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Abstract A local cell quality metric is introduced and
used to construct a variational functional for a grid
smoothing algorithm. A maximum principle is proved
and the properties of the local quality measure, which
combines element shape and size control metrics, are
investigated. Level set contours are displayed to indicate
the effect of cell distortion. The approach is demon-
strated for meshes of triangles and quadrilaterals in 2D
and a test case with hexahedral cells in 3D. Issues such
as the use of a penalty for folded meshes and the effect of
valence change in the mesh patches are considered.

Keywords Mesh smoothing - Mesh quality measures -
Reference map Jacobian

1 Introduction

Generating quality meshes that permit reliable accurate
simulations remains a major technical and theoretical
problem. The need to solve more complex applications
for multi-material domains with irregular geometry and
varying spatial scales exacerbates the difficulty. For
example, large scale simulations now involve meshes
with millions of cells and feature sizes that vary by or-
ders of magnitude. Generated meshes are often mathe-
matically incorrect (e.g. contain folded cells) or
unreliable, so generating, remeshing, and improving the
mesh have become time consuming but pressing tasks.
This adversely impacts our ability to do efficient simu-
lation and design. In simulations where moving
boundaries arise, the situation can be much worse since
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the mesh deteriorates as cells deform degrading accu-
racy, conditioning, and computational effectiveness
(more iterations and shorter timesteps). Periodic reme-
shing and frequent grid smoothing are needed, as well as
other corrective actions.

The present work examines this issue from the
standpoint of local cell quality and a novel scalar cell
quality indicator is introduced based on the mapping
from the reference cell and the associated Jacobian. This
new quality measure differs from similar measures in the
literature in several key ways. It controls both shape and
size and satisfies a maximum principle. This indicator is
used to construct a global functional for mesh optimi-
zation that we use here as a mesh smoothing and cor-
rection strategy that is investigated numerically in
several test problems. Algorithms based on such opti-
mization strategies have been utilized previously, one of
the earliest studies being that of Winslow [1]. More re-
cent works [2-7] develop related ideas.

The outline of the present treatment is as follows: we
first summarize some basic ideas underlying harmonic
maps and Laplace-type grid smoothing in a variational
setting. This leads us to introduce a local “distortion
measure” and its reciprocal defines the local cell quality
indicator. We prove a maximum principle and discuss
the properties of the associated global functional ob-
tained as an accumulation of the element contributions.
The optimization descent problem is solved using a
damped Newton scheme and representative performance
for test cases is shown. Several case studies are provided
in the results section to illustrate the features of the
indicator, unfolding of meshes and treatment of valence
changes.

2 Mapping and variational statement

A popular strategy in structured grid generation is to
map a uniform Cartesian grid in a reference domain Q to
a curvlinear grid of well-shaped cells in the physical
domain Q. The properties of conformal maps can often
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be exploited to ensure a good mesh. The associated
properties of analytic functions of a complex variable
have led to the use of harmonic functions from complex
analysis and, indirectly, to schemes using functions that
satisfy the associated Laplace equation. Since the po-
tential and stream function solutions to Laplace’s
equation form a suitable coordinate family for a 2D
mesh, this idea has motivated partial differential equa-
tion solver strategies for mesh generation. In particular,
the Laplace problems

Ax=0, Ay=0 (1)

for the coordinate map from the 2D reference domain Q
may be used for the mesh smoothing in a convex phys-
ical domain Q. A more robust strategy is to introduce
the Laplace problems

AE=0, Ap=0 )

in the 2D physical domain @, which may be noncon-
vex. These can be mapped to quasilinear PDE’s in the
reference domain Q and solved for untangled meshes
in Q.

Alternatively, variational formulations for these PDE
problems can be easily constructed and an equivalent
optimization problem is obtained. For (2), the varia-
tional functional is the classical Dirichlet integral for the
Laplacian [8] and we have

7= [ (98 +(Tn)|ardy: (3)

Q

The pair of Laplace problems (2) follow as the associ-
ated Euler-Lagrange equations. Mapping the variational
problems to the reference domain we have

XX, Vi,
7 [EE gy @
XeVp — Xe

Q
and the variational statement yields a quasilinear second
order PDE system as Euler-Lagrange equations. How-

ever, more importantly here, (4) can be expressed com-
pactly as

I /tr(STS) ddn

det S
Q
where tr denotes the trace and S is the Jacobian matrix
of the map between the two frames. From this, following
the idea of describing grid quality by metric-tensor in-
variants [5, 9] or functions of the Jacobian matrix [10],
we define the local distortion measure

