
ORIGINAL ARTICLE

A component-based parallel infrastructure for the simulation
of fluid–structure interaction

Steven G. Parker Æ James Guilkey Æ Todd Harman

Received: 19 April 2005 / Accepted: 1 February 2006 / Published online: 7 November 2006
� Springer-Verlag London Limited 2006

Abstract The Uintah computational framework is a

component-based infrastructure, designed for highly

parallel simulations of complex fluid–structure inter-

action problems. Uintah utilizes an abstract represen-

tation of parallel computation and communication to

express data dependencies between multiple physics

components. These features allow parallelism to be

integrated between multiple components while main-

taining overall scalability. Uintah provides mechanisms

for load-balancing, data communication, data I/O, and

checkpoint/restart. The underlying infrastructure is

designed to accommodate a range of PDE solution

methods. The primary techniques described here, are

the material point method (MPM) for structural

mechanics and a multi-material fluid mechanics capa-

bility. MPM employs a particle-based representation of

solid materials that interact through a semi-structured

background grid. We describe a scalable infrastructure

for problems with large deformation, high strain rates,

and complex material behavior. Uintah is a product of

the University of Utah Center for Accidental Fires and

Explosions (C-SAFE), a DOE-funded Center of

Excellence. This approach has been used to simulate

numerous complex problems, including the response of

energetic devices subject to harsh environments such

as hydrocarbon pool fires. This scenario involves a

wide range of length and time scales including a rela-

tively slow heating phase punctuated by pressurization

and rupture of the device.

Keywords Fluid–structure interaction � Parallel

computing � Software framework � Material point

method

1 Introduction and motivation

The University of Utah Center for the Simulation of

Accidental Fires and Explosions (C-SAFE) [1] is a

Department of Energy ASC center that focuses on

providing state-of-the-art, science-based tools for the

numerical simulation of accidental fires and explosions,

especially within the context of handling and storing

highly flammable materials. The primary objective of

C-SAFE is to provide a software system in which

fundamental chemistry and engineering physics are

fully coupled with nonlinear solvers, visualization, and

experimental data verification, thereby integrating

expertise from a wide variety of disciplines. Simula-

tions using this system will help to better evaluate the

risks and safety issues associated with fires and explo-

sions in accidents involving both hydrocarbon and

energetic materials.

The Uintah software system was primarily designed

to support the solution of a wide range of highly dy-

namic physical processes on a large number of pro-

cessors. Specifically, our target simulation is the

heating of a explosive device placed in a large hydro-

carbon pool fire and the subsequent deflagration

explosion and blast wave. The explosive device is a

small cylindrical steel container (4’’ outside diameter)

S. G. Parker (&)
School of Computing and Scientific Computing and Imaging
(SCI) Institute, University of Utah,
Salt Lake City, UT, USA
e-mail: sparker@cs.utah.edu

J. Guilkey � T. Harman
Department of Mechanical Engineering,
University of Utah, Salt Lake City, UT, USA

123

Engineering with Computers (2006) 22:277–292

DOI 10.1007/s00366-006-0047-5

filled with plastic bonded explosive (PBX-9501). Con-

vective and radiative heat fluxes from the fire heat the

outside of the container and the PBX. After some

period of time, the critical temperature in the PBX is

reached and the explosive begins to rapidly decompose

into a gas. The solid fi gas reaction pressurizes the

interior of the steel container causing the shell to

rapidly expand and eventually rupture. The gaseous

products of reaction form a blast wave that expands

outward along with pieces of the container and the

unreacted PBX. The physical processes in this simu-

lation have a wide range in time and length scales from

microseconds and microns to minutes and meters. An

example of this simulation is depicted in Fig. 1, and

discussed further in Sect. 5.2. Uintah is designed to be

a general-purpose fluid–structure code that will simu-

late not only this scenario but a wide range of related

problems.

Complex simulations such as this require both im-

mense computational power and complex software.

Typical simulations include solvers for structural

mechanics, fluids, chemical reactions, and material

models. All of these aspects must be integrated in an

efficient manner to achieve the scalability required to

perform these simulations. The heart of Uintah is a

sophisticated computational framework that can inte-

grate multiple simulation components, analyze the

dependencies and communication patterns between

them, and efficiently execute the resulting multi-phys-

ics simulation. Uintah also provides mechanisms for

automating load-balancing, checkpoint/restart, and

parallel I/O. While this document focuses on two major

components in Uintah, it has also been used for the

Arches fire simulation code [2], and a handful of

demonstration components. The Uintah core is de-

signed to be general, and would be appropriate to use

for a wide range of PDE algorithms based on struc-

tured (possibly adaptive) grids and particle-in-cell

(PIC) algorithms.

We discuss the approach we use for the Uintah fluid

solver and the fluid–structure interaction algorithm in

Sect. 2. The Uintah computational framework is

described in Sect. 3, and the details of particular

Uintah components that build on this framework are

discussed in Sect. 4. Results from these simulations are

presented in Sect. 5.

2 Fluid–structure interaction methodology

Here, we describe our approach to ‘‘full physics’’

simulations of fluid–structure interactions involving

large deformations and phase change. By ‘‘full phys-

ics’’, we refer to problems involving strong coupling

between the fluid and solid phases with a full Navier–

Stokes representation of fluid phase materials and the

transient, nonlinear response of solid phase materials,

which may include chemical or phase transformation

between the solid and fluid phases.

2.1 Modeling equations

The methodology upon which our approach is built is a

full ‘‘multi-material’’ approach, in which each material

is given a continuum description and defined over the

complete computational domain. Although at any

point in space the material composition is uniquely

defined, the multi-material approach adopts a statisti-

cal viewpoint, whereby the material (either fluid or

solid) resides with some finite probability. To deter-

mine the probability of finding a particular material at

a specified point in space, together with its current

Fig. 1 Inside view of an
energetic device at the point
of rupture

278 Engineering with Computers (2006) 22:277–292

123

state (i.e., mass, momentum, energy), multi-material

equations are used. We describe below an algorithm

that uses a common framework to treat the coupled

response of a collection of arbitrary materials. This

follows the ideas previously presented by Kashiwa and

colleagues [3, 4].

Our description of the methodology begins by stat-

ing and describing the multi-material conservation

equations for mass, momentum and energy. A thor-

ough description of the development of these equa-

tions can be found in [5, 6]. The volume and ensemble

averaged equations are

1

V

DrMr

Dt
¼ Cr ð1Þ

1

V

Dr Mrurð Þ
Dt

¼ hrr � rþr � hrðrr � rÞ

þ qrgþ
XN

s¼1

frs þ
XN

s¼1

ursCrs

ð2Þ

1

V

Dr Mrerð Þ
Dt

¼ �qrp
Drvr

Dt
þ hrsr : rur � r � hrqr

þ qrer þ
XN

s¼1

hsr þ
XN

s¼1

ðeþ pvÞrsCrs

ð3Þ

where the right side of each equation is the averaged

rate occurring in V. Also, the averaged r-field internal

energy comes from Er ¼ er þ 1
2 u2

r ; in which er typically

includes all internal modes (translational + vibra-

tional + rotational + chemical).

