging, whereas universal

Kriging-QP completely fails in this example due to the

inclusion of unimportant effects in the mean model. Besides,

Fig. 2 plots the true responses versus the predicted responses

obtained by extended Gaussian Kriging and A-RBF via

different basis functions, showing that the predicted

responses obtained by extended Gaussian Kriging (Fig. 2f)

are more accurate than those predicted by A-RBF methods.

5.2 Example 2: exhaust manifold sealing experiment

In this case study, the design of an exhaust manifold is

considered. The exhaust manifold is one of the engine

Table 4 Estimates of

regression coefficients via

extended Gaussian Kriging and

other approaches

Regression coefficients b0 b1 b2 b3 b4 b5 b6

Extended Gaussian Kriging 56.4017 0.0000 0.0000 0.0000 0.0000 0.0000 0.7091

Universal Kriging-QP 0.1022 1.4626 0.7100 1.1644 0.1247 0.0987 0.0687

PR-QP 0.0532 1.0783 0.3920 0.6146 0.0319 0.0603 0.0426

Universal Kriging-LP 66.4217 0.0473 0.0142 -0.4285 -0.4997 -0.4809 -0.5044

PR-LP 22.7278 0.0520 0.2463 0.9180 -0.0746 0.6657 5.8775

Regression Coefficients b7 b8 b9 b10 b11 b12 b13

Extended Gaussian Kriging -0.0003 0.0000 0.0085 0.0000 0.0000 -0.1143 0.0000

Universal Kriging-QP -0.0021 -0.0096 -0.0090 0.0221 -0.1874 -0.5087 -0.1107

PR-QP -0.0057 0.0447 -0.0521 0.3155 -0.0676 -0.4605 -0.0001

Regression coefficients b14 b15 b16 b17 b18 b19 yyyb20

Extended Gaussian Kriging 0.0000 0.0000 0.0000 0.0000 0.0000 0.1112 0.0000

Universal Kriging-QP 0.0819 -0.6582 0.4131 0.6499 -0.0549 0.2541 0.1713

PR-QP -0.1070 -0.3061 -0.1152 0.3947 0.1138 -0.4295 0.3616

Regression coefficients b21 b22 b23 b24 b25 b26 b27

Extended Gaussian Kriging -0.3900 1.3089 -0.1931 -2.4253 0.0000 0.0000 9.1991

Universal Kriging-QP 0.5288 0.4252 0.5232 0.1471 -0.2915 0.1562 0.0666

PR-QP 0.3967 0.0295 -0.0157 -0.0142 0.0136 0.0870 0.0397
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components, expected to endure harsh and rapid thermal

cycling conditions ranging from sub-zero to, in some cases,

more than 1,000�C. To dramatically reduce the cycle of

product development, a transient non-linear finite element

method is proposed by Hazime et al. [50] to simulate the

inelastic deformation used to predict the thermo-mechani-

cal fatigue life of cast exhaust manifolds. The exhaust

manifold assembly includes the exhaust manifold compo-

nent, fastener, gasket, and a portion of the cylinder head. In

addition to predicting fatigue life, the model also predicts

dynamic sealing pressure on gasket to identify potential

exhaust gas leaks. To optimize the gasket design to prevent

leaks, a sym- metric Latin hypercube (SLH) design 17 runs

and 5 factors is applied to the simulation model as shown in

Table 6. More details on exhaust manifold sealing exper-

iment can be referred to ref. [4, 50]. Besides, a set of

testing data set is listed in Table 7 to assess the perfor-

mance of different Kriging and non-Kriging metamodeling

methods.

Various Kriging methods including extended Gaussian

Kriging, SCAD penalized Kriging, universal Kriging-LP,

universal Kriging-QP, and ordinary Kriging, and non-Kri-

ging methods, i.e., augmented RBF via different basis

functions are tried for the exhaust manifold sealing

experiment. In this example, the correlation parameters in

extended Gaussian Kriging are estimated by the pattern

search method. The comparison of results in terms of

RMSE and MAR is presented in Table 8.

The RMSE for extended Gaussian Kriging is 1.2269,

and equals 1.2323, 1.8772, 2.3697, 2.8792, and 4.0745

for blind Kriging, SCAD penalized Kriging, and uni-

versal Kriging-QP, universal Kriging-LP, and ordinary

Kriging. The MAR for extended Gaussian Kriging is

0.5762, and correspondingly, the MAR equals 0.5937,

0.6672, 1.5059, 2.0805, and 3.4323. From the RMSE and

MAR, it is observed that extended Gaussian Kriging

achieves higher accuracy than SCAD penalized Kriging,

universal Kriging, and ordinary Kriging. It is also

observed that ordinary Kriging achieves the poorest

prediction performance among these Kriging methods in

this example. The reason lies in that a mere constant

mean can not capture the overall trend of system

responses. This is also manifested by SCAD penalized

Kriging which performs superior to ordinary and uni-

versal Kriging while inferior to extended Gaussian Kri-

ging. In this example, note that extended Gaussian

Kriging achieves similar prediction performance as blind

Kriging. However, the computational complexity of blind

Kriging is high, whereas extended Gaussian Kriging has

competitive computational efficiency compared against

ordinary Kriging.

