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Abstract The mechanical function of soft collagenous

tissues is inherently multiscale, with the tissue dimension

being in the centimeter length scale and the underlying

collagen network being in the micrometer length scale.

This paper uses a volume averaging multiscale model to

predict the collagen gel mechanics. The model is simulated

using a multiscale component toolkit that is capable of

dealing with any 3D geometries. Each scale in the multi-

scale model is treated as an independent component that

exchanges the deformation and average stress information

through a scale-linking operator. An arterial bifurcation

was simulated using the multiscale model, and the results

demonstrated that the mechanical response of the soft tis-

sues is strongly sensitive to the network orientation and

fiber-to-fiber interactions.

Keywords Tissue engineering � Multiscale computation �
Volume averaging � Collagen fiber

1 Introduction

Tissue engineering (TE) represents the confluence of work

from clinic, engineering, and science to reach their ultimate

goal—successful clinical therapies. The clinical perspec-

tive on TE is strongly applications-oriented and now has

reached the stage of incorporating living cells into proto-

type tissue-engineered clinical solutions such as vascular or

skin grafts, and heart valves [1, 2]. The success of these

clinical applications requires a full understanding of the

mechanical behavior of the tissues, an idea put forward as

functional tissue engineering [3]. Such a tissue is formed

by the integration of an underlying network of collagen

fibers, cells and intercellular substances. The basic

mechanical units of collagenous tissues are fibers that have

diameters ranging from 0.1 to 0.5 lm [4]. The mechanical

properties of the tissue depend on how the fibers, cells, and

extracellular substances are organized into a structure [5].

However, in physiological and biomechanical applications,

the major interest is focused on the behavior of the tissues

at centimeter length scale. Therefore, a model to analyze

the mechanical behavior of soft tissues at both the fiber and

tissue scales in a coupled manner is needed.

A multiscale structural model approach that incorporates

the microstructure of the underlying fibril network has the

potential to describe complex tissue behavior. Essential to

such a model is the assumption that the overall mechanical

behavior of the material derives from the sum of the micro-

responses of its constituents [6–8]. A volume-averaging-

based structural model has been developed to provide the

linkage between the fiber-level mechanics and the behavior

of biomechanical tissue components [9, 10]. This model

captured the three-dimensionality and heterogeneity of the

network, the interaction among the collagen fibers, and the

realignment of the fibers to predict the mechanical behavior
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of collagen networks. This model has been solved by

employing a three-dimensional Galerkin finite element

method for the macroscopic scale problem and with the

collagen network microstructure represented as a three

dimensional fibril network to study the elastic mechanical

behavior for soft tissues in [11]. To date, these methods

have been applied to only simple geometries. However, the

structures of both the native and artificial engineered tis-

sues are often complex, for example Fig. 1 shows an

arterial bifurcation. To study the mechanical behavior of

general soft tissues requires the multi-scale model must be

able to deal with any 3D geometries.

This paper presents a procedure that implements the two

scale structural model in a multiscale component toolkit

(MCTK) that is capable of dealing with arbitrary three-

dimensional complex geometries. Each scale is treated as

an independent component and exchanges the necessary

information through a scale-linking operator. Two key

methodologies, parallelization and adaptivity, are impor-

tant for the practical application of the multiscale

simulations to realistic tissue components.

This paper is organized as follows: Sect. 2 presents the

multiscale structural model used for describing the

mechanical behavior of soft tissues. Section 3 describes the

procedure to solve the model in the MCTK. Section 4 and 5

discuss the parallel processing and adaptivity strategies

used. Results of the arterial bifurcation under uniaxial

extension are given in Sect. 6.

2 Multiscale model of collagen mechanics

Volume-averaging theory is used to couple the macro-

scopic and microscopic scales. The microscopic scale,

which represents the collagen network, is modeled as a

three-dimensional, mechanical network of collagen fibers

idealized as uniaxial members. The collagen network

provides a statistical representation of the actual collagen

architecture, and is contained in a representative volume

element (RVE). In the RVE, the fibers are linked to each

other at cross-links. The mechanical response of the indi-

vidual fiber is governed by a constitutive equation [10, 16].

