
ORIGINAL ARTICLE

Elina Madetoja Æ Kaisa Miettinen Æ Pasi Tarvainen

Issues related to the computer realization of a multidisciplinary
and multiobjective optimization system

Received: 12 June 2005 / Accepted: 2 May 2006 / Published online: 11 July 2006
� Springer-Verlag London Limited 2006

Abstract Issues and novel ideas to be considered when
developing computer realizations of complex multidis-
ciplinary and multiobjective optimization systems are
introduced. The aim is to discuss computer realizations
that make possible both computationally efficient mul-
tidisciplinary analysis and multiobjective optimization
of real world problems. We introduce software tools that
make typically very time-consuming simulation pro-
cesses more effective and, thus, enable even interactive
multiobjective optimization with a real decision maker.
In this paper, we first define a multidisciplinary and
multiobjective optimization system and after that pres-
ent an implementation overview of such problems
including basic components participating in the solution
process. Furthermore, interfaces and data flows between
the components are described. A couple of important
features related to the implementation are discussed in
detail, for example, the usage of automatic differentia-
tion. Finally, the ideas presented are illustrated with an
industrial multiobjective optimization problem, when we
describe numerical experiments related to quality prop-
erties in paper making.

Keywords Multidisciplinary system Æ Multiobjective
optimization Æ Computer realization Æ Efficiency Æ
Paper making

1 Introduction

When complex real world problems are considered with
computers and computational methods, studies usually
concentrate on some feature or a subsystem of a large

system, which can be a part of a phenomenon or
dynamics of an industrial process, see for example [1].
The systems or partial ones are described by means of
mathematical models, like models of partial differential
equations (PDEs) type, that mimic the most important
features of the systems in consideration. Since the actual
target in industrial design is, however, to control system
behaviour or even improve it, simulation techniques are
combined with optimization to obtain so-called model-
based optimization problems. In these problems, the
main idea is that the simulation models produce as
outputs objective function values, which optimization
methods then improve. Hence, the simulation models
are solved whenever objective function values are needed
during the optimization processes. This makes the
computations very hard because even the simulation
models themselves are typically time-consuming to solve
and require a lot of computer capacity.

Simulations so far have mainly described only parts
of the real world systems; one could say that only sub-
simulations of systems have been seriously considered,
see [2]. With such simplifications, the results obtained
cannot be too reliable. Nowadays, larger capacity of
computers and development in mathematical modeling
tools allow us to employ more demanding and accurate
simulation models. We are even able to combine several
submodels into a simulation model that describes now
an entire system instead of a part of it. Thus, we can
mimic an industrial system behaviour in more detail and
obtain more precise solutions and even take into account
interrelationships between the submodels. Then mathe-
matical modeling is typically to be understood in a
multidisciplinary sense, since two or more analysis dis-
ciplines may be coupled with each other for the design of
the systems.

Besides multidisciplinary simulation, we are able to
control system behaviour with a chosen optimization
method combined with the simulation model. Hence, the
related optimization problems are known as multidisci-
plinary optimization problems [1, 3–6]. By these means,
we are able to optimize entire industrial systems. Until
now, as with simulation studies, also studies related to
optimization of real world systems have typically con-
centrated on controlling some parts of the whole sys-

E. Madetoja (&)
Department of Physics, University of Kuopio,
P.O. Box 1627, 70211 Kuopio, Finland
E-mail: elina.madetoja@iki.fi

K. Miettinen
Helsinki School of Economics, P.O. Box 1210,
00101 Helsinki, Finland
E-mail: kaisa.miettinen@hse.fi

P. Tarvainen
Numerola Oy (Inc.), P.O. Box 126, 40101 Jyväskylä, Finland
E-mail: pasi.tarvainen@numerola.fi

Engineering with Computers (2006) 22: 33–46
DOI 10.1007/s00366-006-0028-8

tems. Then, from the point of view of the whole system,
instead of optimal solutions only ‘suboptimal’ solutions
have been obtained. The suboptimal solutions are not
necessarily optimal for the whole system, because there
exist system dynamics between different parts that are
not taken into account in suboptimal solutions. Our
intention here is to consider systems as entirenesses as
much as possible and obtain optimal solutions that im-
prove the whole system behaviour. Another shortcom-
ing in earlier studies has been that optimization has
often been defined as single objective optimization.
However, most applied optimization problems have
typically multiple conflicting objectives by nature and by
putting all the objectives into one or by ignoring some of
them, some relevant information can be lost. The opti-
mization method and algorithm development with the
increased computer capacity makes it also possible to
use multiobjective optimization and even interactive
multiobjective optimization methods. For an example of
an interactive multiobjective optimization design strat-
egy, see [7].

In this paper, we present a generic architecture for the
implementation of multidisciplinary and multiobjective
optimization systems. We define the system architecture
from the point of view of optimization and requirements
it sets (see also [8, 9]) such that it can be tailored for
different applications. So far, this kind of studies have
typically concentrated on some specific software tool
and its properties for the predetermined multidisciplin-
ary analysis of an existing system. Thus, the studies have
been application-specific, see, for example [1–4]. There
are also studies in which some general aspects of mul-
tidisciplinary analysis are considered, see [5, 6, 10].

Our approach differs from previous studies so that
it does not fix an optimization method nor a simula-
tion model. Thus, the architecture is feasible for both
single and multiobjective optimization problems and
several simulation techniques. We integrate disparate
disciplinary subsystem models to develop an optimi-
zation framework so that the result is computationally
efficient. In addition, we present in detail some features
related to sophisticated implementation. For example,
we introduce an idea of the dynamic generation of a
coupled system of submodels, which allows us to easily
construct different simulation models. Furthermore, it
makes even possible to define different optimization
problems without any changes at the code level only
by changing problem input settings. Thus, the dynamic
model generation is a feature that makes our archi-
tecture flexible. We concentrate mainly on consecu-
tively coupled submodels. The dynamic model
generation increases also the efficiency of computa-
tions, because simulation models generated consist
only of the submodels that are necessary and not all
those that are available. We can also store different
(component-wise) submodels into databases. Then,
during the simulation model generation, we select for
computations only those submodels that participate in
the production of the model outputs, which are related

to the objective functions chosen to be optimized. We
can also increase the efficiency of computations by
using reduced submodels that are simplifications of
computationally demanding submodels.

Besides introducing the system architecture, we also
present basic components taking part in the solution
process of a multidisciplinary optimization problem
and consider data flows between these components,
similarly to [11]. The basic components are related to
solving the simulation model and the usage of the
optimization method. The data flows between these
components typically include values of the decision
(optimization) variables and the objective functions.
The main difference to other studies is that we include
gradient information into the data flows (see, e.g. [11]).
We have been studying and developing techniques that
are appropriate for gradient computation in multidis-
ciplinary optimization problems. When the objective
function values are produced by a simulation model,
also gradient information (if used in optimization)
needs to be computed with a simulation model. We
use a technique called model-based differentiation in
gradient computations that is somehow similar to the
so-called global sensitivity equations [12]. Using gra-
dient information is one of those features that make
optimization processes efficient and, thus, enables the
optimization of the real world systems. Especially, we
concentrate on interactive multiobjective optimization
[13], where an expert, known as a decision maker,
participates in the optimization in order to find the
best compromise in the presence of conflicting objec-
tives. Then the optimization processes need to be al-
most real time so that the decision maker can guide
them iteratively and actively and (s)he does not need
to wait too long to get new solutions. Thus, our
intention is to highlight those important aspects in
computer realization, which enable the decision
maker’s participation.