Besides Kriging methods, augmented RBF methods are

also carried out for comparison. Specifically, the RMSE for

the linear basis function is 2.5895 and equals 2.2189,

1.4949, 2.2189, and 2.3391 for the cubic, Gaussian, multi-

quadric, and inverse multi-quadric basis functions; and the

corresponding MAR equals 1.5540, 1.3687, 0.7432,

1.3687, and 1.5768. Among the five basis functions, A-

RBF-Gaussian achieves the best prediction in this example.

Besides, compared against the SCAD penalized Kriging

method, A-RBF-Gaussian performs slightly better in the

term of RMSE and slightly worse in the term of MAR. Yet,

extended Gaussian Kriging overwhelms SCAD penalized

Kriging and A-RBF-Gaussian in both terms of RMSE and

MAR. Hence, it can be concluded once again that the

adaptive mean model helps to improving the prediction

performance of Kriging metamodeling.

5.3 Example 3: Borehole model

The Borehole model is a classical example of computer

experiments having studied by many authors to compare

different methods in computer experiments, for instance,

Fang and Lin [51], Fang et al. [52], and Li [53]. The

borehole function is defined as

y ¼ 2pTu½Hu � Hl�
ln r

rw

� �
1þ 2LTu

lnðr=rwÞr2
wkw
þ Tu

Tl

h i

where y is the response variable, rw, r, Tu, Tl, Hu, Hl, L and

Kw are the eight input variables, having the experimental

domain as follows:

Table 5 Estimated correlation

parameters of different Kriging

methods

Methodology h1 h2 h3 h4 h5 h6

Extended Gaussian Kriging 0.0007 0.0076 0.0114 0.0191 0.0191 0.0571

Blind Kriging 0.0100 0.0100 0.0900 1.3200 0.0100 0.4900

SCAD Penalized Kriging 0.0008 0.0000 0.0398 0.0000 0.0000 4.4979

Ordinary Kriging 0.1397 1.6300 2.4451 4.0914 4.0914 12.2253

Universal Kriging-LP 0.1397 1.6300 2.4451 4.0914 4.0914 12.2253

Universal Kriging-QP 0.0007 0.0076 0.0114 0.0191 0.0191 0.0571
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rw 2 ½0:05; 0:15�; r 2 ½100; 50;000�;
Tu 2 ½63;070; 115;600�; Tl 2 ½63:1; 116�;
Hu 2 ½990; 1;110�;Hl 2 ½700; 820�;
L 2 ½1;120; 1;680�;Kw 2 ½9;855; 12;045�:

The same uniform design as in Li [53] is used to

generate an experimental design for the Borehole function.

The generated 30 design points and their corresponding

outputs are depicted in Table 9. For performance

assessment, 10,000 sample points are generated from the

uniform distribution over the experimental domain.

In this study, extended Gaussian Kriging and several

existing methods performed on the borehole model are

compared for their prediction accuracy. The comparison

of RMSE results is listed in Table 10. In literature, Fang

and Lin [51] constructed a uniform design with 32

experiments and used the B-spline model to approximate

the borehole function, achieving the RMSE 2.1095. With

the same uniform design, the quadratic regression model

used in Fang et al. [52] has the RMSE 0.5077. Li [53]

used the SCAD penalized quadratic spline model for

metamodeling. Their predictor is demonstrated to be more

accurate than existing methods, and the RMSE equals

0.3335. Since universal Kriging may include unimportant

variables in the mean model, the widely used ordinary

Kriging, SCAD penalized Kriging, blind Kriging, and

extended Gaussian Kriging are conducted on the Borehole

model. And the Fisher scoring algorithm is utilized to

estimate the correlation parameters. The RMSE equals

0.6587 for ordinary Kriging, equals 0.7527 for SCAD

penalized Kriging, and equals 0.0044 for extended

Gaussian Kriging. We see that the RMSE of extended

Gaussian Kriging is much lower than that of Li’s SCAD

quadratic spline model, Fang and Lin’s B-spline model,

and Fang et al.’s quadratic regression model. It is also

observed that both ordinary Kriging and SCAD penalized

Kriging have achieved poor prediction performance in

this example, in that the two methods completely ignore

the important variables greatly affecting the system

response. In fact, the adaptive mean model obtained by

extended Gaussian Kriging is lðxÞ ¼ 10:3218þ
2:0270x1 � 0:0015x7, which implies that only x1 and x7

are important variables. The result clearly demonstrates

the importance of incorporating variable selection and

hence an adaptive mean model into Kriging

metamodeling.

