
ORIGINAL ARTICLE

David R. White Æ Sunil Saigal Æ Steven J. Owen

CCSweep: automatic decomposition of multi-sweep volumes

Received: 28 July 2003 / Accepted: 12 April 2004 / Published online: 31 July 2004
� Springer-Verlag London Limited 2004

Abstract CCSweep is a new method to automatically
decompose multi-sweepable volumes into many-to-one
sweepable volumes. Multi-sweepable volumes contain
both multiple source and multiple target faces. In
hexahedral mesh generation, most sweeping techniques
handle many-to-one sweepable volumes that contain
multiple source faces, but they are limited to volumes
with only a single target face. Recent proposals to solve
the multi-sweep problem have several disadvantages,
including: indeterminate edge sizing or interval matching
constraints, over-dependence on input mesh discretiza-
tion, loop Boolean restrictions on creating only loops
with even numbers of nodes, and unstable loop
imprinting when interior holes exist. These problems are
overcome through CCSweep. CCSweep decomposes
multi-sweep volumes into many-to-one sweepable sub-
volumes by projecting the target faces through the vol-
ume onto corresponding source faces. The projected
faces are imprinted with the source faces to determine
the decomposition of the solid. Interior faces are created
to decompose the volume into separate new volumes.
The new volumes have only single target faces and are
represented in the meshing system as real, solid geome-

try, enabling them to be automatically meshed using
existing many-to-one hexahedral sweeping approaches.
The results of successful application of CCSweep to a
number of problems are shown in this paper.

Keywords Multi-sweep Æ Sweeping Æ Mesh generation Æ
Hexahedral Æ Volume decomposition

1 Introduction

Finite element analysis (FEA) is an increasingly impor-
tant tool for scientists and engineers to simulate com-
plex, three-dimensional (3D) physical phenomena. FEA
begins by discretizing the physical domain into elemen-
tary shapes, such as hexahedra or tetrahedra. The
accuracy, and for some problems, the feasibility of FEA
is dependent on this discretization. For many physical
problems, quadratic tetrahedral elements are both
accurate and efficient, though hexahedral elements are
required for other problems. Automatically filling or
meshing shapes with hexahedral elements remains a
difficult problem, unlike generation of tetrahedral
elements where numerous automatic implementations
exist. Sweeping has been introduced in the literature
[1–5] as an effective tool to address hexahedral meshing.
A brief description of sweeping and associated open
problems is first presented.

1.1 Hexahedral meshing and sweeping

While many algorithms attempt automatic hexahedral
mesh generation [6–9], user intervention is typically re-
quired before a desirable mesh can be obtained. A
common approach is to decompose the shape or solid
model into sub-volumes that can be individually meshed
with a known hexahedral meshing primitive. Some
of the common primitives employed are: rectangle
or mapping, sphere, tetrahedron, and cylinder. The

Contract/grant sponsor: Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94-
AL85000.

D. R. White Æ S. Saigal Æ S. J. Owen
Department of Civil and Environmental Engineering,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA

D. R. White (&) Æ S. J. Owen
Sandia National Laboratories, MS 0822, PO Box 5800,
Albuquerque, NM 87185-0847, USA
E-mail: drwhite@sandia.gov
Fax: +1-505-8450833

S. Saigal
Department of Civil and Environmental Engineering,
University of South Florida,
Tampa, FL 33620-5350, USA

Engineering with Computers (2004) 20: 222–236
DOI 10.1007/s00366-004-0290-6



cylinder primitive, created by ‘‘sweeping’’ a quadrilateral
mesh from one end to the other, has been extended to
generate hexahedra for any shape where a sweeping path
can be found between top and bottom faces [10]. Such a
decomposition allows the process of sweeping to gen-
erate hexahedral meshes. Several types of sweeping
algorithms are possible, and are illustrated in Fig. 1.
One-to-one sweeping consists of a volume where the
sweep path goes from a single top or source face to a
single bottom or target face. A natural extension to one-
to-one sweeping is many-to-one sweeping, where the
algorithm generates meshes for volumes with multiple
source faces that sweep to a single target face [1, 2]. The
multiple source faces in a many-to-one sweep can occur
adjacent to one another or separately, at different depths
of the sweep path. A further extension of the sweeping
technology is the many-to-many or multi-sweep [3–5]
technique, where there are multiple sources and multiple
target faces. Multi-sweep requires that the geometry be
identified or decomposed, at a minimum, into a state
where many-to-one techniques may be employed. The
decomposition process is key to successful hexahedral
mesh generation. This paper addresses the task of
decomposing a multi-sweepable volume into many-to-
one sweepable regions.

1.2 Existing multi-sweep techniques

Three competing approaches introduced to solve the
multi-sweep problem include those proposed by Blacker
[3], Lai et al. [4], and Shepherd et al. [5]. In each of these
approaches, the side walls of the sweep or the linking
faces are first meshed with structured quadrilateral ele-
ments using mapping [11] or submapping [12] meshing
algorithms. Next, the node loops on the target faces that
consist of the ordered set of nodes formed by traversing
the boundary edges of the faces, are projected upward
through the volume, and are guided by the linking face
meshes.

The node loops of the target faces are projected onto
the appropriate source faces, and Boolean operations
are performed to ‘‘imprint’’ the topology of the target
faces onto the source faces. An imprint operation is
performed by the equivalent of three separate Boolean
operations; two subtractions and one intersection.
Imprinting results in creating new faces that topologi-
cally match the boundaries of where the original faces
overlapped. Once Boolean operations have been per-
formed and source faces modified, the source faces can
be meshed using an existing quadrilateral meshing
technique [13, 14]. The hexahedral mesh is then defined
by sweeping the source surface mesh to the corre-
sponding target faces.

