
ORIGINAL ARTICLE

A theoretical framework for an intelligent design catalogue

Paul Winkelman

Received: 5 December 2007 / Accepted: 3 February 2010 / Published online: 25 March 2010

� Springer-Verlag London Limited 2010

Abstract Product catalogues constitute a valuable source

of information for engineers engaged in design activities.

Unfortunately, these catalogues provide only limited sup-

port to engineers in the earlier, conceptual stages of design.

This research proposes the intelligent design catalogue

consisting of a virtual design environment linked to cata-

logues of standard components. Engineers develop their

design concepts within the virtual environment and refer to

the catalogues as these concepts are refined. The selected

components are assembled within the design environment.

The intelligent design catalogue provides search aids as

well as assessment tools. The theoretical framework draws

on several engineering areas. Manufacturing demonstrates

how process plans can be developed in a virtual environ-

ment independently of the machines on the shop floor just

as products can be conceptually designed independently of

the standard components available. The standard compo-

nents themselves can be grouped borrowing from classifi-

cation schemes of group technology. Object-oriented

programming (OOP) provides an environment for the

development of the software that runs the intelligent design

catalogue. As the objects of OOP parallel standard com-

ponents, OOP also serves as a design paradigm after which

the catalogue can be modelled. Design theory suggests

frameworks for developing a (semi-) hierarchical structure

for cataloguing parts.

Keywords Standard components � Object-oriented �
Virtual design � Catalogue design

1 Introduction

Engineers frequently refer to catalogues when designing

products. By carefully selecting standard components, they

are able to create their own unique systems that meet their

particular needs. The selection process itself is an impor-

tant aspect of the design activity and considerable effort

may be spent locating the appropriate component. The

burden of this task has been eased to some extent with the

transfer of component data from hard-copy catalogues to

computer databases and their supporting search engines.

Unfortunately, whether computerized or on a hard copy,

product catalogues offer limited assistance to the devel-

opment of the design ideas themselves that precede the

catalogue search. The assistance that is available normally

comes in the form of design examples, which demonstrate

typical uses of common components. These examples may

or may not resemble the design task at hand.

Some limited research has been carried out, which

attempts to make the computer a more integral part of

catalogue design. Carlson-Skalak et al. [1] describe an

evolutionary algorithm. They view catalogue design as a

two-step process (1) the design of the configuration using

generic parts, and (2) the selection of manufacturers’

components. During the first step, the designer selects

generic components from a ‘‘component type database’’ to

form the initialization set. All input and output ports

(through which materials, signals or energy flow) are

connected. The second step is carried out by the computer.

Manufacturers’ components are randomly selected from

the catalogues, which satisfy the requirements of the gen-

eric components. Due to the vast number of manufacturers’

components available, the computer is seen as being par-

ticularly well suited to this task. The ports of the selected

parts must match in a ‘‘positive–negative’’ fashion. Design

P. Winkelman (&)

Department of Mechanical Engineering, University of British

Columbia, 6250 Applied Sciences Lane, Vancouver,

BC V6T 1Z4, Canada

e-mail: pwinkel@mech.ubc.ca

123

Engineering with Computers (2011) 27:183–192

DOI 10.1007/s00366-010-0188-4



refinements are made via various forms of mutation.

Designs are evaluated, assigned a fitness score and ranked.

The fitness score is determined by summing weighted

performance criteria. These weights are supplied by the

designer.

One of the major limitations of this system is that the

user must carry many tasks to completion before any

assistance is offered. For instance, the user must complete

the configuration design (initialization set) of generic

components in order to initialize the system. Later, to allow

the computer-generated configurations to be assessed and

listed, the designer must enter weights for all the perfor-

mance criteria.

The intelligent design catalogue proposes an alternative

approach to the computerization of catalogue design. Its

primary aim is to provide designers with computer support

early in the design process, prior to the completion of any

particular task. This is accomplished by linking the cata-

logue database to a virtual design environment. Within this

environment, designers are able to develop partial assem-

blies, in terms of both configuration and specification.

Partial configuration refers to an assembly which is

missing some of the components necessary to make it a

viable system. For instance, when designing a hydraulic

system, there may be some valves or fittings not present in

the assembly but which must eventually be included if the

system is to have any real functionality.

Partial specification refers to components within the

assembly that are not completely specified. A single

component can thus span a range or spectrum of possible

specifications. At one end of the spectrum is the fully

specified component which, by definition, corresponds to a

component in the catalogue database. At the other end is

the minimally defined component. We can think of such a

component as one which has the minimal specification

which allows it to occupy a meaningful position in an

assembly. Functional descriptions may fulfill this purpose.

The task of the designer is to gradually refine the compo-

nents of the configuration until all components are fully

specified. The refinement process is also supported by

computer aids which can be invoked at the discretion of the

designer, such as offering suggestions for suitable com-

ponents. The extent of the support is largely determined by

the sophistication of the features which link the design

environment with the catalogue database.