Fig. 1 Plots of absolute residuals for a Universal Kriging-LP, b SCAD Penalized Kriging, c Blind Kriging, and d Extended Gaussian Kriging
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Fig. 2 Plots of the true responses versus the predicted responses obtained from the augmented RBF method with several basis functions

a Linear, b cubic, c multi-quadric, d inverse multi-quadric, e Gaussian, and f extended Gaussian Kriging

Table 6 Design points and

outputs of exhaust manifold

sealing experiment for

metamodeling

Run x1 x2 x3 x4 x5 y

1 0.00 0.38 0.13 0.63 0.06 14.30

2 0.75 1.00 0.63 0.06 0.44 11.08

3 0.81 0.06 0.06 0.31 0.63 14.36

4 0.13 0.19 0.31 0.25 0.69 10.01

5 0.38 0.56 0.75 0.19 1.00 11.19

6 0.94 0.25 0.56 0.00 0.25 2.70

7 0.69 0.69 0.19 0.88 0.88 19.55

8 0.44 0.88 0.00 0.44 0.19 19.68

9 0.25 0.31 0.88 1.00 0.50 9.65

10 0.56 0.13 1.00 0.56 0.81 9.63

11 0.31 0.50 0.81 0.13 0.13 7.94

12 0.06 0.75 0.44 0.50 0.75 16.98

13 0.63 0.44 0.25 0.81 0.00 19.51

14 0.88 0.81 0.69 0.75 0.31 22.88

15 0.19 0.94 0.94 0.69 0.38 18.01

16 0.50 0.00 0.38 0.94 0.56 10.20

17 1.00 0.63 0.50 0.38 0.94 17.68
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6 Conclusions

This paper primarily focuses on the issue of constructing

surrogate models based on Kriging as cheap alternatives to

computer simulators. Though several improved Kriging

approaches are recently reported in the literature (e.g.,

SCAD penalized Kriging [2], blind Kriging [18]), an

extended Gaussian Kriging method is proposed to improve

the prediction accuracy of Kriging metamodeling. Unlike

the forgoing approaches, the new method imposes a vari-

ance-varying Gaussian prior on the unknown regression

coefficients in the mean model of universal Kriging and

makes prediction at new design points based on the prin-

ciple of Bayesian MAP inference. The achieved mean

model is adaptive, thereby able to capture more effectively

the overall trend of computer responses and lead to a more

accurate meta- model. Experimental results on empirical

case studies are presented, showing remarkable improve-

ment in prediction utilizing extended Gaussian Kriging

over several benchmark methods in the literature.