Equations 1, 2 and 3 are the averaged model equa-

tions for mass, momentum and internal energy of r-

material in the volume V, (which can be thought of as a

computational cell). Mr is the mass contained in that

volume. In Eq. 1, Gr refers to the rate at which r-

material mass is generated or depleted from the vol-

ume due to conversion from other materials, typically

due to chemical reaction, while Grs in Eqs. 2 and 3

refers to the rate of conversion of mass between the r-

material and another s-material. ur, hr, rr and qr refer

to the r-material velocity, volume fraction, stress and

density, respectively. The non-subscripted r is the

mean mixture stress, taken here to be isotropic, so that

r ¼ �pI in terms of the hydrodynamic pressure p. In

this, the deviatoric part of the material stress is given

by sr ¼ rr � 1
3 ITrðrrÞ:

In Eqs. 2 and 3 quantities related to the multi-

material Reynolds stress, which must be modeled, are

neglected and were not included in the current work.

In Eq. 2 the term
PN

s¼1 frs signifies a model for the

momentum exchange among materials. This term

results from the deviation of the r-field stress from the

mean stress, averaged. This is typically modeled as a

function of the relative velocity between materials at a

point. (For a two material problem this term might

look like f12 = K12h1h2(u1 – u2) where the coefficient

K12 determines the rate at which momentum is trans-

ferred between materials.) Likewise, in Eq. 3,
PN

s¼1 hsr

represents an exchange of heat energy among materi-

als and for a two- material problem typically takes the

form h12 = H12h1h2(T2 – T1) where Tr is the r-material

temperature and the coefficient Hrs is analogous to a

convective heat transfer rate coefficient. The heat flux

is given by qr ¼ �qrbrrTr where the kinematic ther-

mal diffusion coefficient br is an effective one that

contains both molecular and turbulent effects (when

the turbulence is included).

In Eqs. 2 and 3, the velocity urs and the enthalpy

(e + pv)rs are the velocity and enthalpy converted to/

or from the s-material to the r-material. The conver-

sion of a solid propellant to gaseous products of reac-

tion according to a model is an example of such a

process.

As usual, individual equations of state are needed

for each material to determine the relationships

between pressure, density, temperature and internal

energy. Constitutive models are also required to de-

scribe the stress for each material, based on appropri-

ate input parameters (deformation, strain rate, history

variables, etc.). In addition to those, the multi-material

nature of the equations also requires closure for the

volume fraction of each material, hr. The equations

that provide this closure are

hr ¼ qrvr ð4Þ

0 ¼ 1�
XN

s¼1

qsvsðpeqÞ ð5Þ

where peq is the unique pressure that satisfies Eq. 5.

We now turn our attention to the algorithmic approach

used to solve the above relationships.

The FSI method described here involves integrating

a Lagrangian particle method into a general multi-

material CFD formulation. A brief description of the

main elements of this approach follows.

2.2 Multi-material CFD approach

The basis of the multi-material CFD formulation used

here is the ICE (for Implicit, Continuous-fluid, Eule-

rian) method [7], further developed by Kashiwa and

others at Los Alamos National Laboratory [8]. The use

Engineering with Computers (2006) 22:277–292 279

123

of a cell centered, finite volume approach is convenient

for multi-material simulations in that a single control

volume is used for all materials. This is particularly

important in regions where a material volume goes to

zero. By using the same control volume for mass and

momentum it can be ensured that as the material vol-

ume goes to zero, the mass and momentum go to zero

at the same point. The technique is fully compressible,

allowing wide generality in the types of problems that

can be simulated.

Our implementation of the ICE technique invokes

operator splitting, in which the solution consists of a

separate Lagrangian phase where the physics of the

conservation laws is computed (e.g., right hand side of

Eqs. 2, 3), and an Eulerian phase, where the material

state is transported via advection to the surrounding

cells. The general solution approach is well developed

and described in [8–10]. Where appropriate, details

specific to the solution of FSI problems are expounded

upon in Sect. 2.4.

A physical and numerical requirement of this

multi-material approach is that the total volume

fraction of material must sum to one in each cell. This

is achieved by solving Eq. 5 in an iterative manner in

each computational cell each timestep, giving a so-

called equilibrium pressure in that cell, as well as

values for the specific volume for each material. This

is one of the unique features of the multi-field for-

mulation, relative to standard CFD techniques. The

other, is the transfer of mass, momentum and energy

between materials. In this algorithm, arbitrary

amounts of all materials may be present in any

computational cell (as opposed to other FSI ap-

proaches that segregate materials into distinct regions

of the computational domain). Thus, instead of the

transfer between materials occurring at boundaries, it

takes place within computational cells. Mass transfer

is typically ‘‘one-way’’ and evolves according to gov-

erning equations that describe a reaction. Momentum

and heat transfer between materials is driven (in our

formulation) by relative differences in velocity and

temperature, respectively. A point-wise implicit solu-

tion for each component of velocity and temperature

is carried out as the last step in the Lagrangian phase

of the calculation.

2.3 The material point method

Here, we briefly describe a particle method known

as the material point method (MPM) which is used

to evolve the equations of motion for the solid mate-

rials. MPM is a powerful technique for computational

solid mechanics, and has found favor in applications

involving complex geometries [11], large deformations

[12] and fracture [13], to name a few. After the

description of MPM, its incorporation within the multi-

material CFD approach is described in Sect. 2.4.

Originally described by Sulsky et al. [14, 15],

MPM is a particle method for structural mechanics

simulations. MPM is an extension to solid mechanics

of FLIP [16], which is a PIC method for fluid flow

simulation. Lagrangian particles or material points

are used to discretize the volume of a material, each

particle carries state information (e.g. mass, volume,

velocity, and stress) about the portion of the volume

that it represents. The method typically uses a

Cartesian grid as a computational scratchpad for

computing spatial gradients. This same grid also

functions as an updated Lagrangian grid that moves

with the particles during advection and thus, elimi-

nates the diffusion problems associated with advec-

tion on an Eulerian grid. At the end of a timestep,

the grid is reset to the original, regularly ordered,

position.

In explicit MPM, the equations of motion are cast in

the form [15]:

ma ¼ Fext � Fint ð6Þ

where m is the mass matrix, a is the acceleration vec-

tor, Fext is the external force vector (sum of the body

forces and tractions), and Fint is the internal force

vector resulting from the divergence of the material

stresses. An implicit formulation of MPM is discussed

in [17].

The solution procedure begins by projecting the

particle state to the nodes of the computational grid

using a suitable shape function, to form the mass ma-

trix m and to find the nodal external forces Fext, and

velocities, v. In practice, a lumped mass matrix is

usually used. These quantities are calculated at indi-

vidual nodes by the following equations, where the
P

p

represents a summation over all particles:

mi ¼
X

p

Sipmp ð7Þ

vi ¼
P

p Sipmpvp

mi
ð8Þ

Fext
i ¼

X

p

SipFext
p ð9Þ

and i refers to individual nodes of the grid. mp is the

particle mass, vp is the particle velocity, and Fp
ext is the

external force on the particle. Sip is the shape function

of the ith node evaluated at xp.

280 Engineering with Computers (2006) 22:277–292

123

A velocity gradient, � vp is computed at the particles

using the velocities projected to the grid:

rvp ¼
X

i

Gipvi ð10Þ

where Gip is the gradient of the shape function of the

ith node evaluated at xp.

