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Abstract Empirical models to correlate deformational

modulus along with petrographic features which are

intrinsic and inherent properties of rock with other basic

mechanical and physical properties have earlier been pro-

posed with experiential and assumed reasoning. However,

in most cases, such empirical models make certain basic

assumptions and hence bring in a degree of dispose and

doubt. An attempt has been made in this paper to analyze

and compare the efficiency and applicability of different

cognitive algorithms for the prediction of deformational

modulus and texture coefficient. The importance of

knowledge of deformational modulus is unparalleled with

the view to the operational difficulties in its determination.

Rock samples were taken from a tectonically active and

complex sequence from a large underground excavation in

the Himalayan region and were tested in the laboratory to

determine the different strength properties. One hundred

and seventy six rock samples test results were used as part

of the experiment. The uniaxial compressive strength,

tensile strength, axial point load strength, porosity, and

void ratio were taken as inputs to get deformational mod-

ulus and texture coefficient. Networks were trained to

optimum number of epochs or iterations to make suitable

prediction. The results of intelligent systems have been

tested against that of statistical methods as a test of pre-

cision of the model in generalization principles.

Keywords Deformational modulus �
Texture coefficient � Resilient propagation �
One step secant algorithm � t-statistic

1 Introduction

With an aim to build more rational and safer structures, it is

very important to study the mechanical behavior and fail-

ure mechanism of rocks. As deformational characteristics

of anisotropic rock changes with orientation of stress state,

it will be more difficult to predict behavior of such rock

mass and structures on such rock materials. Study of

deformational behavior of rock mass has been in several

stages with various researchers trying to delineate engi-

neering properties of rocks with the help of empirical

models. Deformational behavior of isotropic rocks at ele-

vated pressure has been studied by various researchers

[1–3]. Deformational behavior of anisotropic rocks has

been described by five elastic constants by Chenevert and

Gatli [4]. In situ test to study the deformational behavior of

rock is in most cases expensive and time-consuming. On

the other hand, laboratory tests require good quality core

samples which are not possible to get in many cases when

the rock is fractured, fissured, thinly bedded or weak.

Various empirical models have been suggested by

Bieniawski, Barton et al., Serafim and Pereira, Nicholson

and Bieniawski, Hoek and Brown, Palmstrom and Singh,

Barton and Singh et al. [5–12] for estimation purpose of

deformational modulus of rock. Several equivalent material

models [13–15] have also been proposed for the study of

deformation of rock mass. Similarly, different index

parameters, petrographic and physical parameters have also

been studied for the purpose of correlating the same with

mechanical properties of rocks. The determination of such
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index and petrographical properties in the laboratory

requires smaller samples.

Barton’s [6, 11] mainly uses Q-values for the estimation

of deformational modulus, whereas, Bieniawski [5],

Serafim and Pereira [7], and Nicholson and Bieniawski [8]

uses RMR for the same. Hoek and Brown [9] have used

GSI for the estimation of deformational characteristics of

rockmass. RMi values have been considered for the pre-

diction of deformational modulus by Palmstorm and Singh

[10]. Kayabasi et al. [12] have proposed a model based on

modulus ratio of intact rock, rock quality designation, and

weathering degree against another model proposed by the

same based on the elasticity modulus instead of modulus

ratio. Empirical models lack due to the fact that these

models are unable to account for the effect of a large

number of variables in varying conditions and mostly get

biased due to the data availability and rock mass hetero-

geneity. The generalization principle of inconspicuous

phenomena by way of statistics had not been very accurate

in all cases [16]. Restrictive and incorrect assumptions in

relation to unavailable data tend to make empirical models

more questionable [17].

In view of such considerations, a fundamentally differ-

ent approach has been used in this study for the prediction

of deformational modulus and texture coefficient. Intelli-

gent systems have been lately in use in various geotech-

nical studies. Fuzzy set theory has been used earlier for

prediction of strength and deformational modulus from

rock mass properties and test data [18]. The simple use of

fuzzy set theory introduces a degree of biasness in relation

to the setting up of deterministic rules based on the user’s

interpretation of available data. However, the use of arti-

ficial neural networks (ANN) scores over such methods due

to its computational superiority and generalization princi-

ples. In the present investigation, connectionist models

have been built using two different algorithms and the

generalization efficiency checked by varying different

parameters of the network.

