
ORIGINAL ARTICLE

Lori Freitag Diachin Æ Patrick Knupp

Todd Munson Æ Suzanne Shontz

A comparison of two optimization methods for mesh quality improvement

Received: 22 September 2004 / Accepted: 8 November 2005 / Published online: 19 May 2006
� Springer-Verlag London Limited 2006

Abstract We compare inexact Newton and block coor-
dinate descent optimization methods for improving the
quality of a mesh by repositioning the vertices, where
the overall quality is measured by the harmonic mean of
the mean-ratio metric. The effects of problem size, ele-
ment size heterogeneity, and various vertex displace-
ment schemes on the performance of these algorithms
are assessed for a series of tetrahedral meshes.

Keywords Mesh quality improvement Æ
Mesh optimization Æ Mesh smoothing

1 Introduction

Mesh vertex repositioning algorithms have been used for
many years to improve solution accuracy and efficiency;
see, for example, [1–4]. Repositioning techniques vary
widely in the time required to implement and modify the
algorithm and in the computational cost and effective-
ness when applying the algorithm, usually with a trade-
off between these criteria. Laplacian smoothing, for
example, is easy to implement and inexpensive to apply
but can produce tangled meshes. Moreover, this method
is limited to the creation of smooth meshes, while vertex
repositioning can address other meshing needs such as
equidistribution of volumes [5], shape improvement [6],

or adaptive r-refinement [7]. These more complex tasks
can usually be posed as numerical optimization prob-
lems in which an objective function is defined measuring
one or more mesh properties. This objective function
can then be optimized by repositioning the vertices,
leading to improvement in the mesh properties mea-
sured.

When approaching the vertex repositioning problem
from an optimization perspective, a natural idea is to
formulate a single objective function measuring global
mesh quality. This global objective function is typically
constructed by accumulating contributions from each
local measure of quality into a scalar function of the
positions of all free vertices in the mesh.1 We consider
two approaches for numerically optimizing the global
objective function: an all-vertex approach where the
positions of all free vertices are moved simultaneously
within a single iteration, and a single-vertex approach
where the position of only one vertex is modified at a
time. We employ an inexact Newton method as our all-
vertex optimization algorithm and a block coordinate
descent method as our single-vertex algorithm in which a
Newton method is applied to solve each coordinate
descent subproblem. The goal of this paper is to deter-
mine when one of these methods is preferable to the
other, where preference can include the ease with which
the method can be implemented and modified, the com-
putational and memory requirements for applying the
method, and the accuracy and quality of the mesh pro-
duced, perhaps as a function of computation time. A
complete answer should consider all these characteristics.

The preferred method may differ depending on the
circumstances. For example, the block coordinate des-
cent method may be better suited to quickly finding an
approximate solution, while the inexact Newton method
may be more suitable for calculating a highly accurate
solution. Factors that may be significant in determining

L. Freitag Diachin (&)
Lawrence Livermore National Laboratory, Livermore, CA, USA
E-mail: diachin2@llnl.gov

P. Knupp
Sandia National Laboratories, Albuquerque, NM, USA
E-mail: pknupp@sandia.gov

T. Munson
Argonne National Laboratory, Argonne, IL, USA
E-mail: tmunson@mcs.anl.gov

S. Shontz
University of Minnesota, Minneapolis, MN, USA
E-mail: shontz@cs.umn.edu

1An important alternative to mesh optimization often used by the
unstructured mesh community employs a series of local objective
functions.

Engineering with Computers (2006) 22: 61–74
DOI 10.1007/s00366-006-0015-0

the preferred approach include the objective function,
quality metric, desired accuracy in the resulting mesh,
mesh type (structured vs. unstructured), dimension
(planar vs. volume), element type (simplicial vs. non-
simplicial), problem size, mesh heterogeneity and
anisotropy, and the degree and manner in which the
initial mesh differs from the optimal mesh. Algorithm
implementations also have a significant impact, since a
simple implementation can be much slower than a more
sophisticated version.

In this paper we report the results of an initial
exploration of these factors to determine the circum-
stances in which the inexact Newton method or the
block coordinate descent method may be preferred. To
make the study manageable, we limit the number of free
parameters and consider a fixed mesh type, quality
metric, and objective function template. In particular,
we use tetrahedral meshes, the mean-ratio quality metric
for isotropic elements, and a template targeting average
quality improvement. The free parameters investigated
are the problem size, element homogeneity, initial mesh
configuration, and desired degree of accuracy in the
resulting mesh.

2 Problem statement

2.1 Element and mesh quality

An unstructured mesh consists of a finite set of vertices
V and elements E; where jVj denotes the number of
vertices and jEj the number of elements. The set of
vertices on the boundary of the mesh is denoted by VB;
while the set of interior vertices, that is, those not on the
boundary, is denoted by VI: Let xv 2<n denote the
coordinates for vertex v 2V: For surface and volume
meshes n=3, while for planar meshes n=2 (in this paper
we only consider volume meshes). Moreover, x 2 <n�jVj

refers to the collection of all vertex coordinates. Each
element e 2 E consists of a small subset of the vertices
and the edges between these vertices, where |e| is the
number of vertices referenced by element e, Ve refers to
the vertices referenced by e, and xe 2<n·|e| the matrix of
vertex coordinates for e.

Associated with the mesh is a continuous function
q:<n·|e| fi < measuring one or more geometric prop-
erties of an element as a function of the vertex posi-
tions.2 In particular, q(xe) measures the quality of
element e, where we assume a larger value of q(xe)
indicates a higher quality element. A specific function q
is referred to as an element quality metric. Many func-
tions can serve as quality metrics, so the quality of an
element is not uniquely defined. For example, there are
different metrics to measure the shape, size, and orien-
tation of elements. In general, useful quality metrics

possess other properties in addition to continuity, but a
discussion of this topic is beyond the scope of the
present study. See, for example, [8].

The overall quality of the mesh is measured by a
template function Q : <jEj ! < taking as input the vector
of element quality metrics,

Q
e2E qðxeÞ; where

Q
denotes

the Cartesian product. The mesh quality depends on
both the choice of the specific element quality metric q
and the particular template function Q used to combine
them. Useful template functions can be constructed
from the arithmetic or other means.

2.2 The Mean-ratio metric

An important variable in this study is the choice of
quality metric. In general, we expect the study results
could vary significantly depending on whether or not
one were to choose shape metrics as opposed to size,
smoothness, or other metrics. For this initial algorithm
comparison, we focus on the mean-ratio shape-quality
metric. Other shape metrics such as aspect ratio or
condition number would likely give similar timing re-
sults; we plan to study these metrics and others not
explicitly focused on shape in future work.

Let S be a n · n matrix with det (S) > 0. The mean
ratio l of S is the scalar

lðSÞ ¼ n detðSÞ2=n

kSk2F
;

where kSkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðST SÞ

p
is the Frobenius norm. One can

readily show that 0 < l(S) £ 1. To apply the mean
ratio to element quality, assume each vertex of the ele-
ment is connected to n edges (and therefore n other
vertices) belonging to the element.3 Let xi be the coor-
dinates of vertex i, and let xk be the coordinates of an-
other vertex in the element connected to vi by an edge.
Construct the matrix A(i) whose columns are the vectors
xk � xi for each adjacent vertex vk in the element. The
columns are ordered to preserve element orientation so
that the element has locally nonpositive volume if de-
t (A(i)) £ 0 for any vertex; such elements are called
‘‘inverted.’’ Let W be a n · n reference matrix for the
ideal element shape (e.g., an equilateral reference trian-
gle is often used for triangular elements). This reference
matrix is found by constructing W from the ideal ele-
ment in the same way A is constructed for the mesh
element. For each element vertex i let li = l(A(i) W�1)
be the mean ratio at element vertex i.

