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Abstract This paper presents a new method for predict-

ing the open configuration of vascular organs. The method

utilizes finite element inverse elastostatic formulations.

The equilibrium boundary value problem is formulated on

the homeostatic configuration, and is solved inversely to

find the open, stress-free configuration. The method is non-

invasive, and enables us to estimate the open configuration

based on information that is readily available form in vivo

measurements. Examples involving both axisymmetric and

asymmetric geometries are presented to demonstrate the

utility of the method.

Keywords Residual stress � Opening angle �
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1 Introduction

Since the discovery of residual stress in arteries [1–4], there

have been many studies on the presence of residual stresses

in soft tissue organs and their influence on organs’

mechanical response [5–10]. In arteries, the residual stress

is believed to homogenize the circumferential stress when

the artery is under physiological pressure [2]. It has even

been speculated that, due to the presence of the residual

stress, the circumferential stress under the homeostatic

pressure is nearly uniform across the wall thickness [11,

12]. The most commonly used method for describing

residual stress in artery wall was proposed by Chuong and

Fung [1]. The method builds on the experimental obser-

vation that an artery ring opens up to a cylindrical sector,

which is approximately stress free, after a radial cut is

applied to the wall. If the open sector geometry and the

constitutive equation for the material are known, the

residual stress in the intact (i.e., closed and unloaded)

configuration can be determined from the boundary value

problem (BVP) that governs the closing motion. The nor-

mal arterial deformation can be modeled by a superposition

of two motions, an imaginary motion that closes the sector

followed by a radial expansion that brings the artery from

the intact ring to a pressurized configuration. In this man-

ner, the residual stress is properly taken into account in a

mechanical analysis.

The cut experiment remains perhaps the most reliable

method for studying residual stress. However, it is a

destructive process and hence not suited to certain appli-

cations. Many researchers have submitted methods for

predicting the open configuration without performing the

cut experiment. If one assumes that both the intact con-

figuration and the open sector are perfectly cylindrical, and

that the closing motion involves pure bending, the residual

stress in the intact state can be derived as a function of the

open sector geometry (the opening angle and radii) and

other model parameters. If certain features of the residual

stress or the residual strain field are known, the open sector

geometry can be estimated. Van Dyke and Hoger [13]

proposed an energy method for estimating the open sector

from knowledge of the residual stress distribution in the

intact configuration. Taber and Eggers [14] suggested a

formula for predicting the opening angle from the knowl-

edge of the circumferential stretch values at several radial

locations in the intact state. The limitation in these methods

is the requirement of a priori knowledge of the residual

stress or strain, which is difficult to obtain in practical
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applications (in [14], the residual strain was predicted from

growth). Stalhand et al. [15] proposed an optimization

approach in which the open sector geometry is identified,

together with the elasticity parameters, by fitting the model

response to the experimental pressure-diameter data. They

also considered residual strains that may not be released by

a single cut [16]. This approach, however, is limited to

axisymmetric problems in which the residual stress varies

only radially, and the distribution can be described using a

limited number of parameters.

In this paper, we propose a new approach for predicting

the open configuration of vascular organs. We assume that

the homeostatic configuration, the corresponding pressure,

and the constitutive equation for the material are known.

The open configuration, which is assumed to be stress-free,

is predicted using finite element inverse elastostatic for-

mulations. It is known that, the initial configuration of an

elastic material body can be found if a deformed state and

the applied load are given. Govindjee and Mihalic [17, 18]

established a paradigm of finding the initial configuration

using the standard equilibrium BVP. Unlike some other

inverse problems, the inverse elastostatic problem is well-

posed [17]. The present authors have extended the inverse

formulation, and applied it to the stress analysis of aneu-

rysms based on patient-specific diagnostic images [19, 20].

Here, we take the homeostatic configuration of a vascular

organ as given, and determine the open configuration

resulted from a hypothetic cut applied to the homeostatic

configuration. A critical step in this approach is to compute

the pre-cut wall stress along the (hypothetic) cut boundary,

because this stress field provides the traction boundary

condition for the inverse problem. Motivated by a common

speculation [11, 12], we assume that in the homeostatic

state, the wall stress is uniform across the wall-thickness.