Connectionist modeling, commonly known as ANN, is a

broad scale non-linear dynamic system which has the

ability of acquiring, representing and computing a ‘non 1:1

mapping’ from one multivariate space to another, given a

set of data representing the mapping [19]. A function for

which every element of the range of the function does not

correspond to exactly one element of the domain is called

non 1:1(non one to one mapping) function. The mapping is

learnt through the network by a training procedure in a

supervised or an unsupervised manner during which the

network is exposed to a set of chosen input data along with

their target data. The primary ability of the model lies in its

ability to process information by its dynamic state response

to external inputs. Most statistical models constrain the

data to be modeled along a particular geometry. This, may,

actually be highly unfavorable to model non-linear rela-

tions. However, ANN has been found to efficiently model

nonlinearity by a parallel processing approach. Added to

this is the advantage of memorization of experiential

knowledge, self-organization, self-adaptation, and self-

learning. The model functions by the optimization of

connection weights existing between parallelly processed

units known as neurons, which are the fundamental pro-

cessing unit of the network. A paradigm used in this study

was ‘backpropagation’ learning algorithm optimized by

resilient backpropagation and one step secant (OSS) algo-

rithm. The training process consisted of adjusting the

synaptic weights in order to reach a desired design objec-

tive. The synaptic weights are hold by the interconnections

between the neurons, which actually determines the nature

and strength of the interconnection. The neurons can be

suitably arranged in layers. The system can effectively give

prediction values after training which closely resembles

output values by the use of stored knowledge.

2 Site specifications and rock mass properties

For the present study, four types of rocks have been studied.

The rocks were taken from a tectonically active and com-

plex sequence of rocks from a large underground excava-

tion in the Himalayan region. The rocks exposed in the area

are metamorphosed rocks like gneisses, augen gneiss,

quartzite schist, biotite schist, quartz mica schist, sericite

schist, chlorite schist, amphibolite, and pegmatite. These

rocks belong to Wangatu Jeori Gneissic Complex of Pre-

cambrian age. They are surrounded by Jutogh series of

carbonaceous slates, limestone, quartzites and schist, sep-

arated from the main central thrust (MCT) which is one of

the shear zones in this region. Granite bodies are also

exposed at some places. These granites and augen gneiss are

predominate most of the Eastern region towards Nathpa and

schist in Western region towards Jhakri village of Rampur,

HP, India. The rocks are openly folded and suffered more

than two generations of foldings and are intersected by a

number of steeply dipping faults and shear zones. Major

fold axes trend in a NW–SE to E–W direction. Superim-

posed on these broad folds are numerous minor folds with

varying trends. The metamorphism of these rocks is

essentially of regional type over an extensive area where

intensive folding under pressure has converted the texture

into the schistose or gneissose. The foliation trend of these

metamorphosed rocks generally varies from N 70� W–S 70�
E to N 70� E–S 70� having an average dip of the order of

35� in the Northerly direction. These rocks are surrounded

by the Jutogh group, Salkhala group, and Rampur group of

formations and separated from them by thrusted or faulted

contacts. The rock formations are exposed to essentially
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regional metamorphism as the rocks indicate low-grade

metamorphism over an extensive area. The schistose are

intruded with quartz veins of varying thickness. Small scale

crenulation folds affect the quartz mica schist, which are

mainly the expression of changes in mineralogy and fabric

that required accommodating the distortion of the rock

body. This makes the rock mass stronger than it would have

been with planar foliation, because sliding is not likely to

occur along the folded foliation plane, unless the fold axis is

parallel to the potential sliding direction.

As shown in Fig. 1, (1) Lesser Himalayan (LH) Rampur

Group—(A), (B) Rampur Volcanics, (C) Carbonaceous

phyllite. (2) Kulu—Bajura Nappe—augen mylonite. (3)

Higher Himalayan Crystallines (HHC)—(A) Jeori Group,

staurolite/garnetiferous schist, banded biotite gneiss, augen

gneiss (a), amphibolite (b), quartz mica schist (c), and

Wangtu granite gneiss/granite (d), (B) Karcham Group—

garnet/staurolite/kyanite/sillimanite schist/gneiss, calc-sili-

cate, augen gneiss and migmatite (a) and Akpa leucogranite

(b). (4) Tethyan sedimentary zone (TSZ). Abbreviations:

KT, Kulu Thrust; MCT, Main Central Thrust; VT, Vaikrita

Thrust; R, Rampur; K, Karchham [34].

Regional mapping of the area has brought to light new

concrete set up and formations. Jeori Gneissic complex is a

part of one authochthonous–parautochthonous complex

below Rampur group. The former is thrust over the latter.

Structurally, the rocks of Wangatu Jeori Gneissic complex

form the northern limb of a syncline and their strike

direction varies from N 60� W – S 60� E to N 80� W – S

80� E with Southerly dip of 25� to 35�.