Several restrictions or limitations with the existing
techniques described in the literature have been ob-
served.

Indeterminate edge sizing This results when edges of
the target faces are projected onto edges of the source
faces. Since intersections are restricted to node match-
ing, this means that the edge sizing on the target faces
must match the edge sizing on the source faces. Prior to
multi-sweeping, this information is not known since it is
determined during the Boolean process itself. Figure 2a
shows a multi-sweep volume that has its target faces
projected onto its source faces. In Fig. 2b, the boundary
nodes of a source and target face are shown projected on
top of each other. In this example, because there are an
unequal number of nodes, resolving the Boolean oper-
ation is impossible since the nodes cannot be made to
match up exactly. Similar problems exist whenever
portions of the edges are determined to match. The
current techniques must rely on user intervention to
match the nodes on edges prior to multi-sweeping.

Over-dependence on input mesh discretization This re-
sults from the Boolean operation relying solely on node
matching. The way in which the source and target faces
will be imprinted is determined by the boundary dis-
cretization. The inherent assumption made by the
existing algorithms is that the size used for meshing the
volume is also the best size for imprinting the source
faces; this is typically not the case. While a coarse
hexahedral mesh may be ultimately desired for many
parts, the imprinting process often works better with
a smaller size. Finer discretizations represent curved

Single Target
Face

Single Source
Face

S
w

ee
p

D
ir

ec
ti

o
n

Multiple Source
Faces

Single Target
Face

S
w

ee
p

D
ir

e c
ti

o
n

Multiple
Target
Faces

Multiple Source
Faces

S
w

ee
p

D
ir

e c
ti

o
n

(a)

(b)

(c)

Fig. 1 a One-to-one. b Many-to-one. c Many-to-many or multi-
sweep

223



boundaries more accurately and tend to produce more
desirable imprints on the source faces. The current ap-
proaches couple final mesh size and imprinting discret-
ization size, often leading to undesirable results.

Loops with even number of nodes Loop Boolean
restrictions on creating only loops with an even number
of nodes can result in poor node matches. The even-
noded loop constraint comes from quadrilateral mesh-
ing theory, which proves that any loop with an even
number of boundary points can be filled with quadri-
lateral elements [13]. This implies that, if the boundary
has an odd number of points, it cannot be meshed with
quadrilaterals. Restricting the node matching with these
criteria can be problematic. For instance, when per-
forming a Boolean operation on two loops that overlap,
nodes are matched at the area of intersection based on
two criteria: geometric proximity and the number of
nodes in the loops that would result from the match.
Even if a node is geometrically equivalent with another
node, it may not be matched because doing so would
result in an odd-numbered loop. This, in turn, may cause
important intersections to be missed, resulting in prob-
lems later in the meshing process.

Unstable loop imprint when interior holes exist This
occurs when attempting to determine if one loop is
completely inside another loop. When the loops lie in a
2D plane, the solution is readily known [15]. During
multi-sweeping, the loops on the layers of the linking
mesh are not guaranteed to be planar. Approaches by

Lai [2] and Shepherd [5] employ solutions to this prob-
lem by using the winding number algorithm [15]. The
approach currently taken by Blacker [3] avoids this
altogether by not allowing volumes with ‘‘unconnected’’
interior holes to be multi-swept, forcing the user to
connect the interior and exterior boundaries through
decomposition or to split the face with an edge. The
winding number approach breaks down when the loops
deviate too much from planarity. Since it is difficult to
quantify ‘‘too much,’’ and since there is no guarantee
that the loops will be planar, instabilities in the algo-
rithms appear.

This paper presents a new algorithm, CCSweep, that
avoids each of the four problems encountered with
existing approaches. The algorithm automatically
decomposes multi-sweep volumes into many-to-one sub-
volumes, where each sub-volume can be automatically
meshed with any of the existing hexahedral many-to-one
sweeping techniques [1, 2].

2 The CCSweep algorithm

CCSweep, named because of its similarities with the
process of ‘‘cookie cutting,’’ automatically decomposes
a multi-sweep volume into meshable sub-volumes. The
decomposition is achieved by using the target faces as
cutting tools and pushing the target faces through the
volume while intersecting them with appropriate source
faces. As the cutting tools are pushed through the vol-
ume, internal nodes are created which are eventually
triangulated to create interior surfaces. These surfaces
are used to decompose the volume using virtual topol-
ogy operations [16, 17]. The following outline provides a
summary of the CCSweep algorithm. The process is
illustrated in Figs. 3 and 4 for the simple geometry of a
cylinder of radius 5.0 units and height 10.0 units, with
the top and bottom faces of the cylinder split in halves.
More details are provided in the following sections:

1. Mesh linking faces: the faces between sources and
targets are meshed using a mapping or sub-mapping
technique. For the multi-sweep volume in Fig. 3a, the
linking face mesh is shown in Fig. 3b.

2. Build layer information: traverse the exterior linking
mesh to determine how the nodes are connected in
the sweep directions. Store on each node the node
previous to it or the node in the source direction, and
the node next to it, or the node in the target direction.
Additionally, number each source and target face,
and each node according to their respective vertical
layer, starting at zero for the bottom most target
faces and nodes. Figure 3b shows the layer informa-
tion as it is constructed, including the vertical node
connectivity for one column of nodes.