Once the selection and assembly process is complete or

nearing completion, additional aids are made available to

the designer by linking the design environment to existing

engineering software systems. A component of sufficient

specification would allow a solid modelling program to

render the item. Once two or more components are

assembled together, the entire assembly and can be rotated

as a single unit in three dimensions. An evolutionary

algorithm such as that proposed by [1] can be used to find

alternatives to the selected components. Other links may

allow designers to analyze the created system or run sim-

ulation tests.

The proposed features will provide several major ben-

efits. First, it reduces the need for the premature specifi-

cation of an anticipated component. Second, essential parts

that do not exist in the catalogue can still be represented in

the design environment. Finally, it presents an important

first step in the development of a design environment

suitable for novices with limited knowledge of the standard

components. Here, the idea is to take knowledge normally

residing in the mind of designers and place it within the

computerized system.

The challenges that arise in the development of a

comprehensive intelligent design catalogue are many. In

this paper, the discussion will be limited to outlining some

of the underlying concepts that provide the initial inspira-

tion for the research as well as the theoretical framework

aimed at developing a suitable computerized system.

2 Objective

The objective of this research is to develop an intelligent

design catalogue, which combines a traditional catalogue

with a virtual design environment. The proposed environ-

ment must allow designers to assemble parts with varying

degrees of specification and offer assistance to designers as

they refine their designs from concepts to assemblies of

fully specified components.

3 Theoretical framework

The initial inspiration for the intelligent design catalogue

came from the development of a virtual process planning

model in engineering manufacturing. Additional concepts

are drawn from the areas of object-oriented programming

(OOP) and more general theory in design. These three

areas will be discussed individually and then brought

together to form a coherent theoretical framework. At this

point of development, possible internal mechanisms, such

as may be offered by graph theory or relational algebra,

are not examined. The intent of postponing their inclusion

is to ensure that the logic of the design catalogue frame-

work is not prematurely constrained by the logic of the

mechanisms.

For the sake of this discussion, I wish to distinguish

between a part and a component. A part refers to a generic

engineering object, such as a bolt, a motor or a length of

pipe. A component refers to a part that is fully specified and

may be unambiguously identified within a catalogue.

184 Engineering with Computers (2011) 27:183–192

123



3.1 General design theory

3.1.1 The design process

The engineering design process is typically modelled as

passing through several phases or stages. Pahl and Beitz

[2], for example, describe the process with respect to four

phases. During the clarification of the task, information is

gathered, leading to detailed problem specifications. The

conceptual phase results in solution variants, establishing

functions and principles. During the embodiment phase,

form is assigned to the concepts and functions. In the

detailed design phase, the required properties of the indi-

vidual components are analyzed and perhaps optimized.

Based on this model of the design process, the tradi-

tional design catalogue only becomes a viable resource

during the last, or perhaps the last two, design phases as it

is only then that the design begins to take on a physical,

more concrete character. Hence, a significant amount of the

design process is already carried out before any reference is

made to product catalogues. Thus, catalogues make no

direct contribution to the early stages of design. If the

information contained in catalogues is to impinge on these

early stages, designers should be able to quickly access the

data even while working on design concepts. There needs

to be a link between the concepts and the data or, alter-

nately, between function and form.

3.1.2 Connecting function to form

Gero et al. [3] have attempted to bridge the gap between

form (what they call structure) and function, proposing

behaviour as the intermediary step or layer. They refer to

this as the function–behaviour–structure (FBS) design

model. Within this model, function represents the teleo-

logical part of design, capturing the designer’s intent.

Behaviour states how the structure hopes to achieve the

desired function. Structure refers not only to the individual

components, but how these components are interconnected.

The designer starts with a function in mind and, via tele-

ological knowledge, conceives of some desired set of

behaviours. Through knowledge of the structural compo-

sition of various components and the behaviours associated

with these structures, a design is synthesized. Using causal

knowledge, the actual behaviour of the synthesized design

is determined and then compared to the desired behaviour.

Any mismatch leads to refinement.

Gero et al. develop a F–B–S hierarchical network. Some

of the features of this network include two layers between

behaviour and structure, namely, behaviour variables and

structure variables, resulting in five layers in all. Behaviour

variables are akin to the performance descriptors or per-

formance variables of the artefact. Structure variables refer

to the geometry and material of the artefact. There are also

crossovers within the network, meaning that one can arrive

at any given node from more than one direction. This is to

be expected as a given component can fulfill more than one

function. The links within the network are also bidirec-

tional. One can move in one direction from function to

structure to select a component. Having selected a com-

ponent, one can then move in the other direction to

determine the implications of that selection.