This is used as input to a constitutive model which is

evaluated on a per particle basis, the result of which is

the Cauchy stress at each particle, rp: With this, the

internal force due to the divergence of the stress is

calculated via

Fint
i ¼

X

p

GiprpVp; ð11Þ

where Vp is the particle volume.

Equation 6 can then be solved for a. An explicit

forward Euler method is used for the time integration:

vL ¼ vþ aDt ð12Þ

and the particle position and velocity are explicitly

updated by

vpðt þ DtÞ ¼ vpðtÞ þ
X

i

SipaiDt ð13Þ

xpðt þ DtÞ ¼ xpðtÞ þ
X

i

SipvL
i Dt ð14Þ

This completes one MPM timestep. This process is

depicted graphically in Fig. 2. This process involves

several particle-based operations, grid-based compu-

tations, and mass-weighted interpolations between the

grids and particles.

2.4 Integration of the material point method within

the multi-material CFD approach

As described above, MPM makes use of a computa-

tional grid for the solution of the governing equations.

The grid used is arbitrary and can be the same grid

used by the accompanying multi-material CFD com-

ponent. Then, a further projection of the physical state

of the solid from the computational nodes to the cell

centers colocates the solid material state with that of

the fluid. This common reference frame is used for all

physics that involve mass, momentum, or energy

exchange among the materials. This allows for a tight

coupling between the fluid and solid phases. The

coupling occurs through terms in the conservation

equations, rather than explicitly through specified

boundary conditions at interfaces between materials.

Since a common multi-field reference frame is used for

interactions among materials, typical problems with

convergence and stability of solutions for separate

domains communicating only through boundary con-

ditions are alleviated. While the primary description of

the solid phase materials remains at the particles,

during the course of a single timestep, it also has a

representation in the same volume as the Eulerian

based materials. Once the Lagrangian phase of the

solution of the multi-field equations is complete

(including momentum and heat transfer), increments

to the solid materials’ state are interpolated to the

nodes and ultimately to the particles and the state at

the particles, including the position, is updated.

It is primarily in advection, as well as in the com-

putation of internal forces, that the use of the separate

reference frames becomes important. Eulerian advec-

tion is typically subject to significant diffusion. There-

fore if the Eulerian frame is used exclusively for both

solid and fluid materials, the interface between the

materials will become smeared and nonphysical

behavior may result. The use of a particle description

for the solid advection minimizes this problem. Fur-

thermore, while straining history does not typically

play a role in the stress field in a fluid, it is important in

many engineering solid materials to describe phe-

OR

1

43

5b5a

2

Fig. 2 Graphical depiction of the material point method

Engineering with Computers (2006) 22:277–292 281

123

nomenon such as plasticity. The particle description of

the solid provides a convenient frame to evaluate the

solid material stress, and to store and carry forward in

time the relevant history variables. This role of the

particle is similar to the role that Gaussian integration

points play in finite element method formulations. On

the other hand, if a particle description is used for fluid

phases, the random behavior of general fluid motion

will generally result in very random particle distribu-

tions. This limits the utility of the MPM for fluid cal-

culations. However, the integration of the two, where

part of the calculation takes place in a common ref-

erence frame, allows each material phase to enjoy its

optimum description and achieves a tight coupling.

3 Computational framework

The Uintah computational framework consists of a set

of software components and libraries that facilitate the

solution of partial differential equations (PDEs) on

structured AMR (SAMR) grids using hundreds to

thousands of processors.

One of the challenges in designing a parallel, com-

ponent-based multi-physics application is determining

how to efficiently decompose the problem domain.

Components, by definition, make local decisions. Yet

parallel efficiency is only obtained through a globally

optimal domain decomposition and scheduling of

computational tasks. Typical techniques include allo-

cating disjoint sets of processing resources to each

component, or defining a single domain decomposition

that is a compromise between the ideal load balance of

multiple components. However, neither of these tech-

niques will achieve maximum efficiency for complex

multi-physics problems.

Uintah uses a non-traditional approach to achieving

parallelism, employing an abstract taskgraph repre-

sentation to describe computation and communication.

The taskgraph is an explicit representation of the

computation and communication that occur in the

coarse of a single iteration of the simulation (typically

a timestep or nonlinear solver iteration). Uintah com-

ponents delegate decisions about parallelism to a

scheduler component, using variable dependencies to

describe communication patterns and characterizing

computational workloads to facilitate a global resource

optimization. The taskgraph representation has a

number of advantages, including efficient fine-grained

coupling of multi-physics components, flexible load

balancing mechanisms and a separation of application

concerns from parallelism concerns. However, it cre-

ates a challenge for scalability, which we overcome

by creating an implicit definition of this graph and

representing it in a distributed fashion.

We describe the major pieces in the Uintah frame-

work and then describe how those pieces are assem-

bled to perform the fluid–structure simulations

described above.

3.1 Components

The fundamental design methodology in Uintah is a

software component. Components enforce separation

between large entities of software and enable large-

scale applications to be constructed out of smaller,

isolated pieces. The design of Uintah builds on the

DOE common component architecture (CCA) com-

ponent model. Components are implemented as C++

classes that follow a very simple interface to establish

connections with other components in the system.

The interfaces between components are simplified

because the components do not explicitly communicate

with one another. A typical component implements a

handful of methods, including:

• problemSetup: parse input parameters from a

section of an XML document;

• scheduleComputStableTimestep: schedule tasks

that compute a stable timestep for the next

integration interval;

• scheduleTimeAdvance: schedule tasks that com-

plete a timestep integration.

It is important to note that no computation is

performed in these methods; the component simply

defines the steps in the algorithm that will be done later

and specifies the C++ method that will perform each

of those steps. The details of this mechanism will be

described in the following section.

The components for a target simulation are assem-

bled from an XML input file specification.

The primary advantage of a component-based ap-

proach is that it facilitates the separate development of

simulation algorithms, models, and infrastructure.

Components of the simulation can evolve indepen-

dently. Since C-SAFE is a research project, we need to

accommodate the fact that most of the software is still

under development. The component-based architec-

ture allows pieces of the system to be implemented in a

rudimentary form at first and then evolve as the tech-

nologies mature. Most importantly, Uintah allows the

aspects of parallelism (schedulers, load-balancers,

parallel input/output, and so forth) to evolve inde-

pendently of the simulation components. This ap-

proach allows the computer science effort to focus on

these problems without waiting for the completion of

282 Engineering with Computers (2006) 22:277–292

123

the scientific applications or vice-versa. Furthermore,

components enable replacement of computation pieces

without complex decision logic in the code itself.

3.1.1 Tensor product task graphs

Uintah enables integration of multiple simulation

algorithms by adopting an execution model based on

‘‘macro’’ dataflow. Each component specifies the steps

in the algorithm and the data dependencies between

those steps. These steps are combined into a single

graph structure (called a taskgraph). The taskgraph

represents the computation to be performed in a single

timestep integration, and the data dependencies be-

tween the various steps in the algorithm. Graphs may

specify numerous exchanges of data between compo-

nents (fine-grained coupling) or few (coarse-grained

coupling), depending on the requirements of the

underlying algorithm. The fluid–structure algorithm

described above requires several points of data-exhc-

ange in a single timestep to achieve the tight coupling

between the fluid and solids. This contrasts with

approaches that exchange boundary conditions at

fluid–solid interfaces. The taskgraph structure allows

fine-grained interdependencies to be expressed in an

efficient manner.