3 Artificial neural networks

Artificial Neural Networks have been variously defined by

various researchers. According to Haykin [20], it is a

massively parallel distributed processor made up of simple

processing units, which has a natural propensity for storing

experiential knowledge and making it available for use. In

its functioning, it resembles brain in two ways: the

knowledge is acquired by the model by a learning process

and the connections between the neurons carry the stored

knowledge as optimized weights. Thus, ANN, variously

known as connectionist models or cognitive systems, can

be defined as a network of many simple processing units,

each possibly having a small amount of localized dynamic

memory. The units are related by connection channels,

which usually carry numeric data, encoded by any of

various means. Much of its computational efficiency is due

to its parallel processing units, due to which it remains in a

dynamic state response. Any neural network is character-

ized by its neuron pattern, net topology and the training or

learning algorithms that define their purposes [21]. The

development process of a neural network can broadly be

classified into three steps: defining the network architec-

ture, training the network, and testing the network [22].

The first step is with defining the number of layers, the

number of neurons.

Individual processing units are arranged in layers in a

multi layered neural system. A typical three layered feed

forward backpropagation network has been shown in

Fig. 2. The theory relating to ANN can more elaborately be

found in Rumelhart and McClelland [23], as well as in

Hertz [24], Yegnanarayana [25], and Haykin [20]. There is

a single input layer and output layer which gets the feed

and gives the output, respectively. In between them lies the

hidden layer(s) containing neurons (parallel processing

units). With enough and adequate number of hidden units,

the network aptly recognizes and stores the pattern inherent

in the dataset and hence, with recollection of the locally

stored memory, the network produces suitable output fea-

tures for arbitrary input features.

Fig. 1 Geological map

of the area
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For jth neuron in a layer, let there be ‘n’ number of

inputs (x1, x2, x3,…, xn). Wij is the weight between the ith

input and the jth neuron. Let the input at activation node be

Netj which is mathematically equivalent to:

Netj ¼
Xn

i¼1

WijXi ð1Þ

The output of the activation node can be typically

represented byOj ¼ f Netj

� �
, where the output depends

typically on the range of the non-linear functions used at

the activation node. A transfer function processes the input

data that comes to the corresponding neuron. Biases are

included at the transfer functions so as to differentiate

between different processing units. The biases are referred

to as pseudo-temperatures of neurons. A typical training

procedure consists of forward pass of the input values to

calculate the output, the subsequent calculation of error and

the backward pass of the error derivative so as to optimize

the weight and bias or threshold vector. In the forward

pass, the network is presented with a set of input data along

with its desired output values. During the initial forward

pass, the network functions with a randomly initialized

weight and bias vector. At the output layer, the error is

obtained as:

ek ¼ tk � Ok ð2Þ

where, tk and Ok are the desired output and actual output,

respectively.

The error performance function (ERF) used in this case

is like:

E ¼ 0:5
1

n

Xn

k¼1

e2
k þ

1

xþ b

X
W2 þ

X
B2

� �" #

ð3Þ

where, 0.5 is the performance ratio, x is the dimension of

the weight matrix and b is the dimension of the bias matrix.

The summation for W and B are for all the values in the

weight and bias matrices. E is the weighted sum of mean

squared errors and mean squared weights and biases, the

weightage being equal. The main aim of the learning

process is to minimize the error function following a

gradient descent manner and optimizing the weight and

bias matrices in the process, which is actually the memory

of the network.

According to the Resilient Backpropagation algorithm

(Rprop) [26], the update of the weight and bias matrix is

varied according to the sign of the derivative of the ERF.

For the first iteration, the weight change value is equal to

a given value. For further iterations, the derivative of ERF

is calculated and is matched with that of the older value.

If the sign changes, then the update value is decreased by

a specific value. For no change in sign of derivative of

ERF, the update value is increased by a specific value,

which is initialized to the network. If there is no change

in the value of the ERF derivative the update value is

kept same [27]. The update value is then checked with the

maximum update value and the network moves to the

next iteration.

For the OSS algorithm [28], a secant approximation is

done to reduce the storage problem relating to the Quasi-

Newton method. The Hessian matrix is taken as identity

matrix instead of storing the Hessian matrix, which would

have actually scored storage problems. For the sake of

simplicity, the weight and bias matrix is set as a single

vector. The computation of parameter g, which determines

the learning rate, is done by a line search algorithm, which

is actually an iterative process to search the best estimation

of g. The line search is nothing but an iterative process in

which estimates of g are given. With variation in value of g
for constant value of update, i.e., for a particular update,

the argument of ERF traces a line in the x ? b dimen-

sional plane. The line search is continued till a better

approximation is available. The update to weights for a

particular iteration at step (n ? 1) is given as:

DW nþ 1ð Þ ¼ g sWð Þ ð4Þ

where, g is the parameter which minimizes the ERF along

the search direction.

