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Abstract The cyclic three-point bending test has been

frequently used for the determination of material hardening

parameters. The advantage of this test is that it is simple to

perform, and standard test equipment can be used. The

disadvantage is that the material parameter identification

requires some kind of inverse approach. The current

authors have previously, successfully been utilizing a

method, in which computed force–displacement relations

have been fitted to corresponding experimental results. The

test has been simulated by means of the Finite Element

code LS-DYNA, and the material parameters have been

determined by finding a best fit to the experimental results

by means of the optimization tool LS-OPT, based on a

response surface methodology. A problem is, however, that

such simulations can be quite time consuming, since the

Finite Element model has to be analyzed numerous times.

In the current paper, an alternative numerical methodology

will be described, in which instead calculated moment–

curvature relations are fitted to experimental ones. This

optimization procedure does not involve any solution of the

FE problem. The Finite Element problem needs only to be

solved a limited number of times in an outer iteration loop.

This fact results in a considerable reduced computational

cost. It is also demonstrated that the parameters determined

by this new method correspond excellently to the ones

determined by the conventional method.

Keywords Parameter identification � Inverse modeling �
Hardening law � Three-point bending � Optimization

1 Introduction

When a metal sheet is drawn over a die corner, the material

is subjected to bending, subsequent unbending, and

rebending. In order to perform an accurate simulation of

such a sheet metal forming process, it is necessary to have

an appropriate constitutive model, which can consider the

phenomena that occur during cyclic loading of metal

sheets, such as Bauschinger effect, transient behavior,

permanent softening, and work-hardening stagnation.

Several purely phenomenological material models have

been proposed to describe the cyclic behavior of metal

sheets. The complexity of these models varies within a

wide range with respect to number of material parameters

and history variables. The material parameters involved

have to be determined from some kind of cyclic, loading–

unloading experiment. In theory, the most simple and

straightforward test is a tensile/compression test of a sheet

strip. In practice, however, such a test is very difficult to

perform, due to the tendency of the strip to buckle in

compression. In spite of these difficulties, some successful

attempts to perform cyclic tension/compression tests have

been reported in the literature; see e.g. Refs. [1–4]. How-

ever, common for these tests is that rather complicated test

rigs have been designed and used in the experiments, in

order to prevent the sheet strip from buckling.
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Another kind of tests that frequently have been used for

the determination of material hardening parameters is some

kind of bending test, see e.g. Refs. [5–8]. The advantage of

this kind of tests is that they are simple to perform, and

standard test equipments can be used. However, a bending

test will involve inhomogeneous stress and strain distri-

butions in the sheet specimen, and the stress–strain rela-

tionship cannot be directly determined from the

experiment. This means that the material parameters have

to be determined by some kind of inverse approach. Usu-

ally, the experiments are simulated by FEM, and the

material parameters are identified by means of some opti-

mization technique.

A well-established method for physical optimization

processes is the response surface methodology (RSM)

[9–11]. RSM is a method for replacing a complex and in

general unknown model by an approximate one based on

results calculated at various points in the design space.

In the present study, a cyclic three-point bending test has

been used to identify the material parameters for four dif-

ferent kinematic hardening laws of various complexities,

and for four different materials, of which only two are

accounted for in the present report. The three-point bending

tests were simulated by the Finite Element code LS-DYNA

[12]. The inverse methodology for the determination of the

material parameters was based on a successive RSM

implemented in the optimization code LS-OPT [13]. In the

optimization procedure, a calculated cyclic force-deflection

response was fitted to a corresponding experimental one.

The drawback of the above procedure is that it can be

quite time consuming, especially for more complex hard-

ening laws with many material parameters to be deter-

mined. The main reason for the long computing times is the

fact that the same FE model has to be analyzed numerous

times. In the present paper, an alternative methodology is

presented, which can reduce the computing time consid-

erably. The main difference to the ‘‘standard’’ procedure

above is that in the new method the moment–curvature at

the middle of the sheet strip is studied instead of the force–

displacement relationship. The number of times the FE

model has to be analyzed can by this methodology be

considerably reduced.