As will be demonstrated later, this assumption enables us to

determine the homeostatic wall stress in both cylindrical

and asymmetric geometries.

The proposed method has several noteworthy attributes.

First, it enables us to estimate the opening configuration

using information that is readily obtainable by today’s

diagnostic tools. In practice, the homeostatic geometry of a

vascular organ can be approximated by the average

geometry over a cardiac-cycle, which can be extracted

from medical imaging data. Second, the method does not

require a priori knowledge of the residual stress (or strain)

in the intact state; instead, the residual stress can be pre-

dicted once the open configuration is found. Third, the

procedure is applicable to a certain family of asymmetric

organs, although in this case the assumption that the open

configuration is stress-free needs to be carefully evaluated.

Lastly, the method suggests a non-invasive approach for

taking into account the residual stress in vascular

mechanics. For example, if the systolic arterial wall stress

of a patient is to be estimated, one can compute the open

configuration using this inverse approach, and then deter-

mines the systolic stress by solving a forward problem.

We present two examples to illustrate the procedure and

utility of the proposed method. The first example deals

with a perfectly cylindrical artery. This example is inclu-

ded primarily for verification; the problem is also solved

using an optimization approach for comparison. The artery

wall is treated as a three-dimensional solid and the con-

tinuum inverse element [18, 20] is used. The second

example concerns a thin-walled asymmetric aortic aneu-

rysm. Instead of a full 3D analysis, the system is modeled

as a shell structure. An inverse shell element developed by

the authors [21] is used in the simulation.

2 Open configuration of a cylindrical artery wall

2.1 Inverse solution by finite element method

The finite element formulation of inverse elastostatic

problems of a continuum starts from the Eulerian weak

form of the static equilibrium problemZ

X

rijgi;jdv ¼
Z

X

qbigidvþ
Z

oXt

�tigida; ð1Þ

where X is the given current configuration, r is the Cauchy

stress, b is the body force, �t is the surface traction pre-

scribed on the boundary qXt, and g is any kinematically

admissible variation of the current configuration. The input

data for an inverse analysis are the current configuration X,

the forces b, the boundary traction �t and Dirichlet boundary

data, if any. The solution for the initial geometry is facil-

itated via the introduction of the inverse motion

U : X ¼ UðxÞ; which maps a material point at current

position x back to its initial position X. In the formulation

proposed by Govindjee and Mihalic [17, 18], the Cauchy

stress is parameterized in terms of the inverse deformation

gradient f :¼ oU
ox ¼ F�1; where F is the standard deforma-

tion gradient. Upon using the finite element interpolation,

the weak form yields a set of nonlinear algebraic equations

for the initial nodal positions, which are solved iteratively

using a Newton–Raphson procedure. The details of

implementation are described in [17, 18, 20].

2.2 Prediction of open configuration

Figure 1 illustrates the BVP considered here. The artery ring

is assumed to be in the homeostatic state, the inner and outer

radii are ri = 2.5421 mm and re = 2.9138 mm, respectively,

and pressure is assumed to be p = 100 mmHg

(13.3322 KPa). An imaginary radial cut is applied to the wall
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at the right end, and the ring is sustained in the pre-cut shape

by applying on the cut edge a boundary traction that exactly

equals the circumferential stress rh in the pre-cut state. The

goal of the inverse analysis is to find an open configuration

resulted from a simultaneous release of the boundary traction

and the internal pressure.

To solve the inverse problem, the stress rh must be

determine because it corresponds to the boundary traction

in the inverse problem. Following the speculation by Fung

and others [11, 12], we assume that rh is uniform across the

wall. This assumption enables us to determine rh analyti-

cally. Recall that the radial equilibrium equation is

governed by

drr

dr
þ rr � rh

r
¼ 0; ri� r� re;

rrjr¼ri
¼ �p; rrjr¼re

¼ 0:
ð2Þ

When rh is constant, the solution of (2) gives

rh ¼
pri

re � ri

; rr ¼ rh 1� re

r

� �
: ð3Þ

From the given parameters, it is found that

rh = 91.1791 KPa. A half ring is modeled by 2D solid

elements under the plane strain condition. The wall

material is assumed to be cylindrical-orthotropic

described by a Fung-type energy function [22]