Separate RVEs are constructed at each integration point of

the finite element mesh of the macroscopic domain, and the

deformation of the RVE boundary is determined from the

macroscopic deformation through the finite element solu-

tion of the macroscopic scale problem. The deformation of

the RVE boundary causes the fibers to deform, and the

force balance among the fibers determines the network

equilibrium position and the local network forces. From the

local network forces and volume-averaging theory, the

averaged (macroscopic) Cauchy stress tensor is calculated

for each RVE and linked to the macroscale where the

averaged stress balance is solved. Thus, by solving a set of

micro-macro problems, the tissue-level behavior can be

related directly to the fibril mechanics and the network

structure. In this way, the model can account for the ori-

entation of the network, the interaction among the fibers,

and the realignment of the fibers during deformation. These

phenomena play key roles in the mechanical response of

soft tissues. As an example, Fig. 2 shows the multiscale

model for an engineered tissue with the finite element mesh

Fig. 1 Geometry for an arterial bifurcation [12]

Fig. 2 Multiscale formulation of the mathematical model for an

engineered arterial bypass grafts with complex geometry [13]
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for the macroscopic scale domain and the fibril network for

the microscopic scale.

2.1 Governing equations

Three governing equations are required for the formulation

of the mathematical model: a constitutive equation for

the collagen fiber, the equation for the volume-averaged

Cauchy stress tensor, and the macroscopic scale stress

balance. The collagen fiber exhibits a non-linear force-

elongation response, which is described by a phenomeno-

logical equation of the form [10, 15],

Ff ¼
Ef Af ðeBef � 1Þ

B
; ð1Þ

where Ff is the force exerted on the fiber, Af is the fiber

cross-sectional area, B is a constant, ef is the fiber’s Green

strain computing by,

ef ¼ 0:5ðk2
f � 1Þ; ð2Þ

where kf is the fiber stretch ratio. In the limit kf ? 1, (1)

reduces to a linear elastic fiber with modulus Ef.

The volume-averaged Cauchy stress tensor, Sij, is cal-

culated from the microscopic stress tensor, sij through

integral averaging [6, 7],

Sij ¼
1

V

Z

V

sijdV; ð3Þ

where V is the volume of RVE and indexcial notation is

used throughout the paper. Multiplying the microscopic

stress tensor with the Kronecker delta dik we have,

sij ¼ skjdik ¼ skjxi;k; ð4Þ

where x is the directional vector. Under conditions of

microscopic equilibrium, i.e. skj,j = 0, the divergence

theorem gives,

Sij ¼
1

V

Z

oV

nkskjxidS ¼ 1

V

Z

oV

xitjdS; ð5Þ

where tj = nkskj is the traction exerted on the boundaries of

RVE. For a network of thin fibers, each boundary cross-

link may be treated as a point with the integral of the

traction being the force on the cross-link, so (5) can be

written as [17],

Sij ¼
1

V

X
boundary crosslinks

xifj; ð6Þ

where xi is the i-component of the position of the boundary

cross-link and fj is the force developed on the boundary

cross-link in the j-direction.

The third equation in the multiscale engineering tissue

model describes the force balance for the macroscopic

scale. Using Leibnitz’s theorem and again invoking

microscopic equilibrium (sij,j = 0), we get an expression

for the divergence of the macroscopic stress tensor [16],

Sij;i ¼
1

V

I
ðsij � SijÞuk;igkdS; ð7Þ

where u is the displacement of the RVE boundary and gk is

the unit normal vector. The right hand side of (7) is due to

the correlation between inhomogeneous displacement of

the RVE boundary and local inhomogeneities in the stress

field.

3 Solving the multiscale model through a multiscale

component toolkit

The multiscale model for the soft tissues defined in (1–7) is

solved in six steps as follows,

– The macroscopic boundary value problem in (7) is

discretized over the domain of interest using the

Galerkin finite element method.

– The deformation of the boundary of each RVE is

determined by the macroscopic deformation field.