We illustrate the principles introduced for the archi-
tecture of a multidisciplinary and multiobjective opti-
mization system and its implementation with a real
industrial example. Our example is related to the paper
making process, where the quality of the produced paper
is optimized. The paper making processes in paper ma-
chines contain several phases in different components,
so-called unit-processes, most of which can be mathe-
matically modeled. Until now, simulation models have
been developed only for unit-processes of the paper
machine, as in [14–16]. Here, we combine several unit-
process submodels together into a simulation model and
study the whole paper making process in the paper
machine, including also the finishing of the paper.
Considering the paper making line as a whole gives new
understanding of the phenomena involved. For more
about paper making, see [17].

The outline of the paper is the following. First, we
define a general architecture for a multidisciplinary and
multiobjective optimization system and consider the
system requirements. In addition, we give a mathemat-

34

ical formulation to a multidisciplinary as well as a
multiobjective optimization problem in Sect. 2. There-
after, we present a general overview of the architecture
and some features of computer realization in more detail
in Sect. 3. In Sect. 4, we demonstrate the approach via
an industrial example, where a real decision maker
solves an optimization problem that is both multidisci-
plinary and multiobjective. We also present associated
numerical results. Finally, concluding remarks are given
in Sect. 5.

2 Architecture of a multidisciplinary and multiobjective
optimization system

Next we define a multidisciplinary and multiobjective
optimization system to be considered in this paper. We
also introduce several relevant issues in constructing a
general architecture for such systems and list require-
ments that we find to be the most important ones for the
system architecture.

In what follows, we assume that we have available
simulation submodels associated to different parts of a
real world system considered; the system can be, for
example, an industrial process or a device. The sub-
models may come from a variety of disciplines and
because of this the submodels can also be of different
type, like PDEs or statistical models based on experi-
mental data. It is also possible to employ so-called
reduced (order) models, where the idea is to simplify the
physical model and, in this way, to decrease computa-
tional burden. There may also be several alternative
submodels of various types modeling the same phe-
nomenon or unit-process. We couple the submodels to-
gether in order to get a model of the whole system. The
submodels can be internally or consecutively coupled
and, therefore, each submodel may depend on the out-
puts of all the other submodels. We assume that sub-
models have input parameters consisting of model-wise
set up input parameters and outputs of the other sub-
models. Typically, some of the first-mentioned input
parameters are chosen to be decision variables in the
optimization and the rest of them are constant input
parameters to the submodels.

We present a system architecture that should allow
the selection of any kind of a feasible submodel chain to
be simulated. A feasible submodel chain means that the
chain is continuous and the previous submodels pro-
duce such outputs that can be used as inputs for the
following submodels. The system architecture should
also allow the user to be able to choose the decision
variables and the objective functions freely, that is,
(s)he can define any input parameter of the chosen
simulation model to be a decision variable and, simi-
larly, any output to be an optimized quantity or an
ingredient of an objective function. We want to define
the system architecture on a general level so that it
is applicable for different real world optimization

problems. In addition, the system architecture should
enable efficient solution processes. This is important,
because simulation models combining several submod-
els from multiple disciplines are typically extremely
time-consuming to solve, since they describe systems
that include complex and internally coupled dynamic
processes. One such feature that improves efficiency is
the usage of gradient information in optimization. Fi-
nally, we specify a multidisciplinary and multiobjective
problem and give a mathematical formulation for the
problem. This study follows mainly the system archi-
tecture definition in [18].

2.1 System definition

Generally, a system is an assemblage of objectives joined
in some regular interaction or interdependence [19]. A
multidisciplinary system is a system that integrates several
disciplines, that is, it is an assemblage of representatives
of the disciplines. Here we call a representative of a real
world system as a multidisciplinary system, when it
contains several dissimilar submodels. Furthermore, a
multidisciplinary optimization system contains also opti-
mization routines as a part of the multidisciplinary
system. To be exact, we here define a multidisciplinary
optimization system such that it makes possible the
simulation and optimization of different real world
phenomena. When we want to emphasize that the opti-
mization problem contains several conflicting objective
functions, we call the system as a multidisciplinary and
multiobjective optimization system. We also use terms
overall and partial system to draw a line between the
consideration of the whole system and some part of it,
respectively.

We can state a set of requirements to the architecture
of the multidisciplinary and multiobjective optimization
system. Several such requirements have been presented
also in [8, 9]. In general, system demands are caused by
the system dynamics and, in addition, its versatility in
different contexts. We present here a list of requirements
emphasizing the computational efficiency of the sys-
tem as well as readiness to easily solve different types
of simulation model-based optimization problems.
Namely, the usage of multiobjective optimization, for
example, demands even more flexible structures and
interfaces.

Next, we list the most important requirements that
we set to the system architecture.

1. Tailorability to describe different real world systems:

(a) Simulation models consisting of possibly dissimilar
submodels.

(b) Use of appropriate optimization methods.

2. Capability to integrate existing program and software
modules.

35

3. Usage of different optimization routines, also gradi-
ent-based routines, and thus, gradient information
should be available.

4. Possibility for a decision maker to participate in an
interactive multiobjective solution process.

5. Efficient and accurate computations.
6. Graphical representation and visualization of the

system.

Next, we concentrate on the system architecture and
its implementation on a computing level and do not
discuss the usability aspects. For these topics, we refer to
[9], for instance.

Mathematically, we formulate a multidisciplinary
optimization system as follows. Let a collection of sub-
systems be denoted by B1, ..., Bnm, where nm is the
number of subsystems. In what follows, we call subsys-
tems as submodels. The interactions and data flows
between the submodels are assumed to be defined. The
data flows include inputs and outputs for all the sub-
models. Each submodel Bi has its input vector pi and
output vector qi and by the given input the submodel
produces the output. Because we want to receive gradi-
ent information in order to be able to use efficient
optimization methods, each submodel should produce
also the (partial) derivatives of its outputs with respect
to its inputs, when needed. Such gradient information
can be ‘directly’ obtained by using automatic differen-
tiation. Note that the system architecture allows also the
usage of gradient-free methods.

In order to make the multidisciplinary system work,
we should take into account the disjointness of data
flows between the submodels, when we combine
existing submodels into a simulation model. These
submodels can be internally coupled, when each sub-
model produces an output that is an input for all the
other submodels, see [11]. Another possibility is that
the submodels are consecutively coupled. Then the
submodels constitute a model chain, where the current
submodel depends on all the previous submodels in the

chain. Illustrations of model couplings are given in
Fig. 1.

We say that two submodels Bi and Bj, where
i,j 2{1,..., nm}, are compatible, if some output of Bi that
is an input for Bj is in a suitable form to be the input for
the latter submodel and possibly vice versa. Obviously,
according to the definition above, submodels may not be
compatible, which means that the output of one sub-
model is not in the right form to be the input required
for another submodel. In order to make two submodels
compatible, we introduce a transformation mapping Tij

as follows (see also [11])

TijðqiÞ ¼ pj; ð1Þ

where qi is the output of the submodel Bi that is in an
incompatible form for the submodel Bj and, therefore, it
is modified with the transformation mapping. Note that
transformation mappings need to be taken into account
also in the gradient calculations. Therefore, transfor-
mation mappings have to be implemented such that they
are able to produce both the output and the (partial)
derivatives of that output in the desired form.