W ¼ c

2
eQ þ j

2
ðJ � 1Þ2; ð4Þ

where Q is a quadratic function of the Green–Lagrangian

strain E ¼ 1
2
ðFFT � IÞ; in components,

Q ¼ d1E2
RR þ d2E2

HH þ 2d3ERREHH þ d4E2
RH: ð5Þ

The following material parameters are taken from [2]:

c ¼ 22:4 KPa; d1 ¼ 0:0499; d2 ¼ 1:0672;

d3 ¼ 0:0042; d4 ¼ 0:5; j ¼ 10; 000 KPa:

The volumetric term is presented to introduce nearly

incompressibility. The material symmetry axes in the

deformed state are assumed to align locally with the local

cylindrical polar bases (er, eh, ez).

The inverse analysis predicts an open configuration

shown in Fig. 2. Once the open configuration is found, the

stress in the homeostatic state can also be computed using

the given material model. It should be noted that, the cir-

cumferential stress so computed is close to uniform, but not

exactly so, as shown in Fig. 3. The inverse motion is not a

pure bending, because a pure bending from a perfectly

cylindrical sector does not result in a uniform circumfer-

ential stress in a Fung material (see Sect. 2.4).

Consequently, the open configuration is not perfectly

cylindrical, although very close to be so. The inner and

outer radii of the cylindrical sector that best fit the open

configuration are found to be Ri = 3.7115 mm and

Re = 4.3092 mm, respectively. The best fit opening angle,

as defined in Fig. 2, is 75.9�.

Symm.
σθ

p

Fig. 1 Schematics of the boundary value problem for determining

the opening angle of a cylindrical artery

Open(stress-free)

Loaded

Intact
(unloaded)

Opening
angle

Fig. 2 The origin loaded configuration, the predicted open sector and

intact configuration

91.90

91.69

91.48

91.26

91.05

90.84

90.63

90.41

90.20

Fig. 3 The circumferential stress rh predicted from the inverse

analysis. The values are very close to the assumed uniform value
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2.3 Residual stresses in the intact state

To compute the residual stresses in the unloaded state, a

forward finite element analysis is subsequently performed

to simulate the closing motion from the open sector. In this

analysis, the material symmetry axes are assumed to align

locally with the local cylindrical polar basis (ER, EH, EZ)

of the best fit sector. The nodes on the open boundary are

subject to a displacement control in the vertical direction,

and left free in the horizontal direction so that their hori-

zontal positions are determined by equilibrium. The radii

of the intact artery are found to be ri
0 = 1.3894 mm and

re
0 = 1.9883 mm. The residual circumferential stresses are

plotted in Fig. 4.

2.4 Verification

A simple optimization problem is formulated to estimate

the stress-free configuration based on the known homeo-

static geometry, the corresponding pressure and the

assumption of uniform homeostatic circumferential stress.