Gero et al. elaborate on the model using the example of

the design of a window. One function is that of providing

daylight. The corresponding behaviour is light transmis-

sion. A variable associated with this behaviour is the light

flux transmitted. The structure consists of glazing and a

frame. The structure variables fall into several categories.

Examples of structure variables include window length

(regular structure variable), glazing length (structure

component variable) and glazing area (structure component

behaviour variable).

The designer may postpone assignment of values to

variables almost indefinitely. When assignment is finally

carried out, there is normally a particular order that follows

as the implications of the assigned values are propagated

throughout the design space. For instance, if glazing area

and glazing length are assigned, then glazing width is

necessarily defined and the window frame itself is also

largely defined.

In a later work, Gero et al. [4] build on the FBS model.

They outline eight steps in the design process. Of particular

interest are the final three steps. These three steps are all

reformulations, dealing with a refinement of the design if

the initial design (or design from the previous cycle) is

found unsatisfactory. The first reformulation is concerned

with changes to the product’s structure; the second, with

changes to the product’s behaviour; the third, with changes

to the functions. The model assumes that if the product is

found unsatisfactory, designers first assume the shortcom-

ings can be addressed by finding alternatives to the struc-

ture. Designers are unlikely to move onto behaviour issues

unless structural changes prove insufficient. Functional

changes are then the last resort.

The concept of behaviour as an intermediary between

function and structure is not without its critics. Dorst and

Vermaas [5] see several problems with Gero et al.’s

approach. They view Gero et al.’s concept of behaviour as

providing a link between intentional descriptions and

structural descriptions. Where this shift from intentional to

structural descriptors occurs is rather unclear. They also

note that certain behaviours do not depend solely on the

properties of the window itself. Window behaviour, for

instance, is partly attributable to external factors such as

wind pressure. They question whether logic is actually

sufficient to determine function from a given structure.

Engineering with Computers (2011) 27:183–192 185

123



Finally, if cost is part of structure, then structure, in addi-

tion to function, has intentional features for the cost of an

item depends upon, to some extent, what people are willing

to pay for it.

Despite the difficulty of the concept, behaviour can

provide a suitable building block for the intelligent design

catalogue. As with Gero et al.’s network, behaviour can

take the form of several layers to facilitate a smoother

function-form transition. These layers also facilitate

movement in the opposite direction as designers assess the

functional qualities of the selected component. Crossovers

ensure that this bi-directional movement can cover large

areas of the design space, attesting to the fact that a single

component can fulfill several functions and a single func-

tion can be achieved by several components. This implies

that if the intelligent design catalogue is built on a hier-

archical structure, this structure must allow for crossovers.

The designer’s prerogative to postpone value assign-

ments to parts almost indefinitely, as Gero et al. [3] point

out, attests to the importance of working with partial

designs. At the same time, the intelligent design catalogue

should facilitate the refinement process. Thus, as an indi-

vidual part within the design environment is refined to a

more specific component, these changes automatically

invoke a search in the catalogue for suitable components to

replace the ill-defined parts remaining in the assembly.

Those parts deemed to be suitable replacements can then be

presented to the designer.

3.2 Manufacturing

Considerable research has been conducted within manu-

facturing. Of interest here are those research questions

focusing on the arrangement of machines on the shop floor

and the integration of process planning with machining

operations. Through analogical models, the solutions that

address these manufacturing problems also suggest direc-

tions for developing the intelligent design catalogue. These

models will be drawn from Group Technology and

Reconfigurable Systems.

3.2.1 Group technology

Group Technology was developed in the USSR during the

1950s [6] and was further developed over the next two

decades in Europe [7]. The idea was to organize manu-

facturing floors in work cells where similar parts could be

machined within a small area. Thus was born the idea of

part families.

The machines appropriate for each cell were determined

using a matrix, where the rows contain the parts to be

manufactured and their operations, and the columns con-

tain the machines that carry out the necessary machining

operations. By rearranging the rows, smaller clusters within

the matrix are formed and these clusters identify the

machines within a given cell as well as the parts to be

manufactured there [8]. Well-formed clusters allow all the

machining operations for each part to be carried out in a

single cell. Typically, some outliers remain and certain

parts must travel between cells.

These concepts can be used to develop the intelligent

design catalogue by positing the machine on the shop floor

as an analogue of a specific component. The operations

performed by a machine parallel the functions performed

by a component. There are two possible models that follow

from this analogue.

The first model views the shop floor as analogous to the

design environment. A particular machine is brought onto

the shop floor, just as a specified component of the cata-

logue is brought into the virtual design environment. The

manufacturing cell of GT becomes the subassembly within

the design environment. The problem GT addresses, using

part families, is deciding which machine should be brought

to the shop floor and where or in which cell it should be

placed. In the case of the design environment, the designer

must decide which parts or components to select and on

what basis the subassemblies are formed. How might a

designer form ‘‘part families’’?