3. Build control loops: traverse the exterior linking
mesh to determine the outer most set of nodes on
each layer of the sweep. Determine the vertical

Fig. 2a, b Impossible source target node matching

224



connectivity of these exterior node loops for later use
during the node projection process. Figure 3c illus-
trates the control loops on the exterior of the volume
and the connectivity of each loop through the linking
nodes.

4. Build loop face data structures: build loop face data
structures to both topologically and geometrically
approximate the source and target faces. Figure 3d
illustrates the loop faces in the multi-sweep volume.

5. Process each loop: on each layer of the mesh:

(a) Get loop data structures on current layer: find the
loop data structures for the source and target
faces in the current layer.

(b) Imprint and merge sources and targets: imprint
and merge adjacent target faces to make sure the
loop data structures are conformal. Imprint and
merge overlapping and adjacent source and tar-
get faces. Create new source and target loop data
structures to represent the imprint. Propagate
any new nodes created during the imprinting
process up and down the linking face meshes.
Figure 4a shows the imprinting of one of the
source loop faces with one of the projected target
loop faces. The figure also illustrates the result of
the imprint as three connected loop faces.

(c) Assign control loops: for each loop face data
structure, determine the control loop governing
its transformation to the following layer.

(d) Project loop faces: for each control loop on the
layer, build the affine transformation matrix and
corresponding nodal residual errors. For each
target loop face in each control loop, project
interior nodes using the residual errors and
transformation matrix. Build new loop face data
structures on the new layer, copying the topology
of the face on the prior layer. In Fig. 4b, the
target loop faces are projected from the bottom
of the volume onto the source faces. Interior
nodes are created on each layer as the target loop
faces progress through the volume.

6. Build decomposition triangulations: using the imprin-
ted source loop faces, build internal triangulationswith
the interior nodes created in the main control loop.
Collect the triangles into sets that represent decom-
position faces. For the cylinder example, the decom-
position triangulations are shown in Fig. 4c.

7. Decompose: use virtual geometry Boolean operators
to decompose the volume into separate many-to-one
sweepable volumes. In the example problem, the final
decomposition of the cylinder is shown in Fig. 4d/

Fig. 3 a Cylinder example geometry. b Linking mesh and node
connectivity. c Construction of control loops. d Construction of
loop face data structure

Fig. 4 a Projection of target loop faces onto source loop faces.
b Imprinting of target face and source face. c Internal triangle
creation. d Decomposition by virtual geometry operation

225



2.1 Starting CCSweep

Prior to beginning the CCSweep algorithm, an initial
size discretization is determined and the source and
target faces of the volume are identified. Currently, the
size for CCSweep is chosen automatically, based on a
heuristic relation that considers the volume of the part
and a maximum spanning angle of 60� on curved edges.
Because the size used during CCSweep is decoupled
from user-desired element size, any mesh size that pro-
duces good meshes on the linking faces may be used.
The goal of this sizing is to quickly obtain the minimum
size that captures the features of the volume. Source and
target face identification is done using the auto-sweep
selection algorithm proposed by White and Tautges [18].

2.2 Mesh linking faces

The first step in the CCSweep algorithm is to discretize
the linking faces of the volume. The linking faces must
be meshed with a structured meshing scheme so that a
system of layers between the source and target faces can
be identified. Without such layering, the formation of
hexahedral elements on the volume is not possible. The
layering system helps to identify the transformation of
the target faces onto the source faces. Like the existing
multi-sweep algorithms, the linking face meshes used for
CCSweep must be of good quality to enable proper
transformations from the target to source faces. Map-
ping and submapping algorithms are used to mesh the
linking faces with structured quadrilateral elements. The
grid lines on the sample geometry in Fig. 2a illustrate
examples of linking face meshes. Unlike the existing
techniques described in the literature, the structured
mesh on the linking faces is used only as a temporary
mechanism to facilitate volume decomposition. The
linking face meshes can be discarded once the decom-
position process is complete, allowing the user to later
impose any desired mesh resolution to the new CCSweep
volumes.

2.3 Build layer information

Once the linking faces are meshed, the nodes on the
linking faces are traversed vertically in the direction of
the sweep path. This step provides two important rela-
tionships. First, it determines the layer numbering for
the source and target faces, s and t. Second, it stores
vertical connectivity relationships and layer numbering
on the nodes, n, between s and t. The algorithm to
connect linking faces is shown in Fig. 5. For the multi-
sweep volume in Fig. 3a with source faces s, and target
faces t, the boundary nodes X nð Þ, and their respective
vertical connections, N(n), are shown in Fig. 3b.

In step 5 of Fig. 5, the nodes found on the boundaries
of the connected source or target faces are taken and
propagated away from the source or target faces until

they hit another set of source or target faces. During the
propagation, the layer value is increased or decreased,
depending on the direction indicated from the boundary
quadrilaterals. The layer value is set for each node in the
quadrilateral, and the nodes connected vertically in the
quadrilateral are stored for later use in the CCSweep
algorithm. In step 8, as new faces are reached through
the quadrilateral propagation, they are pushed onto the
stack containing the faces, which are iterated over in
steps 4–10.

Figure 3b also shows the vertical connections in the
data structure for one column of linking nodes in N(n).
Each node stores pointers to the node above it (previous
or source direction) and below it (next or target direc-
tion). The pointer to the previous node for each node is
set to NULL if there is no node connected to it in the
source direction, and similarly for the next node pointer
if no node is connected in the target direction. When the
target faces are projected to the source faces, new nodes
will be generated to fill in the missing previous and next
nodes.