Consider the forward motion that brings the open sector to

the homeostatic configuration, both assumed to be perfectly

cylindrical. A material point is denote as (R, H, Z) in the

stress-free state and (r, h, z) in the loaded state in cylin-

drical polar coordinates. The geometry of a stress-free state

is completely described by the inner and external radii (Ri,

Re) and the opening angle H0. Assume that the motion

takes the form

r ¼ rðRÞ; h ¼ p
H0

H; z ¼ Z: ð6Þ

The principal stretch ratios in the circumferential,

longitudinal, and radial directions are, respectively,

kH ¼
p

H0

r

R
; kZ ¼ 1; kR ¼

1

kH
; ð7Þ

in which the incompressibility condition kRkHkZ = 1 is

observed. The incompressibility condition alone

determines the radial motion to within a constant, giving

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i þ
p

H0

ðr2 � r2
i Þ

r
: ð8Þ

Equivalently,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i þ
H0

p
ðR2 � R2

i Þ
r

: ð9Þ

Considering hyperelastic behavior and incompressibility,

the radial and circumferential stresses are given as

rr ¼ k2
R

oW

oER
þ q; rh ¼ k2

H
oW

oEH
þ q; ð10Þ

where EI ¼ 1
2
ðk2

I � 1Þ ðI ¼ R;H; ZÞ are the principal

components of Green–Lagrangian strain and q is the

unknown hydro-pressure. If rh is uniform, it follows from

the equilibrium solution in (3) that

rr � rh ¼ �
prire

rðre � riÞ
: ð11Þ

In light of the constitutive equation in (10), we have

~U :¼ k2
R

oW

oER
� k2

H
oW

oEH
þ prire

rðre � riÞ
¼ 0: ð12Þ

Substituting (7) and (8) into this equation, the left side of

this equation becomes a function of r that contains two

unknown parameters (Ri, H0). Since the material

constitutive equation involves exponential function, it is
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Fig. 4 Comparative radial distribution of the residual stresses in the

intact configuration
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evident that (12) cannot be identically satisfied over the

wall thickness regardless of the values of (Ri, H0). An

optimization problem is formulated to find the optimal

values for Ri and H0. Let the objective function be

Û ¼
Xn

I¼0

~U
2jr¼ð1�I

nÞriþI
nre
; ð13Þ

where n ? 1 (n C 1) is the number of evaluation points

along the radial direction; in this example n = 50. Solving

the problem using Mathematica function NMinimize, we

obtain the best fit opening angle H0 = 76.5892 and inner

radius Ri = 3.6824. The external radius is computed from

(8), giving Re = 4.2809.

A similar procedure is applied to find the residual

stresses in the intact state from the predicted open config-

uration. The goal is to find the radii of the intact artery such

that the radial equilibrium equation is satisfied. The equi-

librium is governed by (2), but the boundary conditions

change to rrjr¼r0
i
¼ rrjr¼r0

e
¼ 0 due to the absence of

internal pressure. Thus the integral of (2)1 gives

rrðrÞ ¼
Zr

r0
i

rr � rh

r
dr: ð14Þ

Consequently

�U :¼
Zr0

e

r0
i

rr � rh

r
dr ¼ 0: ð15Þ

Substituting the constitutive equations in (10), the kinematic

relations in (7) and (8), and r0
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0

i Þ
2 þ H0

p ðR2
e � R2

i Þ
q

into

(15) yields an integral function that contains the unknown

variable ri
0. Again, this variable is determined by minimizing

the objective function �U ¼ �U2:

The optimal inner radius of the unloaded configuration

is found to be ri
0 = 1.3915 mm. The corresponding exter-

nal radius is re
0 = 1.9910 mm. The residual stresses and the

hydro-pressure can be found from the three equations in

(10) and (14). Table 1 summarizes the results form both the

inverse elastostatic method and the optimization method.

In overall the results agree well. The comparison of the

residual stresses are presented in Fig. 4. It is seen that the

circumferential stress distributions are almost identical

except at the two ends. The radial stresses also agree well.

Figure 5 shows the homeostatic stresses predicted from

both approaches. In general, the stresses are in good

agreement. The circumferential stresses from both

approaches deviate slightly from the assumed uniform

Table 1 Comparison of the results obtained from finite element inverse method and the optimization method

Ri (mm) Re (mm) H0(�) rh (KPa) ri
0 (mm) re

0 (mm)

FEM 3.7115 4.3092 75.9000 91.1791 ± 0.8 1.3894 1.9883

Optimization 3.6824 4.2809 76.5892 91.1791 ± 0.4 1.3915 1.9910

Ri, Re are the inner and external radii and H0 is the opening angle; rh is the circumferential stress in the loaded state; ri
0 and re

0 are the inner and

external radii of the intact state
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Fig. 5 Comparative radial distributions of the circumferential and

radial stresses in the homeostatic state
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distribution, which is expected because the Fung material

cannot produce an exactly uniform circumferential stress in

the assumed motion. The optimization method predicts a

range of 91–91.5 KPa, while the finite element solution

shows a slightly larger variation of 90.75–91.5 KPa.

3 Open configuration of an abdominal aorta aneurysm

To illustrate the application of inverse procedure to thin-

walled asymmetric structures, we consider a fusiform

abdominal aortic aneurysm (AAA) model shown in Fig. 6.