One possible approach comes from the work of Alex-

ander [9]. Using set theory, he forms groups (design

modules) based on design requirements such that the

interaction between the groups is minimized. By mini-

mizing the interactions, design changes made to one

module have minimal impact on other modules. The design

modules parallel the manufacturing cells of GT and the

(minimized) interactions between modules correspond to

the outliers that must visit more than one manufacturing

cell. Although promising for the intelligent design cata-

logue, Alexander’s method, like GT, requires that design-

ers do considerable work and complete several tasks prior

to activating the computerized system. Thus, this approach

does not facilitate partial designs.

The second model can perhaps suggest a way to ease

the design overhead. This model sees the machine shop

floor as the catalogue database with the manufacturing

cells representing a particular organization of the com-

ponents within the catalogue. A designer using the

intelligent design catalogue to develop a new design is

akin to the production of a new part being added to a

pre-existing GT shop floor. If the new design maps

closely to the particular structure of the catalogue, the

design process is greatly simplified. Thus, a designer

selecting parts such as a hydraulic pump and some hoses,

can be presented with a standard design pattern which

includes related parts such as a tank, valves, fittings and

hydraulic cylinders.

186 Engineering with Computers (2011) 27:183–192

123



If the new design does not map closely to the catalogue

structure, then the assistance that can be offered to the

designer is limited. However, one of the great strengths of

the virtual environment, compared to the shop floor of GT,

is that the component database need not be restricted to a

single classification scheme, for a single component can be

classified into many categories. Within the virtual envi-

ronment, we can very easily relocate the ‘‘machine’’ to

another ‘‘cell’’ on the ‘‘shop floor’’, as it were, to accom-

modate the new ‘‘part’’. The classification schemes them-

selves can be modelled after a range of standard design

practices or developed heuristically from historical data.

For example, after extensive use of the virtual system, it

may be found that 90% of designers using Component ‘‘X’’

in their assembly also use Component ‘‘Y’’.

Both of these models posit the machine as the compo-

nent and the machine’s operations as the functions of the

component. These models also differ in important respects.

In the first model, the component is an object within an

assembly; in the second, an object within a catalogue.

Similarly, in the first model, the function refers to the

function of the component within the assembly (actual

function); in the second, the function refers to the function

as stated in the catalogue (potential or assumed function).

These two distinct models represent an important goal of

the intelligent design catalogue, namely, a shifting of

design knowledge from the designer’s head (the shop floor

as design environment) to the computerized system (the

shop floor as catalogue). In other words, by organizing the

components in the catalogue, less knowledge and effort

will be required by the designer to organize the compo-

nents in the design environment.

3.2.2 Reconfigurable systems

Oldknow and Yellowley [10] describe a reconfigurable,

open-architecture system to control machine tools on a

manufacturing shop floor. One of their main goals is to

develop a system that can accept hardware (e.g., CNC

machines) from any number of vendors (vendor neutrality).

The system consists of two sides: a virtual machine tool

(hardware independent) and hardware-dependent opera-

tions (which describe how a particular machine carries out

its tasks). Between these two sides is the binding table,

which allocates hardware components to the functions

demanded by the virtual environment. Thanks to the

binding table, one can design a manufacturing process

using the virtual machine tool without any specific

knowledge of the machines available. The idea of recon-

figurability refers to the ease with which a machine in the

system can be removed or added. Their system offers

dynamic reconfigurability, which means that reconfigura-

tion can be carried out without necessitating a complete

shut-down of the system. Another added feature of the

system is that it allows for constraints to be added to the

machining process. The machining speed, for example, can

be altered if torque limits are exceeded. Thus, two

machines can carry out slightly different operations using

identical process plans.

The intelligent design catalogue can be modelled after

the reconfigurable system where, once again, the machine

parallels the component and the shop floor becomes the

catalogue. Vendor neutrality means that the catalogue need

not be confined to a single source of components. Dynamic

reconfiguration allows new components to be added to the

catalogue without interrupting catalogue use. The virtual

machine tool becomes the virtual design environment

where the designer can carry out conceptual and some

embodiment design, sometimes unaware of the actual

components that are available. As machining operations

demanded by the virtual machine tool are assigned to the

existing machines via the binding table, design concepts in

the virtual design environment can be assigned to compo-

nents from the catalogue. As one adjusts the machining

process to account for process constraints, one can also

restrict the available components in the catalogue in

keeping with designer-imposed constraints (e.g., cost,

weight). The open architecture of the system allows

sponsors of the intelligent design catalogue, such as sup-

pliers, to change the components within the database

in-house without resorting to outside expertise.

The model just presented is actually composed of two

submodels, as there are two distinct selection processes.

One process is concerned with the selection of operations.