In addition to the integration of different submodels
together for both overall or partial system simulation,
the multidisciplinary optimization system should allow
the optimization of some parts or the whole real world
system behaviour. For optimization, we set the follow-
ing additional system requirements. First, any system
output can be chosen to be optimized or used as an
ingredient of an objective function to be optimized.
Thus, based on knowledge of system outputs, the deci-
sion maker should be able to set an assessment criterion
to any of the outputs like deviation between the output
and a desired aspiration level (to be minimized), for
example. Furthermore, the system needs generic com-
ponent that evaluates the values of objective functions
according to these assessment criteria. Secondly, we as-
sume that all the system input parameters are avail-
able to be chosen as decision variables, that is,
x � {p1,...,pnm}, where the decision variables are denoted

p
1

q
2

p
3

p
4

p
2

p
4

p
1

p
2

p
3

q
1

q
2

q
3

q
4

q
1

q
3

q
4

q
1∇

q
1∇

q
2∇

q
2∇

q
3

q
4

q
3∇q

4
Submodel 3

Submodel 2

Submodel 1

Submodel 3 Submodel 4

Submodel 2

Submodel 1

Submodel 4

∇ ∇

∇

Fig. 1 Examples of internally or consecutive model couplings

36

by x = {x1,..., xnd}. To be able to change the decision
variable values the system contains for each input
parameter additional data, like the maximum and min-
imum admissible values for the real-valued parameters
(i.e., the box constraints). Those input parameters that
are not chosen to be decision variables are constant in-
put parameters and their values are determined at the
beginning of the solution process. Finally, the user
should be able to set optimization constraints related to
model inputs or outputs.

Note that the definition above for the system archi-
tecture is abstract, not application or optimization
method specific. Thus, several applied simulation and
optimization problems can be defined with the archi-
tecture. It is a dynamic system where the optimization
method and the simulation model are chosen separately
according to the problem considered during the problem
setting. Then, a specific multidisciplinary problem is
individualized in the problem setting such that it may
contain one or several objective functions to be opti-
mized and a collection of submodels, which are coupled
to each other.

2.2 A multidisciplinary and multiobjective optimization
problem

Next, we give a mathematical formulation to a multi-
disciplinary and multiobjective optimization problem.
We assume here that all the submodels are compatible
and consecutively coupled. Later, we want to study
gradients of objective functions with respect to the input
parameters chosen (i.e., the decision variables). Thus, we
replace the previous notation of input parameters pi,
i = 1,...,nm, by writing all the different input parameters
individually. All the submodels have their own input
vectors consisting of three types of inputs. The first
group is decision variables x. Secondly, there are sub-
model-wise input parameters, whose values are fixed
during the problem setting when the simulation model is
initialized. The third group of input variables contains
state inputs, that is, a single submodel has input from
the previous submodel(s), which means that the outputs
of the previous submodel(s) are inputs for the next
submodel. We ignore the constant submodel-specific
parameters in the equations, because their values are
constant through the whole solution process.

Now, we define the problem in the following form

min f1ðx; q1; . . . ; qnmÞ; . . . ; fnf ðx; q1; . . . ; qnmÞ
� �

subject to

B1ðx; q1Þ ¼ 0

B2ðx; q1; q2Þ ¼ 0

� � �
Bnmðx; q1; q2; . . . ; qnmÞ ¼ 0

8
>>><

>>>:

x 2 S;

ð2Þ

where x is a vector of decision variables from the feasible
set S � R

nd ; which may be formed of equality and

inequality constraints and box constraints of the
decision variables. We denote objective functions by
f = (f1, ..., fnf). The submodels B1 to Bnm consti-
tute a multidisciplinary simulation model. Vectors
qi 2 R

ki ; i ¼ 1; . . . ; nm; are obtained as outputs of sub-
models. Each output can depend on the decision vari-
ables and all the previous outputs, that is, model states.

We use a short notation qi, i = 1,..., nm, defined as

q1 ¼ q1ðxÞ
q2 ¼ q2ðx; q1Þ
� � �

qnm ¼ qnmðx; q1; . . . ; qnm�1Þ:

ð3Þ

Note that the problem formulation above requires
that the simulation model is solved before objective
functions are evaluated. In addition, consecutively cou-
pled submodels need to be solved in the right order from
B1 to Bnm.

We assume here, for simplicity, that all the objective
functions, submodels and their outputs are continuously
differentiable functions. The objective functions are of
the form

fi : Rnd � R
k1 � � � � � R

knm ! R; i ¼ 1; . . . ; nf ;

and the submodels are operator mappings

Bi : Rnd � R
k1 � � � � � R

ki ! R
ki ; i ¼ 1; . . . ; nm:

If transformation mappings are needed, they are also
assumed to be continuously differentiable.

When we set nf ‡ 2 and nm ‡ 2 in (2), we have a
real multidisciplinary and multiobjective optimization
problem in question. Then, our intention is to optimize
several objective function at the same time. It is assumed
that these objective functions are conflicting and by
optimizing one function the others obtain undesired
values. In multiobjective optimization, optimality is
understood in the sense of Pareto optimality, which
means that a vector of objective function values is
optimal if we are not able to improve any of the objec-
tive function values without impairing at least the value
of one objective function [13]. All the Pareto optimal
solutions are mathematically equally good and they
constitute a Pareto optimal set. When a single solution is
desired, it can be chosen with the help of an expert,
known as a decision maker, who is familiar with the
problem and can express preference relations between
the objective functions.

It is often helpful for the decision maker to get
information about the ranges of objective functions
values in the Pareto optimal set. Lower bounds of
objective functions are obtained by minimizing each
objective function individually with respect to the con-
straints. A vector in R

nf that contains the minima for
each objective function is known as an ideal objective
vector. Alike, a vector that contains the upper bounds in
the Pareto optimal set is known as a nadir objective

37

vector. Typically, the nadir objective vector can not be
calculated precisely, but there exist ways to approximate
it, for example, with a pay off table obtained while cal-
culating the ideal objective vector [13]. If an objective
function fi is to be maximized, it is equivalent to mini-
mize � fi in computations. However, it is better to show
unaltered objective function values to the decision
maker. Thus, in maximization, ideal and nadir objective
vector values represent upper and lower bounds of fi in
the Pareto optimal set, respectively.

There exist lots of multiobjective optimization
methods [13]. Several methods are based on expert
knowledge of the optimization problem considered. In
addition, there exist such methods that choose auto-
matically one Pareto optimal solution to be the final
solution without any preference information. When the
decision maker participates, (s)he gives preferences
concerning the objective functions and their relation-
ships to each others. Then the final solution is chosen
based on the decision maker’s knowledge of the prob-
lem. The decision maker can give preference information
before or after the solution process or during the solu-
tion process [13]. The last mentioned approach is used in
interactive methods.

In our numerical example, we employ here an inter-
active multiobjective optimization method, where the
decision maker participates in the solution process and
gives her/his preference information iteratively through
the solution process. This method is called NIMBUS
[13, 20, 21]. The NIMBUS method is based on the idea
of classification of objective functions. The decision
maker gives preference information by classifying the
objective functions according to the changes (s)he de-
sires in their current values. The NIMBUS method is
employed to obtain the best possible compromise
between the conflicting objective functions.