– The force balance among the fibers in each RVE

defined in (1) is solved.

– The volume-averaged Cauchy stress for the collagen

defined in (6) for each RVE is computed.

– The Cauchy stress is passed to the macroscopic problem.

– The macroscopic problem in (7) uses the stress to

update the finite element deformation field.

A Newton-Raphson iteration is employed for both of the

nonlinear macroscopic finite element and microscopic

force problems until the convergence is achieved [10].

The simulation is completed using a MCTK, which

provides services to coordinate models in multiscale sim-

ulations. Emphasis is placed on defining the appropriate

components needed for the multiscale tissue mechanical

problems while MCTK has been used for an adaptive

concurrent atomistic/continuum multiscale problem [18].

3.1 Multiscale component toolkit (MCTK)

The process of defining and generalizing multiscale simu-

lations in MCTK begins with consideration of the process

of executing a single-scale simulation. Starting from a

generalized problem specification in MCTK, the transfor-

mations involved in performing a simulation are clearly

abstracted into four levels shown in Fig. 3a [19]. The three

types of information on each level are the domain of the

simulation, the governing model, and the set of physical

parameters defined over the domain needed to qualify the

governing model at that level. The top level represents a
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generalized statement of the single-simulation problem

specification. Each lower level represents the result of a

transformation of the information from the previous level.

The first transformation is to convert the problem specifi-

cation into a mathematically complete description. Since

these mathematical descriptions typically can not be solved

directly, an appropriate computational model must be

constructed, which leads finally to a numerical system

appropriate for solution on a digital computer. The

abstraction of a multi-scale simulation employs the same

four-level decomposition as the single-scale simulation

shown in Fig. 3b [19]. The key addition is the structure and

functions needed to perform transformations of information

across scales shown in Fig. 3c.

3.2 Macroscopic continuum component

The macroscopic scale problem of the multiscale model for

soft tissue functions at continuum scale. From the single-

scale four-level viewpoint in MCTK, the problem specifi-

cation can be any mechanical behavior of structures related

to soft tissues such as tendons, ligaments, skin, cartilage, or

arteries etc. Starting from the stress balance in (7), a test

function v is multiplied and integration by parts is applied

over the macroscopic domain X such that,

�
Z

X

vj;iSijdXþ
Z

oX

vjSijNidX�
Z

X

vjQjdX ¼ 0; ð8Þ

where Qj is the right hand side term in (7), Ni is the normal

to the macroscopic domain. The domains are discretized

into finite element meshes and the Sij and Qj values are

calculated from the microscopic averaging volume at each

integration point.

The component to solve (8) in MCTK has the following

functionality:

– Support the definition of the continuum domain with

CAD systems such as Parasolid and Acis [20, 21] using

image data, for example, from contrast-enhanced mag-

netic resonance angiography (CE-MRA) [13]. Starting

from the image data, one approach to construct the solid

models is to produce cross sections to match the lumen

shape of the vessel along the manually selected patches

[13]. Non-uniform rational B-spline (NURB) surfaces

were lofted through the cross sections and bounded to

create Parasolid solid models. More detail related to

imaged based solid model construction can be found in

[14]. The domains in solid model systems are repre-

sented with boundary representation methods for the

continuum level simulation that use the abstraction of

topological entities and their adjacencies to represent

the entities of different dimensions. The actual shape

information of the topological entities can be thought as

geometric information associated with the entity [19]. In

addition to the topological entities and associated shape

information, the interaction with geometric modeling

systems allows the continuum component to define and

maintain a consistent representation of the geometric

domain during the process of solving the problem.

– Generate appropriate meshes for any complex geomet-

ric domains based on the selected finite element method

to be used to solve the problem. In case of tissues with

thin section structures, three-dimensional curved lay-

ered meshes can be constructed [22–24]. The meshes

maintain an association with the continuum domain

representations by relating a set of topological entities

between the explicit and computational domain [25] to

support a full set of operations needed for the reliable

multiscale analysis.