This process is carried out by the process planner within

the virtual environment. The second process selects the

machines to perform these operations. This process is

carried out by the binding table. These same two processes

are contained the GT matrix, where the rows represent the

selection of operations, and the columns represent the

selection of machines. Although the goals are different, one

can draw a parallel between the GT matrix and the binding

table.

To a certain degree, these two processes parallel the

two-step process of catalogue design outlined by Carlson-

Skalak [1], with some additional features. As the process

planner assembles operations in the virtual environment

independently of the machines available, the designer

assembles parts in the virtual design environment inde-

pendently of the components available. Similar to the

binding table, the process of assigning components to the

parts can potentially be automated. (However, in support of

partial design, designers must have the option of selecting

components manually.) The two selection processes

demands that the intelligent design catalogue consist of

(at least) two databases, one containing the detailed

Engineering with Computers (2011) 27:183–192 187

123



specifications of components (the catalogue itself) and

another containing ill-defined parts (and perhaps functions

as well). By having two databases rather than one, the

designer need not refer to the component catalogue and

vendor neutrality can be achieved.

The distinction between these two selection processes

can be further demonstrated by the analogies they sug-

gest. In the case of machine selection, the component or

part is analogous to the machine. However, in the case of

operation selection, component or part aligns more clo-

sely with the machining operation. A process planner

selects operations, and places these operations in a par-

ticular sequence in the hope of producing a part with the

desired features. The mechanical designer selects parts,

and places these parts in assemblies in the hope of pro-

ducing a certain functionality. Thus, the part features of

process planning are analogous to the functions of

mechanical design, and part families, used to construct

the manufacturing cells of GT, become functional fami-

lies. It is also through this second analogy that design

constraints can be aligned with process constraints. Pro-

cess constraints normally result in making modifications

to the operation (rather than a change in machine) just as

design constraints components lead to a change of

component.

The system proposed by Oldknow and Yellowley [10]

can be considered to be a reconfigurable manufacturing

system (RMS). Mehrabi et al. [11] and Koren et al. [12]

compare RMSs to flexible manufacturing systems (FMSs).

FMSs are designed to accommodate a wide range of pos-

sible machining processes. Unfortunately, in most FMS

installations, the full flexibility offered by the system has

gone unrealized as the number of parts manufactured in the

long run failed to justify the initial investment [11]. RMS

was developed to address this shortcoming of FMS.

Although less flexible than FMSs, RMSs do provide a

reasonable range of manufacturing capabilities at a reduced

cost. RMS is thus an attractive alternative for many

manufacturers.

The failure of many FMSs and the rise of RMS can

serve as a warning to the intelligent design catalogue. The

catalogue, though virtual, need not be comprehensive with

every possible part listed. Catalogues may better serve their

clients if they are confined in scope. This is particularly

true of routine designs where designers tend to restrict

themselves to a limited range of fairly predictable com-

ponents. As the catalogue content is extended to include a

wider range of components, navigation becomes more

difficult. However, as unique machining operations may

justify an FMS, non-routine, more innovative design,

requires a more comprehensive catalogue. A comprehen-

sive catalogue is thus akin to an FMS, a limited catalogue

to an RMS.

3.3 Object-oriented programming

Object-oriented programming, as the name implies, uses

the metaphor of an object to develop a programming lan-

guage. Hence, OOP focuses on the what of programming.

By way of contrast, procedural languages attempt to

address the question how [13].

An object is a conceptual unit, combining both data and

methods. A method is defined as a procedure or function

that alters the state of an object or causes the object to send

a message (i.e., return values) [14]. A well designed object

can serve many purposes, and fosters reusability, often

cited as one of the main benefits of OOP (some, however,

remain skeptical of this claim, e.g., [15]).

Another important feature of OOP is encapsulation.

Encapsulation refers to the hiding of information within an

object, information not required by other objects. Encap-

sulation allows changes to be made to the internal workings

of the object (implementation) while leaving its interface,

where it receives messages from other objects, intact.

Encapsulation thus promotes modularity.

Objects receiving the same message need not respond in

the same way. This is referred to as polymorphism. The

message ‘‘addition’’, for example, may mean arithmetic

addition for one object (addition of numbers), but concat-

enation to another (addition of words).

Another important feature of OOP is inheritance.

Inheritance means that certain objects acquire attributes

(but not data) from others. Inheritance necessarily creates

various levels of abstraction, leading to a hierarchy con-

sisting of superclasses and subclasses. (An object is not a

class itself, but an instance of a class.) According to [13],

attributes should be as high up the hierarchy (more

abstract) as possible. This ideal is promoted by allowing

some of the attributes of the lower objects to override the

inherited values, leading to polymorphism.

