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Abstract Adaptive design of experiments approaches

are intended to overcome the limitations of a priori

experimental design by adapting to the results of prior

runs so that subsequent runs yield more significant

information. Such approaches are valuable in engi-

neering applications with metamodels, where effi-

ciently collecting a dataset to define an unknown

function is important. While a variety of approaches

have been proposed, most techniques are limited to

sampling for only one phenomenon at a time. We

propose a multicriteria optimization approach that

effectively simultaneously samples for multiple phe-

nomena. In addition to determining the next sequential

sampling point, such an algorithm also can be formu-

lated to support conclusions about the adequacy of the

experiment through the use of convergence criteria. A

multicriteria adaptive sequential sampling algorithm,

along with convergence metrics, is defined and dem-

onstrated on five trial problems of engineering interest.

The results of these five problems demonstrate that a

multicriteria sequential sampling approach is a useful

engineering tool for modeling engineering design

spaces using NURBs-based metamodels.

Keywords Non uniform rational B-splines �
Metamodels � Sequential sampling � Sampling criteria �
Cooling schedule � Multicriteria sampling

1 Introduction

Modern engineering design usually involves the use of

simulations and experiments during the product reali-

zation process. The overall goal of a set of experiments

or simulations is to develop information about the

underlying design space behavior. Ideally, a sufficient

number of simulations or experiments will be per-

formed to clearly define the relationships among the

design variables and performance indices that define

the design space. But in many cases, the cost of

experiments and simulations precludes extensive de-

sign space surveys. This cost is particularly acute in

high dimensional problems where even 2k searches are

costly.

Experimental design approaches are intended to

make the most out of a limited number of trials,

determined by the budget for the experiment [1–3].

Traditional a priori experimental designs do not adapt

to information gained from previous experimental
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trials. Consequently, adaptive sequential sampling ap-

proaches have been developed to replace or supple-

ment classical experimental designs. Many of these

approaches are applicable to both physical experi-

ments or to computer simulations.

The results of a set of experimental or simulation

trials are often reduced to a mathematical model

known as a metamodel. The metamodel provides a

convenient representation of the design space with a

single mathematical expression. Adaptive sequential

sampling techniques commonly incorporate meta-

models. Many sequential sampling techniques are

limited by consideration of only one aspect of the

metamodel under construction, and do not provide

feedback on the metamodel quality as it is created.

1.1 Motivation

The motivation for this research is to develop an

adaptive sequential sampling algorithm for a meta-

model defined with Non Uniform Rational B-splines

(NURBs). Our NURBs-based metamodel is referred

to as a Hyperdimensional Performance Model or Hy-

PerModel. The design and application of HyPerModels

is presented in detail in Turner [4]. One of the seminal

challenges in defining a HyPerModel (and other types

of metamodels) is obtaining sufficient data to accu-

rately represent the design space. Adaptive sequential

sampling techniques are often used to obtain the nec-

essary data.

In developing a suitable algorithm for HyPerMod-

els, called Hyperdimensional Performance Sample

(HyPerSample), we sought to include several features,

including:

• the incorporation of multiple criteria for simulta-

neous consideration through the use of a cooling

schedule;

• the use of information contained within the Hy-

PerModel representation to improve criteria eval-

uation efficiency; and

• the incorporation of convergence metrics intended

to terminate the search when a HyPerModel

representation of user-defined accuracy is obtained

or to provide justification for additional experi-

ments or simulations when the data budget is

exhausted.

In this paper we provide a short description of Hy-

PerModels and a review of sequential sampling ap-

proaches. The underlying theory of the multicriteria

approach follows, with results from several different

trial problems used to demonstrate the effectiveness of

this approach.

1.2 HyPerModels: NURBs-based metamodels

Many Computer-Aided Design/Engineering (CAD/

CAE) software systems use NURBs-based represen-

tations to describe geometric objects. Thus, there are

many excellent resources with thorough descriptions

of the behavior and implementation of NURBs,

including Rogers and Adams [5], Piegl and Tiller [6]

and Cohen et al. [7]. Most references focus on the

NURBs curve and surface representations, such as

those commonly employed in CAD/CAE applica-

tions. Higher dimensional forms are discussed in

Cohen et al. [7], but a metamodeling implementation

does not appear in the literature until the work of

Turner et al. [8, 9].

Since the mathematics of HyPerModels underlies

the formulations of the criteria used in HyPerSample,

the fundamentals of HyPerModels are defined in this

section. Additional detail is available in Turner [4]. For

simplicity, the necessary functions are defined as 1D

input 1D output curves, which can be readily extended

to higher dimensions via tensor products. Eq. 1 defines

a 1D input 1D output HyPerModel with a planar

NURBs curve, p(u):

pðuÞ ¼
PnC

i¼1 biwiNi;kðuÞPnC

i¼1 wiNi;kðuÞ
for a6 u6b ð1Þ

where bi is the ith of nC control points, wi is a positive

scalar defining the weight of the ith control point, and

Ni,k(u) is the ith B-spline basis function of order k

given as a function of u (the HyPerModel input

dimension). The parameter u defines a position along

the curve length, which is equivalent to a point on the

curve defined by the vector p(u) (the HyPerModel

output dimension). The B-spline basis function, Ni,k(u),

is a recursive function defined by Eqs. 2 and 3,

Ni;kðuÞ ¼
u� xi

xiþk�1 � xi

� �

Ni;k�1ðuÞ

þ xiþk � u

xiþk � xiþ1

� �

Niþ1;k�1ðuÞ;
ð2Þ

Ni;1ðuÞ ¼
1 if xi6 u\xiþ1

0 otherwise

�

; ð3Þ

where xi is the ith element in the knot vector, a

sequence of parameter values defining the regions of

control point influence within the HyPerModel. For

the ith control point, that region of influence is defined

by the knot vector, x, and the metamodel order, k. The

B-spline basis function exhibits the behaviors defined

by Eqs. 4, 5, 6, and 7.
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Xnþ1

i¼1

Ni;kðuÞ � 1 8k and u ð4Þ

subject to the constraints 26 k6 nC ð5Þ

0\wmin6wi6wmax6 1 ð6Þ

and to the definition
0

0
� 0 ð7Þ

HyPerModels use the control point locations, con-

trol point weights (effectively a homogeneous coordi-

nate of the control point), open knot vectors, and the

curve order, k, to produce a highly flexible curve def-

inition [10].

Control points are a key factor in understanding

HyPerModel behavior. Control points collectively

bound the HyPerModel in space, and each control

point attracts the HyPerModel towards its location.