Lir(sT
pis) =2 105) 0

and local mesh quality as Qy=~". In fact, this distortion
measure generalizes to any dimension directly [11] as

Lir(sT n/2
pis) LS ©

and measures shape distortion. The map and distortion
measure here are for a general reference domain but we
are particularly interested in the map from a reference
cell to an arbitrary cell in the physical domain. Note that
B(S) is invariant under dilation, which will be a problem
in treating the effect of valence changes and where gra-
ded meshes are desirable. The size of the cell can be
controlled by introducing a second local measure which
we term the dilation measure. For a “‘desired” uniform
size distribution, we compute an average Jacobian
determinant as

 JodetSdédy
o Jodédn

The ratios det S/v and v/det S indicate the departure of
det S from v. Since det S can be above or below v we
introduce the symmetric dilation measure [7]

) _;<devts+devts>' @)

Then u=1whenv = det Sand u — «~asdet S —
or 0. If we consider the map for one cell only, then v is a
“desired” cell size (related to area in 2D and volume in
3D). This also implies that a target distribution of v can
be specified to maintain a desired mesh grading as shown
later.

Following the ideas of multi-objective functions [2, 6],
we introduce an additive distortion-dilation measure
(other forms are clearly possible)

Ep(S) = (1= 0)B(S) + 0u(S), (8)

where coefficient 0 < 6 <1 can be adjusted to emphasize
the respective distortion and dilation terms.

Now the variational grid smoothing formulation can
be stated as follows: minimize the functional

7- / Eo(S)dédn, 9)

Q

subject to relevant boundary (or other) constraints. The
Euler-Lagrange equations for the new functional (9) for
the 2D case, written in the physical domain, are

—(1 = 0)AE + 00((detS), ', — (dets),'n,) = 0,
—(1 = 0)An+ v()((detS);lfx - (dets);lfy) =0

and can be compared with (2). In order to obtain the
discretized problem formulation, the map is interpreted
as the sequence of maps from a single reference element
or, equivalently, from a union of reference elements in
the reference domain (in a manner similar to the
Galerkin finite element method). Then the integral in (9)
is decomposed to a sum of element (or cell) contribu-



tions. Contributions to the functional from each cell ¢
are approximated using a numerical integration rule as

Ny

N.
D=2 D ool (Sly)-
ce=lg

(=

(10)

where {¢(c)} identify the quadrature points and o, are
the corresponding quadrature weights for cell c.
Remarks: 1. The formulation can be applied to any
unstructured grid containing different types of cells,
using appropriate quadrature rules; 2. Topologically
unstructured grids will have varying nodal valence and
this effect will also be investigated in the numerical work
of Sect. 6. 3. The desired element size v can be specified
to vary over the physical domain, which can be used to
achieve adaptive cell size distribution throughout the
mesh. 4. In the grid smoothing formulation the starting
grid is assumed here to be a valid grid but this will be
generalized to handle folded grids in Sect. 5.

3 Local quality measure

We first describe some general properties of the local
measures (6) and (8) and then focus on their behavior for
meshes using the basic triangle and quadrilateral cells
since they are most widely used in grid generation.

The function f(S), reformulated in terms of invari-
ants of the metric tensor of coordinate transformation
G=S"S, was considered in [5]. It was shown that S(S)
controls the cell angles and cell aspect ratio in the 2D
case and has similiar properties in 3D. The estimates for
the angle o between two cell edges and cell aspect ratio F'
(ratio of the lengths of the edges) for 2D quadrilateral
cells are

sinfo > (1/)°, 2<F+1/F <4f -2.

Thus f — 1 enforces o — ©/2 and F — 1; i.e. a square
cell.

The modified distortion measure E, retains these
properties of (S). It is an indicator for quasi-isometry
of the mapping [7, 11]; that is, it is an analog of mapping
conformality characterization, in the sense that the fol-
lowing inequality

1 < STS < T,

holds, where y and I' can be estimated from Ej.

In the following sections we will examine the local
measure Ey(S) or corresponding local quality measure
Qu(S)=1/Ey(S) (for 0=0, Q(S)=1/B(S)) on linear
mapped simplex elements and bilinear isoparametric
elements.