Typically, an object inherits all of its attributes from a

single class (which may inherit from yet another class

above it). Multiple inheritance refers to an object or class

inheriting from two or more superclasses within the same

level of the hierarchy. Multiple inheritance, however,

should be used sparingly as it may introduce some ambi-

guity [16]. For example, if an object inherits from two

classes that are both on the same level with methods that

bear the same name, which method does the object inherit?

Many of the features of OOP map well to the intelligent

design catalogue, for many of the issues OOP tries to

address are design problems. Perhaps the most obvious

feature of OOP is that of the object, analogous to a fully

specified component. The close conceptual coupling of the

object to the standard component suggests that OOP is a

good choice for programming the virtual environment

of the intelligent design catalogue. The programming

188 Engineering with Computers (2011) 27:183–192

123



environment of OOP is the design environment and the

program, as an assembly of objects, is the final assembled

engineering product.

Reusability, an important feature of OOP, maps well to

the intelligent design catalogue as a single component is

expected to be part of many different assemblies. Com-

ponents can be classified as belonging to part families, the

classes of OOP. Increasing the level of abstraction leads to

a functional description of the part. Inheritance within

classes and objects describes how a single function can be

fulfilled by any one of a number of components. Unlike

OOP, the intelligent design catalogue must make use of

multiple inheritance if it is to foster any kind of creative

design. Within design, multiple inheritance refers to a

single component fulfilling more than one function. A bolt,

for instance, can be used as a fastener, or it can be used to

position a mechanism.

Encapsulation refers to hiding the internal workings of a

standard component. Generally, when purchasing a com-

ponent, the buyer considers the specifications (attributes) of

the component, not its precise internal mechanisms. An

important specification is the interface of the component as

it determines to which other components it can be con-

nected, just as the interface of an OOP object determines

how it communicates with other objects.

As objects have methods inherited from classes, so

components have functions inherited from functional or

part families. Polymorphism refers to instances where

functional attributes within a given family are modified or

overridden. Equivalently, mechanical design must take into

account design constraints. Constraints may compromise

the functional quality of a normally viable component, or

render its function invalid. For example, the normal func-

tional attribute of a diesel engine, such as power output,

may be compromised in the face of noise limitations. A

solid rivet, which normally has the function of fastening,

cannot perform that function if access is limited to one side

of the assembly. Within an OOP-like class structure of the

catalogue, one can place all rivets within a given family

(e.g., fastening and deformation) and then provide func-

tional overrides that distinguish between those rivets which

require access to both sides and those which do not.

In OOP, objects are organized in object libraries in the

same way that components are organized in catalogues. In

order for reusability to be realized, programmers must be

able to find those objects in the library which meet their

needs, just as designers must find components within a

catalogue which meets their needs. As the catalogue

database uses a hierarchical class structure as an aid to

locate a desired part, one would expect that, within OOP, a

hierarchical structure can be used to find an object. Hence,

the hierarchical structure which defines an object (i.e.,

which led to its creation) would be the same structure

which would allow one to find that same object within a

library. Searching is hampered, however, if the logic of the

one searching differs from that of the one who created the

object, or if the one searching has only partially defined

the required object. Hence, regardless of the way an object

was created, a flexible organization is necessary to facili-

tate programmers (or designers) to actually find the object

in the library.

Alternatively, the catalogue itself can also be modelled

after a single object. In this model, encapsulation refers to

the ability of designers to carry out much of their design

activities without necessarily being aware of the contents

of the catalogue. Access to the catalogue is carried out

through the interface, such as through ‘‘behaviour’’, freeing

the designer from the need of a thorough understanding of

the catalogue contents. Polymorphism is enacted when

designers run programs to assess their designs. The actual

analysis program called will depend on the type of

assembly.

4 Linking of manufacturing, OOP and design

Concepts from design, manufacturing and OOP have much

to offer the development of an intelligent design catalogue.

A more coherent picture can be created by simultaneously

aligning the equivalent features (analogues) of each of

these three areas. As presented, however, these three are

not conducive to this end and they will be re-divided into

the four categories of machining systems, process planning,

OOP and the intelligent design catalogue itself. A separate

category for the general design theory would be redundant

as the concepts essentially match those of the catalogue

category.

The analogous features of all four categories are sum-

marized below and compiled in Table 1. The alignment of

the analogues is by no means perfect and some licence has

been taken for the sake of greater completeness and as

I believe that they provide some insight concerning the

development of the intelligent design catalogue. Never-

theless, some incompleteness remains as three of the four

categories have missing or inconsequential analogues as

indicated by the dashed entries in the table. Two of the

analogies previously presented, namely, the shop floor as

design environment and the OOP object as catalogue, have

been omitted from the discussion and do not appear in the

table. This has been done for the sake of simplicity and not

as a result of shortcomings of the analogies themselves.