2 Constitutive equations

2.1 Introductory remarks

Five different hardening laws were considered in the

present study: an isotropic hardening law, a mixed isotro-

pic–kinematic hardening law attributed to Hodge [14] and

further developed by Crisfield [15], the Armstrong–

Frederick hardening law [16], the Geng–Wagoner

hardening law [17], and, finally, the Yoshida–Uemori

hardening law [18]. All these criteria are implemented by

the authors in the finite element code LS-DYNA [12]

together with the eight parameter yield criterion by Bana-

bic and Aretz [19, 20]:

�r ¼ 1

2
CþWj jMþ C�Wj jMþ 2Kj j
� M

�� � 1
M

ð1Þ

The functions C, W and K are defined as

C ¼Lrxx þ Kryy

2

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nrxx � Pryy

� �2

4
þ Q2rxyrxy
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K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rrxx � Sryy

� �2

4
þ T2rxyrxy

s

ð2Þ

where the parameters L, K, N, P, Q, R, S, and T are iden-

tified from uniaxial and bulge test data.

Below follows a brief description of the four kinematic

hardening models used in the current study. For a detailed

description of these hardening laws, the reader is referred

to a recent paper by the authors Eggertsen and Mattiasson

[21].

2.2 Mixed hardening

The hardening law that is called ‘‘mixed hardening’’ in this

study is a combination of isotropic and kinematic harden-

ing, where the proportion of isotropic and kinematic

hardening is weighted with a scalar m. The scalar m rep-

resents the ratio of plastic strain associated to isotropic

hardening, whereas the ratio (1 - m) is left for the kine-

matic hardening response. From this, it follows that:

_ep ¼ _ep
isoþ _ep

kin ¼ m _ep þ ð1� mÞ _ep

0�m� 1
ð3Þ

The evolution of the back-stress a can then be expressed as

a
� ¼ H0 � ~H0m

� �_�e p

�r
r� að Þ ð4Þ

where H0 is the slope of the plastic hardening curve at the

strain level �ep and ~H0 is the slope at �ep
iso ¼ m�ep:

The mixed hardening law is able to consider the

Bauschinger effect and the permanent softening behavior.

2.3 Armstrong–Frederick hardening

The second hardening law is the well-known one by

Armstrong and Frederick [16], who prescribed the back-

stress evolution according to:
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a
� ¼ Cx asat

r� a
�r
� a

h i
_�e p ð5Þ

where asat and Cx are material parameters. The Armstrong–

Frederick hardening law is able to consider the Bauschin-

ger effect and the transient behavior.

2.4 Geng–Wagoner hardening

The Geng–Wagoner hardening law is an extension of the

Armstrong–Frederick law, and involves two surfaces: a

yield surface and a bounding surface. The Geng–Wagoner

law includes translation of the bounding surface, in order to

capture the permanent softening effect. The evolution

equations are as follows

a
� ¼ Cx

asat

�r
ðr� aÞ � ða� bÞ

h i
_�e p ð6Þ

b
�
¼ H0 � ~H0m

�r
ðr� aÞ_�e p ð7Þ

where a is the center of the yield surface and b is the center

of the bounding surface. As can be seen from Eq. 7, the

hardening of the bounding surface is governed by the

mixed hardening law (Eq. 4). The Geng–Wagoner hard-

ening law can consider the early re-yielding, the transient

behavior and the permanent softening effect.

2.5 Yoshida–Uemori hardening

The final hardening law is the one by Yoshida and Uemori.