3.1 Simplex elements

Let us first consider the 2D triangular element, which
has been most extensively analyzed in the literature (see
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[5, 12] for references), and then extend to the tetrahe-
dron. Taking the reference element to be the equilateral
triangle with sides of length 1 and computing the con-
stant Jacobian matrix of the linear map onto an arbi-
trary triangular element with area 4 and edges of lengths
I, b, I3, we get

2

4
det S = 4
¢ 3

A tr(s7S) =

(B +5+15).

Thus

ﬁfl%”%“%
4+/34

and quality measure Q, is equal to

4434

Ay

1T
This is a well known example [13, 14] of a “fair” geo-
metric measure in the sense that it is equal to 0 on any
type of degenerate triangle. It is also normalized (takes
values from the interval [0,1]).

The corresponding additive measure from (8) is

B+B+5 0 \/§+4A

434 2\4  V3)
The level sets of the corresponding modified quality
measure Qy=FE;' for a triangle with fixed edge
(0,0)—(0,1) as a function of the coordinates (x,y) of the
opposite vertex are shown in Fig. 1 for different values
of parameter 0. As 0 increases, the quality measure be-
comes less restrictive in the sense that it admits more
points in the regions Q, >const, as can be seen by
comparing the “interior’ areas for a given level curve in
each graph of Fig. 1. However, it remains a ‘“‘fair”
measure.

For the mapping of an arbitrary tetrahedron onto the
regular tetrahedral reference element with edges of
length 1 we have

Eg=(1-10)

detS = 62V,

6
tr(s7S) = %Z 7,

i=1

where V' is the volume of the tetrahedron and /i, ..., /s are
its edge lengths. Thus for the quality and additive dis-
tortion-dilation measures, respectively, we get

6=0

Fig. 1 Level sets of Qgy(x,y) on triangle with vertices (0,0), (0,1),
(x.»)
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and Qy= E; ' which are also “fair” measures in the sense
given above. A similar tetrahedron shape measure

123"
S 17

was derived in [15] from the singular values of trans-

formation S. Geometrically # reflects the shape of the

inscribed ellipsoid. The fact that n=(Qo)*" indicates

that both measures are closely related and are equally

able to identify “poor” shaped elements, although their
sensitivity is not the same.

= ()"

3.2 Tensor product linear elements

The case of the n—linear cell in dimension n > 2 is more
complex, since the Jacobian matrix is not constant on
the cell. Nevertheless, Ey satisfies a “maximum princi-
ple” [11], in the sense that it is bounded from above by a
finite linear convex combination of its values on certain
bases (matrices). Consider each n X n matrix as a col-
lection of its columns

S =(S(,1),8(,2),...,8(,n)).

The general algebraic property of the additive measure is
stated in the following lemma:

Lemma 1 Let ann X nmatrix S have a following rep-
resentation

§= i:SjA,, Zm:/\/ =1,
= =

where A; are diagonal matrices, which can be equivalently
written as

m
ZS, i),

j=1
Z i =1,
j=1

Let us introduce a multi-index o.= (a1, ..., o) with 1 < o
< m, and define “‘combinational matrices”

7S1n('7n))'

A >0, m>2, (11)

)LijZO, Vlzl,,n

S&:(Sdl('7])7S12('72)7"' (]2)
If for any o

Ey(S,) <C, detS, >0,

holds then there exist coefficients a,20, > ,a,= 1, such that

S) < ZGMEH(SO()3 (13)

where the sum containsm’terms.
The coeflicients a, in the last inequality depend upon
S, so the more useful consequence of the lemma is
Ey(S) < max Ey(S,) < C. (14)
o
Proof: The proof of the maximum principle by
induction consists of the following major steps:

1. For the matrix S = lS1 + lSz one can show that

Ztr (STS,)

tr(s7S) <

and

detS <

1 .
> > detS,
hold. Then by the Holder inequality

B(S) det S < 212 B(S,) det S,.

2. Inequality
B((1 = &)1 +&S,)

< Z axﬁ(sa)

o

is proved for any 0 < ¢ < 1 using the bisection argu-
ment and step 1. That is, for any & € [0,1] we can find
two sequences of points {/;}T, {r;}T obtained from the
bisection of the interval [0,1], such that /; — ¢ from
the left and r;, — ¢ from the right asi — . Using
step 1 it can be shown that for each bisection point
the maximum principle for f holds. Thus, by conti-
nuity of functions f and det the maximum principle
holds for any &.