Finally, the mean ratios of the element vertices are
averaged to form an element quality metric symmetric in
the element vertex indices.4 We use the arithmetic mean,

2For hybrid meshes, the exact definition of q can change depending
on the element type. However, we assume that the quality metric,
shape, for example, is the same for every element.

3This approach excludes elements such as pyramids but includes
triangles, tetrahedra, wedges, quadrilaterals, and hexahedra.
4We show in [6] that averaging is unnecessary in the case of tri-
angular or tetrahedral elements.

62

although different means could also be applied. The
shape quality of element e is then

qe ¼
1

jej
X

i2Ve

li:

As one would expect, this metric is scale, translation,
and rotation invariant. Furthermore, 0 < qe £ 1 with
qe = 1 only when the element attains the ideal reference
shape. We do not define the mean ratio for matrices with
nonpositive determinants. Therefore, the shape quality
of ‘‘inverted’’ elements is not defined. For further details
on shape metrics see [9].

2.3 Quality improvement problem

To improve the overall quality of the mesh, we assemble
the local element qualities using a template function Q:
We compute an x� 2 <n�jVj such that x* is an optimal
solution to

max
x

Q
Y

e2E
qðxeÞ

 !

ð1Þ

subject to the constraint that xVB
¼ �xVB

; where �xVB
are

the coordinates for the boundary vertices. Note that
additional constraints can be added if the locations for
some of the interior vertices also need to be fixed. If the
objective function for this optimization problem is uni-
formly concave as a function of xVI

; that is, the Hessian
matrix, r2

xVI
;xVI

Qð�Þ; is uniformly negative definite, then
an x* solving this optimization problem exists and is
unique. If the objective function is not concave, then one
can only hope to find a local maximizer for the opti-
mization problem and may instead compute a critical
point.

We use the harmonic mean template for all our
numerical results. This template produces the objective
function

Qhm :¼ jEj
P

e2E 1=qeðxeÞ
:

This objective function is maximized precisely when the
denominator is minimized. Therefore, the optimization
problem we solve is

min
x

FhmðxÞ :¼ 1

jEj
X

e2E

1

qeðxeÞ
ð2Þ

subject to the same boundary constraints as (1). The
objective function in this case is continuous on the set of
noninverted meshes and bounded below by one and
minimizes the average inverse mean-ratio metric. We
further assume the initial set of coordinates is feasible;
that is, the corresponding mesh does not contain in-
verted elements. We also require the improved mesh to
be noninverted, which translates to the implicit con-
straint det (A(i)) > 0 for every element vertex. There is

no need to implement these constraints explicitly, how-
ever, because the denominator in the inverse mean ratio
acts as a barrier to element inversion.

3 Improvement algorithms

Many algorithms can be applied to compute a solution
to the quality improvement problem (2).5 In this paper,
we consider the block coordinate descent and inexact
Newton methods [10, 11]. The block coordinate descent
method optimizes the location of a single vertex at a
time by applying an optimization algorithm to a re-
stricted problem in which only the coordinates for the
given vertex are allowed to move. This optimization step
is repeated for each of the other vertices in the mesh.
This iterative repositioning stops when the norm of the
gradient of the global objective function is small. The
inexact Newton method, on the other hand, constructs a
quadratic approximation to the global objective func-
tion at the current iterate and computes a solution to
this quadratic program by solving a large system of
equations. A new iterate is then found for which the
objective function has decreased.

The block coordinate descent algorithm solves a se-
quence of small optimization problems to improve the
global objective function but has a slow asymptotic
convergence rate, while the inexact Newton method
solves a large quadratic optimization problem at every
iteration but has a fast asymptotic convergence rate. If
the global objective function in (2) is uniformly convex
in the free variables, then both algorithms converge to
the same solution x* [10]. However, if the objective
function is not convex, as is often the case in mesh
optimization, we can only say that if the block coordi-
nate descent method converges to x*, then x* is a critical
point for the optimization problem (2) and x* may not
be a local minimizer.

Moreover, when the global objective function is not
convex, the optimization subproblems solved by the
block coordinate descent method may have either no
solution or many local minimizers. However, for the
inverse mean-ratio metric, even though the global
objective function is not convex everywhere, one can
prove that the objective function for each subproblem
of the block coordinate descent method is strictly
convex [12, 13] and the feasible region is compact.
Therefore, each of the subproblems has a unique
solution. Note that the inexact Newton and block
coordinate descent algorithms may not converge to the
same critical point.

5Recall that (2) minimizes the inverse mean-ratio objective func-
tion, so the stated algorithms use minimization terminology.
However, the same algorithms can be used for the maximization
problem (1).

63

3.1 Block coordinate descent method

The block coordinate descent method modifies a single
vertex at a time by applying one iteration of a Newton
method to the subproblem obtained by fixing the rest of
the vertices at their current coordinates. That is, we
compute a direction d where for vertex v 2VI; the vth
component of d is obtained by solving the system of
equations

r2
v;vFhmðxkÞdv ¼ �rvFhmðxkÞ:

The remaining components of d are set to zero. Note
that we need only the Hessian matrix with respect to
vertex v, so the complete Hessian matrix for the global
objective function does not need to be computed. The
direction is obtained by directly factoring the n · n
local Hessian matrix and applying it to the right-hand
side of the problem. An iterative method is not needed
in this case because the system of equations is very
small. For the metric used, the Hessian matrix is po-
sitive definite, so the factorization can always be com-
puted [12, 13].

Having obtained a search direction, we then use an
Armijo linesearch [14] to obtain a new iterate with im-
proved quality. In particular, we compute the smallest
nonnegative integer m such that

Fhmðxk þ bmdÞ �FhmðxkÞ þ rbmrFhmðxkÞT d;

where b 2 (0,1) and r 2 (0,1) are chosen constants.
When searching along the direction, all points where the
resulting mesh is degenerate or inverted are rejected; the
objective function value is treated as positive infinity in
these cases. Most of the time, the full step is accepted,
and we perform only one function evaluation. To judge
progress, we need to consider the quality of only the
elements in which vertex v appears, since the quality of
elements outside this set does not change when the
location of vertex v is modified. Hence, the Armijo
linesearch is computationally inexpensive. To make both
the Armijo linesearch and Hessian matrix computations
efficient for the block coordinate descent method, we
precompute a mapping from each vertex to the elements
referencing the vertex.

We then update xk = xk + bmd and choose a dif-
ferent vertex to optimize. The order in which the
vertices are traversed in each pass is determined by
reverse breadth-first search [15] starting from the ver-
tex farthest from the origin. This reverse breadth-first
search is applied to the given mesh to improve
the locality of reference, making the code more effi-
cient.

An iteration of the block coordinate descent method
consists of a single repositioning of each interior vertex.
Once each of the interior vertices has been repositioned,
we proceed to the next iteration by setting xk+1 = xk.
The local improvement process is repeated until the
gradient of the global objective function is less than
some tolerance.

3.2 Inexact Newton method

The inexact Newton method computes a direction d by
solving the system of equations

r2
xVI

;xVI
FhmðxkÞd ¼ �rxVI

FhmðxkÞ

by applying the conjugate gradient method with a block
Jacobi preconditioner [15], where xk is the current iterate.
When the Hessian matrix is indefinite, the conjugate
gradient method can terminate with a direction of neg-
ative curvature. This direction of negative curvature is
used as our search direction. Having obtained a search
direction, we then use an Armijo linesearch [14] to obtain
a new iterate with a sufficiently improved global objective
function value. This linesearch is the same as the block
coordinate descent linesearch but must consider the
improvement in the global objective function instead of
the improvement to only the elements referenced by a
single vertex. Many global objective function evaluations
can be performed to obtain sufficient decrease when far
from a solution, particularly when a direction of negative
curvature is encountered. In a neighborhood of a solu-
tion, the full step is taken, and only one global objective
function evaluation is performed.