The control point region of influence is derived

through the B-spline basis function, which is ultimately

governed by the knot vector x and curve order k. Fi-

nally, the control point weight, w, regulates the

strength of control point influence on the HyPerModel.

These parameters are determined with the fitting

techniques described in Turner [4] and Turner et al.

[9].

2 Adaptive sequential sampling techniques

Rather than establish a rigid experimental design a

priori, adaptive sequential sampling techniques alter

the experimental design between trials. An experi-

mental design method, such as full and partial factorial

searches or latin hypercubes, may still be used as the

initial foundation for a sequential sampling method,

but subsequent sampling locations are determined

adaptively. The fundamental concept behind an adap-

tive sequential sampling technique is to use results

from prior experiments to determine subsequent

experiments.

Many sequential sampling techniques involve a

metamodel, either as an iterative result or as an ulti-

mate output of the experiment or simulation. For in-

stance, Farhang-Mehr and Azarm [11], Osio and

Amon [12], Martin and Simpson [13], Wang and

Simpson [14], Sasena et al. [15] and Sasena [16], all use

kriging metamodels in their sequential sampling algo-

rithms. Perez et al. [17] uses response surface models

(RSM), while Gutmann [18] and Jin et al. [19] apply

sequential sampling to radial basis function (RBF)

models. While there are distinct differences between

these approaches, the fundamental method is quite

similar:

1. determine what data to collect;

2. collect new data;

3. revise the metamodel as necessary; and

4. repeat until the experimental data budget is

exhausted.

In addition, these algorithms all employ various

nonlinear optimization algorithms to determine the

next points to sample in the design space. The most

significant distinctions between different algorithms

are in the criteria employed to determine the design

space location of the next samples, and whether one or

more data points are sampled in a given metamodel

iteration.

2.1 Prior work in sequential sampling

Various authors have identified a variety of criteria.

For instance, Kushner’s criterion [20] applies a

Gaussian cumulative distribution function to identify

the point with the greatest probability of improving

upon the best point in the model. Other authors,

including Locatelli [21], Mockus [22] and Schonlau

[23], subsequently proposed variations of Kushner’s

criterion. Cox and John [24] proposed an alternative

criterion based on lower confidence bounding, Osio

and Amon [12] developed a data adaptive optimal

sampling criterion, and Farhang-Mehr and Azarm [25]

proposed a maximum entropy criterion, while Watson

and Barnes [26] developed a set of thresholding criteria

for geological contamination studies. Many criteria

originally developed for geologic exploration are

associated with kriging metamodels commonly em-

ployed in geostatistics. These criteria can be classified

as either global or local criteria, based on whether they

focus on improving the global metamodel fit to the

entire dataset or improving the metamodel fit in a

particular region of interest.

Sasena et al. [15] and Sasena [16] reviewed a num-

ber of criteria in conjunction with a kriging metamodel,

although many are adaptable to other metamodel

types. Sasena found that the best and most consistent

technique is a switching criterion (Switch). Switch ini-

tially searches globally, attempting to reduce the

maximum variance of the metamodel. Switch then

becomes a local search in the neighborhood of the

minimum point until the search stalls, and then

reverts back to a global search. Switch alternates

between two different criteria. Thus, Switch is similar

to a cooling schedule approach, a concept adapted
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from the stochastic optimization method Simulated

Annealing [27, 28].

In simulated annealing, a cooling schedule is applied

during each optimization run to guide the optimization

algorithm to a local optimum. The most successful

cooling schedules applied in simulated annealing [29]

are nonmonotonic, with alternating periods of heating

and cooling, as suggested by Lundy and Mees [30] and

Osman [31]. The cooling schedule approach studied by

Sasena et al. [15] and Sasena [16] is a monotonic

cooling schedule, applied not to the individual opti-

mizations but instead applied to the entire data col-

lection process. Switch represents a nonmonotonic

cooling schedule that instantaneously changes between

sampling goals. A cooling schedule approach that

smoothly transitions between sequential sampling

objective function goals as the samples are collected

was not tested.

Also note that finding minima or maxima is not al-

ways the sequential sampling goal. There could be

other areas of interest, such as regions of rapid change

or regions where a discontinuity exists that may be the

focus of the local search. For instance, Friedman [32]

suggested a sequential sampling approach that focused

on regions of rapid change, such as those associated

with a discontinuity. Similarly, Farhang-Mehr and

Azarm [11] suggested a modified form of a maximum

entropy criterion that is biased towards regions of rapid

change (often associated with regions with multiple

local optima) as an improvement over their maximum

entropy criterion [25].

Comparable sequential sampling approaches have

also been developed for other metamodel types. Sa-

sena et al. [15] and Sasena [16] uses a kriging model

and an algorithm called SuperEGO to solve an auto-

motive design problem. SuperEGO is a Bayesian

optimization algorithm developed from the efficient

global optimization (EGO) algorithm [33]. SuperEGO

and EGO adaptively refine the dataset used to define

the metamodel by identifying additional points for data

collection using a criterion to model and eliminate

regions of uncertainty in an associated metamodel.

EGO and SuperEGO sample optimal metamodel re-

gions so that the optimum location is sampled directly

from original data sources. Jones [34] identified several

interpolating kriging models that support the EGO

algorithm. Martin and Simpson [13] and Wang and

Simpson [14] propose similar adaptive metamodeling

techniques for kriging models to achieve the same end

using mean square error and fuzzy clustering respec-

tively. Gutmann [18] suggested a similar approach

using a utility function for RBF metamodels. Jin et al.

[19] proposes the Maximum Scaled Distance and

Cross-Validation approaches for both kriging and RBF

metamodels.

In some of these studies, (for instance Farhang-

Mehr and Azarm [11] and Osio and Amon [12]) sets of

sampled points were collected between metamodel

updates. This makes considerable sense in an experi-

mental setting where it may be easier to run several

experimental trials in close succession. However, in

other studies (notably Sasena et al. [15] and Sasena

[16]), data points were collected individually and the

metamodel was updated at each step. Sasena [16] dis-

cusses the collection of a single point per iteration

versus multiple points per iteration as a current area of

research interest within the adaptive sequential sam-

pling community.

2.2 Multicriteria sequential sampling

Adaptive sequential sampling techniques for meta-

models may need to pursue multiple sampling goals

simultaneously. Samples should be collected so as to

provide an accurate survey of the breadth of the entire

design space such that local features are not missed and

the metamodel error is reduced, particularly in regions

of interest. These regions of interest may include ex-

trema, or regions that delineate critical changes in the

behavior of the underlying function. For instance, re-

gions of rapid change suggest that the behavior of the

underlying function should be characterized carefully.

Regions with little curvature may be of interest for

design problems, denoting robust solution regions.