The first search direction is along the negative of the

gradient of the ERF. The subsequent search directions are

computed by sW(n ? 1).

sW(n ? 1) is given as :

sW nþ 1ð Þ ¼ �gW nþ 1ð Þ þ A nþ 1ð Þ � DW nð Þ
þ B nþ 1ð Þ � DgW nð Þ ð5Þ

where,

 
Input Layer (i)         Hidden Layer (j)         Output Layer (k) 
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Fig. 2 Model of a Three Layered Feed Forward Backpropagation

Network
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A nþ 1ð Þ ¼ � 1þ DgW nð ÞT�DgW nð Þ
DW nð ÞT�DgW nð Þ

 !
� B nþ 1ð Þ

" #

þ DgW nð ÞT�gW nþ 1ð Þ
DW nð ÞT�DgW nð Þ

� B nþ 1ð Þ ¼ DW nð ÞT�gW nþ 1ð Þ
DW nð ÞT�DgW nð Þ

; ð6Þ

where, gW(n ? 1) is the gradient for step n ? 1, DW(n) is

the weight update for step n, DgW(n)T is the transpose

matrix of change in gradient at step n ? 1. With all these

updated values, the network runs for the next iteration. The

training stops when the performance goal is reached or

epochs are completed.

4 Parametric study

For the study of deformational modulus, simple rock

properties like uniaxial compressive strength, tensile

strength, and axial point load index strength, and physical

properties of rocks like void ratio and porosity were taken.

A simple correlation test of void ratio and porosity with

texture coefficient, however, shows no notable correlation.

However, the combined effect of all these variables on

deformational modulus and texture coefficient is notable.

Though not in a typical linear geometry, the variables may

really be separable at some non-linear degree. The scatter

between the various parameters has been given in the

scatter diagrams in Figs. 3 and 4. Basic rock properties are

always more effective while drawing more realistic con-

clusion about another rock properties. Hence, for the

training of the network to get deformational modulus, these

basic properties had been selected instead of any other

calculated variable. The geotechnical analysis of the sam-

ples of cylindrical shape (Nx size) was done in the labo-

ratory as per ISRM standards [29]. The samples were

prepared from the representative block specimens brought

from the field by core drilling in them at desired orientation

of the foliation planes (Fig. 5). For each data, five tests

were carried out and the mean taken. For the petrographic

study, a high-resolution semi-automatic image analysis

system was used having VIDS III interface card. An

optional macro-stand is also available in addition to

microscope for imaging from positives/negatives, instead

of images of actual samples. A detailed description of the

variables and their tests follows this section.

4.1 Uniaxial compressive strength

Uniaxial Compressive Strength (UCS) was determined by

direct compression test for the present study. Nx sized rock

specimen were compressed by placing them between the

Fig. 3 Scatter diagram of

Deformation Modulus versus

Uniaxial Compressive and

Tensile Strength

Fig. 4 Scatter diagram of Deformational Modulus versus Axial Point

Load Index
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plates of MTS Servo Controlled Stiff Testing Machine

(Fig. 6). Uniform loading of 1 9 103 T/s was applied till

failure appeared on the rock surface. By an automatic

arrangement, the post failure behavior is also recorded.

4.2 Tensile strength

Tensile strength was also determined in the laboratory by

Brazilian test. Rock specimen of size ratio (length:diame-

ter) equal to 1:2 were kept in Brazilian case and com-

pressional forces applied along diameter. The strain at

which the rock fails under tensional forces is termed as

tensile strength. Like UCS, this can also found out indi-

rectly from point load index tests.

The test was carried out as per ISRM (1978) standards.

The tensile strength can be calculated by the following

formula:

rt ¼ 2F=p:d:t

where, rt is uniaxial tensile strength (MPa), F load (Pa), d

diameter of the disc (mm), and t thickness of the disc (mm).

4.3 Axial point load strength

Easiest among all these strength tests, this is determined by

keeping the sample between two standard conical platens

and is uniformly loaded. In this technique, the L/D ratio

can be taken 1–1.5. Samples of irregular shapes can also be

taken with H/W ratio approximately equal to 1–1.5. For a

rock sample failing at a load of P and with distance

between platens as D, the point load index strength equals

to P/D2.

4.4 Void ratio and porosity

These two physical properties were included as a bench-

marking variable mainly. Due to their representative val-

ues, they brought in a rock classifier effect when fed into

the network. However, they appeared to have no significant

correlation with the texture coefficient.