2.4 Build control loops

Control loops are the continuous loops of nodes on the
linking surfaces that bound each layer of the sweep. For
multi-sweep problems, such as the one shown in Fig. 2,
that have a single ‘‘barrel’’ to sweep along, this simply
refers to all the exterior nodes on each layer. For more
complicated examples, such as the one shown in Fig. 6,
where parallel ‘‘barrels’’ exist in the sweep, there are
separate groups of nodes, even on the same layer. An
important function of the control loops is to define the
transformation (described later) for a given section of

Fig. 5 Algorithm: building vertical nodal connectivity and deter-
mining layer information

226



the volume. Each of the nodes of a control loop will
contribute to the placement of interior nodes for each of
the sweep layers. The control loops for the transforma-
tion of the first layer for the volume in Fig. 3a are shown
in Fig. 3c.

The control loops are calculated by determining
outermost boundary nodes of source and target faces
L(s) and L(t), respectively, on each layer, L. The control
loops on each layer, C(L), are connected by traversing
the vertical connectivity of the nodes in the linking mesh.
The procedure for doing this is outlined in Fig. 7.

In step 5 of Fig. 7, the outermost boundary edges of a
connected set of source or target faces are determined.
Next, the nodes on these boundary edges are gathered
and placed into new control loops for this layer and are
added to P (C(L)), which stores a list of the control
loops on the current layer. In step 7, the control loops on
the current layer, F(C(L)) are used to build matching
control loops on the next layer, F(C(L+1)) through the
stored vertical nodal connectivity. Once finished, the
control loops for each layer are recorded in the data

structure and are ready to be accessed when the target
faces are projected upwards onto the source faces.

2.5 Build loop face data structures

An important aspect of the CCSweep algorithm is the
data structures used to represent the source and target
faces during the cutting process. Minimally, the data
structures represent the source and target faces as or-
dered lists or loops of nodes. When the linking faces are
meshed, the boundary edges of the source and target
faces are also meshed. The mesh nodes on the bound-
aries of a source and target face are taken in order to
form a loop of nodes to represent the face. Several loops
are formed if there are interior holes in the face. A more
complete data set is used in CCSweep to represent the
faces as they are moved through the volume.

In addition, CCSweep requires that the nodes from
the target faces be first projected and then their loop
topology inscribed onto the source faces. We propose a

Fig. 6 Multi-sweep volume
with parallel control loop
groups

Fig. 7 Algorithm: build control
loops

227



simple topology representation that will facilitate and
help keep track of this projection and imprinting pro-
cedure. During the imprinting process, additional
information is needed to maintain the orientation of the
loops and provide an efficient method to access data. A
bidirectional graph of new topology entities is chosen to
describe the topology of the source and target faces. For
example, given the square face in Fig. 8a, the face is
represented by a LoopFace, the edges by LoopEdges,
the vertices by LoopVertices, and the orientation of the
face is represented by both the LoopLoop and Loop-
CoEdge data structures. The connectivity of the data
structure for this example is shown in Fig. 8b. The mesh
nodes are stored on the LoopEdges and LoopVertex
data structures. This configuration allows adjacent
source or target faces to share common LoopEdge data
structures and, therefore, the mesh nodes. A LoopCo-
Edge serves to orient the LoopEdge with respect to the
current face, while a LoopEdge may be shared by more
than one face.

Imprinting is a combination of subtraction and
intersection Boolean operations to split up overlapping
faces into new faces that either overlap or do not over-
lap. Boolean operations assume that the faces are ori-
ented in the same direction. In a volume, source and
target faces are naturally oriented opposite each other.
To correct this, when the loop face data structure is
created, the orientation of the source faces is reversed to
match that of the loop faces created from the target
faces. This reversal only affects the loop face data
structure, and has no bearing on the real source or target
faces.

2.6 Project loop faces

In the CCSweep algorithm, projection of the loop faces
does not occur until after gathering and imprinting the
source and target loop faces. Imprinting, however, will
not occur until at least the second layer of the process,

LoopVertex

LoopEdge

LoopCoEdge

LoopLoop

(a)

LoopFace

LoopLoop

LoopCoEdgeLoopCoEdgeLoopCoEdgeLoopCoEdge

LoopEdge LoopEdge LoopEdge LoopEdge

LoopVertex LoopVertex LoopVertexLoopVertex

(b)

Fig. 8a–c LoopFace data
structure

228



since source and target faces cannot both exist on the
first layer. To move the target loop faces to the previous
layers, nodes must be projected from the nodes that have
NULL previous node pointers. This process is called the
projection process. CCSweep uses the affine transfor-
mation described by Knupp [1] with additional refine-
ment of the transformation provided by the weighted
residual errors of several of the closest nodes, as de-
scribed in the following.

Given the affine transformation matrix, [T], between
control loops on two adjacent layers, and nodal posi-
tions nj on the current control loops, and the nodal
positions n^j in the control loop on the previous layer, the
residual error Rj is given as:

Rj ¼ n^j � T½ �nj ð1Þ

For example, Fig. 9a shows a set of four nodal posi-
tions, n1, n2, n3, and n4, in the current control loop and
the corresponding nodal positions that they are verti-
cally connected to; n^1; n

^

2; n
^

3, and n^4. Figure 9b illus-
trates the projection of the nodes on the current control
loop to the previous layer through the transformation
matrix [T]. The residual vectors, R1, R2, R3, and R4,
show the error in the transformation matrix.

Projecting nodal positions, si, onto the new layer
yields nodal positions [T]si with an unknown residual
error, Ri. Ri can be approximated by:

Ri ¼
Xj

k¼1
wkRk ð2Þ

where wk is an inverse distance weighted interpolant,
described by:

wk ¼
d�2k

Pj

n¼1
d�2n

ð3Þ

and

dn ¼ T½ �si � T½ �nnj j ð4Þ

where the operator �j j indicates the magnitude of the
computed vector, and ŝi, the corrected projection, is
computed as:

ŝi ¼ T½ �si þ Ri ð5Þ

For the previous example in Fig. 9a, the projection of
new point, si, to ŝi is illustrated in Fig. 9c.