– Define the physical parameters for the governing

equations over the topological entities of the geometric

model [26]. The tensor quantity information is trans-

ferred to the finite element meshes using the association

between meshes and domains and appropriate finite

element shape functions.

Fig. 3 Abstraction of the single-scale and multi-scale computation.

a Abstraction for single scale computation. b Abstraction for multi-

scale computation. c Abstraction for scale-linking operation
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– Provide the flexibility to select a h-version or p-version

adaptation strategy to control the finite element

discretization errors. The h-version adaptive method

modifies the meshes through local mesh modification

tools [27, 28], and the p-version method is to enrich the

polynomial orders of mesh entities [29].

3.3 Microscopic representative volume component

At the microscopic scale of the multiscale model the RVE

is a cubic fibril network of unit length [10]. The fibril mesh

at each RVE is generated by growing segments at ran-

domly nucleation sites inside the cubic volume. Two

segments grow in opposite directions along a randomly

chosen vector at each nucleation site. The segments grow

stepwise by a unit length, and a segment stops growing if it

passes the volume boundaries or has collided with another

segment; either a boundary crosslink or a interior crosslink

is generated at the point of intersection. A fiber is defined

as the line between two crosslinks associated with the same

segment. The deformation of the fiber network causes

the generation of fiber forces that are transmitted to the

crosslinks. A force balance among the crosslinks gives the

equilibrium position of the fibers and the developed net-

work stress [10]. Networks with a preferred orientation are

generated by selecting the random segment direction from

anisotropic distributions.

Each RVE in MCTK is defined as an independent object

that takes the point at the macroscopic continuum domain

as input and constructs a unit cube at the point and ini-

tializes it with a pre-defined fibril network mesh. At each

iteration step, the macroscopic displacement at each point

on the RVE boundaries is calculated and used as an input to

the microscopic problem. The force balance problem for

each fiber is assembled using (1), and the solved micro-

scopic forces are used to compute the average stress and

the derivatives with respect to the macroscopic finite ele-

ment nodes needed to solve (8). Each RVE object is

independent that provides the flexibility to use different

fibril network mesh configurations for different RVEs.

Such capability is useful when the material structure varies

over the domain.

3.4 Information passing scale-linking operator

Acting as a buffer in the multiscale model, the scale-link-

ing operator applies a two-way information passing

strategy to deliver the needed information for each scale.

By retrieving the information from the scale-linking oper-

ator, each component can accomplish its own computation

without interfering with the others. The information

passed from the macroscopic continuum component to the

microscopic Representative volume component includes

the position of the Gauss quadrature point that is used to

construct the unit cube for each RVE and the displacement

deformation field of the finite elements to determine

appropriate boundaries for the RVE. The average Cauchy

stress and its derivatives with respect to the finite element

node positions are passed in the reverse direction and used

by the macroscopic continuum component to assemble and

solve (7).

4 Parallel processing

The computational cost for the multiscale mechanical

problem is substantial. For example, Fig. 2 shows a mesh

with 4,584 macroscopic tetrahedral elements and the total

number of degrees of freedom for the macroscopic scale is

11,000. Considering that 4 integration points are used per

element and each RVE contains 362 fibers that roughly

have 1000 degrees of freedom, the sum of the degrees of

freedom for RVEs is 18 million. Therefore, parallelization

of the multiscale computation is essential for solving the

problems in large three-dimensional complex domains.

Because the RVE dofs are 99.9% of the total degrees of

freedom of the multiscale problem and each RVE is treated

as an independent object in MCTK that can be easily

solved in parallel, the initial parallelization of the multi-

scale computation is focused on parallelizing the

microscopic scale problem and solving the macroscopic

scale problem on one processor (the control processor).