4.5 Texture coefficient and deformational modulus

Texture coefficient (TC) was determined using petro-

graphic studies. It is generally calculated from area

weighting, aspect ratio and factor analysis. Factor anal-

ysis is a statistical method used to describe variability

among observed variables in terms of a potentially lower

number of unobserved variables called factors. In other

words, it is possible, e.g., that variations in three or four

observed variables mainly reflect the variations in a

single unobserved variable, or in a reduced number of

unobserved variables. Factor analysis searches for such

joint variations in response to unobserved latent vari-

ables. The area weighting is based upon grain packing

density within the reference boundary. Determination of

TC has already been related to strength properties as

proposed by Howarth and Rowlands [30]. The area

weighting is distinctively determined in schistose rocks.

Aspect ratio was determined by analysis of thin film

section taken from the rock core samples. It is generally

defined as the ratio of the grain’s length to breadth.

Length and breadth are defined as maximum and mini-

mum Feret’s diameter. Form factor was also determined

to ultimately analyze the values and get the TC. TC is

given as:

TC ¼ AW N0=N0 þ N1 � 1=FF0ð Þ½
þ N0=N0 þ N1 � AR1 � AF1ð Þ� ð7Þ

All texture coefficient values were obtained for the core

samples at different orientation angles.

Deformational modulus tests consists of in situ tests like,

dilatometer test, plate jacking, etc. which are time con-

suming as well as expensive. Indirectly, they can be

determined by estimating them at 50% of peak strength for

all orientations of rocks from the stress–strain curves. Load

Uniaxial Compressive Strength (UCS)
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Fig. 5 Core sample photos
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deformation curves can be obtained from MTS loading

under uniaxial compression mode. The deformational

modulus values can thus be obtained from such curves.

5 Network specifications

Pattern mapping has been one of the major problem when

the data shows non linear behavior and hence can be best

matched by parallel processing units having the highest

levels of non-linear calculation accuracy. The performance

of the network lies wholly on the efficiency of the mapping

criteria, which again depends on the information provided

as input–output pairs. Once the input values are fed to the

network and the feed forward passes goes underway, effi-

ciency lies greatly on the design of the network. There are

no simple ways to determine in advance the minimal

number of hidden nodes needed to obtain a desired per-

formance index [31]. The effect of underfitting and over-

fitting of the network remains an important consideration

other than just specifying number of layers, neurons and

functions to be used. With too many epochs, a network can

easily get overfitted, in which case it remembers more

insignificant information. Too many neurons can also lead

to overfitting. Studies [32] have given that continuing to

run the network to a high epoch or aiming at global minima

is only helpful when there is many more cases in the

training set than there are degrees of freedom in the

network.

For the present study, two different networks trained by

two algorithms have been tested. Both these methods have

suitable advantages over conventional networks working

simply on a gradient descent rule. The OSS is a partial

compromise between standard Conjugate Gradient

algorithm and Quasi-Newton algorithm. The OSS has the

advantage of converging faster than the conjugate gradient

algorithms and does away with the storage problem faced

in Quasi-Newton algorithm. The motivation of use of such

methods is to circumvent the difficulty caused by non-

positive definite Hessian matrices [33]. In case of multi

layer perceptrons (MLPs), the used sigmoid function lit-

erally ‘‘squashes’’ the input values by compressing the

whole lot of data into a small range. Hence, for very high

input values in relation to majority of values, the sigmoidal

functions have a tendency to give very little slope values.

Thus, the effect comes on to the network in a negative way

by not updating the weight and bias matrix even when they

are far from their optimal values. Rprop does away with

this negative effect by directing the weight upload not by

the value of the derivative of the performance function but

by its change in sign. Thus, a prerequisite for the use of

Rprop remains that all the net input function, weight

function and the transfer function must remain derivable in

the range of work. The weight change occurs according to

a predefined upload value and its subsequent increment or

decrement.

A total of 176 rock data sets were taken for the analysis

and the statistical analysis was done to calculate the vari-

ations (Table 1). The dataset was randomly divided into

two sets: ‘training dataset’ and ‘testing dataset’. The testing

dataset consisted of 15 datasets. The network was run for

different number of iterations and different number of

neurons for both the algorithm and the results of the per-

formance noted.

For both the networks, a transfer function configura-

tion consisting of tangential sigmoid function for the

input and hidden layer and a purely linear function for

the output layer was used. The tangential sigmoidal

function has this unique property of mapping any neuron

output from the range of (-a, ?a) to the range of (-1,

?1). The last layer of the network has been character-

ized by the linear function, which does not limit the

network output to a small range unlike other sigmoidal

functions.