The gradient and Hessian of the objective function
are calculated by assembling the gradients and Hessians
for each element function into a vector and symmetric
sparse matrix. Only the upper triangular part of the
Hessian matrix is stored in a block compressed sparse
row format. Each block corresponds to a coordinate in
the original problem. The gradient and Hessian elements
corresponding to fixed vertices on the boundary of the
domain are ignored.

The preconditioner consists of the Hessian with re-
spect to the (i,i) coordinates, resulting in a block
diagonal preconditioner, where each block consists of a
n · n matrix. An LDLT factorization of each diagonal
matrix is performed when calculating the precondi-
tioner. The preconditioner is applied by setting
y = L�T(D�1(L�1x)). We store D�1 so that the middle
product consists of a few multiplications, instead of a
few divisions. Each diagonal block of the Hessian
matrix is positive definite even though the overall
Hessian is indefinite in general [12, 13], so the pre-
conditioner can always be computed.

3.3 Implementation characteristics

Our implementations of the block coordinate descent
method and the inexact Newton method have been coded
with a bias toward achieving high performance with
minimal memory requirements. These algorithms were
coded using the same infrastructure and have been
extensively refined so that we can draw comparisons be-
tween them. Both codes use analytic gradient andHessian
evaluations, since finite-difference approximations for the
inverse mean-ratio metric are inefficient by comparison.

64

To make both the inexact Newton and block coor-
dinate descent methods run faster, instead of computing
with W�1 in the mean ratio metric, we precompute a QR
factorization of W, where Q is an orthogonal matrix
with determinant equal to one, R is an upper triangular
matrix, and W�1 = R�1QT. The QT matrix can then be
ignored in the mean-ratio metric when using this form of
W�1 due to properties of the Frobenius norm and
determinant. Hence, l(A(i) W�1) is equivalent to l(A(i)

R�1). The latter definition is computationally advanta-
geous, because the function, gradient, and Hessian
matrices take fewer operations to compute than if W�1

were stored as a general dense matrix because the fact
that R�1 is an upper triangular matrix can be exploited.

One of the main computational tasks associated with
the inexact Newton method is obtaining an efficient
evaluation for the Hessian of the global objective func-
tion. This computation requires obtaining the Hessian
for each individual element function. The code for cal-
culating the gradient of the element function uses the
reverse mode of differentiation [16] on the element
quality metric. The Hessian calculation uses the forward
mode of differentiation on the gradient evaluation and
matrix–matrix products for efficiency. For the general
case with an upper triangular matrix, it takes 750
floating-point operations to compute the function, gra-
dient, and Hessian for each element. The inexact New-
ton method specialized for an equilateral reference
element uses 576 floating-point operations per element
in the function, gradient and Hessian evaluations. The
other significant computational task is performing the
matrix–vector products required by the conjugate gra-
dient method to compute the search direction.

Good locality of reference in the Hessian evaluation
and matrix–vector products is obtained by reordering
the vertices and elements in the initial mesh by applying
a reverse breadth-first search. The ordering starts by
selecting the (boundary) vertex farthest from the origin.
A breadth-first search of the vertices in the mesh is then
performed and the order they are visited is tracked. We
then reverse the order in which the vertices were visited
to obtain the reordering for the problem. Once the
vertices are reordered, the elements are then reordered
according to when they are visited by the Hessian eval-
uation. This reordering is used by both the block coor-
dinate descent and inexact Newton methods.

Each iteration of the block coordinate descent
method consists of computing the gradient and Hessian
for each subproblem, obtaining the direction, and
computing each improving point. The gradient and
Hessian evaluation is the most expensive operation. To
minimize the number of floating-point operations per-
formed per iteration of the block coordinate descent
method, separate evaluation routines for taking the
gradient and Hessian with respect to each vertex in the
inverse mean-ratio metric are used because we only
need to compute a small portion of the gradient and
Hessian. An iteration of the block coordinate descent
method calls each of the four routines once per element

because we need to get gradient and Hessian infor-
mation for each vertex in the mesh. Using the original
function, gradient, and Hessian calculation from the
inexact Newton algorithm would cost 3000 floating-
point operations per element in the general case with
an upper triangular weight matrix, while an imple-
mentation using four separate routines in which only
the unnecessary computations are removed from the
original calculation consumes 1,447 floating-point
operations per element.

More improvement can be made to these local rou-
tines by applying an even permutation to the input data
(coordinates for both the trial and reference elements) to
put the desired coordinate in the last position, comput-
ing the QR factorization for each permuted reference
element, and then taking the gradient and Hessian with
respect to the last vertex of this equivalent function
definition. When all these operations are performed
offline for the given weight matrices and the permuted
weight matrices are stored, the cost is reduced to 520
floating-point operations per element in the general case
with an upper triangular weight matrix. This strategy is
memory efficient only when the number of weight
matrices is small. If the number of weight matrices is
large (there is a different weight matrix for each element,
for example) and memory consumption is a concern,
then the permutation and factorization can be per-
formed by the code as needed without explicitly storing
the permuted weight matrices. This change leads to a
cost of approximately 900 floating-point operations per
element, depending on the technique used to compute
the QR factorization. The savings attributed to using
this approach are significant when compared to using a
single Hessian evaluation routine; the cost per iteration
of an implementation using the original calculation is
over three times that of an efficient implementation.

The local routines can be further refined when using
an equilateral reference element to reduce operation
counts. In particular, for the equilateral weight matrix,
R�1 is the same for each of the permuted reference ele-
ments. The block coordinate descent method specialized
for an equilateral reference element uses 480 floating-
point operations per element in the function, gradient
and Hessian evaluations.

In addition to computational effort, we are also
interested in evaluating the memory footprint of each
method as the problem size increases. Our implementa-
tion of the block coordinate descent method for tetra-
hedral elements has a steady-state memory requirement
of approximately 23jVj þ 12jEj integer values. The
formula for memory usage of the inexact Newton
method is more complicated due to the storage
requirements for the Hessian matrix and is given by
64jVj þ 18jEj þ 19N integer values, where N denotes
the number of off-diagonal blocks in the Hessian matrix.
On the tetrahedral meshes tested, the number of off-
diagonal blocks is bounded above by the number of
elements in the mesh. Therefore, the memory usage
is approximately 64jVj þ 37jEj integer values for the

65

inexact Newton method, about three times the storage
required for the block coordinate descent method.

Conclusion 1: Analytic comparison of time per iteration,
memory requirements, and coding effort. Our block
coordinate descent method for solving the mesh improve-
ment problem with the inverse mean-ratio metric special-
ized to the equilateral reference element case is faster per
iteration and consumes less memory than the inexact
Newton method but has a slow asymptotic convergence
rate. This conclusion can be drawn by looking at the
number of floating-point operations performed per ele-
ment by the function, gradient, and Hessian evaluation
routines for each method, 480 for the block coordinate
descent method and 576 for the inexact Newton method.
Furthermore, the inexact Newton method requires a
higher initial coding investment. In particular, routines to
assemble the global Hessian matrix from the element
Hessian matrices, construct the preconditioner, and
perform the preconditioned conjugate gradient method
to compute the direction need to be written. Once this
infrastructure has been built, however, changing to a
new metric requires only an efficient computation of the
gradient and Hessian for the entire element. To change
the metric for the block coordinate descent method, four
different routines need to be implemented, one for
computing the gradient and Hessian with respect to each
vertex of the element. Moreover, if the new metric can-
not exploit the permutation and QR factorization
scheme, then a different technique must be devised to
obtain an efficient block coordinate descent method.

Note that if a different weight matrix were associated
with each element, then the inexact Newton method
could be faster per iteration if the permuted weight
matrices are not stored (approximately 900 floating-
point operations would be needed in the function, gra-
dient, and Hessian evaluations for the block coordinate
descent method versus 576 for the inexact Newton
method) or could consume less memory if the permuted
matrices are stored (23jVj þ 60jEj integers for the block
coordinate descent method versus 64jVj þ 49jEj inte-
gers for the inexact Newton method).