The basic unit of interest (that which is ultimately

selected) is the (CNC) machine in machining systems, the

machining operation in process planning, the object in

OOP and the standard component within the intelligent

design catalogue. A machine performs a certain set of

Engineering with Computers (2011) 27:183–192 189

123



operations, an individual operation produces a certain

range of forms, an object has particular methods and a

component performs certain functions. A machine is

selected from the shop floor, an object from an object

library and a component from a catalogue. The machines

are grouped to form manufacturing cells, machining

operations are grouped according to the part families that

they produce (from whence comes the manufacturing cell),

objects can be grouped according to their class, and com-

ponents can be grouped according to their functional

families. Once all operations, objects and components have

been selected and assembled, they form the process plan,

the program and the assembly, respectively.

A good manufacturing system allows for reconfigura-

bility, where one machine can be replaced with another

without rendering the entire shop floor inoperative. In OOP,

objects can be replaced with other similar objects while

leaving the rest of the program intact. The intelligent design

catalogue allows a component to be changed in the cata-

logue while minimizing disruption to the selection process.

From a process planning perspective, the virtual

machining environment allows for operations to be

assembled without specifying the machine. The assign-

ment, in this case, is carried out by the binding table (the

matrix of GT can also be considered to assign operations to

machines). Within the OOP programming environment,

one can conceivably develop a program (template) to

perform certain operations before the actual objects are

created or selected from a library. The virtual design

environment allows for some specification of certain parts

or functions without naming a particular component.

Behaviour, like the binding table, is used to translate the

required function to a candidate component.

The process plan to manufacture a specific component

can be modified in keeping with process constraints. As a

machining tool becomes dull, for example, the feed rate

may be reduced to keep torque requirements below

acceptable limits. Process constraints allow the normal

process setpoints to be overridden. Within the class struc-

ture of OOP, methods can be overridden within particular

classes or objects, allowing for polymorphism. Within the

intelligent design catalogue, functional specifications can

be overridden if a given component violates certain design

constraints, e.g., the component is too heavy.

When designing a machining process for the manufac-

ture of an individual part, one may assign any one of a

number of machines to carry out the operations. Con-

versely, an individual machine can perform a number of

operations. Inheritance in OOP means that a superclass can

pass its attributes to any one of a number of subclasses.

Multiple inheritance means that a subclass can inherit

attributes from any number of superclasses. Within design,

a function can be carried out by many different compo-

nents. Conversely, a single component may fulfill a number

of different functions.

5 Summary

The intelligent design catalogue is a design aid which

combines a virtual design environment with a catalogue (or

catalogues) of standard engineering components. Compo-

nents are selected from the catalogue and assembled within

the design environment. The theoretical framework seeks

to facilitate the selection process by providing a bridge

between the design environment and the catalogue.

Table 1 Mapping manufacturing and object-oriented programming to the intelligent design catalogue

Machining systems Process planning Object-oriented programming Intelligent design catalogue

Machine Operation Object Component

Operation Part feature Method Function

Shop floor – Object library Catalogue

Manufacturing cell Part family Class Functional family

– Virtual machining environment Programming environment Virtual design environment

– Process plan Program Assembly

– Sequence of operations Module Subassembly

Binding table (matrix) List of operations – Behaviour

Reconfigurability – Modularization Part replacement

– Process constraints Polymorphism Design constraints

– – Interface Interface

– – Encapsulation Internal component mechanism unknown

Component/part family unspecified

One operation, many machines One feature, many operations Simple inheritance One function, many parts

One machine, many operations One operation, many features Multiple inheritance One part, many functions

190 Engineering with Computers (2011) 27:183–192

123



In addition to drawing on design theory, the theoretical

framework was developed with inspiration from manu-

facturing (process planning and machining systems) and

OOP. Design figures prominently in these areas and the

intelligent design catalogue stands to benefit from some of

the solutions to their particular design issues.

An important feature of the intelligent design catalogue

is that it supports partial designs. As the design process is

not strictly linear and information is often missing, an

effective design aid must accommodate incompleteness.

Rather than presenting the designer with a string of fields,

all of which must be filled in prior to activating the system,

the intelligent design catalogue guides the designer,

effectively filling in the fields along the way.

Designs may be partial with respect to configuration or

specification. Partial configuration refers to an assembly

that is missing parts or components, particularly when the

missing elements render the system functionally unviable.

Partial specification refers to a part whose specification is

incomplete and can therefore not be unambiguously iden-

tified in the catalogue. A minimum level of specification

must be maintained if a part is to fulfill a meaningful role in

the assembly; this minimum level may correspond to a

function or a behaviour.

As the design is refined, moving from partially specified

parts to fully specified components, the parts, and the

assembly as a whole, move through several levels or layers

of detail. These levels suggest that a hierarchical structure

may be beneficial. Refinement of the assembly may be

uneven, meaning that adjacent parts may be at different

levels of specification.