3 Aspects of computer realization

In this section, we discuss in more detail certain aspects
of an efficient computer realization of a multidisciplinary
and multiobjective optimization system. We describe a
generic system architecture and give a short overview of
how a simulation model and an optimization method can
be combined such that the requirements presented in
Sect. 2 are fulfilled. First, we introduce ideas of the dy-
namic generation of a simulation model. After that, we
present a model-based differentiation technique and
discuss the usage of automatic differentiation with that
technique. These two last-mentioned features increase
flexibility of the system architecture and enable us to
decrease computational time in the optimization process.

3.1 Overview of system architecture

Here, we introduce in more detail some general prop-
erties that are desired for a computer realization capable

of solving multidisciplinary and multiobjective optimi-
zation problems. The idea is to present such properties
and features that are common to different types of
problems. In Fig. 2, all the basic components that take
part in the solution process of a multidisciplinary and
multiobjective optimization problem are presented. In
addition, data flows between the components are in-
cluded there.

We have extended the problem formulation intro-
duced in [11] to contain more than two submodels or
disciplines in the simulation model. In Fig. 2, we use
bold arrows to describe data flows between components.
All the interfaces between the different components are
designed in such a way that each component produces
its outputs in a suitable form for the other components.
For example, submodels are implemented such that each
submodel produces output, which can be used as an
input to the following submodels. Similarly to [11], we
use transformation mappings to convert outputs into a
required fixed form, if necessary.

A general architecture for a multidisciplinary and
multiobjective optimization system contains the follow-
ing main components: application (main program),
problem settings, simulator and optimizer. The simula-
tor and optimizer are interfaces to the chosen problem-
specific simulation model and optimization method.
They are designed such that the simulator gives in a
predetermined form information that can be used in the
evaluation of the objective functions and their gradients.
Similarly, the optimizer gives new decision variable
values in such a form that they can be used in updating
corresponding parameter values in the simulation
model.

In Fig. 2, the solution process begins from the
application or the main program. At first, the multidis-
ciplinary and multiobjective optimization problem to be
considered is initialized with a problem setting, where
the following details should be determined:

• Optimization method and optimizer.
• Simulation model: submodels and their outputs.
• Objective functions and their properties.
• Constraint functions.
• Decision variables and constant parameters for the
simulation model.

The problem setting begins with specifying the opti-
mization method and the optimization setting, like
decision variables and objective functions, and it is fol-
lowed by the generation of a simulation model. Note
that the simulation model includes only those submodels
that are necessary for the production of the chosen
outputs used in the optimization. The problem setting is
done by the decision maker or another user according
the decision maker’s instructions. We want to emphasize
that the problem setting should be defined independently
of application and it should be done with the help of the
simulator and optimizer interfaces. Thus, the problem

38

setting code should not contain any problem-specific
input data, but the input data is given by user-defined
parameter files, for example. Thus, the generic system
architecture is application independent and can be tai-
lored for different real world problems. In fact, we have
designed the system architecture in such a way that the
main functional parts are independent of the simulation
model itself. First, the optimizer takes as the input only
decision variable values, objective function and con-
straint function values and possibly their gradients. The
simulator needs the information about the simulation
model as far as it obtains certain outputs and model-
based derivatives from the simulation model.

After the problem setting is done, then begins the
optimization loop that is surrounded with a dotted line
in Fig. 2. The optimization process is an interactive
process of the simulator and optimizer, where the
simulator produces chosen objective function values
and possibly gradients and the optimizer improves
them by changing the decision variable values. The
simulator asks for a simulation service from the se-
lected simulation model and the optimizer from the

selected optimization method. In the simulation model,
the chosen submodels are solved to obtain the required
outputs and their derivatives if the optimizer uses
derivatives. The latter means that the simulation model
computes also gradient information associated to the
outputs of each submodel with respect to the decision
variables. This gradient information can be produced
with an appropriate, but not any fixed method. For
example, finite differences can be utilized, if analytical
formulas are not known. However, one should note
that the method used should not slow down the
optimization process.

When the simulation model has been solved, the next
step is to evaluate objective functions and their gradi-
ents. In the evaluation process, the objective functions
and their gradients are composed of the simulation
model outputs and their derivatives, respectively. Then
the optimizer produces then new values for the decision
variables. If an interactive multiobjective optimization
method is used, the decision maker specifies preference
information during the solution process. The process
continues until the decision maker has found a desirable

Simulation
model

Optimizer

x

model1
Sub–

model2
Sub– . . . Subroutines for submodels

and their characterization

Sim
ulation m

odel

settings

Main program

Preference
information

Decision maker

 f∇f,

q

∇ q

Simulator

q

 q∇

 f
f

∇

x

Simulate

Optimize

Evaluate

Problem

Set
Optimization
system settings

evaluation

Objective
functions & gradient

Start

Process

Expert level

Initialization
inform

ation

User level

General level

Problem–specific (code) level

Fig. 2 General architecture and data flows between components

39

value for each objective function or none of them can be
improved or some other stopping criterion is fulfilled.

3.2 Dynamic generation of simulation model

We are developing such a system architecture for
multidisciplinary problems that allows the selection of
any kind of a feasible submodel chain to be simulated
and used in optimization. So far, we have already re-
ferred to selecting only those submodels that are really
needed. In order to realize that, we suggest to use a
dynamic model generation, which allows different
choices of simulation models constructed from the
existing submodels stored in databases related to the
problem considered. Our idea of the dynamic genera-
tion is based on the use of submodel outputs for the
identification of a simulation case. The user defines
desired output(s) to be optimized and, based on that,
the system fixes a chain of the currently required
submodels to form the associated simulation model.
The system then checks that the resulting simulation
model (chain) is compatible and contains only those
submodels that are necessary for the production of the
desired outputs. The dependences between the sub-
models and the outputs of the submodels can be de-
fined in databases, so-called model databases.

Let us illustrate the dynamic model generation
shortly. At first, the user selects the outputs (s)he wants
to study and optimize. Then, the corresponding opti-
mization problem is initialized by generating a dynamic
simulation model of those submodels that are necessary
for the production of the chosen outputs. All the simu-
lation model outputs are specified by means of model
databases that contain dependences between outputs
and models. The databases determine chains of sub-
models that enable to simulate some specific outputs.
Another possibility for the dynamic generation of a
simulation model would be to directly define the simu-
lation model as the chain of submodels. In such a case,
according to the submodel selection, the system should
define and organize the related outputs using the above-
mentioned databases. In this way, the user would have
more freedom in the generation of the simulation model,
because (s)he could determine which submodels are in-
cluded in the simulation model. However, it is naturally
more demanding for the user, because (s)he has to know
more about the submodels to be able to determine a
correctly functioning simulation model.

We obtain several advantages by using the dynamic
model generation in the optimization system. One
important advantage is that, depending on the purpose,
the approach allows the use of alternative types of
submodels with different levels of complexity to simulate
the same output. The user can choose between a PDE-
model, or its reduced variant, or a statistical model
based on experimental data. Possibilities to decrease
complexity are crucial when the optimization system is
extended to handle interactive optimization. The

dynamic model generation also allows to select several
parallel submodels and compare their differences. For
example, we are able to study the reliability of reduced
submodels by simulating both physical and reduced
submodels at the same time.

One should note that the dynamic generation of the
simulation model sets new requirements to the gradient
calculations, since now the submodels of a simulation
model can change case-to-case. Our model-based dif-
ferentiation technique, to be described next, supports the
usage of dynamic model generation.