Let ts be the executing time using single processor

system. ts consists of three parts: tmacro, tscale-linking, and

tmicro. Considering that the time for information passing by

using the scale linking operator is much less than the other

two and can be neglected, ts can be approximated as,

ts ¼ tmacro þ tmicro: ð9Þ

Let f ¼ tmacro

ts
; according to the Amdahl’s law [30], the

speedup S(p) can be given as,

SðpÞ ¼ p

1þ ðp� 1Þf : ð10Þ

Equation 10 indicates that the maximum speedup of

applied parallel strategy is limited to 1/f. However, f in the

multiscale mechanics model is about 10-3 * 10-4, which

allows the computation to achieve reasonable speedup on

parallel computer systems of a few hundreds processors.

To minimize the data communication between the

control and other processors, the RVEs of one finite

element are treated as a set such that the deformation

configuration of one finite element needed by all the RVEs

in its closure is only required to be sent to one specified

processor.
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Using the above parallelization methodology to solve

the multiscale problem for soft tissues with NR mesh

regions on p processors, the computation on the control

processor consists of the following steps:

1. Load the model, mesh, and boundary condition

definitions for the macroscopic continuum problem,

2. Compute the number of finite elements ni whose RVEs

are to be distributed to each processor by,

ni ¼
NR

p
þ ði� 1Þ\ðNR%pÞ; i ¼ 0. . .p� 1: ð11Þ

Equation 11 ensures that the control processor (i = 0)

might have one fewer finite element than the other proces-

sors. For example, in case of 20 elements on 3 processors,

the numbers of elements to distribute the RVEs on each

processor are 6 (control processor), 7, 7 respectively.

3. Collect and send the deformation information of the

finite elements to the other processors using the

following procedure.

for i from 1 to p-1

count = 0

iterate the mesh regions and get one region

collect the deformation information of the region

increase count by 1

if count equals to ni, break out of the iteration loop

send out the deformation information to processor i

end for

4. Solve the RVE problems of the remaining n0 mesh

regions on the control processor.

5. Receive the stress and stress derivatives from the other

processors,

6. Assemble and solve the linear algebraic system,

7. Update the deformation of the finite element mesh,

8. Go to step 3 if the convergence tolerance of the

Newton iteration method to solve the macroscopic

problem is not satisfied.

For each of the other processors, the procedure consists

of the following steps:

1. Receive the deformation information from the control

processor,

2. Initialize the RVEs for each finite element at the first

time,

3. Solve the microscopic problem of each RVE,

4. Compute and send the stress and stress derivatives to

the control processor.

The general 3D complex geometric models may require

mixed topology (hexahedral, tetrahedral, prism and pyra-

mid) elements to construct appropriate meshes. Different

topology mesh entities have different numbers of integra-

tion points, determining the number of RVEs per element.

Therefore, the information passed between the control and

slave processor must be able to indicate any combination

of the mesh topology and integration order. MPI_send

and MPI_recv [31] are applied for the communication

between processors with the specified source and destina-

tion processors.

5 Adaptivity

The objective of applying adaptive methods to the multi-

scale simulations of tissues is to achieve the specified

solution accuracy with less computational cost. The adap-

tive methodologies must consider error control at each

scale as well as the scale linking operators.

At the macroscopic scale, h-version, p-version, or

hp-version adaptive methods are the common methodo-

logies to control the finite element discretization error. The

h-version method modifies the finite element meshes, and

the p-version method assigns appropriate polynomial order

for elements or element coordinates. The hp-version

method is the combination of both of the methods. These

approaches can improve the computational efficiency by

reducing the number of the finite elements or the inte-

gration points per element at the macroscopic scale, which

leads to a number reduction of the RVEs at the micro-

scopic scale. Appropriate error estimators and indicators to

measure the error over the meshes and place the finer

finite element resolution in the most needed domains are

required to develop these approaches. As an example,

equally distribution of the error over the meshes presented

in [32] can be used as an indicator to refine the finite

element meshes.