4 Numerical experiments

In this section, we report the results of numerical tests
designed to determine when the block coordinate des-
cent and inexact Newton techniques are preferred using
a subset of the criteria given in Sect. 1. The implemen-
tations specialized for an equilateral reference element
are used for all the numerical tests. We solve the opti-
mization problem (2) on a series of tetrahedral meshes
generated with the CUBIT [17] and GRUMMP [18]
mesh generation packages. We consider two different
computational domains, duct and clipped cube, and
show sample meshes on these geometries in Fig. 1. In
this paper, we study the effects of three different problem
parameters on the time taken to reach x*: problem size,

element heterogeneity, and initial mesh configuration.
For each parameter studied, we create a suite of test
meshes in which we isolate the parameter of interest and
allow it to vary, while simultaneously holding the other
parameters as constant as possible.

Because the objective function used for these prob-
lems is not convex, it is likely that different local solu-
tions to the optimization problem exist. It is therefore
possible that the solutions would not be the same for the
block coordinate descent and inexact Newton methods.
To ensure that this is not affecting our study, we com-
puted the difference between corresponding vertex
locations computed by the two solution techniques. If
the difference between two vertices was less than 1% of
the average element edge length of the mesh, we con-
sidered them to be in the same location. In all cases, the
maximum difference between vertex locations computed
by the inexact Newton and block coordinate descent
method solutions was well within our tolerance; a typical
value was 0.0001% or less. Thus the two techniques are
converging to the same solution. To study the effect of
initial mesh configuration, we perturb the vertices in
different ways from the optimal mesh. For these cases,
we also compared the final solutions to the initial opti-
mal mesh from which the vertices were perturbed.
Again, the differences are well within our 1% tolerance
level with the maximum percent difference being 0.21%.
Thus the inexact Newton and block coordinate descent
methods methods are finding the same optimal solution
that is found in the unperturbed case, even when the
perturbation is large.

In each of the following subsections, we give the
problem characteristics of the test suite in terms of the
number of vertices and elements, initial mesh quality as
evaluated by the inverse mean-ratio metric, and specific
parameter values used such as the perturbation of the
optimal mesh. We then provide performance results for
both the inexact Newton and block coordinate descent
methods. For the inexact Newton method, the maxi-
mum number of solver iterations is 500, and the maxi-
mum number of conjugate gradient subiterations is 100,
while for the block coordinate descent method, the
maximum number of iterations (sweeps over the free

Z

Y

X

Fig. 1 Sample meshes on the duct and clipped cube geometries

66

vertices) is 1,000. In both cases, the solution is consid-
ered to be optimal when the two-norm of the gradient of
the global objective function is less than 1.0 · 10�6. All
experiments were run on a dedicated 1.6 GHz Linux
workstation running Red Hat Enterprise 3.

4.1 Increasing problem size

To test the effect of increasing the problem size, we use
CUBIT to generate tetrahedral meshes with uniform
quality and element size but with an increasing number
of vertices for the duct geometry shown in Fig. 1. In
Table 1, we give the number of vertices and elements,
along with the average, median, and standard deviation
normalized by the average value, denoted rn, for the
inverse mean-ratio metric and element volume. One can
see that within each mesh, we achieve roughly uniform
element size and shape quality distributions while
increasing the problem size from 4,104 elements to
965,759 elements. In addition, the element quality
characteristics are similar across this suite of initial
meshes as the problem size increases. In particular, the
initial mesh quality is quite good, with an average in-
verse mean-ratio value of 1.2 (the optimal is one) and a
maximum value ranging from 2.2 to 5.

In Table 2, we give the number of iterations, I, and
time, T100, required to achieve the optimal solution. In
all cases, both I and T100 are significantly smaller for the
inexact Newton solver because of its superior asymptotic
convergence rate. As the problem size increases, the
disparity in time to solution increases monotonically
from a factor of 6.4 to a factor of 40.

However, a highly accurate solution is often not re-
quired in mesh smoothing applications. Therefore, the
time required to reach a partially improved mesh is also
of interest. As a particular example, we include the time
required to achieve 50% of the optimal solution as de-
fined by the global objective function value, T50, in
Table 2. For every mesh in this test suite, the block
coordinate descent method takes less time than the
inexact Newton method to reach this suboptimal solu-
tion, typically by a factor of 1.5.

To examine this behavior more closely, we recorded
the objective function and gradient values at each iter-
ation. A typical time history is shown for the Duct15
mesh in Fig. 2. Because the inexact Newton method

converges to the optimal solution much more quickly
than the block coordinate descent method, we show the
complete time history of the inexact Newton solver and
only the corresponding portion of the block coordinate
descent method. Because the initial mesh quality is very
good, both methods make significant progress toward
the optimal solution in their first few iterations. How-
ever, significant setup overhead is associated with com-
puting the sparsity pattern of the Hessian matrix for the
inexact Newton method because the edges in the mesh
need to be sorted. During this setup time, the block
coordinate descent method completes one iteration
through the mesh, which is sufficient to achieve 46% of
optimality. Clearly, there is a point in time at which the
inexact Newton solution is closer to optimal than the
block coordinate descent solution. We call this point the
crossover point, and it is highlighted with an asterisk in
Fig. 2. In the Duct15 case, the mesh is 96% optimized
when the crossover point occurs.

Based on these results, it is natural to ask the ques-
tions: ‘‘What is the percent improvement achieved at the
crossover point?’’ and ‘‘What is the time required by
each method to achieve a certain level of optimality?’’ as
the problem size increases. To answer these questions,
for each method we plot the percent improvement ob-
tained, the number of block coordinate descent itera-
tions, and the percentage of time spent in setup by each
solver at the crossover point as a function of an
increasing problem size in the top graph in Fig. 3. In all
cases, the mesh is nearly optimal at the crossover point
even though the number of block coordinate descent
iterations completed is quite small, typically less than
five. As the problem size increases, the setup time for the
inexact Newton solver is greater than 25% of the time to
reach the crossover point and typically less than 10% for
the block coordinate descent method. In this case, the
setup time is the primary factor in determining which
solver reaches suboptimal solutions faster.

In the bottom graph in Fig. 3, we show the ratio of
the time required by the inexact Newton solver and
block coordinate descent solver to achieve certain levels
of improvement. Each line in the graph represents a
different problem size, and the flat line at one represents
the point at which the preferred method changes. Data
above this line indicates that the block coordinate des-
cent method is faster; data below indicates the opposite.
In this case, we see that the smaller problem sizes are

Table 1 Initial mesh characteristics for increasing problem size on the duct geometry

Mesh jVj jEj Inverse mean ratio Element volume

Average Median rn Maximum Average Median rn

Duct20 1,067 4,104 1.208 1.176 0.115 2.2 1,167 1,176 0.285
Duct15 2,139 9,000 1.210 1.179 0.116 2.1 532 519 0.304
Duct12 4,199 19,222 1.209 1.182 0.111 2.1 249 237 0.327
Duct10 7,297 35,045 1.120 1.170 0.106 2.2 136 128 0.310
Duct8 13,193 65,574 1.19 1.162 0.105 2.4 73 68 0.320
DuctBig 177,887 965,759 1.18 1.160 0.109 4.9 4.1 2.91 0.587

67

more affected by the setup time differences, but as the
problem size exceeds 20,000 elements, the methods be-
have similarly. In particular, it takes roughly twice as
long to compute suboptimal meshes using the inexact
Newton approach for a wide range of desired improve-
ment percentages. As the improvement percentage in-
creases, the inexact Newton method becomes more
competitive, but only when nearly optimal meshes are
desired does the inexact Newton method outperform the
block coordinate descent method.