3.3 Gradient calculations

Next, we consider the gradient calculations of the mul-
tidisciplinary and multiobjective optimization problem
(2). The idea is to enable using of efficient gradient-based
optimizers, but the system architecture allows also the
usage of derivate-free methods. We introduce here a
technique for consecutively coupled submodels that is
mathematically similar to the approach of global sensi-
tivity equations [12], but, to our knowledge, computer
realization in the context of a multidisciplinary optimi-
zation system described in Sect. 2 has not been reported
in the literature before.

Let us consider problem (2) with nf, nd, nm ‡ 2, and
with the assumptions of Sect. 2. We also assume that the
submodels are arranged in such a way that the simula-
tion begins from the first submodel B1 and continues
further until the last submodel Bnm. Each model may
have three types of input parameters as mentioned ear-
lier. We also assume that each submodel can have its
own decision variables, or several submodels can share
decision variables. Either way, all the decision variables
are collected into the vector x for the optimizer.

3.3.1 Model-based differentiation

Methods for calculating derivatives for multidisciplinary
systems are introduced in [12], see also [22]. We employ
an approach that is based on so-called global sensitivity
equations, but discuss it here primarily from the point of
view of computer implementation as a part of an opti-
mization system. Namely, we next introduce a model-
based differentiation technique for multidisciplinary
optimization problems, where the submodels are con-
secutively coupled. However, it can be used also in the
case of internally coupled submodels. The method is
here formally derived using implicit differentiation and
the chain rule and its ideas were introduced in [18, 23].
We present here the technique for one objective func-
tion. It can be generalized for multiple objective func-
tions in a straightforward way.

Let us first consider partial derivatives of an objec-
tive function fi with respect to a decision variable xj. By
using the implicit differentiation and the chain rule, we
obtain

40

@fiðx; q1; q2; . . . ; qnmÞ
@xj

¼ @fiðxÞ
@xj

þ @fiðq1Þ
@q1

@q1
@xj
þ � � �

þ @fiðqnmÞ
@qnm

@qnm

@xj

¼ @fiðxÞ
@xj

þ
Xnm

k¼1

@fiðqkÞ
@qk

@qk

@xj
:

ð4Þ

Assume that @fiðxÞ=@xj and @fiðqkÞ=@qk can be calcu-
lated for all i = 1,...,nf, j = 1,..., nd, and k = 1,..., nm,
and the problem is to determine the unknown partial
derivatives @qk=@xj; for all j = 1,...,nd and k = 1,...,nm
of (4).

We calculate the so-called total derivatives of each
submodel, which means that we study both implicit
and explicit dependences on the decision variables.
Then, by using the implicit differentiation, we formu-
late the equations for the total derivative of the output
vectors.

Let us consider the first submodel in (2) and the un-
known derivatives @q1=@xj; for all j = 1,...,nd. By
employing the implicit differentiation, we obtain

@B1

@xj
þ @B1

@q1

@q1
@xj
¼ 0; j ¼ 1; . . . ; nd; ð5Þ

and further,

@q1
@xj
¼ � @B1

@q1

�1 @B1

@xj
; j ¼ 1; . . . ; nd: ð6Þ

For the second submodel, we employ both the chain
rule and the implicit differentiation in order to obtain
the unknown derivatives @q2=@xj; for all j = 1,...,nd as
follows:

@B2

@xj
þ @B2

@q1

@q1
@xj
þ @B2

@q2

@q2
@xj
¼ 0; j ¼ 1; . . . ; nd;

@q2
@xj
¼ � @B2

@q2

�1 @B2

@xj
þ @B2

@q1

@q1
@xj

� �
; j ¼ 1; . . . ; nd:

ð7Þ

In the general case, we obtain the following equation
for the unknown derivatives @qk=@xj; for all j = 1,...,nd
and k = 1,..., nm by employing several times the chain
rule and once the implicit differentiation

@Bk

@xj
þ
Xk

l¼1

@Bk

@ql

@ql

@xj
¼ 0; j ¼ 1; . . . ; nd;

@qk

@xj
¼ � @Bk

@qk

�1 @Bk

@xj
þ
Xk�1

l¼1

@Bk

@ql

@ql

@xj

 !

; j ¼ 1; . . . ; nd:

ð8Þ

By using formula (8) for each submodel in (2), we are
able to compute all the unknown derivatives. When we
assemble them into formula (4), we obtain the partial
derivatives of the objective function with respect to the

decision variables. We can also utilize a similar ap-
proach for functions that are not necessarily differen-
tiable in a classical sense, see [24].

Note that transformation mappings are taken into
account in the model-based differentiation. They are
treated as submodels in gradient computations.

3.3.2 Automatic differentiation

By using model-based differentiation, we can (almost)
automatically produce the associated gradient informa-
tion simultaneously when the simulation model is
solved. Namely, we combine the model-based differen-
tiation technique with automatic differentiation (AD)
[25, 26]. Our idea is to use AD both in the submodel and
the objective function gradient calculations and then
collect the total derivatives of the outputs automatically.
This approach makes it also possible, in many cases, to
hide the differentiation from the user.

In the multidisciplinary optimization system, the
gradient calculations should be implemented dynami-
cally, that is, designed so that any of the input
parameters can be chosen to be a decision variable and
defined as an AD variable. Then, the simulation model
is solved and for each output that depends on that
input parameter (implicitly or explicitly) a certain
partial derivative with respect to the chosen parameter
is computed automatically. One should also note that
the system implementation allows the usage of
‘implicit’ simulation models, like PDE-based models.
Their usage requires that the corresponding submodel
implementations produce both the state and gradient
information.

The use of automatic differentiation allows us to
change the optimization problem without making
changes at the code level of the simulation model. This
makes the system architecture flexible to define and
solve different problems. A proper implementation also
offers a possibility to easily change submodels in the
simulation model or replace the whole simulation
model with a different model without code changes.
The model-based differentiation technique itself does
not require automatic differentiation. Therefore, it al-
lows to employ also existing (code) modules as a part
of the simulation model, because the model-based
differentiation does not care how the gradient infor-
mation is produced. Thus, the underlying differentia-
tion technique in some submodel can be, for example,
the finite difference method in cases when the associ-
ated submodel implementation does not enable to use
automatic differentiation.

Next, we want to illustrate some benefits of using our
model-based differentiation technique. In our example,
we optimize one objective function and the simulation
model is generated of two submodels and the associated
six outputs. The example is described in more detail in
[18].

41

We employ model-based differentiation with auto-
matic differentiation and compare it with an approach,
where gradient information of the objective function is
obtained by the finite difference method. We use the
forward finite differences

@f ðx; q1; . . . ; qnmÞ
@xj

�

f ðxþ hej; q1; . . . ; qnmÞ � f ðx; q1; . . . ; qnmÞ
h

; h > 0:

In this example, we study the CPU-time that is nee-
ded for a single gradient evaluation. The computations
were carried out on a personal computer containing
AMD Athlon(tm) XP processor 2600+ (2,133 MHz)
processor and 1 GB memory. All the times listed in
Table 1 are CPU-times in seconds and the columns de-
scribe the numbers of decision variables.

As one can see, the model-based differentiation
technique with automatic differentiation does not de-
pend on the number of decision variables like the finite
difference method that depends linearly on the number
of decision variables. Moreover, the finite difference
method typically suffers from numerical inaccuracies
near the optimal solution. Hence, the solution process
requires more objective function evaluations and, still,
the desired accuracy can not always be reached. Typi-
cally, automatic differentiation is able to produce
numerically accurate gradients, and numerical inaccu-
racy problems are rare.