The taskgraph is a directed acyclic graphs of tasks,

each of which produces some output and consumes

some input (which is in turn the output of some pre-

vious task). These inputs and outputs are specified for

each patch in a structured, possibly AMR, grid. Asso-

ciated with each task is a C++ method which is used to

perform the actual computation. Uintah data struc-

tures are compatible with Fortran arrays, so that the

application writer can also use Fortran subroutines to

provide numeric kernels on each patch.

A taskgraph representation by itself works well for

the coupling of multiple computational algorithms, but

presents challenges for achieving scalability. A task-

graph that represents all communication in the prob-

lem, would require time, proportional to the number of

computational elements to create. Creating this on a

single processor, or on all processors would eventually

result in a bottleneck. Uintah addresses this problem

by introducing the concept of a ‘‘tensor product task-

graph’’. Uintah components specify tasks for the

algorithmic steps only, which are independent of the

problem-size or number of processors. Each task in the

taskgraph is then implicitly repeated on a portion of

patches in the decomposed domain. The resulting

graph, or tensor product taskgraph, is created collec-

tively; each node contains only the tasks that it owns

and those that it communicates with. The graph exists

only as a whole across all computational elements,

resulting in a scalable representation of the graph.

Communication requirements between tasks are also

specified implicitly through a dependency algebra

described in Sect. 3.1.4.

Each execution of a taskgraph integrates a single

timestep, or a single non-linear iteration, or some other

coarse algorithm step. Taskgraphs may be assembled

recursively, with a typical Uintah simulation containing

one for time integration and one for nonlinear itera-

tion. An AMR simulation may contain several more

for implementing time subcycling and refinement/

coarsening operators on the AMR grid.

Consider the taskgraph in Fig. 3. Ovals represent

tasks, are a simple array program and easily treated

by traditional compiler array optimizations. Edges

represent named values stored by Uintah. Solid edges

have values defined at each material point (Particle

Data) and dashed edges have values defined at each

grid vertex (Grid Data). Variables denoted with a

prime (¢) have been updated during the time step.

The figure shows the slice of the actual Uintah

material point method (MPM, see Sect. 2.3) task-

graph concerned with advancing Newtonian material

point motion on a single patch for a single timestep.

This graph would be repeated on each patch in the

m

σ
ω

m

m

PositionX
M Mass

Grid Data

Velocity

’

’

Constituents
σ Stress
V

Particle Data

v’
m’

x’

m

m

ω

σ

ω

Acceleration
Integrate

σ
’ v

Motion
Equations Of

Solve

a

Fv

Grid
Particles To
Interpolate Compute

x

Stress Tensor
Compute

Internal Force

v

To Particles And
Interpolate

x

Update
v’

a

v

Fig. 3 An example of Uintah taskgraph

Engineering with Computers (2006) 22:277–292 283

123

domain that contained particles, resulting in a tensor

product graph the defined the specific communication

patterns for the parallel execution of this portion of

the algorithm.

The idea of the dataflow graph as an organizing

structure for execution is well known. The SMARTS

[18] dataflow engine that underlies the POOMA [19]

toolkit shares similar goals and philosophy with Uin-

tah. SISAL compilers [20] used dataflow concepts at a

much finer granularity to structure code generation and

execution. Dataflow is a simple, natural and efficient

way of exposing parallelism and managing computa-

tion, and is an intuitive way of reasoning about paral-

lelism. What distinguishes implementations of dataflow

ideas is that each caters to a particular higher-level

presentation. SMARTS caters to POOMA’s C++

implementation and stylistic template-based presenta-

tion. The SISAL compiler was, of course, developed to

support the SISAL language. Uintah is implemented to

support a presentation catering to C++ and Fortran

based mixed particle/grid algorithms on a structured

adaptive mesh.

3.1.2 Communication

Tasks ‘‘communicate’’ with each other through an en-

tity called the DataWarehouse. The DataWarehouse is

an abstraction of a global single-assignment memory,

with automatic data lifetime management and storage

reclamation. The DataWarehouse is accessed through

a simple name-based dictionary mechanism and pro-

vides each task with the illusion that all memory is

global. Since the taskgraph must correctly describe all

data dependencies, the data stored in the DataWare-

house will always contain the data required by the task

(for the specified variable and region of space). La-

tency in requesting data from the DataWarehouse is

not an issue; the correct data is deposited into the

DataWarehouse before the task is executed. Request-

ing data from the DataWarehouse typically does not

require a copy operation.

Values stored in the DataWarehouse are typically

array-structured, but also include reductions and global

data. These type are described further in Sect. 3.1.3.

The DataWarehouse abstraction is sufficiently high-

level that it can be efficiently mapped onto both mes-

sage-passing and shared-memory communication

mechanisms. Threads sharing a memory can access

their input data directly; single-assignment dataflow

semantics eliminate the need for any locking of values.

Threads running in disjoint address spaces communi-

cate by message-passing protocol, and Uintah is free to

optimize such communication by message aggregation.

Tasks need not be aware of the transports used to

deliver their inputs and thus Uintah has complete

flexibility in control and data placement to optimize

communication both between address spaces or within

a single shared-memory SMP node.

3.1.3 Particle and grid support

Consider Fig. 4. We define several terms which we use

in discussing SAMR grids:

• Patch: A contiguous rectangular region of index

space and a corresponding region of simulated

physical space. The domain on the right of Fig. 4 is

the same as the domain on the left, except that is

has been decomposed into two patches.

• Cell: A single coordinate in the integer index space,

also corresponding to the smallest unit in simulated

physical space. A variable centered at the cells in

the simulation would have a value corresponding to

each of the X’s in Fig. 4.

• Node: An entity at the corners of each of the cells.

A variable centered at the nodes in the simulation

would have a value corresponding to each of the

O’s in Fig. 4.

• Face: The faces join two cells. Uintah represents

values on X, Y, and Z faces separately.

• Ghost cell: Cells (or nodes) that are associated with

a neighboring patch, but are copied locally to fulfill

data dependencies from outside of the patch.

Uintah simulations are performed using a strict

‘‘owner computes’’ strategy. This means that each

topological entity (a node, cell or face) belongs to ex-

actly one patch. There are several variable types that

represent data associated with these entities. An

NCVariable (node-centered variable) contains a single

value at each Node in the domain. Similarly, CCVari-

ables contain values for each cell-center, and XFC-
Variables, YFCVariables and ZFCVariables are face-

centered values for the faces corresponding to the X, Y

Fig. 4 A simple computational domain and a four-patch decom-
position of that domain

284 Engineering with Computers (2006) 22:277–292

123

and Z axes. Each of these variables types is C++

template class, therefore a node/cell/face-centered va-

lue can be any arbitrary type. Typically, values are a

double-precision number representing pressure, tem-

perature, or some other scalar throughout the field, but

values may also be a more complex entity, such as a

vector representing velocity, or a tensor representing a

stress.