6 Network performance

The network was designed with five neurons in the input

layer representing the five input variables. The output

layer consisted of two nodes representing the two outputs.

The network was typically trained to give the best results.

With the basic structure of the network designed and

executed, the effect of change of neuron number and

epochs on the performance was noted. The results of the

Rprop and OSS network are discussed in the following

section.
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Fig. 6 MTS Servo Controlled Stiff Testing machine
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6.1 Resilient backpropagation network

The network was found to give best results at 700 epochs

with 16 neurons in the hidden layer. For a general check of

the performance of the network, the performance function

was changed to mean absolute error (MAE). The variation

of the epoch number to 800 showed increase in the per-

formance function, MAE, to 0.022. The reason can be

traced to the fact that the network gets overfitted for 800

epochs. For 700 epochs, the value was 0.020. The accuracy

of prediction of deformational modulus and texture coef-

ficient for 700 epochs was noted to be 97.32 and 98.34%,

respectively. The performance of the network was checked

by decreasing the hidden neuron number to 15. For 800

epochs, the mean absolute percentage error was found to be

2.93 and 1.73% for deformational modulus and texture

coefficient, respectively. With 700 epochs, the MAE

increased to 0.026 and the mean absolute percentage error

was 3.33 and 1.75%, respectively for deformation modulus

and texture coefficient. Increasing or decreasing the epoch

number produced underfitting and overfitting, the result

being seen as increase in the performance function value.

For 17 hidden neurons, the performance function remained

same for 700 and 800 epochs. However, the individual

mean absolute percentage errors showed a variance. With

700 epochs, the mean absolute percentage error was 2.75

and 1.72% for deformation modulus and texture coeffi-

cient, respectively (Table 2; Fig. 7). For 800 epochs, the

values were 2.76 and 1.50%, respectively.

6.2 One step secant network

The network with secant algorithm was found to give better

results at lower epoch values. This can be traced to the fact

that the algorithm makes a better approximation of the

Hessian matrix and functions a little faster. With 16 hidden

neurons, the network gives the best results. For 150 epochs,

the MAE gives a value of 0.021, which increases either

way when the epoch number is increased or decreased. The

values of mean absolute percentage error are 2.78 and

1.62% for 150 epochs. The MAE increased to 0.022 when

the epoch number was varied to 100 or 200. Signs of

overfitting and underfitting of the network are clear from

the performance function value. With 15 hidden neurons,

the performance function shows a slide in value with

increase in epoch number. The greatest slide was observed

when the epoch was varied from 150 to 200. However,

after 250 epochs the network gets shows signs of overfit-

ting. The prediction accuracy was found to be 97.1 and

98.33% for deformational modulus and texture coefficient

at 200 epochs. The network was, however, under-trained

with 13 hidden neurons. The mean absolute percentage

error was 3.74 and 2.06% for deformational modulus and

texture coefficient (Table 3).

Table 1 Descriptive statistics of variables involved

Statistical

property

UCS

(MPa)

Tensile strength

(MPa)

Ax. Pt. L. Str.

(MPa)

Void

Ratio

Porosity

(%)

Def. Mod. 9 104

(MPa)

Texture

coefficient

Mean 81.47 14.19 6.98 0.01 0.88 0.96 0.59

Median 53.80 12.01 6.00 0.01 0.78 0.71 0.55

Mode 50.00 10.00 5.00 0.02 1.70 0.50 0.49

Std. Dev. 48.93 7.07 3.27 0.01 0.53 0.56 0.12

Kurtosis -0.35 -0.50 0.43 -0.91 -0.92 -1.19 2.11

Skewness 0.95 0.66 0.74 0.62 0.56 0.63 1.15

Range 166.40 29.00 15.70 0.02 1.45 1.65 0.70

Minimum 26.00 3.00 2.30 0.002 0.25 0.35 0.35

Maximum 192.40 32.00 18.00 0.02 1.70 2.00 1.05

Table 2 Comparison of experimental versus predicted values for

Rprop network. (at 700 epochs and with 16 hidden neurons)