Conclusion 2: Performance comparison for optimization
of homogeneous tetrahedral meshes. The results of the
tests in this subsection show that the block coordinate
descent method typically outperforms the inexact Newton
method when a suboptimal mesh is acceptable. This was
true for a wide range of problem sizes. We can explain
the outperformance by noting that the inexact Newton
method has high setup costs associated with computing
the sparsity pattern of the Hessian matrix, which cannot
be amortized over a large number of iterations because
suboptimal meshes require relatively few iterations. If an
optimal mesh is required, then the inexact Newton method

outperforms block coordinate descent. The test problems
used in this study were generated using the GRUMMP
and Cubit tetrahedral meshing algorithms. Because
these packages create, for the most part, reasonably
well-shaped elements, the initial meshes used in these
tests are not too far from optimal, as measured by the
mean ratio shape-quality metric. Therefore, when opti-
mizing homogeneous, reasonably high-quality tetrahedral
meshes to further improve shape quality, the block coor-
dinate descent method is preferable because a few itera-
tions creates a near-optimal mesh without the start-up
costs of the inexact Newton method. The reader is cau-
tioned that this conclusion may not extend to other
important applications of mesh optimization using the
mean ratio, particularly if the initial mesh is far from
optimal.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.17

0.18

0.19

0.2

0.21

time (s)

O
bj

ec
tiv

e
fu

nc
tio

n

Objective function vs. time

Newton Setup Complete at t = 0.01 s
(CD Solution is 45.9434% improved)

Crossover at t = 0.039546 s
(Both solutions are 96.1981% improved)

Newton
CD

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

10
–5

10
0

time (s)

G
ra

di
en

t

Gradient vs. time
Newton
CD

Fig. 2 Objective function value and gradient norm as a function of
time for the Duct15 mesh

Table 2 Number of iterations, total time, and time to achieve a
50% optimal solution as problem size increases

jVj Newton Coordinate descent

I T100 T50 I T100 T50

1,067 4 0.05 0.015 33 0.32 0.005
2,139 5 0.13 0.025 46 1.1 0.011
4,199 5 0.34 0.056 74 4.2 0.037
7,297 5 0.69 0.106 105 11.6 0.081
13,193 5 1.4 0.213 146 31.0 0.152
177,887 8 44.3 4.52 548 1,738 2.47

0 2 4 6 8 10 12 14 16 18

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Number of nodes

V
ar

io
us

 q
ua

nt
iti

es
 a

t c
ro

ss
ov

er
 p

oi
nt

Various quantities at crossover point vs. number of nodes

% Improvement
CD iters
% Time Newton spent on setup
% Time CD spent on setup

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

% Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement

1067 nodes
2139 nodes
4199 nodes
7297 nodes
13193 nodes
177887 nodes

Fig. 3 Various quantities of interest at the crossover point as the
problem size increases (top) and the ratio of the times required by
the inexact Newton and block coordinate descent solvers to achieve
certain levels of improvement (bottom)

68

4.2 Element size heterogeneity

Our second test suite was generated using GRUMMP
with the aim of testing the effect of element size (volume)
heterogeneity on the two algorithms. A simple geometry
consisting of the unit cube with a small tetrahedral
volume clipped from one corner was used to create
graded meshes with grid points clustered around that
corner. GRUMMP parameters that determined the
smallest element size and gradation of the mesh were
manipulated to create a series of meshes with roughly
the same number of vertices and element quality distri-
bution but with different ranges of element sizes. We
note that in generating the initial meshes for these test
cases, we did not take advantage of GRUMMP’s mesh
quality improvement tools.

In Table 3, we give the statistics for these meshes in
terms of numbers of vertices, elements, shape quality
distribution, and element volume. The numbers of ver-
tices, although not identical, are all within 6% of 10,470.
The normalized standard deviation of the element vol-
umes and the ratio of the maximum-sized element to the
minimum-sized element show that the element size varies
dramatically within a given mesh. The shape quality
distributions across the meshes in the test suite are
similar; the average shape quality is nearly the same as in
the uniform element size test cases, but the normalized
standard deviation is higher, indicating a wider range of
individual element qualities. In particular, the maximum
mean ratio of the heterogeneous element size meshes
exceeds a value of 15 in all cases, whereas it is approx-
imately 2.5 in the uniform element size test suite.

In Table 4, we give the number of iterations and the
times to reach the optimal and 50% improved solutions
as the element heterogeneity, measured by the ratio of
maximum element volume to minimum element volume,
increases. As with the uniform element distribution test
suite, the inexact Newton method is significantly faster
than the block coordinate descent method when the
optimal solution is desired. If a 50% improved solution
is desired, however, the block coordinate descent meth-
od outperforms the inexact Newton method by a factor
that ranges from 1.5 to 4, compared to the factor of 1.5
for the uniform distribution case of the previous sub-
section.

We examine the convergence history of one particular
case, Hetero4, to obtain insight into this result. Figure 4
shows the value of the objective function and gradient as

a function of time for both the inexact Newton and
block coordinate descent methods. The block coordinate
descent method maintains a steep initial decrease in the
objective function value, while the inexact Newton
method has more difficulty. In particular, many of the
initial iterations of the inexact Newton method
encounter directions of negative curvature because the
global objective function is not convex at those iterates.
Typically, a small step is taken when such directions are
found by the conjugate gradient method. Thus, the
superior asymptotic convergence rates of the inexact
Newton method are not evident until approximately two
seconds have elapsed.

Because the inexact Newton method has difficulty
with these problems in the initial iterations, the block
coordinate descent method has the time to take several
iterations, and the mesh in nearly 100% improved at the
crossover point in all cases. As before, the inexact
Newton method uses twice as much time in setup as does
the block coordinate descent method. Unlike the uni-
form element size test suite, however, this is not the
dominant factor in determining the crossover time be-
cause both methods use less than 5% of their total time
in setup.

For this test suite, in Fig. 5 we show the ratio of the
time required by the inexact Newton method and the
time required by the block coordinate descent method to
reach a number of different levels of improvement. For
comparison, we also show the curves for the two uni-
form element size test cases, Duct10 and Duct8, which
tightly bracket the number of elements in the clipped
cube meshes. The normalized standard deviation values
for the Duct 10 and Duct8 meshes are 0.310 and 0.320,
respectively. In almost all cases, the block coordinate
descent method is two to three times faster than the
inexact Newton method to reach a desired level of
improvement. In fact, in several cases, the ratio of the
times required to achieve higher levels of improvement
actually increases rather than decreases as a result of the
steep initial convergence of the block coordinate descent
method. Furthermore, this method is more competitive
than the inexact Newton method on the heterogeneous
element size meshes than on the uniformly sized element
meshes.

Conclusion 3: Performance comparison for optimization
of heterogeneous tetrahedral meshes. As element size
heterogeneity increases, mesh quality as defined by the

Table 3 Initial mesh characteristics for heterogeneous element size distributions

Mesh jVj jEj Inverse mean ratio Element volume

Average Median rn Maximum Average Median rn Maximum/
minimum

Hetero1 10,318 54,132 1.271 1.171 0.330 17.1 1.84 · 10�5 1.10 · 10�5 1.11 5.5 · 103

Hetero2 9,883 56,184 1.274 1.172 0.371 30.2 1.77 · 10�5 6.04 · 10�6 1.46 2.3 · 105

Hetero3 10,926 58,610 1.275 1.173 0.413 58.6 1.70 · 10�5 3.89 · 10�7 1.74 7.2 · 107

Hetero4 11,057 59,985 1.272 1.173 0.322 16.1 1.66 · 10�5 1.59 · 10�6 2.08 4.2 · 106

69

mean ratio metric decreases for these tests. Thus, the
initial meshes used in this part of the study are further
from optimal than were the initial meshes in the part of

the study leading to Conclusion 2. Even so, the inexact
Newton method is still the preferred method if the optimal
solution is desired. When suboptimal meshes are accept-
able, the block coordinate descent method outperforms the
inexact Newton method. In contrast to Conclusion 2
however, where high start up costs are the primary
factor, this conclusion is primarily due to the directions
of negative curvature encountered by the inexact New-
ton method. Negative curvature typically leads to the
linesearch taking a small step that does not improve
the global objective function very much. In such cases,
the global objective function is evaluated many times
during the linesearch, leading to a significant increase in
the time required to complete the iteration. The negative
curvature is attributed to the lack of convexity in the
objective function.