Other regions of the design space may play significant

roles in the definition of the metamodel and should be

defined carefully.

The chief issue with formulating the sequential

sampling problem as a multicriteria optimization

problem is deciding how to combine the criteria into an

objective function. For two criteria, either averaging

the criteria (as in a cooling schedule) or switching be-

tween criteria, as in Switch, are reasonable approaches

and have been used successfully [16]. As the number of

criteria increases, the cooling schedule approach be-

comes more attractive. A cooling schedule, similar to

that defined for simulated annealing optimization

problems, allows the sequential sampling algorithm to

smoothly transition between different sequential sam-

pling priorities. To do this, a set of barycentric criteria

weights (that always sum to 1) within the range defined

by the schedule are defined. However, this is only

effective if the criteria are normalized; otherwise, the

relative magnitudes of the criteria values will com-

promise the blending provided by the cooling schedule.

One option to achieve a barycentric set of criteria
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weights in the cooling schedule is to use Bernstein basis

functions, defined in Eqs. 8 and 9:

JiðtÞ ¼
n� 1ð Þ!

i! n� i� 1ð Þ! ti 1� tð Þn�i�1 8 06 t6 1 ð8Þ

such that:

Xn�1

i¼0

JiðtÞ � 1 8 t ð9Þ

where Ji(t) is the ith criteria weight, n is the number of

criteria defined in the cooling schedule, and t is the

parameterized sample number defined by Eq. 10 as:

t ¼ Sn � 1

CSp � 1
ð10Þ

where Sn is the current sample number and CSp is the

cooling schedule period, a user defined parameter

denoting the cooling schedule duration. A cooling

schedule may be cycled through several times during a

sequential sampling experiment (creating nonmono-

tonic behavior). With this formulation, the criteria

weights defined from the Bernstein basis functions

exhibit a Partition of Unity property (resulting in a

normalized objective function when the criteria also

are normalized), with symmetric functions that have

equally spaced maximum locations [5]. As a result each

criterion is dominant over an equal period of the

cooling schedule. Finally, this selection takes advan-

tage of the mathematical relationship of Bernstein

basis function to the B-spline basis function to intro-

duce programming efficiencies into the HyPerSample

algorithm. Note that other basis functions also are

feasible selections and may offer advantages over the

Bernstein basis. Further research is necessary to

determine the implications of alternative selections.

Consider a four criteria implementation. The cool-

ing schedule defines a set of criteria weights, J0, J1, J2,

and J3 that are combined with four criteria, in this case

the proximity (PC), weight (WC), slope magnitude (SC),

and a model (MC) criteria respectively (which are de-

fined in the following section), to define the objective

function, f(x):

f x; tð Þ ¼ J0 tð ÞPC xð Þ þ J1 tð ÞWC xð Þ
þ J2 tð ÞSC xð Þ þ J3 tð ÞMC xð Þ:

ð11Þ

The resulting cooling schedule is shown in Fig. 1.

Note that the result of this approach is an objective

function that remains constant while each optimization

problem is solved, but is modified with each sample

collected. Since the cooling schedule repeats after

completing a cycle, its behavior is nonmonotonic.

2.3 Multidimensional sampling criteria

It is possible to use variations of the criteria described in

Sasena et al. [15] and Sasena [16] to define a multicri-

teria sequential sampling optimization problem with a

cooling schedule. We have carefully defined four criteria

(proximity, PC, weight, WC, slope magnitude, SC, and

model, MC) that are evaluated using the unique prop-

erties of HyPerModels to reduce computational costs.

In general, as the HyPerModel is constructed, con-

trol points are located in proximity to existing data

points. Therefore, it is reasonable to use the proximity

of control points to determine if a region has been

previously sampled. The proximity criterion defines a

parabolic span between control point locations, much

like a cable between towers on a suspension bridge,

with the parabola depth determined by the relative

control point spacing. The coefficients for each local

polynomial segment can be calculated in closed form,

leading to a computationally efficient criterion despite

its piecewise construction. For instance, a simple 1D

input 1D output HyPerModel with three control points

and an order of k = 3, consists of two parabolic spans.

Thus, the value of the proximity criterion at a point u,

is defined by Eqs. 12, 13, 14, 15, and 16. Given a value

of u such that

CPj6 u \ CPjþ1 ð12Þ

Fig. 1 A four criteria cooling schedule example
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PC ¼ 1:0� 1:0�Au2 � Bu� C
� ��

CPmax ð13Þ

A ¼ �4:0
�

CPjþ1 � CPj

� �
ð14Þ

B ¼ 4:0 CPj þ CPjþ1

� ��
CPjþ1 � CPj

� �
ð15Þ

C ¼ 1:0� 4:0 CPj

� �
CPjþ1

� ��
CPjþ1 � CPj

� �
ð16Þ

where CPj is the control point u-coordinate for the next

smallest control point with respect to the position u,

CPj + 1 is the control point u-coordinate for the next

larger control point with respect to the position u, and

CPmax is the maximum difference between neighboring

control points in the u-axis direction. By definition, the

criterion is normalized. Because control points are ar-

ranged in an N-dimensional grid, the proximity crite-

rion can be defined with a tensor product of the criteria

for each dimension.

The weight criterion evaluates the confidence in

control point locations. In a NURBs HyPerModel, the

location of each control point is defined with respect to

the nearest data point based only on the input coor-

dinates of the two points. The more distance between a

control point and its nearest neighboring data points,

the less confidence there is in the location of the con-

trol point, and thus we reduce the control point weight

(and therefore the impact of the control point on the

HyPerModel). This is accomplished with Eq. 17.

w ¼ wmin þ wmax � wminð Þ rTR�1r
� �

ð17Þ

Recalling that the input dimensions are normalized

and equal to the HyPerModel input coordinates,

u ¼ x 2 0; 1½ � ð18Þ

and thus 06 rTR�1r
� �

6 1 ð19Þ

so therefore 0\wmin6w6wmax ð20Þ

where w is the weight of the control point, wmin is the

minimum weight value, wmax is the maximum weight

value, r is a vector derived from the spatial correlation

function,

Rðu; xÞ ¼ e�h u�xj jp ð21Þ

where h defines the range of influence of the data

(h > 0), and p defines the smoothness of the model

(0 < p < 2, where increasing values of p lead to a

smoother model), and u and x represent the current

point and the sampled data points [8]. In this case, r

is derived from Rðui; xCPÞ; relating the parametric

control point location (xCP) to the location of the

ith nearby neighbor data points (ui). The matrix R in

Eq. 17 is derived from the spatial correlation

function, Rðui; ujÞ; defined in Eq. 21, relating the

location of data point ui to the location of data point

uj. In this case, to limit the computational cost of

inversion, R is based on the 10 nearest neighbors to

each control point rather than the entire dataset.