The model includes both translation and expansion of the

bounding surface, while the active yield surface only

evolves kinematically. The evolution of the back-stress is

expressed as

a
� ¼ a�

�
þ b
�

ð8Þ

with

a�
�
¼ Cx �

Bþ R� Y

Y
� r� að Þ � a�

� �
� _�ep

b
�
¼ k � b

Bþ R
� r� bð Þ � b

� �
� _�ep

where a* is the relative kinematic motion of the yield

surface with respect to the bounding surface, b is the center

of the bounding surface, B is the initial size of the bounding

surface, Y is the size of the yield surface, Cx and k are

material parameters, and R, finally, is the isotropic

hardening of the bounding surface:

_Rð�epÞ ¼ k Rsat � Rð�epÞð Þ_�ep ð10Þ

In Eq. 10, Rsat is a material parameter describing the

upper limit of isotropic hardening. In the current work, a

slightly modified version of this hardening law is used, in

which only the parameters Cx, k, b, and h are employed.

For a detailed description of the current implementation,

see Eggertsen and Mattiasson [21]. The Yoshida–Uemori

hardening law considers all the effects presented in Fig. 1.

2.6 Number of material parameters and history

variables: a summary

The number of material hardening parameters and history

variables for the hardening models described above is

summarized in Table 1. Especially, the number of hard-

ening parameters is important in the present context, since

it has a great impact on the computing time needed for

determining the parameters in the optimization procedure.

3 Materials

Two different steel grades are considered in the current

report: a DP600-steel and a 220IF-steel. To determine the

parameters for the yield criterion discussed in Sect. 2.1,

yield stresses and Lankford parameters (r values) for the

rolling, transverse and diagonal directions, respectively,

Fig. 1 Schematic unloading curve to illustrate the Bauschinger

effect, the transient behavior, the permanent softening behavior, and

the work-hardening stagnation

Table 1 Number of material hardening parameters and history

variables in the hardening models studied in the present work

Hardening model Number of material

hardening parameters

Number of history

variables

Isotropic 0 1

Mixed 1 4

Armstrong–Frederick 2 4

Geng–Wagoner 3 7

Yoshida–Uemori 4 10
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were determined. These values were obtained from simple

uniaxial tension tests in the directions of interest. The

uniaxial tests were complemented with viscous bulging

tests, aiming at providing plastic hardening data for strain

levels much higher than what can be achieved in ordinary

tensile tests and providing data for the equibiaxial yield

stress rb and r-value rb. The yield stresses, r values and

thicknesses for the two materials are listed in Table 2.

4 Three-point bending test

4.1 Experimental set-up

The cyclic three-point bending test is a relatively simple

and convenient experiment for determining the kinematic

hardening parameters for sheet metals. The test has been

suggested in the literature by, e.g., Zhao and Lee [5]. The

equipment used in the current experiments has previously

been described in Omerspahic et al. [6] and Eggertsen and

Mattiasson [21]. The test set-up is illustrated in Fig. 2.

Especially, the design of the end supports should be

noticed. These provide a moment-free support, while the

sheet strip is allowed to slip freely between two rollers in

the axial direction. The punch in the middle is moved with

a prescribed sinusoidal displacement. The distance between

the end supports is 100 mm, and the width of the sheet strip

is 20 mm for the 220IF material and 25 mm for the DP600

material. The punch force is measured by means of a load

cell. During the test, the punch force and punch displace-

ment are recorded. The error in displacement reading is

estimated to ±0.02 mm and in force reading ±3 N.

The maximum strain level reached in this test is about

5%. This is a lower level than what is achieved in many

practical cases. On the other hand, the same set of hard-

ening parameters has to be assumed to be applicable for all

strain levels.

4.2 FE model

In the inverse approach for determining the hardening

parameters, the bending test was simulated by means of the

explicit FE code LS-DYNA [12]. One quarter of the sheet

strip was modeled with triangular shell elements. Conver-

gent results were obtained with 160 elements and 9 inte-

gration points through the thickness. The triangular shell

element used here is the linear, Mindlin one by Kennedy

et al. [22]. The FE model is shown in Fig. 3. Special care

has been devoted to a correct modeling of the end supports.

Just as for the experimental set-up, the support is free to

rotate around its own axis. The support was modeled with

two rigid plates with a frictionless contact to the specimen,

such that the sheet material can slip freely in the longitu-

dinal direction.