4.3 Initial mesh configuration

The final mesh test suite was designed to investigate the
effect of the degree and manner in which the initial mesh
differs from the optimal mesh. To address this issue, our
approach was to apply systematic or random perturba-
tions of the optimal positions of the interior mesh ver-
tices. We started with the optimized DuctBig mesh and
applied three different perturbation schemes that in-
volved random, translational, and oscillatory movement
of the mesh vertices. In all three cases, we consider
perturbations applied to all of the vertices and to ran-
domly chosen vertex subsets that contained 1, 10, and
25% of the total number of vertices. The formulas for
the perturbations are as follows:

Random: xv = xv+a r, where r is a vector containing
random numbers generated using the function rand
and a is a multiplicative factor controlling the degree of
perturbation. For this test suite, we chose a = 0.001,
0.005, 0.01, and 0.05.

Translational: xv = xv+a s, where s is a direction
vector giving the coordinates to be shifted and a is
again a multiplicative factor controlling the degree of
perturbation. In this case we considered a ‘‘right’’ shift
(R) with s = [1 0 0]T and a ‘‘northeast’’ shift (NE) with
s = [1 1 0]T and chose a = 0.1, 0.2, and 0.3. In the
case of the NE shift, we also considered a series of
meshes with large values of 2ffiffi

2
p a ¼ 1; 2.5, 5, 7.5, 10,

12.5, and 15 which resulted in very large perturbations
of the optimal mesh. Results for the latter perturbation
are discussed in Sect. 4.3.2, while results for all other
perturbations can be found in Sect. 4.3.1.

Oscillatory: xv = xv+a sin (x xv), where a and x
control the amplitude and frequency of the perturbation,
respectively, and sine is performed on each component
of xv. For this test suite, we considered three different
frequencies x = 0.01, 0.05, and 0.1, and for each fre-
quency, two different amplitudes a = 0.01 and 0.05.

These perturbations can be characterized in terms of
both amplitude a and wavelength k. The random per-
turbation corresponds to a zero-wavelength perturbation

Table 4 Number of iterations, total time, and time to achieve 50%
optimal solution as the element heterogeneity increases

Mesh Newton Coordinate descent

I T100 T50 I T100 T50

Hetero1 16 4.24 0.386 674 122 0.128
Hetero2 13 3.53 0.345 708 132 0.192
Hetero3 21 5.41 0.432 505 93 0.207
Hetero4 15 4.22 0.641 554 109 0.168

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.22

0.23

0.24

0.25

0.26

0.27

time (s)

O
bj

ec
tiv

e
fu

nc
tio

n

Objective function vs. time

Newton Setup Complete at t = 0.07 s
(CD Solution is 14.4992% improved)

Crossover at t = 2.343 s
(Both solutions are 99.8963% improved)

Newton
CD

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
–5

10
0

10
5

time (s)

G
ra

di
en

t

Gradient vs. time
Newton
CD

Fig. 4 Objective function value and gradient norm as a function of
time for the Hetero4 mesh

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

% Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement

duct10: norm vol dev = .310
duct8: norm vol dev = .320
hetero1: norm vol dev = 1.11
hetero2: norm vol dev = 1.46
hetero4: norm vol dev = 1.74
hetero3: norm vol dev = 2.08

Fig. 5 Ratio of the inexact Newton and block coordinate descent
times for various levels of improvement in the objective function

70

and the translational to an infinite-wavelength pertur-
bation. The wavelength of the oscillatory perturbation
can be computed from the frequency by k = 2p/x, and
for the values of x used here, k ranges from 63 to 628. As
a point of comparison the the average edge length of the
mesh which is approximately 3.6.

We considered two series of tests. In the first, we
perturbed all or some of the vertices by a small amount
to determine the effect of the type of perturbation on the
mesh. In the second test suite, we perturbed all of the
vertices a large amount to change the scale of the per-
turbation.

4.3.1 Small perturbations

All vertices perturbed. For this test suite, we perturbed all
of the vertices a small amount (the values of a given above
that are less than 0.5). The resulting quality characteris-
tics of the meshes as the perturbations increase do not
vary significantly, and we do not include the details. In
particular, the average inverse mean ratio value is
approximately 1.13, the ratio of the standard deviation to
the average is approximately 0.093, and the maximum
inverse mean ratio is approximately 2.21 in all cases.

In Table 5, we give the iterations and time to reach
the 100 and 50% improved solutions for the cases in
which we perturb all of the vertices in the mesh
according to the formulas and parameters given above.
As with the other test suites, if a highly accurate solution
to the optimization problem is sought, the inexact
Newton method outperforms the block coordinate des-
cent method in every case. If the 50% improved solution
is sought, the block coordinate descent method outper-
forms the inexact Newton method for all the test cases.

In Fig. 6, we examine the ratio of the time required by
the inexact Newton method and the block coordinate
descent method as the desired degree of optimality

increases. In all cases considered, as a more improved
solution is sought, the inexact Newton method looks
increasingly attractive. For the random test suite, how-
ever (top left), the block coordinate descent method al-
ways outperforms it up to 90% improvement. For the
translational and oscillatory test suites (top middle and
top two right), the performance of the block coordinate
descent method is not as good. In these cases, the local
nature of the block coordinate descent method can only
slowly eliminate the long-wavelength errors introduced
by the perturbation scheme. In contrast, the inexact
Newton method has access to global information and is
able to overcome this difficulty. Thus the block coordi-
nate descent method still outperforms the inexact New-
ton method for approximate solutions, but at best the
mesh is only 75% optimal at the crossover point. This
degrades to approximately 63% for the oscillatory case
as the degree of perturbation increases. The setup time is
again a contributing factor in determining the crossover
point and requires about 30% of the solution time for the
inexact Newton method compared to approximately
10% for the block coordinate descent method.

Some vertices perturbed. To determine whether the
number of vertices that we perturb affects the relative
performance of the two solvers, we give the ratio of the
inexact Newton method and block coordinate descent
method times to achieve various levels of improvement
(see the bottom two rows of Fig. 6) when a subset of the
vertices is perturbed. The percentage of vertices that
were randomly selected to be perturbed is 1, 10, and
25% or 1,779, 17,789, and 44,472 vertices, respectively.
We show results for only a subset of the cases analyzed;
the results for the cases not shown are qualitatively the
same. In all cases, the inexact Newton method is unable
to outperform the block coordinate descent method
when a suboptimal solution (90% improved or less) is
sought. This result is particularly interesting for the
oscillatory and translational perturbations (bottom two
middle and right, respectively). In these cases, because
only a subset of the vertices were perturbed, the long-
wavelength errors that affected the performance of the
block coordinate descent method are no longer evident,
and the block coordinate descent method is again able to
quickly approach the optimal solution.