Based on a parametric study of the affect of h and p

on the calculated weights, it was determined that

reasonable parameter values for h and p can be

obtained from wmin and the number of control points

(in each input dimension direction), nC, respectively,

according to the relations defined in Eqs. 22 and 23:

h ¼ ln wminð Þ ð22Þ

p ¼ ln ln Cð Þð Þ
ln 1=nC

� � ð23Þ

where C is a coefficient (C > 1.0) defining the mini-

mum weight of influence at the nearby neighborhood

boundary. Values of wmin ¼ 0:1;wmax ¼ 1:0; and C = 2

have yielded good results, and result in weights that

range from 0.1 for a control point with little data near

its location, to a value of 1.0 for a control point with

many nearby and even coincident neighbors. The

control point weight represents the proximity of a

control point to existing data points and thus estimates

the level of confidence that can be placed in a control

point location. Control points with data in close prox-

imity are well defined and exhibit weights near wmax,

while control points without nearby data points will

exhibit weights near wmin. This conclusion is also based

upon the same parametric study used to establish the

relations defined in Eqs. 22 and 23. Since a control

point weight value of zero leads to numerical difficul-

ties in Eq. 1, wmin was established a small nonzero

value. Since the weight criterion, WC, is defined to be

normalized, the wmax was thus set at a value of 1.

Consequently, the value of C determines the rate at

which the proximity of data to a control point location

reduces the control point weight, while Eqs. 22 and 23

affect the shape of that function. The weight criterion

is calculated throughout the design space by treating

the weights as the output coordinate for a linear B-

spline object.

The model and slope criteria are derived directly

from the HyPerModel formed from the current dataset

iteration. Since a HyPerModel obeys the Convex Hull

Property of NURBs, the control point network bounds

the HyPerModel. Therefore, normalizing the control

point locations also normalizes the HyPerModel.
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Normalization is a perspective transformation, and

thus, the HyPerMdoel with normalized control points

is invariant (i.e., the optimum will not move due to the

transformation) with respect to the transformation [5–

7]. This transformation can be done for all of the

possible output variables in the HyPerModel simulta-

neously. The resulting criterion may exhibit a reduced

magnitude because the control point network varies

from 0 to 1, while the curve will lie within those

bounds. The model criterion is used to search for

minima, maxima or extrema in the HyPerModel. As

these locations are often of significance in design space

modeling applications, additional effort to assure that

these regions are well defined is reasonable. This is the

physical goal of the model criterion. Since these goals

are mutually exclusive, three variations of the model

criterion have been defined to search for minima,

maxima, or extrema, as in Eqs 24, 25, and 26:

for minima: MC xð Þ ¼ mðxÞ ð24Þ

for maxima: MC xð Þ ¼ 1�mðxÞ ð25Þ

for extrema: MC xð Þ ¼ mðxÞ 1�mðxÞ½ � ð26Þ

where m(x) represents the normalized current HyPer-

Model of the unknown function. Each variation re-

quires only a single evaluation of the HyPerModel.

The control point network also provides the key to

normalizing the slope magnitude criterion. A HyPer-

Model will follow the shape of the control polygon

because it is a barycentric expression of control point

locations, with the slope between neighboring control

points bounding the metamodel slope. It is very easy to

find the maximum and minimum control point network

slopes with a simple search of the control net. Conse-

quently, both the model and slope magnitude criteria

can be calculated and normalized with knowledge of

the control point locations, control point weights, and

metamodel curve order. Like the results from the

model criterion, the normalization does not produce a

perfect variation between 0 and 1.

Minima in the slope magnitude criterion indicate

regions of rapid change within the HyPerModel. This

could be due to the presence of multiple local optimal

in close proximity, or due to local dramatic changes in

the design space. Either may be of interest to a de-

signer. The slope criterion is defined as:

SC xð Þ ¼ 1� m0ðxÞð Þ2 ð27Þ

where m¢(x) is the normalized derivative of the Hy-

PerModel. In an N-dimensional application, there are

N slopes in each of the N input directions. The slope

magnitude criterion is the tensor product of each of

these slope magnitudes (which are individually nor-

malized).

2.4 Sampling convergence

Adaptive sequential sampling approaches generally

converge when the available experimental budget to

collect data points has been exhausted or when the

predicted cost of acquiring additional data exceeds the

predicted value of that new data [15, 16]. This is be-

cause most metamodel approaches use the entire

available dataset to define the metamodel. HyPer-

Models only use data points to define the HyPerModel

if the data points exceed a specified root mean square

(RMS) error threshold (normalized with respect to the

full scale of the HyPerModel), i.e., data points that are

not well represented by the current metamodel. This is

only possible if an approximating HyPerModel is

acceptable. In a HyPerModel, two RMS error thresh-

olds are used. The minimum RMS error threshold

(RMS min) defines when a HyPerModel prediction is

close enough to a data point value to approximate that

data point within a user-specified tolerance. The max-

imum RMS error threshold (RMS max) provides a

user-specified tolerance above which the local errors in

the HyPerModel outweigh the global accuracy of the

HyPerModel.

The segregation of data into used and unused

datasets represents an important development for

adaptive sequential sampling algorithms. The unused

data provides a mechanism to statistically evaluate the

current HyPerModel against several convergence cri-

teria including the maximum local RMS error and the

global correlation coefficient, facilitating simultaneous

metamodel validation and sampling. In other adaptive

sequential sampling algorithms, model validation oc-

curs after metamodel convergence is achieved by col-

lecting additional data at additional cost if it occurs at

all. Given a sufficient unused dataset size, an experi-

ment can be determined to be complete before the

experimental budget is exhausted or if the experi-

mental budget is even adequate to estimate and vali-

date the HyPerModel. The HyPerSample algorithm for

determining sampling convergence is shown in Fig. 2.

Sampling convergence is determined by several

user-defined parameters including the global correla-

tion coefficient target threshold (Target), RMS min,

RMS max, the cooling schedule duration (CS Limit),

the minimum dataset size (minimum), and the experi-

mental data budget (Data Budget). The global corre-

lation coefficient measures how well the HyPerModel

explains the variations in the unused dataset, but can

Engineering with Computers (2007) 23:155–174 161

123



be ignored if the maximum RMS error threshold is

exceeded at any point in the unused dataset. The

remaining parameters terminate the algorithm if the

experimental budget is exceeded (Data Budget), set a

threshold for the minimum number of experiments

(minimum) to be conducted before the statistical

analysis is considered valid, and define the number of

sampling attempts than can be made without updating

the HyPerModel (CS Limit). Typical values for each

parameter are shown in Table 1. With these parame-

ters, convergence occurs due to:

1. Convergence due to sampling limit. The algorithm

can exhaust its sampling budget without achieving

its accuracy goals. When this happens, it can be

argued that additional experimentation is justified

to further refine and validate the model.