The surface has a mid-section diameter of 6 cm, an axial

length of 10.5 cm and is symmetric with respect to the XZ

plane. The wall thickness is assumed to be the population

mean 1.9 mm [23]. The system is modeled as a shell

structure. To facilitate the inverse analysis, two basic

assumptions are made: (1) the given geometry corresponds

to the deformed state under the homeostatic pressure; and

(2) in the homeostatic state the wall stress is uniform across

the thickness. As is in the continuum case, we also require

that the constitutive equation for the material is given. The

analysis is conducted using an inverse finite element shell

which we describe briefly below.

3.1 Inverse analysis of shell structures

We follow the direct shell theory [24, 25] to describe a thin

shell structure. The reference configuration of a shell

placed in R
3 is defined as

R :¼ X 2 R
3jX ¼ Uþ nD; n 2 �h

2
;
h

2

� �� �
; ð16Þ

where U and D are the position vector of the reference

mid-surface and the reference director field, respectively, h

is the thickness of the shell. The current, or deformed

configuration is specified by

C :¼ x 2 R
3jx ¼ uþ nd; n 2 � h

2
;
h

2

� �� �
: ð17Þ

The local deformation of the shell surface are described by

the following measures

aab :¼ u;a � u;b; Aab :¼ U;a �U;b;

ca :¼ u;a � d; Ca :¼ U;a � D;
jab :¼ u;a � d;b; Kab :¼ U;a � D;b:

ð18Þ

where the subscript (,a) denotes the derivatives with respect

to the surface coordinate na(a = 1, 2). Here, aab and Aab

are components of surface metric tensors in C and R;

respectively, ca and Ca are components of the transverse

shear strains in C and R; and jab and Kab are components

of curvature tensors in C and R: The strain measures can

be defined by

e : ¼ 1

2
ðaab � AabÞAa � Ab;

d : ¼ ðca � CaÞAa;

q : ¼ ðjab � KabÞAa � Ab;

ð19Þ

where Aa ¼ U;a are the surface basis vectors in the refer-

ence configuration. The basic kinetic variables of the direct

shell theory are the effective stress resultant ~n ¼ ~nabaa �
ab; the effective shear resultant ~q ¼ ~qaaa; and the stress

couple ~m :¼ ~mabaa � ab: Here, aa ¼ u;a are the surface

basis vectors in the current configuration. The explicit

definitions of these resultants are given in [25, 26]. In an

elastic shell, the resultants are specified as functions of the

deformation measures defined in (18).

Let W ¼ ðU;DÞ and w ¼ ðu; dÞ denote the reference

configuration and the current configuration, respectively,

and let dw denote an admissible variation to the current

configuration, the weak form is given asZ

A

1

2
~nabdaab þ ~mabdjab þ ~qadca

� �
dl� GextðdwÞ ¼ 0;

ð20Þ

where GextðdwÞ is the virtual work done by external force

and moment, and dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detjaabj

p
dn1dn2: This weak form

can facilitate both the forward and the inverse solution. In

the forward case, the reference configuration is given while

current configuration is sought. The inverse solution pur-

sues exactly the opposite. The weak form is regarded as a

X

Y

Z

Fig. 6 A fusiform abdominal aorta aneurysm. The mesh is symmetric

with respect to the XZ plane
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function of the initial configuration. Upon the introduction

of the finite element interpolation, the weak form gives rise

to a set of nonlinear equations for the referential nodal

positions and directors. A brief description of this inverse

shell formulation is included in the Appendix. More details

can be found in a recent article by the authors [21].

3.2 Homeostatic membrane tension

Similar to the continuum case, we must determine the

stress resultant ~n along the (hypothetic) cut edge in order

to solve the inverse problem. In the context of the shell

theory, the assumption of uniform wall stress across

thickness implies that the stress couple ~m and the effec-

tive shear resultant ~q vanish. Therefore, at the

homeostatic state, the kinetics can be effectively descri-

bed the membrane theory. It is known that the stress

resultant in a pressurized membrane structure is statically

determinate. For certain idealized shapes, the resultant

can be found analytically [27, 28]. For a general convex

membrane structure, the stress resultant can also be

determined numerically using the inverse finite element

analysis. In the absence of the stress couple and the shear

resultant, the weak form in (20) reduces toZ

A

1

2
~nabdaabdl� GextðdwÞ ¼ 0: ð21Þ

The finite element procedure for solving the initial geom-

etry from this weak form is a subset of the shell code.