4 Industrial example

In this section, we present an industrial example of a
multidisciplinary and multiobjective optimization prob-
lem, where we demonstrate how the issues raised can be
realized efficiently. In other words, we use the dynamic
generation of the simulation model and the model-based
differentiation. We consider a multiobjective optimiza-
tion problem related to paper quality, where the simu-
lation model contains several submodels. A paper
machine expert participates in the interactive solution
process as a decision maker. First, we describe a paper
making process shortly, and then introduce its modeling
aspects. Thereafter, we present an interactive solution
process of the optimization problem.

The operational and numerical results presented
below do not correspond to any existing machine

construction or setup. We are not here allowed to ex-
press all the detailed information about the simulation
model used in computations.

4.1 Paper making process

The paper making process in a paper machine begins
from a headbox, where about one percent of substance is
dry solids and the rest is water. After several phases of
pressing and evaporation, paper is ready to be wound
onto a roll, where it is taken to the finishing part for
improving the paper surface properties. An example of a
paper machine is given in Fig. 3.

The paper making process consists of four main parts
in the paper machine and then chosen finishing com-
ponents. In the figure, paper making begins from the
upper right corner from the headbox, where the stream
of fibre suspension is lead to a wire section (also known
as a forming section), where the suspension forms a
paper web via dewatering. The construction of the wire
section differs widely depending on what kind of paper
we are manufacturing. However, in all the machines the
dominant mechanism in the web forming is filtration.
After the filtration, the paper web has a porous struc-
ture, where the pores are filled with water. In this stage,
a fifth of the paper web consists of fibres. A part of water
located in the pores is removed by squeezing the paper
web between two pressing rolls. This stage is just after
the wire section and it is called a press section. The
remaining water is removed in a drying section by
evaporation. This is done by contacting the paper web
with a series of steam-heated cylinders. The drying sec-
tion is typically quite large part as seen in the figure.
After the drying section the production continues in a
finishing part, where the paper is treated to obtain a
smoother and glossier surface. The finishing part can be
located next to the drying section, so-called on-line fin-
ishing or paper can be first wound on rolls and then
taken to off-line finishing as presented in Fig. 3. Exam-
ples of finishing methods are coating and calendering.
For more about paper making, see, for example, [17].

4.2 Modeling and optimizing of paper making line

We have several different types of submodels to describe
different phases of paper making in the paper machine.
The submodels are stored in a model database, where we

Table 1 The CPU-time
comparison Method Number of variables

10 20 50 100

Model-based differentiation with
automatic differentiation (AD)

5.160 5.230 5.230 5.240

Finite difference method 45.060 90.423 228.310 460.190

42

can choose for each problem to be considered a chain of
suitable submodels to form a simulation model. When
we combine these submodels together, we obtain a
multidisciplinary model for the whole machine. We
employ submodels with partial differential equations
describing physical phenomena in some machine com-
ponents, the so-called unit-process models. For example,
for the fluid flows in the headbox, we employ Navier–
Stokes type equations [14, 23]. Furthermore, we have
statistical models that are based on experimental data
from the paper making process describing both process
and quality properties. Examples of statistical submod-
els are qualitative properties that are determined during
the paper making process. As submodels we also have
model surrogates that simplify computationally
demanding submodels. An example of a model surro-
gate is a polynomial submodel simplifying a physical wet
pressing model [16]. In addition, the database contains
parallel submodels describing the same phenomenon, of
which different simulation model constructions can be
assembled, according to the actions of the user. Most of
the submodels have been implemented with Fortran 95,
but some unit-process models have been implemented
with Fortran 77. In addition, such programming lan-
guages as C, C++ and Python have been applied in the
system implementation.

As the optimization software, we employ the inter-
active multiobjective optimization system NIMBUS [13,
20, 21, 27] that is available for academic purposes on the
Internet (http://nimbus.it.jyu.fi). The NIMBUS method
is based on an idea of classification of objective func-
tions into five classes. At each iteration the decision
maker directs the solution process according to her/his
preferences in the set of Pareto optimal solutions. (S)he
is shown the current solution and the approximated
ranges of the Pareto optimal set, and asked about the
desirable changes to the objective function values by
classifying them. The first class contains functions to be
improved from their current level, the second class
functions to be improved until a given desirable level,
the third class functions that are satisfactory at the
moment, the fourth class functions that are allowed to

get worse values, but not exceeding a given bound and
the last (fifth) class contains functions that are allowed
to change freely. Because of the definition of Pareto
optimality, we cannot improve all the objective func-
tions simultaneously and, thus, some of the objective
functions must be allowed to impair in the classification.
Based on preference information, NIMBUS produces
single objective optimization problems, so-called sca-
larized subproblems, which can be solved with a chosen
single objective optimizer. There are four different sca-
larized subproblems in NIMBUS at the moment and
therefore, NIMBUS can produce one to four new Pareto
optimal solutions according to the classification infor-
mation [27]. This means that the decision maker can ask
for 1–4 new solutions. In addition, the decision maker is
able to produce one or several intermediate solutions
between any two different solutions with NIMBUS. In
this way the decision maker can get to know the problem
and concentrate on such Pareto optimal solutions (s)he
is interested in.

We present here one example construction of a
simulation model that is used to mimic SC-paper (Super-
Calendered paper) production. In this example, we
utilized all four scalarized subproblems in each classifi-
cation. We used with NIMBUS a subgradient based
single objective optimizer [28] and produced gradient
information with model-based differentiation and auto-
matic differentiation, where the latter implementation is
based on the Numerrin 2.0 software package [29, 30].

All the computations were carried out on the server
computer containing dual-processor system AMD
Athlon (tm) XP processor 1900+ (1,600 MHz) proces-
sor and 2 GB memory.

4.3 Multiobjective optimization of paper making line

In this example, we follow the system architecture de-
scribed earlier. The problem contains five objective
functions chosen by the decision maker and in order to
optimize the chosen objectives the corresponding simu-
lation model is generated of 21 submodels and one

Fig. 3 Example of paper
machine (Courtesy of Metso
Paper Inc.)

43

transformation mapping. There are over 30 submodels
available in the model databases, where the simulation
model was generated. The simulation model is con-
structed according to our system architecture with the
help of databases that contain information about sub-
models related to paper making and properties of paper.
The obtained simulation model is able to mimic the
chosen qualitative properties of the produced paper by a
virtual paper making line.

The chosen objective functions describe qualitative
properties of produced paper at the finishing part of the
paper machine. However, to be able to simulate these
properties, we need also information of paper properties
before the finishing part. Therefore, the simulation
model is a model for the whole paper machine including
a headbox, a wire section, a press section, a drying
section and a finishing component called a supercalen-
der. In this example, the following five qualitative
properties are studied. The first and the second objective
functions describe a so-called PPS 10 property on both
top and bottom sides of paper, and their values are to be
minimized. PPS 10 describes roughness of paper surface.
The third and the fourth objective functions represent
gloss of paper surface also on both top and bottom sides
of paper, and their values are in this example maximized.
The fifth function describes the final moisture in the
paper and its value is maximized. There are altogether 22
decision variables, which are typical controls of the
paper machine components that have an effect on the
chosen objective functions. The problem contains box
constraints for the decision variables, but it does not
have any inequality or equality constraints. The decision
maker was able to get four solutions for every classifi-
cation, but we do not show them all here (for saving
space), but only those solutions the decision maker
found the most desirable.