2. Convergence due to cooling schedule limit. If the

number of consecutive samples collected without

requiring a HyPerModel revision and refit equals

the cooling schedule cycle duration, (20 samples in

Fig. 1), the sequential sampling algorithm will

begin to repeat previous results. In this case, ran-

dom sampling, modifications to the sequential

sampling criteria, or changes to the cooling sche-

dule are warranted. In short, a different sampling

approach is needed to continue the search.

3. Convergence due to model correlation. The algo-

rithm can also converge by achieving its global

correlation target with an RMS error less than the

RMS max as calculated with the unused dataset.

2.5 Number of samples per iterations

HyPerSample can provide multiple sampling points

per iteration, or only a single point. In general, the

objective function resulting from the cooling schedule

contains multiple local optima, which can be sampled

simultaneously. However, in the current implementa-

tion, the best optimum location is selected as a ‘‘par-

ent’’ point. In addition to the parent, multiple ‘‘child’’

points also are defined. The dimensionality of the

Fig. 2 The HyPerSample
algorithm

Table 1 Sequential sampling parameter values

Problem dimension Target
correlation

Min RMS
limit

Max RMS
limit

Cooling
schedule
reset limit

Min data
sample

Experimental
data budget

Initial dataset

Small Large

1 99% 0.5% full scale 2.5% full scale 15 20 50 2 11
2 20 8 · 8 20 · 20 4 25
3 20 6 · 6 · 6 16 · 16 · 16 8 125
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problem and the density of the control point grid

determine the exact number of children in a given

iteration. Furthermore, some of the child points may

be eliminated from the final sampling set if they are in

close proximity (determined with a user-defined

threshold) to points that have been previously sam-

pled. An example of this parent–child relationship is

shown in Fig. 3.

Any of the above approaches can be used to gen-

erate data for a HyPerModel as a model is not

dependent upon any particular data structure. How-

ever, because a HyPerModel uses a grid-based control

point network, the use of a grid-based sampling scheme

seems to reduce the number of iterations required to

achieve convergence. However, further research also is

needed on this topic.

3 Experimental trials

Two experimental questions are addressed through a

set of experimental trials. The first question is whether

HyPerSample does a better job representing unknown

functions than a random search resulting in an equal

number of sample points. The second question is if

there is any benefit to a more extensive initial search to

define the initial HyPerModel before proceeding with

HyPerSample. To address these questions, the Hy-

PerSample algorithm was implemented into the Hy-

PerMaps software package developed to define

HyPerModels and a set of five nonlinear functions was

selected for testing.

Initially, two initial search sizes were undertaken.

The smaller search was a 2k search, which establishes

the corners of the design space for each problem. A

second larger search, consisting of equally spaced

points (11 points for the 1D input problems, 25 points

for the 2D input problems, and 125 points for the 3D

problem) also was conducted. These initial searches

provided data to define the initial HyPerModel en-

abling HyPerSample to define the initial search crite-

ria. For each of the five functions, both a small and a

large initial dataset were used to define the initial

HyPerModel and then HyPerSample was used to col-

lect additional data until one of the three convergence

results introduced in Sect. 2.4 was achieved. Table 1

defines the parameters by which these trials were

conducted.

These trials determined the number of data points

needed by HyPerSample to model each function.

Using these dataset sizes, five equally sized but ran-

domly generated datasets were defined for each func-

tion. This produced 10 datasets for each function (5 for

the HyPerModels generated by the small initial dataset

and 5 for the HyPerModels generated from the large

initial dataset). HyPerModels were then fit to each

randomly generated dataset. The HyPerModels gen-

erated with HyPerSample and from randomly gener-

ated datasets were then compared to the actual

functions to determine their global correlation coeffi-

cient (i.e. how similar are the HyPerModels to the

actual function globally) and their local RMS error,

expressed as a percentage of the full scale of the model

(i.e. what is the largest local deviation between the

HyPerModel and the actual function locally) using

101k samples for the 1D and 2D functions and 41k

samples for the 3D function. The results of the five

randomly generated datasets for each function and size

were averaged. The use of replicates is intended to

reduce the effect of a randomly good or randomly bad

set of data points.

3.1 Algorithm implementation

Several details are notable in the implementation of

HyPerSample within HyPerMaps. The sequential

Fig. 3 A parent–child relationship determines the set of possible
sampling points from a single optimum (parent) sampling
location in HyPerSample
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sampling optimization problem is solved with a

sequential quadratic programming algorithm, using the

control point locations as starting locations. To differ-

entiate between local optima with similar objective

function values, possible optimal solutions are com-

pared to existing data point locations in the dataset and

points that have already been sampled are eliminated

from consideration.

In addition, the experimental data budget is treated

as a ‘‘soft’’ limit. That is to say, when the dataset size

equals or exceeds the experimental point budget, the

search is terminated. However, the experimental

point budget may be exceeded to complete sampling

of the current point set during the current sampling

iteration. This was done in order to simplify the

implementation of HyPerSample. Thus it is possible

to sample slightly more than 100% of the experi-

mental budget. Future versions will implement a

capability for a ‘‘hard’’ limit.

Finally, the 2D and 3D trials incorporate four

sampling criteria, while the 1D trials used only three

criteria (the weight criterion was not used in the 1D

trials). These criteria are ordered as in Fig. 1 with the

extrema form of the model criterion (Eq. 26). This

order places globally oriented search criteria in the

early stages of the cooling schedule and locally ori-

ented search criteria in the later stages. Within the

current implementation of HyPerSample, 1 to 4 cri-

teria can be selected (although only one version of

the model criterion at a time) and the user can specify

their order in the cooling schedule. Further research

into the impact of the order in which the criteria are

considered and the number of criteria used is still

needed.

3.2 Trial problems

The five test functions are discussed in detail in

Sect. 4, including two 1D input–1D output functions,

two 2D input–1D output functions, and a 3D input–

6D output function. Two of these functions are di-

rectly related to physical engineering applications.