For the AAA problem considered here, the finite ele-

ment model considers a symmetric half of the AAA. In the

membrane analysis, the symmetry boundary condition is

applied on the two longitudinal edges. The homeostatic

configuration is taken as the input to the inverse membrane

analysis. The stress resultant obtained from the membrane

solution will be used to provide the traction boundary

condition for the shell analysis. Note that in the membrane

model the stress couple and the shear resultant are ignored

throughout the motion, and therefore, the model is inade-

quate for determining the open configuration. Indeed, the

stress-free configuration resulting from the membrane

analysis remains closed.

3.3 Open configuration

The open configuration resulted from a hypothetic cut

along the long meridian is predicted. The boundary con-

ditions for the finite element shell model are prescribed as

follows: along the short meridian, the symmetry boundary

condition is applied. Along the long meridian (where the

cut is applied), the stress resultant from the membrane

solution is applied while the stress couple is taken to be

zero. The model is depicted in Fig. 7. The internal pressure

of p = 100 mmHg acts on the shell surface.

In the simulation, the wall material model is modeled by

a two-dimensional Fung energy function

W ¼ c

2
ðeQ � 1Þ;

Q ¼ d1E2
11 þ d2E2

22 þ 2d3E11E22 þ d4E2
12;

ð22Þ

where Eab represents the physical components of the

Green–Lagrangian strain relative to a local Cartesian basis

that aligns with the orthogonal symmetry axes in the

reference configuration. By assumption, the base vector E1

is chosen to coincide with the preferred fiber direction. In a

recent review article by Vorp [29] on biomechanics of

AAA, the averaged material parameters for AAA are

reported based on population-wide biaxial experiment data

[30]. Here, we employ a set of modified values using a

larger value of c and adding the contribution from the in-

plane shear. This particular set of material parameters are

c ¼ 1:83; d1 ¼ 104:9; d2 ¼ 101:9;

d3 ¼ 63:2; d4 ¼ 19:5; f ¼ 28:
ð23Þ

The material’s preferred direction is assumed to be hori-

zontal and tangent to the surface at every point.

We can introduce a tensor Habdc to write the quadratic

form Q in the curvilinear system, so that

Q ¼ eabHabdcedc: ð24Þ

The stress resultant follows the formula ~nab ¼ 1
J
oW
oeab

where

J ¼
ffiffiffiffiffiffiffiffiffiffiffi
det jaabj
p
ffiffiffiffiffiffiffiffiffiffiffiffi
det jAabj
p is the surface Jacobian, and this gives

~nab ¼ c

J
eQHabdcedc: ð25Þ

The stress couple and the shear stress are assumed to take

the form

S
ym

m
.

Fig. 7 Schematics of the BVP

for the inverse shell analysis.

The traction on the open edge is

obtained from the membrane

analysis The symmetric bound-

ary condition is applied on the

other edge
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~mab ¼ ch2

6J
fHabdceqc;

~qa ¼ cd4

J
Aabdb:

ð26Þ

The functional form for the stress couple is motivated by a

formula proposed by Schieck et al. [31]. Here, f is a cor-

rection factor, which assumes the value of eQ evaluated at a

bi-axial strain E11 = E22 = 0.1. The shear resultant func-

tion is motived by the corresponding formula for an

isotropic material model introduced in [25]. Here, Aab are

coefficients defined by AabAbc = da
c.

Figure 8 presents the predicted open configuration.

Since the surface is not axisymmetric, the opening angle

varies along the meridian. To evaluate the assumption of

uniform stress across the wall thickness, we further

computed the stress couple (i.e., moment per unit length) at

the homeostatic configuration. The total stress couple,

defined as M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2

p
where M1 and M2 are the

principal components, is shown in Fig. 9. It can be seen

that the stress couple ranges from 2.0 9 10-4 to

2.5 9 10-3 N. The minimum stress resultant (not shown in

plots), denoted by Nmin, is approximately 0.15 N/mm.