In addition to the topological based variables

described above, there is one additional variable type:

ParticleVariable. This variable contains values associ-

ated with each particle in the domain. A special par-

ticle variable contains the position of the particle.

Other particle variables are defined by the simulations,

and in the case of the MPM algorithm, include quan-

tities like mass, volume, velocity, temperature, stress,

and so forth. For the purposes of the discussions below,

particles can be considered a fancy type of cell-cen-

tered variable, since each particle is associated with a

single cell. It is important however, to point out that

explicit lists of particles within a cell are not main-

tained. We have found it more efficient to determine

particle/cell associations as they are needed instead of

paying the high cost of maintaining lists of particles for

each cell.

It is also worth noting that the data structures de-

scribed here are different from those that many parti-

cle-based algorithms employ. Instead of associating all

of the data associated with a single particle in a C++

struct, we create arrays for each property. This is called

a ‘‘structure of arrays’’, or vertical storage whereas the

typical method is an ‘‘array of structures’’, or hori-

zontal storage. We have found that vertical storage can

result in improved performance for most particle based

simulations. In addition, the vertical storage mecha-

nism allows the properties to vary for different groups

of particles. In Uintah simulations, MPM particles may

have different constitutive models for different mate-

rials) (e.g. the explosive may have very different

properties than a steel container).

3.1.4 Describing variable dependencies

Tasks describe data requirements in terms of their

computations on node, cell and face-centered quan-

tities. A task that computes a cell-centered quantity

from the values on surrounding nodes would estab-

lish a requirement for one layer of nodes around the

cells at the border of a patch. This is termed nodes

around cells in Uintah terminology. As shown in

Fig. 5, a layer of ghost nodes would be copied from

neighboring patches on the top and right edges of

the lower-left patch. In a four-processor simulation,

this copy would involve MPI messages from each of

the other three processors. It is important to note the

asymmetry in this process; data are often not

required from all neighbors to satisfy a computation.

Symmetry in the algorithm comes when a subsequent

step uses ‘‘cells around nodes’’ to satisfy another

data dependency, but each communication step is

asymmetric.

The region of the domain over which data are re-

quired, is termed the halo region. Similarly, each task

specifies the data that it will compute, but in this case,

no ghost cells are necessary (or allowed). By defining

the halo region with this simple relationship, one can

specify the communication patterns in a complex do-

main without resorting to explicit definition of com-

munication needed. These ‘‘computes & requires’’ lists

for each task are collected to create the full taskgraph.

Subsequently, the specification of the halo region is

combined with the details of the patches in the domain

to create the tensor product taskgraph.

A task could specify that it requires data from the

entire computational domain. However, for typical

scalable algorithms, the tasks ask for only one (or

possibly two) layers of data outside of the patch.

Data dependencies can also be specified between

refinement levels in an AMR mesh. This can often

create very complex communication patterns, but they

are still specified by the simulation component using

the ‘‘X around Y’’ mechanism.

3.1.5 Task programs

Each component specifies a list of tasks to be per-

formed and the data dependencies between them.

These tasks may also include dependencies on quan-

tities from other components. Each of task in Uintah is

a C++ method that typically goes through the following

sequence of steps:

Fig. 5 Communication of ghost nodes in a simple four-patch
domain

Engineering with Computers (2006) 22:277–292 285

123

1. Retrieve data from the data warehouse. This in-

cludes specifying the number of ghost cells using

the mechanism described in Sect. 3.1.4. These

operations never require communication because

the appropriate data have been deposited in the

data warehouse before the task was executed.

2. Allocate memory for data outputs in the data

warehouse.

3. Perform the computation appropriate for particu-

lar algorithmic step. In the tasks shown in Fig. 3,

the task iterates over either grid cells or particles to

perform the MPM algorithm computations. This

phase may call a fortran subroutine or the low-

level computational kernel.

When the task completes, the infrastructure will

send data to other tasks that require the output from

this task.

3.1.6 Execution

On a single processor, execution of the taskgraph is

simple. The tasks are simply executed in the topolog-

ically sorted order. This is valuable for debugging,

since multi-patch problems can be tested and debugged

on a single processor. In most cases, if the multi-patch

problem passes the taskgraph analysis and executes

correctly on a single processor, then it will execute

correctly in parallel.

In a multi-processor machine the execution pro-

cesses is more complex. In an MPI-only implementa-

tion, there are a number of ways to utilize MPI

functionality to overlap communication and I/O. We

describe one way that is currently implemented in

Uintah.

We process each detailed task in a topologically

sorted order. For each task, the scheduler posts non-

blocking receives (using MPI_Irecv) for each of the

data dependencies. Subsequently, we call MPI_Waitall

to wait for the data to be sent from neighboring pro-

cessors. After all data have arrived, we execute the

task. When the task is finished, we call MPI_Isend to

initiate data transfer to any dependent tasks. Periodic

calls to MPI_Waitsome for these posted sends ensure

that resources are cleaned up when the sends actually

complete.

The mixed MPI/thread execution is somewhat dif-

ferent. First, non-blocking MPI_Irecvs are posted for

all of the tasks assigned to the processor. Then each

thread will concurrently call MPI_Waitsome and will

block for internal data dependencies (i.e. from other

tasks) until the data dependencies for any task are

complete. That task is executed and data that it

produces is sent out. The thread then goes back and

tries to complete a next task. This implements a com-

pletely asynchronous scheduling algorithm. Pre-

liminary results for this scheduler indicate that a

performance improvement of approximately 2X is

obtainable. However, thread-safety issues in vendor

MPI implementations have slowed this effort.

It can be seen that dramatically different commu-

nication styles can be employed by simply changing out

the scheduler component. The physics-based applica-

tion components are completely insulated from these

variations. This is a very important aspect that allows

the Computer- Science-teams to focus on the best way

to utilize the communication software and hardware on

a particular machine, without requiring sweeping

changes in the application. Each scheduler implemen-

tation consists of less than 1,000 lines of code, so it is

relatively easy to write one that will take advantage of

the properties of the communication hardware avail-

able on a machine. Often, the only difficult part is

getting the correct information from the vendor in

order to determine the best strategy for communicat-

ing data.

To accommodate software packages that were not

written using the Uintah execution model, we allow

tasks to be specially flagged as ‘‘using MPI’’. These

tasks will be gang-scheduled on all processors simul-

taneously, and will be associated with all of the patches

assigned to each processor. In this fashion, Uintah

applications can use available MPI-based libraries,

such as PETSc (2005 http://www.mcs.anl.gov/petsc/)

and Hypre (2005 http://www.llnl.gov/CASC/lin-

ear_solvers/).

3.2 Infrastructure features

The taskgraph representation in Uintah enables com-

piler-like analysis of the computation and communi-

cation steps in a timestep. This analysis is performed at

runtime, since the combination of tasks required to

compute the algorithm may vary dramatically based on

problem parameters.

Through analysis of the taskgraph, Uintah can

automatically create checkpoints, perform load bal-

ancing and eliminate redundant communication. This

analysis phase, which we call ‘‘compiling’’ the task-

graph, is what distinguishes Uintah from most other

component-based multi-physics simulations. The task-

graph is compiled when the grid changes, when the

nature of the algorithm changes, or when load imbal-

ance is detected.