Deformational modulus Texture coefficient

Experimental Predicted Error % Observed Predicted Error %

0.46 0.47 0.39 0.51 0.53 -3.61

1.79 1.78 0.99 0.75 0.73 0.86

1.86 1.86 -0.17 0.75 0.74 0.25

1.76 1.73 1.50 0.75 0.73 0.82

0.47 0.47 0.77 0.52 0.53 -1.95

0.39 0.42 -6.67 0.52 0.51 0.91

1.85 1.85 -0.12 0.75 0.74 0.48

1.87 1.87 0.16 0.75 0.74 0.57

0.49 0.49 -1.53 0.53 0.530 -0.97

1.09 1.19 -8.86 0.58 0.60 -4.66

1.10 1.16 -5.71 0.58 0.60 -3.69

1.74 1.76 -0.99 0.74 0.75 -0.30

1.70 1.76 -3.44 0.74 0.76 -1.69

1.69 1.75 -3.64 0.75 0.76 -1.80

1.68 1.75 -4.37 0.74 0.76 -2.28
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A comparative analysis of the use of the two algorithms

for prediction of deformational modulus and texture coef-

ficient shows that Rprop network is more efficient in pat-

tern mapping of the computed variables (Fig. 8). However,

it takes longer time in terms of epoch number to get opti-

mum result as compared to secant algorithm. In any case,

Rprop is faster than traditional neural network algorithms

using simple gradient descent algorithms. It is also more

efficient in terms of prediction as it descends along the

gradient plane even for small values of slopes when the

network has not really reached its optimum value.

7 Statistical modeling

A comparison of the efficiency of non-linear non 1:1

mapping of neural networks with statistical models have

been done in the following section. Conventional statistical

analysis in the form of multivariate regression analysis is

done for the efficacy check of the connectionist model. The

results are incorporated in this section.

7.1 Multivariate analysis

Multivariate analysis has been performed on the experi-

mental data sets. The input variables taken were same as

that of the neural model. UCS, tensile strength, axial point

load strength, void ratio, and porosity were taken as inde-

pendent variables. The dependent variables considered

were deformation modulus and texture coefficient. The

comparative analysis of the actual and predicted values has

been given in Table 4 and Fig. 9. The ultimate prediction

equations obtained are as follows (Eqs. 8, 9):
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Fig. 7 Line diagram of predicted versus experimental. a Deforma-

tional Modulus. b Texture coefficient for Rprop network

Table 3 Comparison of experimental versus predicted values for

OSS network. (at 150 epochs and with 15 hidden neurons)

Deformational modulus Texture coefficient

Experimental Predicted Error % Observed Predicted Error %

0.46 0.48 -3.93 0.51 0.53 -3.47

1.79 1.78 0.57 0.75 0.74 1.34

1.86 1.88 -1.05 0.75 0.74 0.78

1.76 1.73 1.28 0.75 0.74 1.21

0.47 0.48 -0.83 0.52 0.53 -1.66

0.39 0.43 -9.65 0.52 0.52 1.06

1.85 1.86 -0.86 0.75 0.74 1.04

1.87 1.89 -0.77 0.75 0.74 1.12

0.49 0.50 -1.45 0.53 0.52 -0.39

1.09 1.19 -8.97 0.58 0.60 -3.85

1.10 1.17 -5.90 0.58 0.60 -3.08

1.74 1.76 -1.04 0.74 0.74 0.15

1.70 1.76 -3.09 0.74 0.75 -1.25

1.69 1.74 -3.19 0.75 0.75 -1.37

1.68 1.74 -3.79 0.74 0.76 -1.86
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Fig. 8 Line diagram of predicted versus experimental. a Deforma-

tional Modulus. b Texture coefficient for OSS network
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Deformational Modulus ðEtÞ ¼ 0:0645þ 0:006� UCSð Þ
� 0:059� rtð Þ
þ 0:153� tlp
� �

þ 178:735� V:R:ð Þ
� 2:247� Pð Þ ð8Þ

Texture coefficient ðTCÞ ¼ 0:059þ 0:001� UCSð Þ
� 0:013� rtð Þ
þ 0:066� tlp

� �

� 235:422� V:R:ð Þ
þ 2:631� Pð Þ ð9Þ

The mean absolute percentage error for deformational

modulus and texture coefficient is 8.14 and 14.48%,

respectively (Table 4).

8 Efficiency check of intelligent prediction

As a part of checking the efficiency of the neural models

over the statistical analysis, a simple t test has been per-

formed. A hypothesis test is a clear and conclusive effi-

ciency check apart from the simple values of MAE and

mean absolute percentage error. A null hypothesis is made

to check the mean of the error samples which have been

believed to have different variance as they belong to two

different populations. A statistical analysis assumes that

errors are normally distributed with different variance and

mean.

For two samples with l1 and l2 as sample mean, and

variances as r1
2 and r2

2, the value of t-statistic is obtained

as:

t-statistic ¼ l1 � l2 � D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1

n �
r2

2

n

� �r ð10Þ

A hypothesis check of equality of two error means is

done against both one sided test and two sided test. From

the values obtained, the null hypothesis can be rejected at

5% level of significance. The degree of freedom for the test

was found to be 19. The check was performed for the 15

error values obtained in both the test.