At the microscopic scale, the adaptation strategy must

be able to reduce the computation of solving the fiber

force balance problems for RVEs by applying model

adaptivity. Considering that the fiber force problem of

each RVE is determined by the deformation of the RVE

boundaries at each iteration step, we can avoid the

updating of a RVE at iteration steps if its boundary

deformation have undergone very little change since the

previous iteration step is less than a selected criteria. In

this case, the previously calculated force deformation

relations are still acceptable. This adaptive process is reset

for each load step. This approach has been implemented in

the MCTK for the multiscale simulation for soft tissues

given in this paper.
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6 Examples

The arterial bifurcation shown in Fig. 1 under 10% strain

extension along z direction was solved using the multiscale

model in MCTK to demonstrate the capability of the

framework to deal with arbitrary complex geometries. The

extrusion caused the sample length to increase from 28.54

to 31.39 cm. Two meshes with 2 layer elements and 0.5 cm

thickness per layer were generated. Both of the meshes had

the same surface triangulation. The first mesh (mesh 1) had

31,278 tetrahedral regions, and the second one (mesh 2)

was a mixed topology mesh with 10,414 prisms, 16 pyra-

mids, and 4 tetrahedrons. Figure 4 shows the mixed

topology mesh.

The integration schemes selected for different topology

elements were 4, 6, and 8 integration points for tetrahe-

dron, prism, and pyramid respectively. The comparison of

the degrees of freedom for macroscopic and microscopic

scales is presented in Table 1. Both of the meshes had the

same degrees of freedom at the macroscopic scale because

the same number of vertices and linear shape functions are

used. However, the number of RVEs for the mixed topol-

ogy mesh were 50% of those for the tetrahedral mesh

leading to 50% fewer degrees of freedom at the micro-

scopic scale. Therefore, the tetrahedral mesh had

approximately 112 millions degrees freedom, while the

mixed topology mesh had nearly 56.4 millions.

The parameters used to compute the fiber force balance in

(1) were chosen as B = 1.2,
Ef Af

B ¼ 8:0� 10�7N; based on

[10]. The fibril network mesh for each RVE used the same

configuration which had 362 fibers. The problem was solved

in 20 steps with 0.5% incremental extrusion per step.

Figures 5 and 6 show the displacement and stress Szz contour

of the mixed topology mesh at the first and last load step.

Figure 7 showed the realignment of the fibers in a RVE

at position A in Fig. 4. The orientation parameter Xzz along

the z direction of extension can be calculated as [10, 11],

Xzz ¼
P

l2zi=liP
li

ð12Þ

where li is the length of fiber i, lzi is the projection of its

length in the z direction, and the sum is over all fibers in the

RVE. For an isotropic network, the orientation parameter is

1/3, and for a perfectly aligned network, Xzz = 1. The

initial orientation parameter was 0.3365 for the nearly

isotropic network (shown in top of Fig. 7). The orientation

parameter was 0.4012 (shown in bottom of Fig. 7) at the

last load step, indicating the fibers realignment along the

direction of extension.

The multiscale problem was solved on a SCOREC

computer cluster using 32, 64, and 128 processors

respectively. Let bp be the ratio between the executing time

for mesh 1 and mesh 2 with p processors to solve the

multiscale problem such as,

bp ¼
executing time for mesh 2 with p processor

executing time for mesh 1 with p processor
ð13Þ

The ratio bp was 0.46 on 32 processors, 0.47 on 64

processors, and 0.52 on 128 processors. The resultsFig. 4 Mixed topology mesh for the human bifurcate artery

Table 1 Statistics comparison for the two meshes at the macroscopic

and microscopic scales

Macroscopic scale Microscopic scale

Regions Vertices Dof RVEs Dof

mesh1 31,278 7,880 23,409 125,112 112,600,800

mesh2 10,434 7,880 23,409 62,628 56,365,200

Fig. 5 Displacement contour for the mixed topology mesh

Fig. 6 Szz contour for the mixed topology mesh
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demonstrated that appropriately constructed meshes are

capable of achieving the computational efficiency.

Let Sðp
2
Þ be the relative speedup that is the speedup

against program on p
2

processors.

S
p

2

� �
¼

executing time on p
2

processors

executing time on p processors
ð14Þ

Table 2 presents the relative speedup for the two meshes.

The statistics show that the Sðp=2Þ is acceptably close to

the ideal value 2, indicating that the parallel scalability is

well maintained for both of the meshes by using the par-

allel strategy discussed in Sect. 4.