Partial specification implies that the catalogue of stan-

dard parts may be kept at a distance from the design

environment. This (temporary) hiding of catalogue con-

tents is a form of encapsulation. The designer can carry out

part of the design, unaware of the actual contents of

the catalogue. Encapsulation also refers to the hiding of the

contents of a component. When creating an assembly, the

designer is generally concerned with the function and

physical interfaces of the component, not its internal

workings. Encapsulation thus allows information not rele-

vant to the design at hand to be kept at arm’s length,

reducing the ‘‘clutter’’ in the design environment.

By keeping the catalogue at a distance from the design

environment, reconfiguration becomes possible. This

means that components or even catalogues can be removed

or added without disabling the entire system. The design

environment remains intact, allowing designers to create

functionally complete assemblies independently of the

catalogues. A second database serves to bind or bridge

selected behaviours or functions to the catalogues. This is

the same database that allows the designer to pass through

several levels during the refinement stage.

The database must be sufficiently well structured to

provide adequate assistant, yet flexible enough to accom-

modate different designer types. The flexibility allows

potentially relevant parts to be grouped and presented to

the designer in any number of ways, and possibly filtered in

keeping with designer-imposed constraints. Flexibility

should also allow the designer to use a standard component

in an unconventional assembly and, hence, outside the

standard groupings. This implies that the designer must be

able to override (part of) the system. The ability to override

means, in effect, that the designer can go directly to the

catalogue for the purposes of browsing.

Those designers overriding the system are likely to be

more experienced; those requesting help, less experienced.

This suggests that the intelligent design catalogue has

significant potential to be used for educational purposes.

Learning can be facilitated by restricting the catalogue

domain, and thereby limit the amount of information the

student must deal with. Smaller catalogues may also serve

the needs of specialized industries with a limited number of

standard components.

Future developments will investigate the internal

mechanisms of the intelligent design catalogue. These

mechanisms must be carefully selected and implemented to

ensure that they do not compromise the intended features

of the system.

Potentially, additional tools can be added to the system

to assess the performance of the newly created product.

These tools may be analytical in nature or allow the

designer to run simulations.

References

1. Carlson-Skalak S, White MD, Teng Y (1998) Using evolutionary

algorithm for catalog design. Res Eng Des 10(2):63–83

2. Pahl G, Beitz W (1996) Engineering design: a systematic approach

(trans: Pomerans A, Wallace K). Springer-Verlag, London

3. Gero JS, Tham KW, Lee HS (1992) Behaviour: a link between

function and structure in design. In: Brown DC, Waldron M,

Yoshikawa H (eds) Intelligent computer aided design. Elsevier,

Amsterdam, pp 193–220

4. Gero JS, Kannengiesser U (2004) The situated function-beha-

viour-structure framework. Des Stud 25(4):373–391

5. Dorst K, Vermaas P (2005) John Gero’s function-behaviour-

structure model of designing: a critical analysis. Res End Des

16:17–26

6. Mitrofanov SP (1966) Scientific principles of group technology

(English translation). National Library for Science and Technol-

ogy, Washington

7. Opitz H (1970) A classification to describe workpieces. Perg-

amon Press, Oxford

8. Gallagher CC, Knight WA (1986) Group technology production

methods in manufacture. Elllis Horwood Limited, Chichester

9. Alexander C (1964) Notes on the synthesis of form. Harvard

University Press, Cambridge

Engineering with Computers (2011) 27:183–192 191

123



10. Oldknow KD, Yellowley I (2001) Design, implementation and

validation of a system for the dynamic reconfiguration of open

architecture machine tool controls. Int J Mach Tool Manuf

41:795–808

11. Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and

perspectives in flexible and reconfigurable manufacturing sys-

tems. J Intell Manuf 13(2):135–146

12. Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G, Ulsoy G,

van Brussel H (1999) Reconfigurable manufacturing systems.

CIRP Ann 48:527–540

13. Wirfs-Brock R, Wilkerson B, Wiener L (1990) Designing object-

oriented software. P T R Prentice Hall, Englewood Cliffs

14. Graham I (1991) Object oriented methods. Addison-Wesley

Publishing Company, Wokingham

15. Marston T (2006) What is object-oriented programming?

http://www.tonymarston.net/php-mysql/what-is-oop.html. Acces-

sed 14 Nov 2007

16. Lutz M, Ascher D (2004) Learning python. O’Reilly, Sebastopol

192 Engineering with Computers (2011) 27:183–192

123

http://www.tonymarston.net/php-mysql/what-is-oop.html

	A theoretical framework for an intelligent design catalogue
	Abstract
	Introduction
	Objective
	Theoretical framework
	General design theory
	The design process
	Connecting function to form

	Manufacturing
	Group technology
	Reconfigurable systems

	Object-oriented programming

	Linking of manufacturing, OOP and design
	Summary
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