9 Discussions

The MAPE values for the network prediction and the sta-

tistical modeling have been outlined in table. For the net-

work, the MAPE values for the optimized network have

been presented. A study of the root mean square error

(RMSE) for the Rprop network, OSS network and statis-

tical modeling has also been performed. The RMSE values

for the Rprop network with 16 hidden neurons and opti-

mized at 700 epochs are 3.72 and 2.12 for deformational

modulus and texture coefficient, respectively. For OSS

network optimized at 150 epochs with 15 hidden layer

neurons, the RMSE values for deformational modulus and

Table 4 Comparison of experimental versus predicted values for

multivariate analysis

Deformational modulus Texture coefficient

Experimental Predicted Error % Observed Predicted Error %

0.46 0.47 -2.29 0.51 0.55 -7.79

1.79 1.55 13.75 0.75 0.86 -15.52

1.86 1.87 -0.41 0.75 0.91 -22.30

1.76 1.45 17.44 0.75 0.84 -13.92

0.47 0.49 -4.52 0.52 0.55 -6.06

0.39 0.44 -11.94 0.52 0.52 0.66

1.85 1.76 4.48 0.75 0.89 -19.88

1.87 1.85 1.00 0.75 0.91 -21.59

0.49 0.54 -11.70 0.53 0.55 -5.41

1.09 1.23 -12.29 0.58 0.67 -16.79

1.10 1.17 -6.56 0.58 0.66 -14.88

1.74 1.51 12.83 0.74 0.86 -16.16

1.70 1.57 7.69 0.74 0.88 -18.66

1.69 1.54 8.79 0.75 0.87 -18.19

1.68 1.57 6.26 0.74 0.88 -19.36
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Fig. 9 Line diagram of predicted versus experimental. a Deforma-

tional Modulus. b Texture Coefficient for multivariate analysis
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texture coefficient are 4.21 and 1.89, respectively. A

comparison with studies made before to predict deforma-

tional modulus gives that the neural network approach

gives significantly lower values of RMSE. The OSS net-

work, in particular, gives highly satisfying results in this

regard. However, care must be taken of this fact that this

approach uses fundamentally different inputs rather than

those used in various previous works [5–15]. The RMSE

values as has been found out by Kayabasi et al. [12] in their

work for different formulae for deformational modulus are

15.07 for Bieniawski formula [5], 5.83 for Serafim

and Pereira [7] formula, 6.31 for Hoek and Brown [9]

formula, 4.96 for Kayabasi et al. [18] and 4.74 and 4.49 for

Kayabasi et al. [12]. The RMSE values found in this case

are significantly less than these findings. Moreover, most of

the prediction formulae had their applicability limitation

due to the variables in use in those cases. The Bieniawski

formulae [5] was limited in use for only rocks having

RMR [ 50, whereas Serefim and Pereira formula [7] was

for rocks with RMR B 50. Again, for the Hoek and Brown

formulae [9] to be applicable the UCS of the rock in

investigation had to be B100 MPa. However, for the

present approach, no such limitation holds and values of

simply determinable variables for rocks have been used as

inputs or independent variables.

10 Conclusions

Connectionist modeling or use of artificial neural network

to predict the deformational modulus and texture coeffi-

cient have given results much more impressive than tra-

ditional statistical analysis can do. The efficiency check by

performance functions like MAE and mean absolute per-

centage error and that with the t-statistic at a level of sig-

nificance of 5% shows clearly that connectionist modeling

can by far be a better way of predicting deformational

modulus and texture coefficient from simple intrinsic

properties of rock which are obtainable easily and also less

time-taking tests. Among the intelligent algorithms exist-

ing, the use of resilient backpropagation and OSS can

obviously give better results. The use of resilient back-

propagation with a higher number of epochs gives the best

results. Determining texture coefficient from petrographic

studies also requires time. The prediction of the same from

other seemingly uncorrelated variables is notable. As far as

pattern matching is concerned, connectionist modeling

scores over all other methods. The network has also been

able to do a far better generalization than other models. The

system does not take any of the predefined variables used

generally to get deformational modulus.

The method can easily be used with effectiveness in all

situations to get deformational modulus and texture

coefficient from far simpler tests which has vital impor-

tance for any design and planning to have a better safety

and stability. Expensive and tedious tests can easily be

avoided by use of such modeling. Other algorithms can

also be used to get results of the same order. Faster and

better predicting values can be given by more generalized

algorithms which would obviously help in reducing the

number of inputs and decreasing the work needed.
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