The first function is based on the Jacobian Condition

Number (JCN) of a planar 3 degree-of-freedom robot

[35] shown in Fig. 4. Murphy et al. [36] proposed the

Local Variability function shown in Fig. 5, defined

with a sparse dataset, and represented with a qua-

dratic polynomial blend defined by subsequent sets of

three data points. Two more functions are nonlinear

optimization test functions that are defined by Eq. 28,

the 6-hump camel back function and by Eq. 29, the

Hansen function [37].

f25 x0; x1ð Þ ¼ 4x2
0 � 2:1x4

0 þ
x6

0

3
þ x0x1 � 4x2

1 þ 4x4
1

for � 26 x06 2

for � 16 x16 1

ð28Þ

f26 x0; x1ð Þ

¼
cosð1Þ þ 2 cosðx0 þ 2Þ þ 3 cosð2x0 þ 3Þ

þ 4 cosð3x0 þ 4Þ þ 5 cosð4x0 þ 5Þ

 !

�
cosð2x1 þ 1Þ þ 2 cosð3x1 þ 2Þ þ 3 cosð4x1 þ 3Þ

þ 4 cosð5x1 þ 4Þ þ 5 cosð6x1 þ 5Þ

 !

for � 36 x0;16 3

ð29Þ

The final example function is also based on a phys-

ical engineering application modeling the problem of

locating and sizing a crane at a construction site.

Conceptually, this problem is very similar to many

Fig. 4 An example problem constructed from a three degree-of-
freedom planar robot, similar to those used in wafer handling,
with a proposed path generated by the joint conditions that
x2 = 30� and x1 = –x3 so that the robot tool maintains a constant
orientation of 30� to the horizontal. Small values of the JCN
indicate that the robot is approaching undesirable singular
configurations along its path from A to B [4]

164 Engineering with Computers (2007) 23:155–174

123



‘‘pick-and-place’’ robotics problems such as those

common in 2D assembly operations (wafer handling,

circuit board assembly, etc). This problem includes six

performance indices, defined by three design variables.

Figure 6 defines the problem design variables.

4 Performance comparisons

Performance of the multicriteria sequential sampling

algorithm HyPerSample is demonstrated with the

resulting correlation and RMS error metrics for the

trial problems studied. For the five test problems pre-

sented in detail, the number of data points collected

and used in the construction of the metamodel, the

number of extrema modeled in comparison with the

actual number of extrema, and the position error and

value error of the optimal location are also evaluated.

The reason for convergence is indicated for each trial.

The performance for all five test problems, with respect

to the initial dataset size and the randomly generated

datasets is summarized in Sect. 4.6.

4.1 JCN test problem

The Jacobian condition number (JCN) test problem

displays nonlinear behavior, with three distinct local

minima, two of which are defined by sharp cusps. For

this problem, intermediate results have been included,

demonstrating the progress of the algorithm in devel-

oping a suitable metamodel. The search begins with an

initial dataset of two points, defining a linear model,

obtained from a 2k search and shown in Fig. 7.

Subsequent iterations add additional data to the

dataset, which is incorporated into the model, leading

to an evolution of the metamodel representation. After

eight iterations, 11 points have been defined, and the

model has evolved to that shown in Fig. 8.

Further iterations continue to add data to the model,

but result in small changes to the HyPerModel since

the model criterion is becoming increasingly important

in the calculation of the objective function. The

majority of points added are near the initially defined

optimum located near x = 0.4, as shown in Fig. 9.

At this point the cooling schedule resets, having

reached its reset limit. Sampling reverts to a global

search, adding points into regions that were previously

sparsely sampled. Some of these points result in model

refinements and others confirm that the model already

represents the underlying function and are added to

the unused dataset. After 23 iterations, the resulting

model is shown in Fig. 10.

The model does not yet have sufficient data points in

the unused dataset to achieve convergence, therefore,

sampling continues. Eventually 39 points of the 50

points budgeted are collected, with 19 points actually

used to define the HyPerModel. When a larger dataset

of 11 points is initially provided, comparable results are

obtained with a total of 41 points collected and 25 used

Fig. 5 The Local Variability function uses a dataset obtained
from Murphy et al. [36] to define a parabolic blend as shown in
[4]

Fig. 6 Locating a crane at a construction site is a tradeoff
between the size of the crane required, the range of motion
required for the crane to reach all locations of interest at the site
(which is related to the efficiency with which the crane can
accomplish its work), and the need to avoid interfering with
construction due to the crane location. The mathematics of the
objective function combining these conflicting needs is defined in
[4]
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to define the HyPerModel. The resulting models are

shown in Fig. 11.

The larger initial dataset does have a slightly higher

correlation than the 2k approach (99.8 vs. 99.4%) and a

smaller RMS error (10.3 vs. 15.5%). Both HyPer-

Models converge by achieving the correlation target

while maintaining an RMS error less than the RMS

error threshold as calculated with the unused dataset.

4.2 Local variability test problem

Like the JCN test problem, the nonlinear nature of the

Local Variability test function presents a challenge to

sequential sampling algorithms. The high variability of

the function for 0.1 < x < 0.4 requires additional sam-

ples in this particular region. The existence of the

global optimum at x = 0 means that this point is sam-

pled immediately for a 2k search, but also tends to draw

the model towards small values. Similarly, since the

points in the region of greatest variability will generally

be included in the next metamodel iteration, the

proximity criterion will tend to favor other regions in

the HyPerModel. Only the slope criterion will be

drawn to this region. The resulting HyPerModels are

shown in Fig. 12.

While both models achieve correlations of better

than 90%, adequate for many applications, both miss

the local optimum near x = 0.15. As was true for the

JCN test problem, the larger initial sample did result in

a slightly higher model correlation (93.3 vs. 90.9%) as

well as a lower maximum RMS error (38.0 vs. 48.0%)

in comparison to the 2k initial dataset. The larger initial

dataset also converges after adding 15 consecutive

points without triggering a model update, the cooling

schedule limit. Thus, convergence is due to reaching

the cooling schedule limit, whereas the previous model

converged due to model correlation.

4.3 Six-hump camel back problem

The six-hump camel back problem, defined by Eq. 28,

is a 2D nonlinear optimization trial problem to which

sequential sampling is often applied. Both initial sam-

pling sizes produced comparable correlations with re-

spect to the actual function (99+%). The larger initial

sample of 25 points did produce a model that exhibited

Fig. 7 The initial model is a
horizontal straight line with
zero slope. As this is the first
iteration, the cooling schedule
defines the objective function
as the proximity criterion
only. The model correlation
to the actual function is
initially 0%
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a smaller maximum RMS error (4.3 vs. 16.7%), but

also required more samples to achieve convergence

(331 vs. 236) and more points were involved in fitting

the HyPerModel (157 vs. 79). Both HyPerModels

converged after achieving model correlation. The

resulting models are shown in Fig. 13.