3. The statement of step 2 is generalized by induction to
an arbitrary number of terms in the representation
(11) of S. It is first proved for A;= /1, then the gen-
eral case is shown to reduce to such a form.

4. Using the Cauchy inequality one can show that

$) <> auu(S,)

Thus, an upper bound for the additive measure
(lower bound for quality measure) can always be com-
puted. Matrices for this bound are a full set of constant
matrices arising from a representation of the Jacobian
matrix on the tensor product cell.

For example, the bilinear map of unit square 0 < &,
& <1 onto the cell with vertices ry, j,k=0,1 can be
written as

1

=y (1-¢) e

J.k=0

fz)(lfk)flﬁlffk (15)



and its Jacobian matrix is

N (1- 51)<17j>f{(1 - 52)<17k)512€(1'1k — Yok, Fj1 — o)

1
Jk=0

1
= CijJk, with Z Cjk = 1, (16)

Jk=0 J k=0

where c_,k:(l—il)(]*j) é (1—52)(”‘) &K are the scalar
coeflicients in (16) and the corresponding pairs of vec-
tors are the columns of matrices Sy = (rix — ror, ¥j1 —
ro)-

Thus for the bilinear cell, the bound is a convex linear
combination of additive measures computed at vertices
of the quadrilateral cell. That is,

1
Ey < Z ajko(Six) < m%XEO(Sjk)v
Jk=0 /
1
where Z ajp =1, ap>0.
k=0

For a trilinear cell, this type of representation of the
Jacobian matrix contains 64 different constant matrices.
They can be obtained from trilinear images of the basis
triples in reference space. All 64 such basis triples can be
obtained from the four distinct vector triples, shown as
bold vectors in Fig. 2, by rotation and reflection (after
reflection the orientation should be changed to preserve
right basis orientation).

The level sets for the lower bound of the quality
measure Qy for the bilinear cell are shown in Fig. 3,
where quality contours are graphed as functions of the
position (x,y) of one vertex of the quadrilateral with the
other vertices fixed at points (0,0), (0,1) and (1,0).

The existence of the upper bound on the local addi-
tive measure Ey implies that in order to control cell
quality it is sufficient to control the bound; that is, the
values of the additive measure on a finite number of
combinations of cell vertex basis vectors. Thus the
choice of these combinations as quadrature points for
approximating the discrete functional (10) will guarantee
the improvement in mesh quality sought for solving
minimization problem (9).

4 Numerical implementation

The gradient of the smoothing functional (10) is non-
linear so an iterative optimization algorithm, such as

4

5 72 - 7 - /

7

1

Fig. 2 Types of basis triples for computation of upper bound for
Ey on trilinear element
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Fig. 3 Level sets of lower bound for Qg(x,y) on quadrilateral
element with vertices (0,0), (0,1), (1,0), (x,»)

Newton’s method or another gradient descent method,
should be applied to the associated algebraic problem.
In this work, the damped Newton method is used. After
each iteration the global minimum quality measure

1
Ep(Sy(0))

is computed in order to monitor the optimization pro-
cess. Iterations cease when the difference between the
minimum quality (17) of two subsequent grids is less
than a given tolerance (other criteria are possible).

(Q9)|min: micn (17)

q(c)

5 Algorithm modifications

If the initial grid is folded or has nonconvex cells, the
functional can be modified by adding penalty terms to
enforce a valid grid (see, for example, [6]). The original
functional (10) has an infinite barrier on the set of grids
with convex cells which is due to the presence of det S'in
the denominator of the integrand. This barrier implies
that a valid grid will be preserved, but also that an initial
folded grid will remain folded. To circumvent the latter
situation, a penalty formulation can be developed by
replacing this factor det S by an exterior penalty func-
tion yg(det S), such that the new integrand will be a
finite approximation of the original infinite barrier. This
modification allows the minimization procedure to start
from a folded grid and, since the value of the functional
I, is significantly increased when folded cells are present
in the grid, the final grid will not contain nonconvex cells
(assuming there exists such a mesh solution for the given
connectivity and boundary conditions). After the grid is
unfolded, the algorithm automatically switches back to
the smoothing formulation, which prevents ‘“refolding”
of the mesh.