5 Optimization algorithm

5.1 The response surface methodology

The inverse procedure used to determine the material

hardening parameters was based on a RSM and the opti-

mization software LS-OPT [13]. RSM is a mathematical

method for constructing smooth approximations of

Table 2 Mechanical properties for the steel grades included in the current report

Material r0 (MPa) r45 (MPa) r90 (MPa) rb (MPa) r0 r45 r90 rb Thickness (mm)

TKS-DP600HF 363.70 382.60 401.20 374.70 0.46 0.88 1.00 0.85 1.46

TKS-220IF 226.70 238.90 246.40 276.98 1.60 2.10 2.42 0.96 0.96

Fig. 2 Experimental set-up

used in the three-point cyclic

bending tests: a a picture of the

experimental equipment;

b a sketch of the test

arrangement
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complex functions in a design space. The approximations

are based on numerous points in the multi-dimensional

design space, and they are most often based on low-order

polynomial functions for simplicity. The response surface

is fitted to the points in the design space using regression

analysis, usually least square approximations.

Thus, the experimental points construct an approximate

design space wherein an objective function can be opti-

mized. The choice of locations of the points in the design

space, the experimental design or design of experiments

(DOE), is done in a, in some meaning, optimal way. There

are several experimental design criteria available in

LS-OPT. We have in this study chosen the so-called

D-optimality criterion, which is the default method in

LS-OPT.

Generally, a high-order polynomial approximation

yields a better accuracy and faster convergence toward an

optimum than a low-order approximation. On the other

hand, a high-order approximation requires more points

(more function evaluations) in the design space, and

thereby more computing time. In the current study, a

second-order polynomial approximation has been found to

be an optimal choice.

In LS-OPT a so-called sequential response surface

method (SRSM) is used. In SRSM, a subspace of the design

space, a region of interest, is used to determine an

approximate optimum. A region of interest is based on

assumed limits of the design variables. A new region of

interest is prescribed for each new iterative step in the

optimization process by reducing its size (zooming), and

centering it around the last calculated optimum point

(panning). A schematic illustration of the pan and zoom

procedure is shown in Fig. 4.

The necessary number of experimental points is

decided by the number of design parameters, the choice

of polynomial approximation, and the chosen experi-

mental design criterion. The number of required experi-

mental design points for the D-optimality criterion is

listed in Table 3 for first- and second-order polynomial

approximations.

The various steps in the optimization procedure, during

a single iteration, can, thus, be summarized as follows:

• Define, in some meaning, an optimal choice of points in

the design space (DOE).

• Calculate the objective function in all points.

• Fit a polynomial surface to the calculated points

(response surface).

• Calculate the minimum point on the response surface

by means of some kind of gradient-based optimization

procedure.

• Define a new region of interest (panning and zooming).

• Return to step 1 and continue until convergence.

5.2 User-defined parameters

There are, thus, a number of parameters, which the user has

to select, and which he must be aware of can influence both

the efficiency of the optimization procedure as well as the

result of it. Following is a list of such parameters:

• The order of the polynomial approximation (here,

second order).

• Choice of DOE (here, the D-optimality criterion).

• Initial limits of the design variables (initial region of

interest).

• Start values for the design variables.

Fig. 3 FE model of the three-point bending test

Design variable 1

Optimum

Design space

Start guess

Initial region of interest

D
es

ig
n 

va
ria

bl
e 

2

Fig. 4 Schematic illustration of the pan and zoom method for the

case of two design variables

Table 3 Number of experimental points required for experimental

designs for linear and quadratic approximations, respectively

Number of variables Linear approx. Quadratic approx.