4.4 Hansen problem

The Hansen function, Eq. 29, like the local variability

problem, is a highly multimodal function defining 96

local extrema. Only about half of these extrema were

modeled with either the 2k or the 5k initial datasets (see

Fig. 14). Both approaches converged by exhausting the

available experimental point budget, making a strong

case for further sampling. Consequently, neither Hy-

PerModel demonstrates a particularly high correlation

coefficient and both also exhibit large maximum RMS

errors.

4.5 Crane location problem

The crane location problem is also interesting due to

its complexity. In order to model the objective

function, the six performance indices were modeled

within a single 3D-input/6D-output HyPerModel. By

constructing a single HyPerModel, the costs of sam-

pling the 6D outputs can be ‘‘shared’’ between

dimensions, since features in one dimension may lead

to the discovery of correlated features in other

dimensions.

In order to deal with the impact of multiple

dimensions on the slope magnitude and model criteria,

the results for each output dimension are combined

through a tensor product. With the individual perfor-

mance index models constructed, they can be com-

bined into a single objective function model. Figure 15

shows a slice of the objective function model for the

length of reach, L, equal to zero.

The correlation between the 2k initial dataset model

and the actual function is 86.4%, while the 5k initial

dataset model achieves a correlation of 85.6%. Both

approaches have significant RMS errors of 34.8 and

27.1%, respectively. Due to the high dimensionality of

the problem, both HyPerModels required a significant

number of data points to converge (1,806 and 4,259,

respectively), and both use a significant number of

points to define their HyPerModels (626 and 552,

Fig. 8 After eight iterations
the model is a much better
representation of the
underlying function. The
objective function is defined
by a combination of the three
criteria, with the slope
magnitude criterion exhibiting
significant influence on the
shape of the objective
function. The model
correlation to the actual
function is now 89%
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respectively). Interestingly, the 2k HyPerModel con-

verges by achieving model correlation, while the 5k

HyPerModel exhausts the experimental sampling

budget of 4096 (163) points. However, both approaches

correctly represent 10 of the 11 extrema in the actual

design space.

Both approaches generate optimal locations that are

close matches to those of the actual model. Not sur-

prisingly, the crane selected is only as long as necessary

to reach all of the placement points (i.e. L = 0) and it is

located at approximately either (4, 0) or (0, 4). This

minimizes the angle to be transversed, while main-

taining a similar distance to most of the placement

points.

4.6 Overall performance

Overall, the HyPerSample generated HyPerModels

produce more accurate representations of the actual

functions than HyPerModels using randomly gener-

ated datasets. Both the global correlation coefficient

and the local RMS error demonstrate that HyPerS-

ample generated models are superior for the five

functions studied. The global correlation coefficient

results are summarized in Table 2 and the local RMS

error results are summarized in Table 3.

In each case shown in Table 2, the HyPerModels

built using HyPerSample exhibit higher global corre-

lation coefficients with respect to the actual function

than the corresponding HyPerModels generated using

random datasets. For simple functions with few local

optima, the differences are relatively minor. However,

for highly multivariate functions, HyPerSample pro-

duces dramatically superior models.

Similarly, in each case shown in Table 3, the Hy-

PerModels built using HyPerSample exhibit lower lo-

cal RMS errors with respect to the actual function than

the corresponding HyPerModels generated using ran-

dom datasets. Again, for simple functions, the differ-

ences are not as pronounced as they are for the more

complex multivariate examples. Clearly, HyPerSample

produces HyPerModels that more accurately represent

the actual function than randomly generated HyPer-

Models.

Table 4 compares the performance of HyPerSample

when using a small initial dataset versus a large initial

Fig. 9 After 15 iterations the
model has refined its
representation of the
optimum near x = 0.4. The
objective function is now
defined by the model extrema
criterion. The model
correlation to the actual
function is now 89%
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dataset to define the initial HyPerModel. In general,

the advantages of using a larger initial dataset are

negligible. Both approaches yield comparable average

correlations and maximum RMS errors. The resulting

models capture a similar percentage of extrema and

represent those extrema with similar errors. The major

difference among all examples is the average percent-

age of the experimental budget used, where small ini-

tial datasets typically required half the data as the

larger initial datasets required. While not always the

case, the Hansen function demonstrates that even a 2k

search may exhaust the experimental budget. This

suggests that the 2k initial dataset, supplemented with a

multi-criterion sequential sampling technique, and

terminated with suitable convergence criteria, can be

highly effective.

In these ten trials, six models terminated with suf-

ficient evidence to support an argument that the

Fig. 10 After 23 iterations
points have been added in the
voids between x = [0, 0.25]
and x = [0.75, 1] leading to a
refinement of the model for
larger values of x. The model
correlation to the actual
function is now 99%

Fig. 11 The final models for a
2k initial dataset (left) and an
11 point dataset (right) show
similar results with
correlations of greater than
99% to the actual function
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experiment is complete. Three other trials suggested

that additional experimentation would be justified

since there is insufficient data to validate the resulting

metamodel. Such decisions though are left to the

experimenter, but could be automated in the future.

HyPerSample currently performs no automatic

decision-making concerning the adequacy of the

experiment. Only one trial was inconclusive, the local

variability function with a large initial dataset, and

would require a bootstrapping restart method in

addition to the multicriteria sequential sampling algo-

rithm.

The performance of the trial problems is charac-

teristic of the performance of HyPerSample when ap-

Fig. 12 The final models for a
2k initial dataset (left) and an
11 point dataset (right) show
similar results. The 2k dataset
identifies 11 of the 13 local
extrema in the problem, while
the larger, 11 point, initial
dataset models only 9 local
extrema since half of its initial
sample set is in the relatively
constant region for x > 0.5

Fig. 13 The final models for a 2k initial dataset (left) and 5k initial dataset (right) show similar results to the actual function (middle)

Fig. 14 The final models for a 2k initial dataset (left) and 5k initial dataset (right) show similar results to the actual function (middle)
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plied to other problems of engineering interest. Details

concerning the additional experimentation with Hy-

PerSample generated HyPerModels can be found in

Turner [4].