The current implementation uses the ten closest nodes
in n^j to the position [T]si to compute the approximate
residual error. This is sufficient for accuracy while lim-
iting computational expense. An R-Tree [19] data
structure combined with kth nearest neighbor searches
[20] is employed to determine efficiently the ten closest
nodes. Nodal projections with a combined affine trans-
formation and weighted residual improvement are an
important part of the success of the CCSweep algorithm.
Experience has shown that, if the projections are not
successful, the imprinting process will fail, resulting in
termination of the algorithm. The method described in
this section has been shown by experience to work well,
however, there is no guarantee of success nor is there a
known algorithm with such properties.

2.7 Imprint and merge source and target faces

Prior to imprinting source and target faces, adjacent
target faces are first imprinted and the coincident edges
are consolidated or merged in order to allow traversal of
the loop faces through common LoopEdges and Loop-
Vertices. When LoopFaces are projected upwards, new
loop topology is created on the next layer. Once all the
LoopFaces have been projected, coincident LoopEdges
are merged. Coincident LoopEdges are those that are
defined by the same set of nodes, and with the same start
and end LoopVertices. When two LoopEdges are
merged, the LoopCoEdges that reference these edges are
updated to point to the merged LoopEdge, and to reflect
the possible new orientation of the merged LoopEdge.

Often during projection, new LoopFaces are created
adjacent to existing LoopFaces that were formed from
target faces reached on the new layer. In these situations,
it is possible for adjacent target LoopFaces to have non-
matching LoopEdges due to LoopVertices coming from
the current layer or the layers below. For example, inFig. 9 Weighted residual correction

229



Fig. 10a, a multi-sweep geometry is shown with three
target LoopFaces. In Fig. 10b, LoopFace 1 is projected
two layers through the volume until it reaches the layer
where LoopFace 2 is. While LoopFaces 1 and 2 will
share common mesh nodes at a boundary, their loop
data structure is not conformal. In these cases, the
LoopEdges must be split to match adjacent edges.
Since adjacent target faces must share common nodes,
this is easily done by matching up nodes and split-
ting LoopEdges where an interior node also belongs to
a LoopVertex. After splitting unmatched LoopEdges,
coincident LoopEdges are merged. In Fig. 10c, Loop-
Edge (LE) 2 on LoopFace 1 is split with LoopVertex
(LV) 6 from LoopFace 2 into two new LoopEdges, LE
10 and LE 11, respectively. LE 9 is then merged together
with LE 10 which also causes LV 3 and LV 9 to be
merged. The result is that LoopFaces 1 and 2 now share
a common LoopEdge in their respective topology
graphs.

While there are shared nodes between adjacent or
overlapping target faces, source and target faces are not
guaranteed to share nodes, LoopEdges, or LoopVertic-
es. Intersections of the faces must, therefore, be com-
puted in order to properly determine the imprint. The
imprinting process may introduce new boundary nodes
because of the discrete intersection process it uses during
the imprinting process. After imprinting, any new nodes

created are propagated vertically up or down the vol-
ume, depending on the situation. An overview of the
imprinting process is given in Fig. 11. In the algorithm,
the list of target loop faces, L(t), on the current layer, is
imprinted with the source loop faces, L(s), on the same
layer. The results of the imprint are stored in three lists,
Q(o), Q(s), and Q(t), respectively. Q(o) contains the list
of faces that came from sections of the two faces that
overlapped each other. Q(s) and Q(t) contain the lists of
faces that were exterior to any overlap and were on the
original source or target face, respectively. An example
of the three results is shown in Fig. 4b, when half-circle-
shaped source and target faces are imprinted. The result
of the imprint is that Q(o), Q(s), and Q(t) each contain
one new loop face. After the imprinting, the loop faces in
Q(t) and Q(s) are added to L(t) and L(s), respectively,
for further imprinting until all the faces on the layer are
either common or do not intersect.

The actual imprinting of the LoopFaces occurs in
step 4 of Fig. 11. The imprinting process proceeds by
collecting the nodes on the boundaries of the two
LoopFaces into lists. Line segments from one LoopFace
defined by the connectivity of the boundary node lists
are then intersected with the line segments representing
the other LoopFace. The places of intersection are
stored in the data structure, and the loop face data
structure is updated to reflect intersecting edges and
coincident edges and vertices. Both the faces are tra-
versed, making counter-clock-wise turns at vertices, to
create new LoopLoops and LoopFaces. An outline for
the imprinting and merging operation used in step 4 of
Fig. 11 proceeds as follows:

1. Get boundary nodes from source and target LoopFac-
es: form loops of sequential nodes representing the
boundaries of the source LoopFace and target
LoopFace.

2. Intersect boundaries: calculate intersections of the line
segments formed by the sequential node loops. Insert
new nodes when the loops intersect on a line segment.
Merge boundary nodes when the intersection occurs
exactly on a node. Store the intersection locations on
the nodes.

3. Split LoopEdges: based on the calculated intersec-
tions, split the LoopEdges that own nodes where
intersections occurred. Create LoopVertices at the
locations of intersection.

4. Merge coincident LoopVertices: merge LoopVertices
on the source and target LoopFaces that are now
coincident as a result from the LoopEdge splitting.
Merged vertices will now be referenced by both the
source LoopFace and the target LoopFace.