1 4 5

2 5 10

3 7 16

4 8 23

5 10 32
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6 Procedures for material parameter identification

from the three-point bending test

6.1 Standard identification procedure

In the previously used identification procedure, here

called the ‘‘standard’’ procedure, for hardening parameter

identification, simulated and experimental punch forces

were compared, and the corresponding mean squared

error (MSE) was calculated. In LS-OPT, the MSE is

defined as

e ¼ 1

P

XP

p¼1

Wp
fpðxÞ � Gp

sp

� �2

¼ 1

P

XP

p¼1

Wp
epðxÞ

sp

� �2

ð11Þ

where fp(x) are the values on the computed curve, Gp are

the values on the target curve, x is a vector with design

variables, sp are residual scale factors, and Wp are weights

applied to the square of the scaled residual (fp - Gp)/sp at

point p. For all variables, the index p is running from 1 to

P. That is, the smaller error, the better fit to the experi-

mental data. In this work, all parts of the target curve are

considered to be of equal importance, and the weight and

scale factors are therefore set to 1.

With this in mind, Eq. 11 can be rewritten as

eðpÞ ¼ 1

P

XP

p¼1

fpðpÞ � Gp

� �2 ð12Þ

where fp(p) are the predicted punch forces, Gp are the

corresponding values from the experimental three-point

bending test, and p is a vector with material hardening

parameters. The MSE function given by Eq. 12 is

considered as the objective function in the design space,

defined by

pmin
i � pi� pmax

i i ¼ 1; 2; . . .; n ð13Þ

where pi
min and pi

max represent the lower and the upper

limits, respectively, of the design variable pi, and n is the

number of unknown material parameters.

A scheme for the standard identification model is pre-

sented in Fig. 5. Based on an initial guess, the LS-OPT

software prepares N input decks for the FE simulations,

where N is the number of experimental design points

needed for building the design space described in Table 3.

Each input deck has different material parameter set-ups

inside the design space. Each FE simulation is run, and the

predicted punch forces are compared to the experimental

punch forces, and the MSEs are calculated according to

Eq. 12. Based on the MSE values, the LS-OPT software

calculates an optimal parameter set-up by means of the

RSM. If a converged solution is not found, the process

starts all over again, but with a new region of interest in the

design space.

For building the design space, the FE model presented

earlier in Sect. 4.2 has been analyzed between 5 and 23

times in each iteration step depending on the current

hardening model (see Table 3). For the hardening model

with one single hardening parameter (mixed hardening), a

total of 25–40 function evaluations were needed, while the

model with four hardening parameters (Yoshida–Uemori)

required 150–200 function evaluations. Obviously, this is a

very CPU time consuming procedure, and in order to

reduce the computational effort, an alternative and more

efficient identification procedure has been developed. This

method is presented in the next section.

6.2 Modified identification procedure

As described in the previous section, a large number of

solutions of the FE problem are needed in the ‘‘standard’’

methodology, leading to an extensive computing time. In

order to reduce the total CPU time, a more effective

identification procedure is presented below.

Instead of using the punch force, the bending moment at

the center cross-section of the sheet strip can be used as a

target value in the MSE criterion. Equation 12 can then be

rewritten as

FE-simulations

Outputs:
Applied forces:  Pi(t)    i=1,2,...,N

Start guess

Calculate:

Mean Squared Errors MSEi    i=1,2,...,N

Calculate:
new material hardening parameters

Check:
Convergence?  

No

Stop iterations

Yes

Sim1 Sim2 SimN

Pan & Zoom

of region of 
interest

Fig. 5 Scheme for the standard identification procedure
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eðpÞ ¼ 1

P

XP

p¼1

Mc
pðpÞ �Mt

p

	 �2

ð14Þ

where Mp
c(p) represent the calculated bending moments

as a function of the unknown material parameter vector

p, and Mp
t represent the target bending moments. The

MSE function given by Eq. 14 is now considered as the

objective function in the design space defined according

to Eq. 13.

A simple equilibrium equation around the mid-section

of the sheet strip yields the target moment according to (see

Fig. 6):

Mt ¼ P

2
Lþ Fxuz ð15Þ

where L is the length between the bearing and the applied

punch load, uz is the vertical prescribed displacement of the

punch, P is the punch force, and Fx, finally, is the hori-

zontal reaction force.