Uintah also has the ability to modify the set of

components in use during the course of the simulation.

286 Engineering with Computers (2006) 22:277–292

123

This is used to transition between solution algorithms,

such as a fully explicit or semi-implicit formulation,

based on conditions in the simulation.

3.2.1 Parallel I/O and checkpointing

Data output is scheduled by creating tasks in the

taskgraph just like any other component. Constraints

specified with the task allow the load balancing com-

ponent to direct those tasks (and the associated data)

to the processors where data I/O should occur. In

typical simulations, each processor writes data inde-

pendently for the portions of the dataset which it owns.

This requires no additional parallel communication for

output tasks. However, in some cases this may not be

ideal. Uintah can also accommodate situations where

disks are physically attached to only a portion of the

nodes, or a parallel filesystem where I/O is more

efficient when performed by only a fraction of the total

nodes.

Checkpointing is obtained by using these output

tasks to save all of the data in the DataWarehouse at

the end of the timestep. Data lifetime analysis ensures

that only the data required by subsequent iterations

will be saved. If the simulation components have been

correctly written to store all of their data in the Da-

taWarehouse, restart is a trivial process. During restart,

the components process the XML specification of the

problem that was saved with the datasets, and then

Uintah creates input tasks that load the DataWare-

house from the checkpoint files. If necessary, data

redistribution is performed automatically during the

first execution of the taskgraph. In a similar fashion,

changing the number of processors is possible. The

current implementation does not redistribute data

among the patches when the number of processors are

changed. Patch redistribution is a useful component

even beyond changing the processor count, and will be

implemented in the future.

3.2.2 Load balancing

A load balancer component is responsible for assigning

each detailed task to one processor. For typical Uintah

simulations, the most significant source of load imbal-

ance is the existence of particles, and the associated

work, in only a portion of the computational domain.

The equilibration pressure iteration in ICE also con-

tributes very mildly to load imbalance.

To date, we have implemented only simple static

load-balancing mechanisms. However, Uintah was

designed to allow very sophisticated load-balance

analysis algorithms required by the large-scale motion

of particles through the domain. In particular, a cost-

model associated with each task will allow an optimi-

zation process to determine the optimal assignment of

tasks to processing resources. Cost models associated

with the communication architecture of the underlying

machine are also available. One interesting aspect of

the load-balance problem is that the integrated per-

formance analysis in Uintah will allow the cost-models

to be corrected at run-time to provide the most accu-

rate cost information possible to the optimization

process.

The mixed thread/MPI scheduler described above

implements a dynamic load-balancing mechanism (i.e.

a work queue) within an SMP node, and uses a static

load-balancing mechanism between nodes. We feel

that this is a powerful combination, which we will

pursue further.

Careful readers will pick up on the fact that the

creation of detailed tasks require knowledge of pro-

cessor assignment. However, sophisticated load-bal-

ance components may require this detailed

information before they can optimize the task/proces-

sor assignments. We use a two-phase approach, where

tasks are assigned arbitrarily, then an optimization is

performed and the final assignments are made to the

tasks. Subsequent load-balance iterations use the pre-

vious approximation as a starting point for the opti-

mization process.

3.2.3 Adaptive mesh refinement

Many multi-physics simulations require a broad span

of space and timescales. C-SAFE’s primary target

simulation scenario includes a large scale fire (size of

meters, time of minutes) combined with an explosion

(size of microns, time of microseconds). To capture this

wide range of time and length scales efficiently and

accurately, the Uintah architecture has been has been

designed to support adaptive mesh refinement on

structured adaptive grids in the style of Berger and

Colella [21]. Some aspects of this capability are still

under development, so many of the simulations are

performed on a non-adaptive mesh. Particle refine-

ment and coarsening has not been implemented but is

being actively studied.

Each individual component can flag individual cells

for refinement. A separate component, called the Re-

gridder, creates an adaptive mesh that includes refined

regions for all of the flagged cells. Each simulation

component uses the taskgraph structure to create

operators for refinement and coarsening between

levels using variable descriptions similar to Sect. 3.1.4.

Engineering with Computers (2006) 22:277–292 287

123

Figure 6 shows a blast wave reflecting off of a solid

boundary with an AMR mesh using the explicit ICE

algorithm and refinement in both space and time. For

the slower fire phase, we are in the process of imple-

menting a multi-resolution pressure solve that works

with the semi-implicit ICE component (See Sect. 2.2).

4 Uintah components

Figure 7 shows the main components involved in a

typical FSI simulation using the algorithms described

in Sect. 2. The SimulationController is the component

that manages restart files and controls the time inte-

gration tasks. First, it reads the specification of the

problem from an XML input file. After setting up the

initial grid, it passes the description to the simulation

component. The simulation component can be a

number of different things, including the multi-mate-

rial CFD algorithm, the MPM algorithm, or a coupled

MPM-CFD algorithm. Each simulation component

defines a set of tasks to the Scheduler, where a task-

graph is created that represents the global computation

(See Sect. 3.1.1). In addition, the DataArchiver com-

ponent describes a set of output tasks to the Scheduler.

These tasks will save a user specified set of variables to

disk, including automatically derived checkpoint

information when needed. Once all tasks are known to

the scheduler, the LoadBalancer component uses the

configuration of the machine (including processor

counts, communication topologies, etc.) to assign tasks

to processing resources. The Scheduler uses MPI to

communicate the data to the right processor at the

right time and then executes callbacks into the simu-

lation or DataArchiver components to perform the

actual work. The DataWarehouse described in

Sect. 3.1.2 is managed by the scheduler to communi-

cate data to the tasks. This process continues until the

taskgraph is fully executed. The execution process is

repeated to integrate further timesteps.

Fig. 6 A pressure blast wave reflecting off of a solid boundary

Fig. 7 Uintah simulation components

288 Engineering with Computers (2006) 22:277–292

123

Each of these components runs concurrently on

each processor. The components communicate

with their counterparts on other processors using

MPI. However, the Scheduler is typically the only

component that needs to communicate with other

processors.

4.1 Physical and subgrid scale models

Each of the Uintah simulation components requires

some number of models to make it physically relevant.

Examples of these include equations of state for the

CFD components as well as constitutive relations and

contact models for the MPM component. Generally,

these models assume that the resolution of the com-

putational grid is sufficient to capture relevant physical

processes (exceptions include some constitutive models

which attempt to homogenize micro-scale behavior). In

contrast, other physical processes such as gas phase

chemical reactions, solid fi gas reactions, turbulence

and mixing are phenomena, which typically are not

adequately resolvable . All of these model types are

available within Uintah.

The component architecture of Uintah is employed

to allow these models to be self-contained units. While

each model has a well-defined function (such as com-

puting a stress), they may each require very different

data to accomplish this computation. The models de-

scribe their data requirements, which the framework

will compile into the taskgraph and subsequently

determine the data communication required for that

combination of models. Consequently, submodels can

have a profound effect on the communication patterns

in the simulation but they are still completely encap-

sulated.

We briefly describe a few of these models here.