Since the distortion measure f(S) provides control
over element shape, one can define a priori the desired
element shape by introducing a metric in reference
coordinates. These metrics essentially use different ref-
erence elements for different cells in the grid. Minimi-
zation of the correspondingly modified functional will
result in a grid with cells having the shape as close as
possible (under given connectivity of the grid and im-
posed boundary conditions) to the target shapes. Hence
hybrid grids containing a mixture of different cell or
element types can be conveniently handled.
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6 Numerical examples

6.1 Smoothing of a triangular grid in nonconvex
domain

The Laplace smoother based on solving Egs. (1) may
produce overlapping grids in nonconvex domains, so it
is important to check the behavior of the present type of
smoother for such domains. Consider the nonconvex (v-
shaped) domain with triangular grid and fixed boundary
nodes shown on the left in Fig. 4. Smoothing with the
presented additive functional using 6 =0.8 produces the
grid on the right in Fig. 4. There is no overlap and
the mesh lines are well behaved. Cells at the peak on
the symmetry line are slightly dilated and those at the
reentrant corner are slightly compressed.

6.2 2D meshes with points of changing valence

The following numerical tests demonstrate the advan-
tages of the new smoothing algorithm, when operating
on a grid with varying valence. Some algorithms will
produce significant local dilation effects in the regions
where valence changes.

Figure 5 demonstrates the smoother behavior on
triangular grids with changing valence. All boundary
nodes are fixed in this example. There is some disparity
in dilation effects but the behavior is satisfactory for
smoothing with 6=0.8, whereas smoothing with 6=0.2
produces significant dilation.

The effect of smoothing on a mesh of quadrilateral
cells is shown in Fig. 6. The initial grid consists of two
block-generated subgrids corresponding to a trapezoidal
subdomain and its continuation to the annular region.
Boundary nodes on the exterior circular boundary are
fixed and nodes on the vertical diameter boundary of the
semicircle are allowed to “‘slide” along this line. The
initial mesh and the “evolving” mesh at iterations 1, 2,
and 3 are shown.

The minimal quality (Qg)min and minimal value of the
Jacobian determinant for this test are shown in Fig. 7 as
functions of the number of iterations.

These tests demonstrate that significant dilation oc-
curs in grids with varying valence after smoothing with
the accent on the shape control metric (similar behavior

Fig. 4 Triangular grid in nonconvex domain. Initial mesh (/eft) and
smoothed mesh (right)

is seen for Laplacian-type smoothers), whereas increas-
ing the size control moderates this difficulty. It can be
observed from the lower curves (0=0.2) in Fig. 7 that
minimization of a global functional with more weight on
shape control does not improve the minimal values of
the quality metric and Jacobian determinant as itera-
tions continue. Note that the comparison here is to their
values for the initial mesh. Although global quality of
the mesh improves during the minimization, local
quality of the cells surrounding the valence-3 nodes
deteriorates, i.e. the value of such a functional depends
more on the global mesh structure than on any indi-
vidual cell contribution. On the other hand, when the
weight is shifted towards the size control metric, all local
quality metric values improve during smoothing. Thus,
adding weight on the dilation metric makes our
smoothing procedure insensitive to the varying valence
of the mesh. However, this will be problem dependent
and will be influenced by the choice of starting grid
iterate. It does suggest, however, that one may be able to
adaptively select 0 varying from values close to 1 near
the nodes of irregular valence to values close to 0 near
the domain boundary.

6.3 Mesh unfolding in nonconvex domain

Barrier formulations of variational smoothing algo-
rithms facilitate mesh unfolding, as well as smoothing.
As an example, let us consider the unfolding of a folded
quadrilateral mesh for an annular cylindrical domain.
For the initial grid, we relocate the nodes interior to a
cylindrical polar mesh for a semicircular annulus and
place them at the origin as indicated by the mesh on the
left in Fig. 8. Thus, all cells have vertices outside the
domain and are overlapping. After applying the penal-
ized smoothing algorithm with different choices of 0 for
5 iterations, the grid is close to equidistributed, as seen in
the center and on the right in Fig. 8.

The dynamics for the minimal quality metric and
minimal Jacobian determinant during unfolding is
shown in Fig. 9. It can be observed from these plots that
unfolding with the accent on the shape control metric
requires fewer iterations compared to the case with the
accent on size control. This is natural, since unfolding is
mainly a shape recovery procedure.