5. Merge coincident LoopEdges: merge LoopEdges on
the source and target LoopFaces that shared com-
mon start and end vertices. During the merging of
two LoopEdges, the connected LoopCoEdges are
also modified to point to the remaining LoopEdge
and their sense data is updated to reflect a possible
new LoopEdge orientation. After merging two coin-Fig. 10 Imprinting target LoopFaces

230



cident LoopEdges, both source and target LoopFaces
reference the same LoopEdge.

6. Create new LoopLoops: the topology graph of each
LoopFace is traversed to create new LoopLoop data
structures. The new loops are created by making
‘‘left’’ turns at the vertices in the graph.

7. Create new LoopFaces: from the new LoopLoops,
new LoopFaces are created. As the faces are created,
the faces are classified into one of three categories.
The first category is the faces that were interior to the
intersection, or where the faces overlapped. The sec-
ond category is the faces that were exterior to the
intersection and came from the source face. The final
category of faces are the ones that were exterior to the
intersection and came from the target face.

In step 2, intersect boundaries, the intersection is
produced using the procedure outlined for the boundary
imprinting algorithm described by White and Saigal [21].
For this application, LoopFaces represent the faces ra-
ther than CAD faces. Virtual topology operations are
not used, but similar topology operations for LoopFaces
are performed in steps 3–7 of the imprinting and merg-
ing outline. Unlike boundary imprinting, in steps 3–7,
the boundary edges and vertices are merged in addition
to being made coincident. This merging allows the
CCSweep to traverse the topology graph to get from one
face to an adjacent one. Topology traversals are crucial
to the method to build the new LoopLoop data struc-
tures after the intersection process.

In step 6 of the imprint and merge outline, the ori-
ginal LoopFaces are traversed to determine any new
loops of LoopCoEdges resulting from the intersec-
tion process. The traversal starts by traversing each
LoopLoop in a LoopFace in the direction of the first

LoopCoEdge in that LoopLoop. The LoopEdges are
traversed by making ‘‘left turns’’ at each LoopVertex
junction. Making left turns is done by starting with a
current LoopEdge, getting the set of LoopEdges con-
nected to it in the traversal direction, and choosing the
LoopEdge from this set that makes the smallest interior
angle between it and the current LoopEdge. The smallest
interior angle is relative to the orientation of the
LoopFace. When intersections between the LoopFaces
occur and when the left turns are made, LoopEdges of
the other LoopFaces are also traversed because of the
connected topology graph discussed earlier. As the edges
are visited, they are marked to avoid visiting the same
edge twice while traversing the same face.

In step 7 of the imprint and merge outline, the new
LoopFaces are created. The process is simple for loops
where there are only single exterior loops. But, when
multiple interior and exterior loops are present, it be-
comes necessary to determine the exterior loop in which
the interior loops belong. In existing multi-sweep ap-
proaches, the winding number algorithm [15] is used to
determine if an interior loop is internal or external to a
specific exterior loop. This algorithm breaks down
quickly when the loops are not planar. CCSweep over-
comes this difficulty by introducing a triangulation of
the exterior control loops. This is accomplished by first
projecting the nodes on the loops to a best-fit plane [22].
The boundary nodes on the plane are then triangulated
using a Boyer–Watson Delaunay method [23, 24], fol-
lowed by a boundary edge recovery procedure [25]. The
boundary nodes are next projected back to their original
coordinates, bringing the connected triangles with them.
A point on the interior of a loop can now be tested by
projecting it onto the triangulation to determine if the
point lies inside or outside the exterior loop [26]. The

Fig. 11 Algorithm: imprint and
merge source and target faces

231



introduction of the proposed discrete method of deter-
mining the sided-ness of a node, with respect to a non-
planar loop, greatly increases the robustness of the
multi-sweep process and overcomes previous difficulties
introduced by the winding number procedure. With the
discovery of these external to internal relationships, the
LoopFaces resulting from the imprinting process are
constructed.

After the imprinting process on a layer is complete,
any new nodes that are created during this process must
be copied vertically to later enable creation of the trian-
gulated decomposition faces. During the imprinting
process, new nodes can be introduced in three ways: the
source LoopFace, the target LoopFace, and/or both the
source and target LoopFaces. If a node on the boundary
of the target LoopFace intersects the boundary of the
source LoopFace, but is not within geometric tolerance
of another node, the node becomes ‘‘new’’ to the
boundary of the source LoopFace during the intersection
process, and, similarly, for a node on the source Loop-
Face. If the two faces intersect on their boundaries and
no nodes from either boundary are within tolerance of
the intersection, then a new node is created at the point of
intersection and becomes ‘‘new’’ to both boundaries.

New nodes on the boundaries of the LoopFaces from
the target faces are then propagated back upwards
through the volume until the boundary of the original
target face is reached. As the nodes are propagated up-
wards, the next and previous data structures are updated
so that, after completion, the new nodes are similar to
other nodes projected from the target faces. New nodes
on the boundaries of source LoopFaces are propagated
downwards toward other source faces, if any exist.
Nodes that are new to both boundaries are propagated
in both directions. The example shown in Fig. 2b dem-
onstrates that, during the imprinting process of the
LoopFaces shown in Fig. 2a, new nodes may need to be
added to both the source and target LoopFaces to
enable them to exactly match. Figure 12 illustrates the
vertical node propagation of the new nodes.