Equations of state One of the characteristics of the

CFD component used in the FSI simulations is that it is

multi-material formulation. Thus, the governing

equations are solved separately for each material,

with rules for interaction between the materials, and

simulations involving arbitrary numbers of materials

are possible. One of the characteristics of a material is

its equation of state (EOS), the relationship between

pressure, volume and temperature alluded to near the

end of Sect. 2.2. Uintah makes available a number of

equations of state including those for an ideal gas, solid

explosives, explosive products of reaction and soil.

Constitutive models Constitutive models are,

generally speaking, relationships between stress and

a material’s state of deformation and rate of

deformation. A potentially large number of history

variables give information about the loading path a

material has undergone to arrive at its current state.

Uintah has a large number of constitutive models

available for use with the MPM component.

Currently available are numerous models each for

elastic materials, metals, explosives and biological

tissue.

Contact models One of the hallmarks of MPM is

the relative ease with which contact between solid

bodies can be modeled, particularly when compared

to traditional solid mechanics methods such as the

finite element method (FEM). A no-slip, no-

interpenetration contact model comes for ‘‘free’’

when using MPM, and with a relatively small

amount of additional computational effort, frictional

contact can also be modeled [22]. The Uintah-MPM

component is also a multi-material formulation, with

different materials (or identical materials, between

which advanced contact is to be modeled) represented

by distinct sets of particles. Each material has a

separate field representation (velocity, temperature,

mass, etc.) on the grid as well, and these interact via

contact models for momentum and heat exchange.

This approach requires no surface descriptions and

the expense increases only linearly with both the

number of nodes and the number of materials.

Subgrid reaction models The Uintah CFD

component contains a plugin capability to carry

arbitrary transported quantities and provide sources

of mass, momentum and energy. These models can be

used to describe a wide range of physical processes,

including turbulent mixing, radiative heat transfer, gas

phase chemical reactions and exothermic solid fi gas

reactions. For the types of scenarios that Uintah was

designed to address, each of these is vital. Uintah

contains several models for gas phase hydrocarbon

combustion as well as models for both detonation and

deflagration of high energy (HE) materials.

5 Results and discussion

The Uintah infrastructure is used regularly throughout

the C-SAFE center for most development and pro-

duction runs. The results presented here are repre-

sentative of the problems being examined by C-SAFE.

Each of these results uses the full Uintah infrastruc-

ture, including the facilities for scheduling, load-bal-

ancing and parallel communication. However, none of

these results employ AMR, since the AMR version of

the FSI algorithm in still under development. In addi-

tion, we have performed numerous simulations of

other complex phenonema [11, 23–26] using this

infrastructure.

Engineering with Computers (2006) 22:277–292 289

123

5.1 Material point method—compression of foam

microstructure

The material point method was chosen as the structural

mechanics technique because of its compatibility with

the multi-material CFD formulation. The fact that the

MPM can use the same structured grid, instead of

requiring the use of its own unstructured mesh, greatly

simplifies issues of geometric compatibility between

the solid and fluid materials. However, MPM is also a

powerful tool for solid mechanics simulations in its

own right. It avoids issues of mesh creation, distortion

and entanglement, simplifies contact and lends itself to

parallelism.

Figure 8 depicts a simulation that demonstrates

many of MPM’s strengths. Here a small foam micro-

structure (0.5 mm3) is compressed by a rigid plate [12].

The initial geometry is taken from a micro-CT scan of

an actual sample of foam. The use of particles, instead

of an unstructured mesh, makes generation of a com-

putational representation of the geometry trivial. As

the compression proceeds, the individual struts that

comprise the structure are subjected to severe distor-

tion and contact each other, either of which render the

finite element method useless in this application.

5.2 Fluid–structure interaction–explosion of a high

energy device

The C-SAFE target scenario is the simulation of metal

container filled with a plastic-bonded explosive (PBX)

subject to heating from a hydrocarbon pool fire. Fig-

ure 9 shows results from a simulation that is

approaching that goal. Here, a jet of hot air is

impinging on a steel container filled with PBX-9501,

heating the container and the PBX. Once the tem-

perature of the PBX reaches a threshold, it ignites in

an exothermic solid fi gas reaction. The products of

this reaction pressurize the container, causing it to

bulge and eventually rupture. At this point, the high-

pressure product gases are free to escape the container

and interact with the surrounding environment. Shock

waves resulting from this process are evident in the

middle and left panels. The purple mass in the center

of the domain is the remaining unburned propellant.

There are some unique and significant features in

this simulation that warrant further description. First,

there is no notion of surfaces separating different re-

gions of the domain. Second, the energetic device ini-

tially contains no gas and no void space, the products

of reaction occupy the space left by the consumed

reactant and the space created due to expansion.

Lastly, the interaction of gases from two domains ini-

tially separated by a steel container is a unique feature

that we have not seen demonstrated in any other FSI

capability.

Another simulation of a similar scenario can be seen

in Fig. 1, which shows an explosive device subjected to

a jet fuel fire as the device to rupture. The individual

steel and PBX particles are shown with a color-map

indicating temperature, along with a volume rendering

of the temperature products of the solid fi gas

reaction. In the rightmost pane, the products of reac-

tions can be seen impacting the edge of the computa-

tional domain. This simulation required 600 CPUs

(2.4 Ghz Intel Xeon, Myrinet interconnect) for

approximately 120 h, and was completed on a different
Fig. 8 Time series depicting crushing of a small sample of foam
using the material point method

290 Engineering with Computers (2006) 22:277–292

123

machine with 600 CPUs (1.5 Ghz Intel Itanium) for

about 30 h. The automatic checkpointing facility was

used to restart the simulation on the second machine

after our time allocation was exhausted on the first.

This simulation also employed a mechanism to

transition between different solution algorithms. The

first phase used a semi-implicit algorithm to simulate

the dynamics of the evolution of a jet fuel fire for

several seconds to obtain a heat flux. The second phase

performed a fully implicit heat conduction algorithm

inside the steel container for approximately 1 hr until

the explosive reached the ignition temperature. The

third phase switched to a fully explicit calculation to

simulate the dynamics of the rapid pressurization of

the container and subsequent failure of the device. This

explosion phase represents less than a millisecond of

time, with the timestep severely restricted. Each of

these phases was triggered automatically by conditions

in the simulation. Approximately half of the compu-

tational time was devoted to the final phase of the

simulation.

5.3 Scalability

The system described here has been used to carry out a

variety of simulations. Figure 10 shows a log-log plot of

the time to solution versus processor count of a fixed-

size benchmark MPM application running on a variety

of different machines. It should be noted that the

problem shown is relatively small, with timesteps

completing in much less than one second for the large

processor configurations. Simulations are routinely

executed on hundreds of processors including the

results shown in Fig. 9, which was executed on 600

processors. This benchmark simulation employs a fixed

grid of uniform resolution. Performance analysis of the

AMR algorithms mentioned in Sect. 3.2.3 are not yet

available. However, the infrastructure is able to scale

to thousands of processors while employing the

machinery to enable AMR, including the complex

taskgraph structure created by a resource of that scale.