The adaptation strategy discussed in Sect. 5 has been

applied for the mixed topology mesh to solve the problem

with 128 processors. In this strategy, the total number of

the RVEs was constant and the evolution of RVEs at each

iteration step was selected. Figure 9 shows the percentage

of the reduced CPU time when the adaptation was

employed compared to the procedure without adaptation

for each load step. Table 3 presents the number of regions

to compute RVEs in the adaptive iteration loop for load

step 2 and the convergent behavior is roughly the same for

every load step. The statistic show that the number of

regions that do not need to compute the RVEs increased

after the third iteration steps and can be as high as 60% of

the total number of regions in the mesh. Figure 8 shows the

regions that updated RVE computation with respect to

Fig. 7 Fiber meshes at the initial (top) and last (bottom) load step

Table 2 Relative speedup for the two meshes with 64 and 128

processors

Mesh 1 Mesh 2

64 1.92 1.93

128 1.84 1.86

Table 3 Regions computing with/without RVEs in load step 2

Iteration RVEs regions Constant regions

1 10,434 0

2 10,434 0

3 10,098 336

4 4,104 6,330

5 7,702 2,732

6 7,143 3,291

7 5,747 4,687

8 5,204 5,230

Fig. 8 Regions with/without updating RVEs at iteration step 4 in

load step 2
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Fig. 9 CPU saving time for the mixed topology mesh with adaptation
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those used the previous configurations at the third iteration

step in load step 2. The curve in Fig. 9 indicated that

approximately 30% CPU time can be saved. Achieving

additional computational efficiency through equally

dynamic re-distribution of the RVEs over the processors to

achieve load balance is under investigation.

7 Conclusion

An averaging-theory based multiscale methodology to

studying the mechanical behavior of soft tissues was

developed in a MCTK. The model accounts directly for the

collagen microstructure as well as for the interactions

among the fibers that are important to determine the

mechanical response of collagenous materials. The com-

ponent-based multiscale framework is capable of dealing

with any 3D curved geometry. Parallelization and adap-

tivity made possible the solution of problems consisting of

millions of degrees of freedom. More complete adaptive

strategies and predictive load balance are under investi-

gation to increase further the computational efficiency.

Acknowledgments This work was supported by NIH grant 1

R01 EB0005813-01. T. Stylianopoulos was supported by a Doctoral

Dissertation Fellowship from the University of Minnesota.

References

1. Neidert MR, Tranquillo RT (2006) Tissue-engineered valves with

commissural alignmnet. Tissue Eng 12(4):891–903

2. Tranquillo RT (2006) The tissue-engineered small diameter

artery. Ann NY Acad Sci 961:251–254

3. Guilak F, Butler DL, Goldstein SA, Mooney DJ (2003) Func-

tional tissue engineering. Springer, New York

4. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin

SL (2002) Tensile mechanical properties of three-dimensional

type I collagen extracellular matrices with varied microstructure.

J Biomech Eng 124:214–222

5. Fung YC (1993) Biomechanics: mechanical properties of living

tissues, 2nd edn. Springer, New York

6. Drew DA (1971) Averaged field equations for two-phase media.

Stud in Appl Math 2:122–166

7. Whitaker S (1986) Flow in porous media I: a theoritical deriva-

tion of Darcy’s law. Transp Porous Media 1:3–25

8. Driessen NJB, Bouten CVC, Baaijens FPT (2005) A structrual

constitutive model for collagenous cardiovascular tissues inco-

porating the angular fiber distribution. J Biomech Eng

127(3):494–503

9. Agoram B, Barocas VH (2004) Coupled macroscopic and

microscopic scale modeling of fibrillar tissues and tissue equiv-

alent. J Biomech Eng 123(4):362–369

10. Stylianopoulos T, Barocas VH (2007) Volume Averaging Theory

for the Study of the Mechanics of Collagen Networks. Comput

Meth Appl Mech Eng 196(31–32):2981–2990

11. Stylianopoulos T, Barocas VH (2007) Multiscale, structure-based

modeling for the elastic mechanical behavior of arterial walls.