In this optimization problem, the interactive solution
process was guided by preference information of a paper
machine expert, who was acting as a decision maker. In
Table 2, we collect information about the names of the
objective functions, whether they were to be minimized
or maximized and give approximated information about
their ranges in the Pareto optimal set. At the beginning,
objective functions had the (normalized) initial values
presented also in Table 2. The initial solution was pro-
duced with typical values of the decision variables and it
was projected on the Pareto optimal set by NIMBUS. In
addition, the ranges of the Pareto optimal set were
produced by NIMBUS and their values were updated
during the solution process, whenever smaller or higher
Pareto optimal function values were obtained during the
solution process.

Throughout the optimization process, the decision
maker had the following aims. He wanted to obtain such
a solution in which both PPS 10 and gloss would be as
equal as possible on the top and bottom sides of paper.
In addition, he found the minimization of PPS 10 very
important.

First classification In the first classification, the deci-
sion maker considered the initial solution and wanted to
improve both top and bottom values of PPS 10 and
equalize differences between the values of the gloss on
top and bottom sides of paper. Therefore, the bottom
gloss was set to be improved until a desired level 1.0 and
to obtain similar values for both the glosses, he let the
top gloss to get worse values and gave it a lower bound
1.0. Furthermore, he let the final moisture change freely.
The decision maker obtained new solutions and decided
to produce new intermediate solutions between the ori-
ginal initial solution and one of the obtained solution.
Unfortunately, he did not obtain improvements he
wanted and, therefore, the decision maker chose to go
back to the initial solution and classify the objective
functions again.

Second classification Based on knowledge obtained
from the first classification, the decision maker decided
to make a new classification to improve the PPS 10
properties and equalize the gloss on top and bottom.
Differing from the first classification, he gave both the
PPS 10 values desired levels, which were 1.15 for both.
As in the first classification, the bottom gloss was set to
be improved until a desired level 1.0 and the top gloss
was given a lower bound 1.0. The final moisture was still
allowed to change freely. In this way, objective functions

Table 2 Initial values and the approximated ranges of the Pareto
optimal set

Name Minimized/
maximized

Lowest
values

Initial
solution

Highest
values

Top PPS 10 Minimized 0.92 1.20 2.00
Bottom PPS 10 Minimized 1.03 1.29 2.02
Top gloss Maximized 0.55 1.09 1.11
Bottom gloss Maximized 0.51 0.99 1.15
Final moisture Maximized 0.08 1.88 2.52

Table 3 Intermediate solutions
Name Five intermediate solutions

Top PPS 10 1.20 1.11 1.13 0.94 0.86 0.79 0.82
Bottom PPS 10 1.29 1.23 1.20 1.15 1.12 1.07 1.03
Top gloss 1.09 1.09 1.09 1.09 1.09 1.09 1.09
Bottom gloss 0.99 1.01 1.04 1.06 1.09 1.11 1.14
Final moisture 1.88 1.55 1.21 0.89 0.56 0.23 0.10

44

had more freedom to change. In consequence, the deci-
sion maker obtained new solutions that were almost
satisfactory. He decided to produce five intermediate
solutions between the initial solution and one of the
obtained solutions. The new solutions are given in
Table 3, where after the name of the objective function,
we list the starting point of the classification and in the
right, the chosen solution after the classification.
Between these two, we give the five intermediate alter-
natives.

As seen in the table the lowest value of the top PPS 10
was updated with value of 0.79.

Then, he obtained desired improvements and chose
the third intermediate solution (that is expressed in bold
face in the table) as the starting point of a new classifi-
cation.

Third classification The decision maker wanted to
equalize differences between top and bottom side of
paper for the both PPS 10 properties and glosses.
Therefore, he let the top PPS 10 and top gloss values to
get worse by given them an upper and a lower bound,
respectively. The given bounds were 1.0 for both. Then,
the bottom PPS 10 value was to be improved as much as
possible, the bottom gloss value was found satisfactory
at the moment and the final moisture was allowed to
change freely. With this classification, even though both
the PPS 10 and gloss values were impaired, the decision
maker found that the solution obtained was satisfactory
for PPS 10 from the point of view of equality on bottom
and top sides. The objective vector had the following
values (1.24, 1.27, 1.05, 0.95, 1.93) after the third clas-
sification. However, the objective function values were
still too large and needed improvement.

Fourth classification This time, the decision maker
wanted to improve both PPS 10 properties so that dif-
ference between the paper sides would not be increased.
In addition, he wanted the bottom gloss value to obtain
a larger value to equalize the difference between paper
sides. The final moisture was given an upper bound 1.0.
From the fourth classification the decision maker ob-
tained a solution that was satisfactory to be the final
solution. The solution was (1.01, 1.04, 1.07, 1.09, 1.19)
and it is also presented in Table 4 together with the
solutions selected after each classification. Thus, we can
see how the solution process progressed and how the
final solution fulfills the decision maker’s requirements
concerning the equality of paper quality on top and
bottom sides of paper.

The above-described optimization process did not
only improve the process and quality parameters, but
can also give new knowledge and insight of the paper
making process. The interactive multiobjective optimi-
zation made possible for the decision maker to learn
about the conflicting qualitative properties and their
interrelationships. The implementation (utilizing the is-
sues discussed in previous sections) gave a completely
new perspective to paper making when the paper making
process could be considered as a whole. In addition, the
example gives us information about the models used and
feedback whether they represent the real processes well
enough or whether some further development is needed.
This numerical example clearly proves that the system
architecture presented is useful and that it is able to
solve complex real world problems.

5 Concluding remarks

In this paper, we have collected issues necessary in
developing a multidisciplinary and multiobjective opti-
mization system. We have introduced an approach for a
generic optimization model architecture, which fixes
neither the optimization method nor the application
field. Moreover, the system architecture allows the use of
different types of submodels, like PDEs and statistical
models based on experimental data. The main emphasis
was given to the consecutively coupled submodels.

We discussed a couple of important aspects of the
system architecture and their computer realization.
These are features that enable efficient computations
and, for example, make possible to use interactive mul-
tiobjective optimization. We introduced a model-based
differentiation technique and dynamic generation of the
simulation model. The first-mentioned allows us to em-
ploy gradient-based optimizers in multidisciplinary
optimization, and by combining it with automatic dif-
ferentiation, we are able to realize accurate and efficient
gradient computations. We illustrated this with a com-
parison, where the results obtained showed that the
model-based differentiation together with automatic
differentiation was highly more efficient and accurate
than the corresponding finite difference approach.
Dynamic generation of the simulation model is a novel
way to organize and manage unit-process submodels
associated to a real world system. It also permits more
efficient simulations and optimizations, since the system

Table 4 The results of
optimization process Name Minimized/

maximized
Initial
solution

Second
class
solution

Intermediate
solution

Third
class
solution

Final
solution

Top PPS 10 Minimized 1.20 0.82 0.94 1.24 1.01
Bottom PPS 10 Minimized 1.29 1.03 1.15 1.27 1.04
Top gloss Maximized 1.09 1.09 1.09 1.05 1.07
Bottom gloss Maximized 0.99 1.14 1.06 0.95 1.09
Final moisture Maximized 1.88 0.10 0.89 1.93 1.19

45

uses only those submodels that are required to produce
desired simulation outputs or the optimized objectives.