Future aspects on extended Gaussian Kriging include

considering non-Gaussian correlation functions in Kriging

Table 7 Design points and

outputs of exhaust manifold

sealing experiment for

validation

Run x1 x2 x3 x4 x5 y

1 0.00 0.26 0.47 0.21 0.42 8.61

2 0.63 0.42 0.05 0.26 0.11 15.48

3 0.84 0.63 0.53 0.42 0.00 20.72

4 0.68 0.00 0.37 0.68 0.26 14.93

5 0.11 0.79 0.26 0.89 0.16 17.59

6 0.47 0.95 0.21 0.11 0.37 12.54

7 0.58 0.89 0.42 0.95 0.84 19.15

8 0.16 0.11 0.16 0.47 0.89 12.47

9 0.32 0.68 0.00 0.58 0.53 19.32

10 0.21 0.47 0.74 0.00 0.21 3.57

11 0.37 0.16 0.84 0.84 0.05 10.57

12 0.53 0.05 1.00 0.32 0.58 6.19

13 1.00 0.53 0.11 0.79 0.63 21.30

14 0.05 0.58 0.89 0.74 0.74 13.50

15 0.89 0.21 0.32 0.05 0.79 6.30

16 0.95 0.84 0.95 0.53 0.32 21.19

17 0.74 0.74 0.79 0.16 0.95 12.04

18 0.79 0.32 0.68 1.00 0.47 12.53

19 0.26 1.00 0.63 0.37 0.68 18.08

20 0.42 0.37 0.58 0.63 1.00 14.76

Table 8 RMSE and MAR of

Kriging and augmented radial

basis functions for exhaust

manifold sealing experiment

Methodology RMSE MAR

Extended Gaussian Kriging 1.2269 0.5726

Blind Kriging 1.2323 0.5937

SCAD penalized Kriging 1.8772 0.6672

Universal Kriging-QP 2.3697 1.5059

Universal Kriging-LP 2.8792 2.0805

Ordinary Kriging 4.0745 3.4323

A-RBF-linear 2.5895 1.5540

A-RBF-cubic 2.2189 1.3687

A-RBF-Gaussian 1.4949 0.7432

A-RBF-multi-quadric 2.2189 1.3687

A-RBF-inverse multi-quadric 2.3391 1.5768

Engineering with Computers (2012) 28:161–178 175

123



for nonsmooth metamodeling tasks; considering appropri-

ate Bayesian priors on the correlation parameters for robust

parameter estimation; considering Kriging metamodeling

for stochastic computer experiments, and so on. Besides,

one particular problem deserves further research, i.e.,

improving the computational efficiency of estimating the

correlation parameters in extended Gaussian Kriging as the

sample size of computer runs is large or moderate.

Research on these topics is currently ongoing and will be

reported elsewhere.
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Table 9 Design points and

outputs of borehole model for

metamodeling

Run x1 = rw x2 = r x3 = Tu x4 = Tl x5 = Hu x6 = Hl x7 = L x8 = Kw y

1 0.0617 45,842 84,957 106.3017 1,108 762 1,335 9,990 30.8841

2 0.1283 35,862 93,712 81.6150 1,092 790 1,241 10,136 126.2840

3 0.0950 10,912 81,456 111.5917 1,016 794 1,223 10,063 51.6046

4 0.0883 22,555 114,725 67.5083 1,008 778 1,260 10,048 44.7063

5 0.0583 14,238 95,464 71.0350 1,068 810 1,559 9,983 17.6309

6 0.0683 4,258 88,460 88.6683 1,080 766 1,129 10,005 40.7011

7 0.0817 27,545 105,970 109.8283 1,088 802 1,428 10,034 41.9919

8 0.1350 19,228 76,203 69.2717 1,032 738 1,148 10,151 146.8108

9 0.0717 40,852 104,218 74.5617 1,000 746 1,372 10,012 29.8083

10 0.1050 39,188 72,701 101.0117 1,064 814 1,167 10,085 74.3997

11 0.0750 20,892 98,965 99.2483 1,036 754 1,671 10,019 29.8223

12 0.1383 17,565 79,704 93.9583 1,100 782 1,652 10,158 116.6914

13 0.1183 32,535 74,451 108.0650 1,076 722 1,540 10,114 101.7336

14 0.1417 44,178 83,207 72.7983 1,060 706 1,447 10,165 154.9332

15 0.1083 12,575 112,974 86.9050 1,104 730 1,484 10,092 93.2778

16 0.1117 5,922 69,199 63.9817 1,056 774 1,409 10,100 78.5678

17 0.1017 2,595 86,708 83.3783 992 714 1,633 10,078 55.4821

18 0.1150 49,168 97,215 90.4317 1,020 726 1,204 10,107 101.7270

19 0.0783 24,218 63,945 76.3250 1,096 718 1,279 10,027 56.9115

20 0.1217 7,585 107,721 78.0883 1,040 806 1,353 10,121 80.7530

21 0.0850 47,505 67,447 85.1417 1,044 798 1,615 10,041 34.6025

22 0.0983 37,525 100,717 65.7450 1,084 742 1,596 10,070 65.1636

23 0.0650 9,248 70,949 102.7750 1,012 734 1,521 9,997 24.2095

24 0.0550 30,872 109,472 95.7217 1,052 710 1,185 9,975 27.3042

25 0.0517 34,198 77,954 79.8517 1,024 786 1,465 9,968 13.5570

26 0.1450 932 102,468 104.5383 1,072 750 1,297 10,173 165.6246

27 0.0917 15,902 91,961 115.1183 1,048 702 1,391 10,056 65.8352

28 0.1250 29,208 65,697 97.4850 996 758 1,316 10,129 89.2366

29 0.1483 25,882 90,211 92.1950 1,004 818 1,503 10,180 86.2577

30 0.1317 42,515 111,222 113.3550 1,028 770 1,577 10,143 89.7999

Table 10 RMSE of Different

metamodeling methods for

Borehole model

Method Computer runs RMSE

Extended Gaussian Kriging 30 0.0044

SCAD penalized Kriging 30 0.7527

Ordinary Kriging 30 0.6587

SCAD penalized spline 30 0.3335

Quadratic regression 30 0.5077

B-spline 32 2.1095
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