J Biomech Eng 129(4):611–618

12. Muller J, Sahni O, Jansen KE, Shephard MS, Taylor CA (2005) A

tool for the efficient FE-simulation of cardio-vascular flow. Proc

2nd NAFEMS CFD Seminar: Simulation of Complex Flows,

pp 1–10

13. Ku JP, Draney MT, Arko FR, Lee WA, Chan FP, Pelc NJ, Zarins

CK, Taylor CA (2002) In viro validation of numerical prediction

of blood flow in arterial bypass grafts. Ann Biomed Eng 30:743–

752

14. Parker D, Taylor CA, Wang K (1998) Imaged based 3D solid

model construction of human arteries for blood flow simulations.

In: Proceedings of the 1998 IEEE biomedical engineering

meeting. HongKong, China

15. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the

native and glutaraldehyde-treated aortic valve cusp: part II—a

structural constitutive model. J Biomech Eng 122:327–325

16. Chandran PL, Barocas VH (2007) Deterministic material-based

averaging theory model of collagen gel mechanics. J Biomech

Eng 129(2):137–147

17. Oda M, Iwashita AA (1999) Mechanics of granular materials.

Brookfield, Rotterdam

18. Nuggehally MA, Picu CR, Shephard MS, Fish J (2007) Adaptive

model selection procedure for concurrent multiscale problems.

J Multiscale Comput Eng 5:369–386

19. Shephard MS, FrantzDale B, Nuggehally M, Beall MW, Klass O

(2006) Coordinating models in multiscale simulations

20. Parasolid Inc. http://www.ugs.com/products/open/parasolid

21. Spatial Inc. http://www.spatial.com/products/

22. Garimella R, Shephard MS (2000) Boundary layer mesh gener-

ation for viscous flow simulations in complex geometric domain.

Int J Numer Meth Eng 49(1–2):193–218

23. Luo XJ, Shephard MS, Obara RM, Nastasia R, Beall MW (2004)

Automatic p-version mesh generation for curved domains. Eng

Comput 20:265–285

24. Luo XJ, Shephard MS, Yin LZ, Obara RM, Nastasia R, Beall

MW (2006) Construction of Near Optimal Meshes for 3-D

Curved Domains with Thin Sections and Singularities for

p-version Method. Eng Comput (in press)

25. Beall MW, Shephard MS (1997) A general topology-based mesh

data structure. Int J Numer Meth Eng 40(9):1573–1596

26. O’Bara RM, Beall MW, Shephard MS (2002) Attribute man-

agement system ofr engineering analysis. Eng Comput34:899–

912

27. Li XR, Shephard MS, Beall MW (2003) Accounting for curved

domains in mesh adaptation. Int J Numer Meth Eng 150:247–276

28. Li XR, Shephard MS, Beall MW (2003) Anisotropic mesh

adaptation by mesh modifications. Comp Meth Appl Mech Eng

194(48–49):4915–4950

29. Luo XJ (2005) An automatic adaptive directional variable

p-version method in 3-D curved domains. Dissertation, Renssel-

aer Polytechnic Institute

30. Wilkinson B, Allen M (2005) Parallel Programming. Prentice

Hall, Englewood Cliffs

31. Pacheco PS (1997) A user’s Guide to MPI

32. Babuska I, Rheinbold WC (1979) Analysis of optimal finite

element meshes is R1. Math Comput 33(146):435–463

Engineering with Computers (2009) 25:87–95 95

123

http://www.ugs.com/products/open/parasolid
http://www.spatial.com/products/

	Multiscale computation for bioartificial soft tissues �with complex geometries
	Abstract
	Introduction
	Multiscale model of collagen mechanics
	Governing equations

	Solving the multiscale model through a multiscale component toolkit
	Multiscale component toolkit (MCTK)
	Macroscopic continuum component
	Microscopic representative volume component
	Information passing scale-linking operator

	Parallel processing
	Adaptivity
	Examples
	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