6 Conclusions and acknowledgments

We presented the Uintah computational framework

and its strategies for integrating multiple physics

components in a scalable simulation, and presented

Fig. 9 Hot jet impinging on
an energetic device leading to
its explosion

1 16 64 256 1024

Number of Processors

1

10

100

1000

T
im

e
pe

r
T

im
es

te
p

(s
ec

on
ds

)

Linear
SGI Origin 3000
Pentium 4 Linux cluster
LLNL - Frost (IBM SP)
LLNL - Blue (IBM SP)
LLNL - ALC Linux cluster
LANL - Nirvana (SGI Origin 2000)
LANL - QSC (Compaq Alpha)

MPM Performance Comparison
bigbar.ups (revision 1.8) [200,100,100]

4

Fig. 10 Parallel performance of a typical C-SAFE problem. This
is a 16 million particle material point method (MPM) compu-
tation, executed on a variety of machines at DOE national
laboratories

Engineering with Computers (2006) 22:277–292 291

123

results from representative simulations. This compo-

nent-based system enables multiple physics simulations

to be combined into an integrated scalable simulation

of fires and explosions.

The authors gratefully acknowledge Dr. Bryan A.

Kashiwa of Los Alamos National Laboratory for

sharing with us the theoretical and algorithmic foun-

dations upon which this work is based. Without the

personal interactions that he made time to provide,

none of this would be possible. This work was sup-

ported by the U.S. Department of Energy through the

Center for the Simulation of Accidental Fires and

Explosions, under grant W-7405-ENG-48, and NSF-

ITR Grant # CTS0218574 . We thank each of the

members of the C-SAFE team at the University of

Utah for their contributions to the Uintah software.

References

1. Henderson T, McMurtry P, Smith P, Voth G, Wight C,
Pershing D (1994) Simulating accidental fires and explosions.
Comp Sci Eng 2:64–76

2. Krishnamoorthy G, Borodai S, Rawat R, Spinti J, Smith P
(2005) Numerical modeling of radiative heat transfer in pool
fire simulations. ASME International Mechanical Engineer-
ing Congress (IMECE), Orlando, Florida

3. Kashiwa B, Rauenzahn R (1994) A multimaterial formalism.
Technical Report LA-UR-94-771, Los Alamos National
Laboratory, Los Alamos

4. Kashiwa B, Lewis M, Wilson T (1996) Fluid–structure
interaction modeling. Technical Report LA-13111-PR, Los
Alamos National Laboratory, Los Alamos

5. Kashiwa B (2001) A multified model and method for fluid–
structure interaction dynamics. Technical Report LA-UR-
01-1136, Los Alamos National Laboratory, Los Alamos

6. Kashiwa B, Gaffney E (2003) Design basis for cfdlib. Tech-
nical Report LA-UR-03-1295, Los Alamos National Labo-
ratory, Los Alamos

7. Harlow F, Amsden A (1968) Numerical calculation of almost
incompressible flow. J Comp Phys 3:80–93

8. Kashiwa B, Rauenzahn R (1994) A cell-centered ice method
for multiphase flow simulations. Technical Report LA-UR-
93-3922, Los Alamos National Laboratory, Los Alamos

9. Guilkey J, Harman T, Xia A, Kashiwa B, McMurtry P (2003)
An eulerian–lagrangian approach for large deformation
fluid–structure interaction problems, part 1: Algorithm
development. In: Fluid structure interaction II. WIT Press,
Cadiz

10. Harman T, Guilkey J, Kashiwa B, Schmidt J, McMurtry P
(2003) An eulerian–lagrangian approach for large deforma-
tion fluid–structure interaction problems, part 2: Multi-

physics simulations within a modern computational frame-
work. In: Fluid structure interaction II. Cadiz, Spain, WIT
Press

11. Guilkey J, Hoying J, Weiss J (2006) Modeling of multicel-
lular constructs with the material point method. J Biomech
39:2074–2086

12. Brydon A, Bardenhagen S, Miller E, Seidler G (2005) Sim-
ulation of the densification of real open-celled foam micro-
structures. J Mech Phys Solids 53:2638–2660

13. Guo Y, Nairn J (2004) Calculation of j-integral and stress
intensity factors using the material point method. Comput
Model Eng Sci 6:295–308

14. Sulsky D, Chen Z, Schreyer H (1994) A particle method for
history-dependent materials. Comp Methods Appl Mech
Eng 118:179–196

15. Sulsky D, Zhou S, Schreyer H (1995) Application of a par-
ticle-in-cell method to solid mechanics. Comput Phys Com-
mun 87:236–252

16. Brackbill J, Ruppel H (1986) Flip: a low-dissipation, particle-
in-cell method for fluid flows in two dimensions. J Comp
Phys 65:314–343

17. Guilkey J, Weiss J (2003) Implicit time integration for the
material point method: quantitative and algorithmic com-
parisons with the finite element method. Int J Num Meth
Eng 57:1323–1338

18. Vajracharya S, Karmesin S, Beckman P, Crotinger J, Malony
A, Shende S, Oldehoeft R, Smith S (1999) Smarts: exploiting
temporal locality and parallelism through vertical execution.
In: Proceedings of the 13th international conference on su-
percomputing

19. Atlas S, Banerjee S, Cummings J, Hinker P, Srikant M,
Reynders J, Tholburn M (1995) POOMA: a high-perfor-
mance distributed simulation environment for scientific
applications. In: Supercomputing ’95 proceedings

20. Feo J, Cann D, Oldehoeft R (1990) A report on the sisal
language project. J Parallel Distrib Comput 10(4):349–366

21. Berger M, Colella P (1989) Local adaptive mesh refinement
for shock hydrodynamics. J Comput Phys 82:64–84

22. Bardenhagen S, Guilkey J, Roessig K, Brackbill J, Witzel W,
Foster J (2001) An improved contact algorithm for the
material point method and application to stress propagation
in granular material. CMES 2:509–522

23. Banerjee B (2005) The mechanical threshold stress model for
various tempers of ansi 4340 steel. Int J Solids Struct (in
press)

24. Banerjee B (2005) Validation of a multi-physics code: plas-
ticity models and taylor impact. In: Proceedings of joint
ASME/ASCE/SES conference on mechanics and materials.
Baton Rouge, LA

25. Banerjee B (2004) Material point method simulations of
fragmenting cylinders. In: Proceedings of the 17th ASCE
engineering mechanics conference. Newark, DE

26. Banerjee B, Guilkey J, Harman T, Schmidt J, McMurtry P
(2005) Simulation of impact and fragmentation with the
material point method. In: Proceedings of the 11th interna-
tional conference on fracture, Turin, Italy, p 689

292 Engineering with Computers (2006) 22:277–292

123

	A component-based parallel infrastructure for the simulation�of fluid-structure interaction
	Abstract
	Introduction and motivation
	Fluid-structure interaction methodology
	Modeling equations
	Multi-material CFD approach
	The material point method
	Integration of the material point method within the multi-material CFD approach

	Computational framework
	Components
	Tensor product task graphs
	Communication
	Particle and grid support
	Describing variable dependencies
	Task programs
	Execution

	Infrastructure features
	Parallel I/O and checkpointing
	Load balancing
	Adaptive mesh refinement

	Uintah components
	Physical and subgrid scale models

	Results and discussion
	Material point method—compression of foam microstructure
	Fluid-structure interaction-explosion of a high energy device
	Scalability

	Conclusions and acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