Allowing new nodes to be added to the source and
target boundaries during the imprint operation is one
of the fundamental advantages of CCSweep over
the existing approaches. This enables boundaries on the
source and target faces to be matched through the
intersection process, without having to previously ensure
that the edge interval sizes on the source and target faces
match. The matching edges can only be determined by
projecting the target faces onto the source faces and then
intersecting them. Through CCSweep, the edge interval
sizes do not need to be matched prior to the algorithm.

2.8 Build decomposition triangulations
and volume decomposition

The decomposition faces are constructed after projecting
and imprinting the target and source faces. As the target
LoopFaces are projected through the volume, nodes on

the interior of the volume are created. These nodes are
gathered into structured columns. The columns begin at
LoopEdges on source faces that were projected from the
target faces and terminate at the original target face
boundaries. The triangulations are formed by following
adjacent nodes vertically through the volume, creating
two triangles between each layer. The vertical nodes and
the triangulations that follow from a single LoopEdge
are considered as a decomposition set. The triangles in
the decomposition set are used to represent a cutting
face during the volume decomposition process. The
decomposition sets are then passed to the virtual
geometry engine [16] to create facet-based surfaces and
to decompose the volume.

As the decomposition sets are inserted into the vol-
ume, they may or may not completely decompose the
volume. For instance, as in Fig. 3a, there are two
decomposition sets shown in Fig. 4c. When the first set
is inserted into the volume, the virtual geometry engine
simply adds the surface as an interior non-manifold
surface. When the second set is inserted, a complete
dissection of the volume occurs and the volume is split
into two volumes, as shown in Fig. 4d. As soon as one
set successfully decomposes the volume into two sepa-
rate volumes, the remaining sets are geometrically sorted
into the proper new volume. The geometric sorting is
done by finding the closest distance to the two volumes.
The volume that is closest is matched up with the
decomposition set, and the process continues until all
the remaining sets are transferred to either of the two
new volumes.

After all of the decomposition sets have been in-
serted, the original volume can be decomposed, resulting
in multiple volumes. Each of these new volumes can now

Fig. 12 Propagation of new nodes added to source and target
LoopFaces after imprinting

232



be meshed automatically with any sweeping approach
that handles many-to-one volumes. Additionally, the
linking meshes and interior nodes are removed. This is
done because the source and target faces may no longer
have boundaries with even numbers of nodes. By
removing the mesh, and reassigning intervals to ensure
an even number of nodes on the boundaries, the linking
surfaces can be remeshed at the mesh density desired by
the user.

3 Results

CCSweep was implemented in C++ within the CU-
BIT [27] framework to take advantage of the required
support algorithms of auto-scheme [18], submapping
[12], mapping [11], paving [13], many-to-one sweeping
[1], and virtual topology operations [16]. Several
examples are given to demonstrate various aspects of
the CCSweep algorithm. These examples cannot be
automatically completed using the published algorithms
[3–5].

3.1 Tapered protrusion example

The geometry of the tapered protrusion example is
shown in Fig. 13a. This example was also shown pre-
viously in Fig. 2 to demonstrate problems with other
multi-sweep approaches while only using node match-
ing in the imprinting process. CCSweep successfully
decomposes the model into two separate parts. The
algorithm generates four decomposition sets to
accomplish the decomposition. The result of decom-
position performed by CCSweep is shown in Fig. 13b.
CCSweep is able to correctly match the interior loops
from the source and target faces without manually
setting the intervals along the matching edges. After
automatic decomposition by CCSweep, the part can be
meshed. The resulting mesh, after choosing an appro-
priate mesh size and again applying auto-scheme
selection to determine the sweeping directions of the
two new volumes, is shown in Fig. 13c. This example
demonstrates that CCSweep is able to match edges
through the volume without first matching the interval
sizes on the edges.

3.2 Piston section example

The piston section shown in Fig. 14a is a portion of a
CAD model used to model an engine piston. This
example demonstrates CCSweep on a volume that does
not contain strictly planar sweeping layers. Additionally,
because of the cylindrical protrusion, the proposed dis-
crete inside/outside testing is utilized to determine the
matching of internal and external loops during the
imprinting process. CCSweep decomposes the original
volume by creating four decomposition sets to cut the

volume into three many-to-one meshable volumes,
shown in Fig. 14b. Following the decomposition, the
volume is meshed with a mesh size equal to twice the size
of the smallest feature in the model. The resulting mesh
is shown in Fig. 14c.

3.3 Bulkhead example

The bulkhead CAD geometry is shown in Fig. 15a. This
example demonstrates CCSweep on parts with small
features and interior through-holes. As identified in
Fig. 15a, the small features are ledges which create small
edges with lengths as small as 0.008 units, where, for
comparison, one of the side edges is of length 2.30 units.
In previous multi-sweep approaches, even if the interior

Fig. 13 a Tapered protrusion example. b Decomposition. c Mesh

233



loop classifications are successful, a smaller mesh size
would be required to successfully generate a mesh be-
cause of the small features. CCSweep must also use a
small discretization size but, after CCSweep decomposes
the bulkhead into the four separate volumes shown in
Fig. 15b, a much coarser element size can be used to
mesh the resulting volumes. CCSweep creates 6 cutting
faces, or decomposition sets, to decompose the model.

The resulting mesh of the model, with an element size of
0.15 units, is shown in Fig. 15c.

3.4 Brake example

The final example is a CAD model of a part used in a
braking system. The model is shown in Fig. 16a. This
example demonstrates CCSweep on a model that has

Fig. 15 a Bulkhead model with small features. b Decomposition.
c MeshFig. 14 a Different views of piston section geometry. b Decompo-

sition. c Mesh

234



non-planar projections combined with edges that match
across the volume. In other approaches, several of the
element sizes on edges in the model would have to be
manually matched. Additionally, because of the tapered
face on the left of Fig. 16a, the projections will not
properly align the edges. For other approaches, this
would further complicate the node matching process.
CCSweep is able to automatically decompose the model
into four separate volumes using sixteen decomposition
sets, as illustrated in Fig. 16b. Each of the volumes can
then be automatically meshed using many-to-one
sweeping. The resulting mesh is shown in Fig. 16c.