Finally, we illustrated the ideas and the architecture
with an industrial example, a complicated multidisci-
plinary and multiobjective optimization problem. The
example was related to paper making technology. In this
context, we presented an optimization process with the
interactive NIMBUS method, where the paper machine
expert solved a multidisciplinary and multiobjective
problem. The solutions obtained showed that the deci-
sion maker was able to find a satisfactory compromise
between the conflicting objective functions. Besides that,
the decision maker was able to learn about the problem
during the optimization process. The example showed
that the system architecture presented in this paper can
be used in solving complex real world problems. We can
say that the new system covering the whole paper ma-
chine gives revolutionary possibilities to control the
processes as a whole when different interdependences
can be taken into account. In addition, it gives possi-
bilities to develop optimization-based decision support
systems for paper making professionals. Similar benefits
can be expected to be obtained in a variety of applica-
tion areas where only parts of the complex systems have
been studied so far.

Acknowledgements This research was financially supported by the
National Technology Agency of Finland, project: NIM-
BUS—multiobjective optimization in product development. The
authors wish to thank Doctor Heikki Kettunen from Metso Paper,
Inc., Professor Jari P. Hämäläinen from the University of Kuopio
and Docent Marko M. Mäkelä from the University of Jyväskylä.

References

1. Shubin GR (1995) Application of alternative multidisciplinary
optimization formulations to a model problem for static aero-
elasticity. J Comput Phys 118:73–85

2. Alexandrov NM, Hussaini MY (eds) (1997) Multidisciplinary
design optimization. In: State of the Art. SIAM Publications,
Philadelphia

3. Giunta AA (1999) Sensitivity analysis method for aeroelastic
aircraft models. Aircraft Des 2:207–230

4. Olds J (1994) System sensitivity analysis applied to the con-
ceptual design of a dual-fuel rocket SSTO. In: 5th AIAA/
USAF/NASA/ISSMO symposium on multidisciplinary analy-
sis and optimization, AIAA paper 94-4339, Panama City

5. Walsh JL, Townsend JC, Salas AO, Samareh JA, Mukho-
padhyay V, Barthelemy J-F (2000) Multidisciplinary high-
fidelity analysis and optimization of aerospace vehicles part 1:
formulation. AIAA paper 2000-0418, NASA Langley Research
Center

6. Walsh JL, Weston RP, a Samareh JA, Mason BH, Green LL,
Biedron RT (2000) Multidisciplinary high-fidelity analysis and
optimization of aerospace vehicles part 2: preliminary results.
In: 38th aerospace sciences meeting and exhibit, AIAA paper
2000-0419, Reno, Nevada

7. Tappeta RV, Renaud JE, Rodrı́guez JF (2002) An interactive
multiobjective optimization design strategy for decision based
multidisciplinary design. Eng Optim 34(5):523–544

8. Kodiyalam S, Sobieszczanski-Sobieski J (2001) Multidisciplin-
ary design optimization—some formal methods, framework
requirements, and application to vehicle design. Int J Vehicle
Des 25:3–22

9. Salas AO, Townsend JC (1998) Framework requirements for
MDO application development. In: 7th AIAA/USAF/NASA/
ISSMO symposium on multidisciplinary analysis and optimi-
zation, AIAA paper 98-4740, St. Louis

10. Sobiesczanski-Sobieski J, Haftka RT (1997) Multidisciplinary
aerospace design optimization: survey of recent developments.
Struct Optim 14(1):1–23

11. Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR
(1994) Problem formulation for multidisciplinary optimization.
SIAM J Optim 4(4):754–776

12. Sobieszczanski-Sobieski J (1990) Sensitivity of complex, inter-
nally coupled systems. AIAA J 28(1):153–160

13. Miettinen K (1999) Nonlinear Multiobjective Optimization.
Kluwer, Boston

14. Hämäläinen J (1993) Mathematical modeling and simulation of
fluid flows in the headbox of paper machines. PhD Thesis,
University of Jyväskylä

15. Hämäläinen JP, Miettinen K, Tarvainen P, Toivanen J (2003)
Interactive solution approach to a multiobjective optimization
problem in a paper machine headbox design. J Optim Theory
Appl 116(2):265–281

16. Hiltunen K (1995) Mathematical and numerical modeling of
consolidation processes in paper machines. PhD Thesis,
University of Jyväskylä

17. Gavelin G (1998) Paper machine design and operation:
descriptions and explanations. Angus Wilde Publications,
Vancouver

18. Madetoja E, Tarvainen P (2003) A computer realization of
multidisciplinary optimization system. Reports of the Depart-
ment of Mathematical Information Technology, series B.
Scientific Computing, vol 14, University of Jyväskylä

19. Giordano FR, Weir MD, Fox W (1997) A first course in
mathematical modeling, 2nd edn. Brooks/Cole Publishing
Company, California

20. Miettinen K, Mäkelä MM (1995) Interactive bundle-based
method for nondifferentiable multiobjecive optimization:
NIMBUS. Optimization 34:231–246

21. Miettinen K, Mäkelä MM (2000) Interactive multiobjective
optimization system WWW–NIMBUS on the Internet.
Comput Oper Res 27(7–8):709–723

22. Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-ad-
joint sensitivity analysis method for high-fidelity aero-struc-
tural design. Optim Eng 6(1):33–62

23. Madetoja E (2003) On interactive multiobjective optimization
related to paper quality. Licentiate Thesis, University of
Jyväskylä

24. Madetoja E, Mäkelä MM (2006) On sensitivity analysis of
nonsmooth multidisciplinary optimization problems in engi-
neering process line applications. Struct Multidisciplinary
Optim 31(5):355–362

25. Barthelemy J-FM, Hall LE (1995) Automatic differentiation as
a tool in engineering design. Struct Des 9:76–82

26. Haslinger J, Mäkinen RAE (2003) Introduction to shape
optimization: theory, approximation, and computation. SIAM,
Philadelphia

27. Miettinen K, Mäkelä MM (2006) Synchronous approach in
interactive multiobjective optimization. Eur J Oper Res
170(3):909–922

28. Mäkelä MM, Neittaanmäki P (1992) Nonsmooth optimization:
analysis and algorithms with applications to optimal control.
World Scientific, Singapore

29. Hiltunen K, Laitinen M, Niemistö A, Tarvainen P (2003) Using
mathematical concepts in software design of computational
mechanics. In: Råback P, Santaoja K, Stenberg R (eds) VIII
Finnish Mechanics Days, Espoo. Helsinki University of Tech-
nology, Laboratory for Mechanics of Materials

30. Numerrin 2.0 (2003) Simulation software based on finite
element method (in Finnish), 2003. Numerola Oy

46

	Issues related to the computer realization of a multidisciplinary �and multiobjective optimization system
	Abstract
	Introduction
	Architecture of a multidisciplinary and multiobjective optimization system
	System definition
	Fig1
	A multidisciplinary and multiobjective optimization problem
	Aspects of computer realization
	Overview of system architecture
	Fig2
	Dynamic generation of simulation model
	Gradient calculations
	Model-based differentiation
	Automatic differentiation
	Industrial example
	Paper making process
	Modeling and optimizing of paper making line
	Tab1
	Multiobjective optimization of paper making line
	Fig3
	Tab2
	Tab3
	Concluding remarks
	Tab4
	Acknowledgements
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