Conclusion 4: Sensitivity of optimization methods to the
initial mesh. Three different types of perturbations
(random, translational, and oscillatory) from the opti-
mal mesh were used in the test problems in this sub-
section to study the sensitivity of each method to the
initial mesh. For all types of perturbations, wavelengths,
and amplitudes, the numerical results show once again that
the block coordinate descent method outperforms the
inexact Newton method if suboptimal solutions to
improving the mean ratio metric are acceptable. This
conclusion is due in part to the high setup costs associ-
ated with the inexact Newton method. That said, as
evidenced in Table 5, long-wavelength perturbations
present difficulties for the block coordinate descent

Table 5 Number of iterations and total time to achieve 100 and
50% of the optimal solution as the element heterogeneity increases

Perturbation a Newton Coordinate
descent

I T100 T50 I T100 T50

Rand (k=0) 0.001 3 11.8 7.46 325 104 3.90
0.005 4 23.6 7.53 387 324 3.84
0.01 4 23.3 7.53 414 427 3.89
0.05 4 22.6 7.42 476 664 3.84

Oscillatory (k=63) 0.01 4 22.7 7.56 279 244 5.59
0.05 4 21.2 7.50 338 368 5.63

Oscillatory (k=125) 0.01 4 24.1 7.95 374 353 4.77
0.05 5 22.4 8.02 435 550 4.74

Oscillatory (k=628) 0.01 4 25.4 8.29 415 425 4.75
0.05 4 24.7 8.32 477 655 4.76

Translational (R) (k=¥) 0.1 5 30.6 8.31 502 789 4.72
0.2 7 36.7 8.35 528 904 4.79
0.3 10 47.2 7.42 545 956 8.24

Translational (NE) (k=¥) 0.1 5 31.1 8.32 496 800 4.64
0.2 7 38.1 8.66 522 905 4.66
0.3 11 59.4 13.5 539 962 7.99

71

method due to the lack of access to global information.
The inexact Newton method outperforms block coordinate
descent if an optimal solution is required.

4.3.2 Large perturbations

For this test suite, we considered large perturbations of
the NE translational type. In Table 6, we give the initial
mesh quality characteristics for the DuctBig meshes with
translational perturbations corresponding to 2ffiffi

2
p a ¼ 1;

2.5, 5, 7.5, 10, 12.5, and 15. For comparison, we note
that the average edge length in the mesh is 3.6. The value
of a corresponds to the maximum amount a node was
moved in the mesh. Some nodes may move a smaller
distance, determined by an iterative backtracking pro-
cedure, to prevent inverted elements in the initial mesh.
As a increases, the quality of the initial mesh clearly
decreases although that degradation is not monotonic.
The average mean ratio metric value goes from an
average value of 1.14 to over 2.63 with the worst quality
element exceeding a mean ratio metric value of
1.80 · 105. Element volumes vary similarly.

The solution time required for each method was
considerably more than what was needed for smaller
perturbations. In general, as the perturbation amplitude
increased and the mesh quality degraded, the total time
to solution increased. It is interesting to note that as the
perturbation amplitude increased, the time and number
of iterations required by the inexact Newton method to
find an optimal solution also increased, but remained

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

% Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

0

0.5

1

1.5

2

2.5

3

1

1.5

2

2.5

3

N
ew

to
n

tim
e/

C
D

 ti
m

e

1

1.5

2

2.5

3
Newton time/CD time vs. % Improvement

rand 0
rand 0.001
rand 0.005
rand 0.01
rand 0.05

0 10 20 30 40 50 60 70 80 90 100
% Improvement

Newton time/CD time vs. % Improvement

NE 0
NE 0.1
NE 0.2
NE 0.3

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

% Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

N
ew

to
n

tim
e/

C
D

 ti
m

e

0

0.5

1

1.5

2

Newton time/CD time vs. % Improvement

osc opt
osc 01 01
osc 01 05
osc 01 1

0 10 20 30 40 50 60 70 80 90 100
% Improvement

Newton time/CD time vs. % Improvement

osc opt
osc 05 01
osc 05 05
osc 05 1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

N
ew

to
n

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement

rand opt
rand 0.001 1779
rand 0.001 17789
rand 0.001 44472

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

% Improvement % Improvement % Improvement

% Improvement % Improvement % Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

N
ew

to
n

tim
e/

C
D

 ti
m

e
N

ew
to

n
tim

e/
C

D
 ti

m
e

N
ew

to
n

tim
e/

C
D

 ti
m

e
N

ew
to

n
tim

e/
C

D
 ti

m
e

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Newton time/CD time vs. % Improvement

opt
NE 0.2 1779
NE 0.2 17789
NE 0.2 44472

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

opt
NE 0.3 1779
NE 0.3 17789
NE 0.3 44472

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
Newton time/CD time vs. % ImprovementNewton time/CD time vs. % ImprovementNewton time/CD time vs. % Improvement

Newton time/CD time vs. % Improvement Newton time/CD time vs. % Improvement Newton time/CD time vs. % Improvement

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

rand opt
rand 0.05 1779
rand 0.05 17789
rand 0.05 44472

osc opt
osc [0.01 0.01] 1779
osc [0.01 0.01] 17789
osc [0.01 0.01] 44472

osc opt
osc [0.01 0.1] 1779
osc [0.01 0.1] 17789
osc [0.01 0.1] 44472

Fig. 6 Ratio of the times required by the inexact Newton and block
coordinate descent solvers to achieve certain levels of improvement
for the random (top left), NE translational (top middle), and

oscillatory (top two right) perturbations and for the cases where a
subset of vertices are perturbed randomly (bottom two left), NE
translational (bottom two middle), and oscillatory (bottom two right)

Table 6 Initial mesh characteristics for increasing NE shift
perturbation of the duct geometry

2ffiffi
2
p a Inverse mean ratio Element volume

Average rn Maximum Maximum rn

Optimal 1.135 0.093 2.21 30.2 0.540
1 1.155 0.179 2.72 30.2 0.546
2.5 1.423 2.25 283 30.2 0.593
5 2.062 8.95 1.59 · 104 50.1 0.755
7.5 2.550 58.1 1.43 · 105 52.7 0.841
10 2.508 13.0 2.02 · 104 57.8 0.865
12.5 2.636 69.9 1.80 · 105 65.5 0.869
15 2.468 7.75 9.47 · 103 59.8 0.869

72

approximately constant for the block coordinate descent
method. Even so, the inexact Newton method outper-
formed the block coordinate descent method for 100%
improved solutions by a factor of 11 for 2=

ffiffiffi
2
p

a ¼ 1
� �

to
2.5 for 2ffiffi

2
p a ¼ 15

� �
: In most cases, the block coordinate

descent method was 30–80% faster for approximate
solutions that were 50% improved, but in the case of
2ffiffi
2
p a ¼ 2:5 the inexact Newton method was faster for

both the highly improved solution and the approximate
solution.(Table 7)

The top image in Figure 7 shows the ratio of times
required by the inexact Newton method and block
coordinate descent method to achieve certain levels of
improvement. These results are considerably more
interesting than the corresponding plots for increasing
problem size and element size heterogeneity shown in
Figs. 3 and 5. In particular, in a number of cases there
appear to be several crossover points and if a very
approximate solution is sought (less than 40%
improved), the inexact Newton method is preferred to
the block coordinate descent method. Interestingly if the
desired level of improvement is between 40 and 90%,
the block coordinate descent method is preferred. This
behavior is very unlike what was seen in the earlier test
cases. To help explain this more clearly, we include the
time history of the objective function value and gradient
norm for the perturbation 2ffiffi

2
p a ¼ 1 in the bottom two

images of Fig. 7. The block coordinate descent method
is unable to make early progress toward the optimal
solution because it does not have access to global
information. The inexact Newton method is able to
overtake it although its progress is sporadic. After
approximately 20 iterations, the block coordinate des-
cent method begins to make rapid progress and signifi-
cantly improves the mesh in a few iterations, overtaking
the inexact Newton method. As the mesh gets closer to
the optimal solution, the quadratic convergence rates of
the Newton method allow it to reach the optimal solu-
tion more quickly than the block coordinate descent
method.