In the calculation of the bending moments Mc(p), it is

assumed that the strains are linearly distributed through

the thickness. Based on this assumption, the bending

moment about the sheet centerline is determined by

integration of the tangential stresses over the thickness

such that:

McðpÞ ¼ w

Zt=2

�t=2

rxðp; zÞz dz ð16Þ

where t and w are the sheet thickness and sheet width,

respectively, and z represents the through thickness

coordinate.

The calculation of the strains through the thickness

presupposes that the curvature j of the mid-section is

known. The stresses can then be calculated from the known

strains through the constitutive relation, which involves the

hardening law. These calculation steps are schematically

illustrated in Eq. 17:

j�!z exðzÞ��������������!
constitutive relation

rxðp; zÞ ð17Þ

There are, however, two problems in connection to the

calculation scheme described by Eqs. 15–17. These problems

are that neither the force Fx in Eq. 15 nor the curvature j in

Eq. 17 is a known quantity from the experiment.

To circumvent these problems in the identification

procedure for the hardening parameters, the calculations

are performed in two nested iteration loops. In the outer

loop (see Fig. 8), the FE problem is solved once for the last

calculated set of hardening parameters. As outputs from the

FE simulation, the force Fx and the strains at the extreme

layers of the mid-section are recorded. From these strains,

the curvature of the mid-section can be easily calculated.

Knowing these quantities, it is now possible to enter the

inner iteration loop (see Fig. 9), which is basically identical

with the calculation scheme for the standard method described

in Fig. 5, with the difference that the MSEs now are calculated

based on the mid-section moments according to Eq. 14.

An illustration of a typical moment–curvature curve used as

target curve in the optimization routine can be seen in Fig. 7.

The calculations proceed until convergence is reached in

the outer iteration loop for the extreme layer strains in the

mid-section. With this procedure, the total number of

required FE analyses is limited to 8–10. This results in a

drastic reduction of computing time compared to the

standard procedure for hardening parameter identification.

6.3 Performances of the identification procedures

The performances of the two models were evaluated based

on two criteria: the MSE value and the total CPU time. The

MSE value is an indicator of the accuracy of the material

model with the obtained material parameters (the lower

MSE value, the better accuracy).

It should be noted that the CPU time is strongly

dependent on the starting guess, and the values presented in

this report are based on an arbitrary, but reasonable initial

guess. Furthermore, it should be mentioned that the CPU

Bearing Punch

L=50 m m

z

x

uz

Norm al force, Fx
Reaction forces

Bending m om ent,M

Punch force, P

Fig. 6 Acting forces on one half of the sheet strip

Fig. 7 Illustration of a typical moment–curvature curve used as

target curve in the optimization procedure for the new approach
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times indicated in the tables below are the time to run the

problem on one, single processor. For the basic identifi-

cation procedure, there is a possibility to perform the cal-

culations on several parallel processors. For instance, for

the Armstrong–Frederick hardening law, with two material

parameters, it is possible to perform ten simulations at the

same time. This means that the real time (clock time) for

the identification procedure can be reduced substantially.

The CPU times and the MSEs for the two methods and

for the two materials are presented in Tables 4 and 5. The

tables clearly show that the two methods yield more or

less the same results in terms of MSE value. However, the

total CPU time is much lower for the modified method.

This is due to the fact that the total number of FE

simulations is heavily reduced for the modified method.

The total number of FE simulations can also be seen in

Tables 4 and 5. However, it should be mentioned that the

new method leads to an increased number of total opti-

mization loops, since a whole optimization has to be

performed after each FE simulation (the inner loop illus-

trated in Fig. 9). However, this optimization procedure is

fast and only takes a few minutes. The total number of

optimization iterations needed inside this inner loop is

dependent on the number of unknown parameters, and of

the quality of the parameter set-up used in the FE simu-

lation. In Figs. 10 and 11, the resulting force–displace-

ment curves for the four hardening models are compared

with experimental curves.