5 Summary, conclusions and future work

Effectively sampling an unknown design space to

determine the underlying functional behavior is an

Fig. 15 The final models for a 2k initial dataset (left) and 5k initial dataset (right) show similar results to the actual function (middle),
shown at L = 0

Table 2 Global Correlation
Coefficient with respect to the
actual function. Higher
percentages indicate better
representation of the actual
function by the HyPerModel

Function (section) Data points HyPerSample
correlation (%)

Random dataset
correlation (%)

Small initial dataset
JCN (4.1) 19 99.4 94.3 ± 5.8
Local variability (4.2) 17 90.9 52.1 ± 15.0
Six-hump camel back (4.3) 79 99.2 91.6 ± 2.2
Hansen (4.4) 128 53.7 21.4 ± 6.0
Crane location (4.5) 626 86.4 58.3 ± 3.4
Average 85.9 63.6 ± 28.5

Large initial dataset
JCN (4.1) 25 99.8 99.0 ± 0.7
Local variability (4.2) 14 93.3 60.9 ± 14.1
Six-hump camel back (4.3) 157 99.9 94.1 ± 1.4
Hansen (4.4) 189 69.5 42.7 ± 17.9
Crane location (4.5) 552 85.6 60.4 ± 0.4
Average 89.6 71.4 ± 23.9

Table 3 Local RMS Error
with respect to the actual
function. Lower percentages
indicate better representation
of the actual function by the
HyPerModel

Function (section) Data points HyPerSample
RMS error (%)

Random dataset
RMS error (%)

Small initial dataset
JCN (4.1) 19 15.5 35.5 ± 7.9
Local variability (4.2) 17 48.0 78.3 ± 59.4
Six-hump camel back (4.3) 79 16.7 35.7 ± 7.6
Hansen (4.4) 128 23.5 51.0 ± 21.8
Crane location (4.5) 626 34.8 31.8 ± 17.4
Average 27.7 46.5 ± 32.4

Large initial dataset
JCN (4.1) 25 10.3 16.9 ± 7.2
Local variability (4.2) 14 38.0 131.0 ± 98.9
Six-hump camel back (4.3) 157 4.3 27.0 ± 7.4
Hansen (4.4) 189 33.5 42.0 ± 22.6
Crane location (4.5) 552 27.1 38.9 ± 11.9
Average 22.6 51.1 ± 59.2
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important challenge in engineering design applications.

Effective functional representations, in the form of

metamodels, can be used to discover variable rela-

tionships, identify the significance of trends, and to

locate optimal variable combinations. However, in

order to build accurate and useful metamodels, an

adaptive sequential sampling technique is highly

desirable to facilitate the efficient collection of data,

particularly when data collection is costly or the design

space to be sampled is vast.

A multicriteria sequential sampling approach using

a cooling schedule to translate between criteria is an

effective method of adaptively collecting data about

unknown functions. When coupled with a set of con-

vergence criteria, it becomes possible to determine

when an experiment has collected sufficient data to

determine the adequacy of the metamodel, or if further

experimentation may be warranted. The effectiveness

of the HyPerSample algorithm in generating accurate

HyPerModels was demonstrated for five trial problems

of engineering interest.

HyPerSample uses an initial dataset, obtained from

a factorial search, a latin hypercube approach or a

random search, to produce an initial dataset to define

an initial HyPerModel. This initial HyPerModel is used

to define the criteria by which HyPerSample selects

future sampling locations. HyPerSample outperforms

randomly generated datasets and is effective with a

relatively small initial dataset. Furthermore, HyPerS-

ample provides a mechanism by which the validity of

the metamodel can be judged and by which conclusions

about the adequacy of the experimental budget can be

made.

While the criteria used in HyPerSample are spe-

cifically formulated for HyPerModels, comparable

criteria can be defined for other types of metamodels.

The chief challenge in doing so will be to develop

normalization techniques so that the criteria magni-

tudes do not play a role in the cooling schedule for-

mulation of the objective function. The use of a

cooling schedule to blend and transition between

criteria can be applied to any type of metamodel, as

can the idea of simultaneously generating a validation

as well as metamodel fitting datasets in order to

establish convergence criteria for an adaptive sam-

pling algorithm.

Of concern in the current HyPerSample implemen-

tation is the solution to the optimization problem that

determines the next sampling location. HyPerSample

currently employs a multi-start approach, using the

HyPerModel control points as starting locations, which

has yielded satisfactory results. However, as the model

size increases and the number of control points climbs,

the number of optimizations required also increases,

and the algorithm slows. Preliminary results suggest

that allowing the user to specify a limit on the number

of optimizations, and determining the starting points

with a random multi-start approach, may be similarly

effective. Other approaches, such as using stochastic or

heuristic optimization approaches with a time limit for

optimization remain to be explored. The goal of each

individual sequential sampling optimization problem is

not necessarily the globally optimal sampling location,

but rather a good locally optimal solution that yields

valuable data for calculating the metamodel and its

validity.

Table 4 Detailed trial problem performance summary

Initial data Trial Correlation %
(% RMS error)

Points
sampled
(% of
point
budget)

Points used
(% of points
sampled)

Optimum
position
error (%
full scale)

Optimum
value error
(% full
scale)

% of
extrema
modeled

Termination
cause

Unused
dataset

Actual
func. data

Small initial dataset JCN 100 (0.46) 99.4 (15.5) 78 49 0.3 0.2 100 Correlation
LV 100 (0.46) 90.9 (48.0) 74 46 0.0 0.0 85 Correlation
6HCB 99.9 (2.36) 99.2 (16.7) 59 33 1.1 0.6 75 Correlation
Hansen 95.3 (17.2) 53.7 (23.5) 114 28 2.2 4.5 50 Point limit
Crane 100 (0.44) 86.4 (34.8) 44 35 4.5 2.6 91 Correlation
Average 99.1 (4.18) 85.9 (27.7) 51 34 1.6 1.6 80

Large initial dataset JCN 100 (0.24) 99.8 (10.3) 82 61 0.2 0.9 100 Correlation
LV 100 (0.41) 93.3 (38.0) 68 41 0.0 0.0 69 CS limit
6HCB 99.98 (1.29) 99.9 (4.3) 83 47 1.0 0.4 75 Correlation
Hansen 93.0 (16.6) 69.5 (33.5) 110 43 0.9 5.6 52 Point limit
Crane 94.2 (37.1) 85.6 (27.1) 104 13 7.5 0.6 91 Point limit
Average 97.4 (11.1) 89.6 (22.6) 102 18 1.9 1.5 61

Overall average 98.2 (7.65) 87.8 (25.2) 79 39 1.8 1.5 71
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In some cases, the algorithm fails to converge and

cannot proceed on its own. In these cases, we speculate

that a change in strategy is warranted. The develop-

ment of additional criteria or the application of dif-

ferent cooling schedules may yield techniques to allow

the algorithm to bootstrap itself out of such conditions.

In addition, a better understanding of the tradeoffs

resulting from the selection of different convergence

criteria values should be undertaken.

Future work also will focus on exploring alternative

formulations in the HyPerModel and HyPerSample

relations and parameters. This research should im-

prove the efficiency of HyPerSample and further

optimize the algorithm. In addition, improved handling

of convergence limits, improved optimization of the

criteria objective function and a boot strap recovery

from the inconclusive convergence outcome are highly

desirable.
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