6.4 Initially adaptive quadrilateral grid with folded cells

In the next example, the smoothing procedure is applied
to a more elaborate grid generated to adaptively fit a
multi-airfoil domain. This grid has many nodes with
irregular valence and it initially had several folded cells.
The most relevant part of this grid before and after
smoothing is shown in Fig. 10. The initial grid (top) has
a very fine mesh graded into an extremely thin boundary
layer at the airfoil surface. For 0=0.2 (middle) this
boundary layer mesh has been ‘“‘dilated” during the



Fig. 5 Triangular grids. Initial
meshes (left), smoothed meshes,
0=0.2 (middle) and smoothed
meshes 0=0.8 (right)

Fig. 6 Quadrilateral grid
during smoothing. From left to
right: initial grid, grid after 1, 2
and 3 iterations of the
smoother. Top smoothing with
0=0.8, bottom smoothing with
0=0.2
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Fig. 7 Smoothing. (Qg)min and Jy,;, versus number of iterations

smoothing process as seen by the dark bands adjacent to
the airfoils. Then in the lower figure (0 =0.8) we have an
intermediate situation with some dilation near the air-
foils but the boundary layer mesh relatively well pre-
served. This example indicates the importance of
distributed cell size control (via u(S)), since without it
the smoothing procedure “undoes” desired clustering
near the airfoils and tends to promote a uniform grid,
which is unacceptable because boundary layers need to
be resolved. Thus, the volumetric factors v were com-
puted for each cell, and then the smoothing algorithm
was run using these values. The improvement in the grid
details can be seen in Fig. 11.
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Fig. 8 Unfolding. Initial mesh (left), smoothed mesh, 6=0.2
(middle) and smoothed mesh, 6=0.8 (right)

It can also be observed from Fig. 11 that even with
distributed dilation control (the weight 6 =0.8) may not
be adequate to retain enough clustering in the boundary
layers. One can locally increase 0, or, in order to have a
grid that retains the initial mesh density in the boundary
layer, a block smoothing strategy may be utilized.

6.5 3D mesh smoothing

The general approach and its application extend natu-
rally to 3D. This is demonstrated in Fig. 12 for a 3D
mesh analogous to that in Fig. 6 earlier. An interior
hexahedral mesh block is connected to another hexahe-
dral grid block of spherical annular shape and then
smoothed. The cutaway octant in the Figure shows layers
of cells near the boundaries x=0, y=0 and z=0. Again,
smoothing with more weight on the shape control metric
produces a grid with more element dilation due to the
changing valence in the mesh, whereas smoothing with
more weight on the size control results in the nearly
uniform grid, as seen on the right in Fig. 12.

7 Concluding remarks

The variational smoothing algorithm developed here
employs a global optimization approach based on a
novel composite local metric. Bounds on the metric are

-2

-4

-6

-8
0 2 4 3]

Fig. 9 Unfolding. (Qg)min and Jy,;, versus number of iterations
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Fig. 10 Subregion showing initial grid (zop), smoothed with #=0.2
grid (middle) and smoothed with 6=0.8 grid (bottom)

established and its properties investigated analytically
and numerically. It is shown to be robust and to yield
satisfactory results for triangular and quadrilateral me-
shes in 2D and 3D meshes of hexahedral cells. In par-
ticular, it handles several of the difficulties that have
been troublesome for other smoothers. It is applicable to
general element types and hybrid grids as well as 3D.



Fig. 11 Fragments of initial
grid (left), smoothed with
0=0.2 grid (middle) and
smoothed with 6=0.8 grid
(right)

.,,,,,,
i
il

Fig. 12 From left to right: layer
of cells near the boundaries
x=0, y=0, z=0 for initial grid,
grid smoothed with 6=0.2, and
grid smoothed with =0.8

Results of preliminary 3D studies are given here and
more detailed numerical experiments are ongoing. We
have also carried out tests on higher resolution grids and
explored the effect of varying the weight coefficient 0.
Other issues related to the effect of different local valence
are also investigated. Modifications to the scheme per-
mit automatic unfolding of tangled grids and control of
dilation to preserve layer structures. Clearly, in engi-
neering and scientific applications it is desirable to grade
the mesh to obtain accurate approximations efficiently.
In [16] we extend the metric to include error control for
the approximation problem. We also consider combin-
ing redistribution with adaptive mesh refinement and the
treatment of “handing node” constraint. Recently we
have also extended the ideas to treat elements with
curved boundaries. These extensions are described in
further detail in a forthcoming paper [17].
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