FE-simulation

Output:
Strains at extreme layers: εu(t), εl(t) 

Normal forces:  Fx(t)
z-displacements:  uz(t)

Optimization loop (minimize MSE)

Start guess

Calculate:

Target moments:  Mt(t) = P(t)/2 L + Fx(t) uz(t)

Curvatures: κ(t) ≈ [εu(t) + εl(t)]/thick

Calculate:

Strains and stresses:  ε(t, z) = κ(t) z   → σ(t, z)

Section moments:  Mc(t) = ∫ σ(t, z) z dz

Mean Squared Error (MSE)

LS-OPT
Calculate new material hardening parameters

Check:
Convergence of 
extreme layer

strains?

No

Stop iterations
Yes

Fig. 8 Scheme for the modified

parameter identification method
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It should, finally, be mentioned that for some cases, there

exist several optimal solutions that give more or less the

same MSE value. This is especially evident for the Yos-

hida–Uemori model that involves four unknown material

parameters. Both the standard and the modified procedure

are able to find these different optimal solutions. Which

optimum that is found depends on the initial starting guess.

However, based on the same initial guess, the two methods

do not necessarily end up with the same optimal solution.

7 Conclusions

The cyclic three-point bending test has been used to

determine the material parameters for various hardening

laws. Two different inverse approaches have been used, in

which the test has been simulated by means of the FE code

LS-DYNA. A response surface method and the optimiza-

tion code LS-OPT have been used to determine the optimal

material parameters.

In the original inverse identification methodology, the

parameters were determined to give an optimal fit to the

measured force–displacement curve. This procedure,

however, is quite time consuming, since numerous FE

simulations have to be performed.

In the current paper, an alternative procedure is pro-

posed, in which the calculated moment–curvature curve is

fitted to the corresponding measured one. This optimization

procedure does not involve any solution of the FE problem.

The Finite Element problem needs only to be solved a

limited number of times in an outer iteration loop. It has

been demonstrated that this procedure offers considerable

advantages in terms of computing time. It has also been

shown that the parameters determined by this new method

correspond excellently to the ones determined by the

conventional method.

Table 4 Obtained MSEs, CPU times and total number of FE simulations for the standard and the modified identification procedures for the

TKS-DP600 material

Hardening model Standard identification method Modified identification method

MSE CPU time (h) No. of FE-sim MSE CPU time (h) No. of FE-sim

Mixed hardening 0.09105 6.0 30 0.09096 2.0 4

Armstrong–Frederick 0.00463 16.8 70 0.00456 2.8 5

Geng–Wagoner 0.00213 26.4 96 0.00219 4.0 8

Yoshida–Uemori 0.00168 75.0 230 0.00171 8.0 13

Table 5 Obtained MSEs, CPU times and total number of FE simulations for the standard and the modified identification procedures for the

TKS-220IF material

Hardening model Standard identification method Modified identification method

MSE CPU time (h) No. of FE-sim MSE CPU time (h) No. of FE-sim

Mixed hardening 0.09853 8.0 30 0.09804 2.2 5

Armstrong–Frederick 0.08605 18.6 70 0.08621 3.0 6

Geng–Wagoner 0.07653 23.2 96 0.07598 4.3 8

Yoshida–Uemori 0.07186 82.5 262 0.07164 9.0 14

Calculate:
Strains and stresses:  (t, z) = (t) z   → σ(t, z)
Section moments:  Mc(t) = ∫ σ(t, z) z dz

Calculate:

Mean Squared Errors MSEi    i=1,2,...,N

Calculate:
new material hardening parameters

Check:
Convergence?  

No

Stop iterations
Make a new FE-simulation

Yes

Sim1 Sim2 SimN

Pan & Zoom

of region of 
interest

LS-OPT

Fig. 9 Scheme for the LS-OPT part in Fig. 8
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Fig. 10 Fitting of simulated three-point bending tests to experimental results using the modified identification procedure and the five different

hardening laws (two cycles). Material: TKS-DP600
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Fig. 11 Fitting of simulated three-point bending tests to experimental results using the modified identification procedure and the five different

hardening laws (two cycles). Material: TKS220IF
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