Conclusion 5: Sensitivity of optimization methods to large
perturbations. Large amplitude perturbations from the
optimal mesh result in significantly longer optimization
times for both the block coordinate descent and inexact

Newton methods. More importantly, unlike many of the
test cases discussed earlier, the tests in this subsection
identified situations for which the inexact Newton method
outperforms the block coordinate descent method, even
when suboptimal solutions are acceptable.

Table 7 Number of iterations and total time to achieve 100 and
50% of the optimal solution as the perturbation increases

2ffiffi
2
p a Newton Coordinate descent

I T100 T50 I T100 T50

1 19 100 26.4 575 1,106 19.3
2.5 61 355 28.4 616 1,266 35.0
5 68 388 42.2 632 1,313 36.5
7.5 83 452 52.7 635 1,329 34.1
10 89 503 45.7 635 1,347 30.2
12.5 115 644 59.4 635 1,339 34.0
15 94 525 48.2 633 1,328 26.8

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

% Improvement

N
ew

to
n

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement

NE 0
NE 0.2801
NE 0.7003
NE 1.4006
NE 2.1008
NE 2.8011
NE 3.5014
NE 4.2017

0 20 40 60 80 100 120

0.135

0.14

0.145

0.15

0.155

time (s)

O
bj

ec
tiv

e
fu

nc
tio

n

Objective function vs. time

Newton Setup Complete at t = 3.2 s

(CD Solution is 0.35148% improved)

Crossover at t = 4.2482 s

(Both solutions are 0.55847% improved)

0 20 40 60 80 100 120

10
–6

10
–4

10
–2

10
0

10
2

10
4

time (s)

G
ra

di
en

t

Gradient vs. time

Newton
CD

Newton
CD

Fig. 7 The ratio of the times required by the inexact Newton and
block coordinate descent solvers to achieve certain levels of
improvement as the perturbation size increases. Note that the
numbers in the key correspond to the maximal actual perturbation
scaled by the average element length

73

5 Future work

The numerical results show that the block coordinate
descent method is often best for making fast improve-
ments in the shape quality of tetrahedral meshes with an
equilateral reference element. The inexact Newton
method is best when a very accurate solution to the
optimization problem is necessary. We note that a 50%
optimization level may be somewhat misleading in that
it does not indicate the degree of the accuracy in the
solution. For most of the duct meshes, the iterate at a
50% optimization level has four or five digits of accu-
racy in the objective function value. If the initial quality
of the mesh is very poor, however, then the iterate at a
50% optimization level may not have any digits of
accuracy in the objective function value. Alternative
definitions of ‘solution accuracy’ will be explored in fu-
ture work.

This study was limited to ideal shape improvement of
tetrahedral meshes using an equilateral reference ele-
ment; triangular, quadrilateral, and hexahedral meshes
were not included in the study. Preliminary experience
with planar quadrilateral meshes shows that the cross-
over point for our two codes generally occurs earlier, but
further study is warranted. In particular, the efficiency of
the block coordinate descent method is related to the
structure of the reference element. Some of the efficiency
in our implementation for equilateral elements is lost
when using a different reference element. The storage
required when applying a fast block coordinate descent
method to an anisotropic mesh in which the reference
element is different for each element is significant. While
the storage can be reduced by applying a permutation
and factorization as needed, the performance of the
block coordinate descent method degrades.

Furthermore, because the global objective function is
not convex, a trust-region method for the inexact
Newton code may perform better since it can handle
directions of negative curvature more rigorously. A
limited-memory quasi-Newton method may also out-
perform the block coordinate descent method when
obtaining an approximate solution in a small amount of
time. Efficient implementations of these methods can be
based on our existing infrastructure developed for the
inexact Newton and block coordinate descent methods.

In conclusion, there are many factors which can affect
whether or not one should use a block coordinate des-
cent method or an inexact Newton method for mesh
optimization. The present work identifies some of the
potentially important factors and develops a methodol-
ogy for further investigations on this topic. Future work
will consider remaining open questions including con-
sideration of other mesh element types, quality metrics,
objective function templates, movement of nodes along
the boundary of the domain, and different applications
of mesh optimization such as r-adaptivity in which the

reference element will not be constant as it was in this
study.

Acknowledgments The initial version of the analytic gradient for the
inverse mean-ratio metric for tetrahedral elements was provided by
Paul Hovland (Argonne National Laboratory). The clipped cube
mesh image was provided by Carl Ollivier-Gooch (University of
British Columbia). The work of the first, second, and third authors
was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department
of Energy, under Contracts W-7405-Eng-48 (UCRL-CONF-
205150), DE-AC-94AL85000, and W-31-109-Eng-38, respectively.
Part of the work of the fourth author was performed while a
member of the Center for Applied Mathematics at Cornell Uni-
versity, supported by Sandia National Laboratories, Cornell Uni-
versity, the National Physical Science Consortium, and NSF grant
ACI-0085969.

References

1. Bank R, Smith B (1997) Mesh smoothing using a posteriori
error estimates. SIAM J Num Anal 34:979–997

2. Canann SA, Stephenson MB, Blacker T (1993) Optismoothing:
an optimization-driven approach to mesh smoothing. Fin Elem
Anal Des 13:185–190

3. Parthasarathy VN, Kodiyalam S (1991) A constrained opti-
mization approach to finite element mesh smoothing. Fin Elem
Anal Des 9:309–320

4. Zavattieri P, Dari E, Buscaglia G (1996) Optimization strate-
gies in unstructured mesh generation. Int J Num Methods Eng
39:2055–2071

5. Castillo J (1991) A discrete variational grid generation method.
SIAM J Sci Stat Comp 12:454–468

6. Freitag L, Knupp P (2002) Tetrahedral mesh improvement via
optimization of the element condition number. Int J Numer
Methods Eng 53:1377–1391

7. Anderson D (1990) Grid cell volume control with an adaptive
grid generator. Appl Math Comp 35:209–217

8. Knupp P (2001) Algebraic mesh quality metrics. SIAM J Sci
Comp 23:193–218

9. Knupp P (1999) Matrix norms and the condition number.
Proceedings of 8th International Meshing Roundtable, pp 13–
22

10. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena
Scientific, Belmont

11. Nocedal J, Wright SJ (1999) Numerical optimization. Springer,
Berlin Heidelberg New York

12. Munson TS (2004) Mesh shape-quality optimization using the
inverse mean-ratio metric. Preprint ANL/MCS-P1136-0304,
Argonne National Laboratory, Argonne

13. Munson TS (2004) Mesh shape-quality optimization using the
inverse mean-ratio metric: tetrahedral proofs. Technical mem-
orandum ANL/MCS-TM-275, Argonne National Laboratory,
Argonne

14. Armijo L (1966) Minimization of functions having lipschitz-
continuous first partial derivatives. Pac J Math 16:1–3

15. Saad Y (2003) Iterative methods for sparse linear systems, 2nd
edn. SIAM, Philadelphia

16. Griewank A (2000) Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM, Philadelphia

17. Sandia National Laboratories (2003) Albuquerque, New
Mexico. CUBIT 80.1 Mesh Generation Toolkit

18. Ollivier-Gooch CF (1998–2002) GRUMMP—Generation and
refinement of unstructured mixed-element meshes in parallel.
http://www.tetra.mech.ubc.ca/GRUMMP

74

	A comparison of two optimization methods for mesh quality improvement
	Abstract
	Introduction
	Problem statement
	Element and mesh quality
	The Mean-ratio metric
	Quality improvement problem
	Improvement algorithms
	Block coordinate descent method
	Inexact Newton method
	Implementation characteristics
	Numerical experiments
	Fig1
	Increasing problem size
	Tab1
	Fig2
	Tab2
	Fig3
	Element size heterogeneity
	Tab3
	Initial mesh configuration
	Tab4
	Fig4
	Fig5
	Small perturbations
	Tab5
	Large perturbations
	Fig6
	Tab6
	Tab7
	Fig7
	References
	Acknowledgments
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