Therefore, the stress couple is two to three orders of

magnitude smaller than Nmin 9 h. Since a non-zero stress

couple indicates stress non-uniformity over the thickness, it

is clear that, similar to the continuum case, the inverse shell

model does not exactly recover a uniform across-thickness

stress. However, the deviation appears to be acceptably

small.

4 Concluding remarks

The proposed method hinges on the inverse paradigm of

stress analysis. The inverse analysis takes as the input a

deformed configuration of an elastic body and the applied

load to predict the initial zero-stress configuration of the

body. Here, the homeostatic configuration of a tubular

vascular organ is taken as the given configuration. In

determining the open configuration resulted from a hyp-

othetic cut, it is crucial to obtain the wall stress

distribution in the pre-cut state, because it provides the

traction boundary condition for the inverse analysis. In

this regard, the choice of the homeostatic state as the

starting configuration becomes crucially important. We

have demonstrated that, under the common assumption

(a)

(b)

Fig. 8 The predicted open configurations (red edge) shown super-

posed on the homeostatic configuration (blue edge)

2.50E-03

2.29E-03

2.08E-03
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1.45E-03

1.25E-03
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8.27E-04

6.18E-04

4.09E-04

2.00E-04

Fig. 9 The total moment M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2

p
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that the homeostatic stress is uniform across the wall

thickness, we can determine the wall stress distribution in

a cylindrical artery, or the stress resultant in a thin-walled

structure. Thus, once the homeostatic geometry and the

corresponding pressure are known, an inverse boundary

value problem can be formulated. Using this approach,

one can predict the open configuration based on infor-

mation that is readily available from non-invasive

measurements.

This method applies to other deformed states as long as

the wall stress along the cut boundary can be determined.

For example, if the residual stress field in the intact con-

figuration is given a priori by whatever means, the open

configuration can be found in the same manner. However,

it should be noted that the residual stress in the intact state

is typically not known at the onset.

Although the vascular system is considered, the method

can be adapted to solve the residual stress problem of other

thin-walled organs. Examples of potentially applicable

systems include the left ventricle [6, 32, 33], veins [34],

intestine, etc. The method is applicable to asymmetric

structures, and it is also viable to simulate multiple cuts.

Thus, the method has the potential to find a variety of

applications.
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Appendix: Inverse formulation of stress resultant shell

The finite element formulation employs the following

interpolations:

u ¼
Xnen

I¼1

NIuI ; d ¼
Xnen

I¼1

NIdI ;

U ¼
Xnen

I¼1

NIUI ; D ¼
Xnen

I¼1

NIDI ;

ð27Þ

where I denotes the node number in an element and nen is

the total number of nodes per element. It follows that

u;a ¼
Xnen

I¼1

NI
;auI ; d;a ¼

Xnen

I¼1

NI
;adI ;

U;a ¼
Xnen

I¼1

NI
;aUI ; D;a ¼

Xnen

I¼1

NI
;aDI :

ð28Þ

The deformation measures at Gauss points are computed

according to (18). The variations of the Eulerian strain

components are

daab ¼
Xnen

I¼1

NI
;aduI � u;b þ NI

;bduI � u;a

� �
;

djab ¼
Xnen

I¼1

NI
;aduI � d;b þ u;a � NI

;bddI

� �
;

dca ¼
Xnen

I¼1

NI
;aduI � dþ u;a � NIddI

� �
:

ð29Þ

The increments of Lagrangian measures under an

incremental change of the reference configuration are

given as

DAab ¼
Xnen

I¼1

NI
;aDUI �U;b þ NI

;bDUI �U;a

� �
;

DKab ¼
Xnen

I¼1

NI
;aDUI � D;b þU;a � NI

;bDDI

� �
;

DCa ¼
Xnen

I¼1

NI
;aDUI � DþU;a � NIDDI

� �
:

ð30Þ

We employ the geometrically exact algorithm developed

by Simo’s group for director update. Essentially, one

introduces an orthogonal transformation K such that D ¼
KE3 where E3 = [0, 0, 1]. Due to the director

inextensibility condition, the increment DD admits a two-

parameter representation given as

½DD1;DD2;DD3�T ¼ K3�2½DT1;DT2�T

where K3�2 is the matrix obtained by deleting the third

column of K: The rotation tensor K is constructed incre-

mentally during the solution procedure using the geodesic

exponential map by Simo and Fox [25] and Simo et al. [26].

We define the ‘‘strain-displacement’’ matrix operators

for the reference increment DW as follows:

B0I
m ¼

UT
;1NI

;1

UT
;2NI

;2

UT
;1NI

;2 þUT
;2NI

;1

2
664

3
775

3�3

B0I
sm ¼

DT NI
;1

DT NI
;2

" #

2�3

; B0I
sb ¼

UT
;1NI

UT
;2NI

" #

2�3

KI
3�2

B0I
bm ¼

DT
;1NI

;1

DT
;2NI

;2

DT
;1NI

;2 þ DT
;2NI

;1

2
664

3
775

3�3

;

B0I
bb ¼

UT
;1NI

;1

UT
;2NI

;2

UT
;1NI

;2 þUT
;2NI

;1

2
664

3
775

3�3

KI
3�2

ð31Þ

where KI stands for the rotation tensor at node I. The letters

m,s, and b in the subscripts are not free indices but rather
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abbreviations for membrane, shear, and bending,

respectively. The strain increments in (30) can be written

in matrix form as

1

2
DA11;

1

2
DA22;DA12

� �T

¼
Xnen

I¼1

B0I
mDUI ;

DC1;DC2½ �T¼
Xnen

I¼1

B0I
smDUI þ

Xnen

I¼1

B0I
sbDTI ;

DK11;DK22; 2DK12½ �T¼
Xnen

I¼1

B0I
bmDUI þ

Xnen

I¼1

B0I
bbDTI :

ð32Þ

Similarly, one can also define the matrix operators that

relate the variation of (aab, ca, jab) to the configuration

variation dw: The operators have the same form as those in

(31), but are denoted without the superscript ‘‘0’’, with

ðU;DÞ substituted by ðu; dÞ; and with K evaluated at the

current director field. Consequently, a form similar to (32)

can be established for the variational quantities in (29).

Assembling the above matrix operators together, we write

BI ¼
BI

m 03�2

BI
sm BI

sb

BI
bm BI

bb

2
4

3
5

8�5

; B0J ¼
B0J

m 03�2

B0J
sm B0J

sb

B0J
bm B0J

bb

2
4

3
5

8�5

:

ð33Þ

Introducing the element stress resultant vector

R ¼ ~n11; ~n22; ~n12; ~q1; ~q2; ~m11; ~m22; ~m12
� 	T

; ð34Þ

The weak form can be written as

Gðw;W; dwÞ ¼ ½duT ; dTT �
Z

A

BT Rdl� GextðdwÞ ¼ 0;

ð35Þ

where B = [B1, B2 ,..., Bnen]8 9 (5 9 nen) is the assembled

element strain-displacement matrix and ½duT ; dTT � ¼
½duT

1 ; dTT
1 ; duT

2 ; dTT
2 ; . . .; duT

nen; dTT
nen�1�ð5�nenÞ: This vecto-

rized weak form is exactly the same as the one used by

Simo and Fox [25] for forward analysis, except now the

deformed configuration is given. The finite element

equation can be written asZ

A

BT Rdl� Fext ¼ 0: ð36Þ

In the inverse analysis the finite element equation is solved

to determined the referential nodal positions UI and the

referential director DI. A Newton–Raphson procedure is

employed, in which the equation (36) is linearized with

respect to UI and DI. In an elastic shell, the resultants

ð~nab; ~qa; ~mabÞ are specified as functions of the deformation

measures introduced in (18). We introduces the material

tensor C such that

DR ¼ CDe; ð37Þ

where

De¼ 1

2
DA11;

1

2
DA11;DA12;DC1;DC2;DK11;DK22;2DK12

� �T

:

ð38Þ

The linearization of the finite element equation yields the

element stiffness matrix

KIJ ¼
Z

A

ðBIÞTCB0Jdl: ð39Þ
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