4 Conclusions

CCSweep is a new algorithm for automatically decom-
posing multi-sweep volumes into volumes that can be
readily meshed with traditional hexahedral sweeping
techniques. CCSweep achieves this by discretizing the
linking faces of the volumes with structured quadrilat-
eral elements. The structured discretization provides a
layering system to traverse the volume vertically. The
target faces are approximated using the loop face data
structure consisting of the ordered boundary nodes. The
approximated target faces are then pushed through the
volume. This is accomplished by following the exterior
layering and projecting new interior nodes. The nodal
projections are calculated through affine transforma-
tions corrected locally by approximate residual errors.
Once projected onto source faces, the approximated
source and target faces are imprinted and merged, en-
abling source faces to topologically match target faces.
Then, the interior nodes created in the projection pro-
cess and the results from the imprinting are used to
create interior triangulations representing cutting sur-
faces to decompose the volume. These triangulations are
passed to a virtual topology operator to decompose the
volumes along these triangulations. The volumes are
decomposed into separate volumes which are individu-
ally meshable with existing many-to-one hexahedral
sweeping algorithms. CCSweep successfully enables
automatic mesh generation of multi-sweep geometries.

CCSweep overcomes the main problems of existing
approaches to meshing multi-sweep volumes. Specifi-
cally, CCSweep uses discrete boundary intersections to
perform imprint operations of projected target faces
with source faces, enabling the algorithm to handle
mismatched edge sizes. The discretization size CCSweep
uses to imprint source and target faces is decoupled from
the mesh size, which enables more accurate and stable
imprinting. This decoupling is facilitated by the
decomposition of the multi-sweep volume, which allows
users to mesh and remesh new volumes at various mesh
densities, without having to repeat projecting and
imprinting operations. CCSweep contains a stable
method to handle inside–outside testing for handling
source or target faces that have interior holes. Multiple
examples demonstrate that the CCSweep algorithm is
both effective and robust.

The implementation of the CCSweep algorithm
demonstrates its ability to automatically decompose
multi-sweep volumes into many-to-one volumes. The
resulting volumes are easily meshed automatically.
CCSweep decouples the discretization size it uses to
decompose the volumes and the size used to achieve the
final mesh. This decoupling enables greater flexibility for
the user when generating large assemblies of meshes and
performing convergence studies. Importantly, the
decoupling allows greater flexibility in resolving the
intersections of the source and target faces, improving
the robustness of the overall algorithm.

Fig. 16 a Wire frame and hidden line views of brake geometry.
b Decomposition. c Mesh

235



References

1. Knupp P (1998) Next-generation sweep tool: a method for
generating all-hex meshes on two-and-one-half dimensional
geometries. In: Proceedings of the 7th international meshing
roundtable, Dearborn, Michigan, October 1998, pp 505–513

2. Lai M, Benzley S, Sjaardema G, Tautges T (1996) A multiple
source and target sweeping method for generating all-hexahe-
dral finite element meshes. In: Proceedings of the 5th interna-
tional meshing roundtable, Pittsburgh, Pennsylvania, October
1996, pp 217–228

3. Blacker T (1996) The Cooper tool. In: Proceedings of the 5th
international meshing roundtable, Pittsburgh, Pennsylvania,
October 1996, pp 13–30

4. Lai M, Benzley S, White D (2000) Automated hexahedral mesh
generation by generalized multiple source to multiple target
sweeping. Int J Num Methods Eng 49:261–275

5. Shepherd J, Mitchell S, Knupp P, White D (2000) Methods for
multisweep automation. In: Proceedings of the 9th interna-
tional meshing roundtable, New Orleans, Los Angeles, October
2000, pp 77–87

6. Schneiders R, Schindler R, Weiler F (1996) Octree-based
Generation of hexahedral element meshes. In: Proceedings of
the 5th international roundtable, Pittsburgh, Pennsylvania,
October 1996, pp 205–216

7. Tautges T, Blacker T, Mitchell S (1996) The Whisker weaving
algorithm: a connectivity-based method for constructing all-
hexahedral finite element meshes. Int J Num Methods Eng
39:3327–3349

8. Blacker T, Meyers R (1993) Seams and wedges in plastering: a
3D hexahedral mesh generation algorithm. Eng Comput 2:
83–93

9. Ymakawa S, Shimada K (2001) Hexhoop: modular templates
for converting a hex-dominant mesh to an all-hex mesh. In:
Proceedings of the 10th international meshing roundtable,
Newport Beach, California, October 2001, pp 235–246

10. Staten M, Canann S, Owen S (1998) BMSWEEP: locating
interior nodes during sweeping. In: Proceedings of the 7th
international meshing roundtable, Dearborn, Michigan, Octo-
ber 1998, pp 7–18

11. Cook W, Oaks W (1983) Mapping methods for generating
three-dimensional meshing. Comput Mech Eng 1:67–72

12. Whiteley M, White D, Benzley S, Blacker T (1996) Two and
three-quarter dimensional meshing facilitators. Eng Comput
12:155–167

13. Blacker T (1991) Paving: a new approach to automated
quadrilateral mesh generation. Int J Num Methods Eng
32:811–847

14. Owen S, Staten M, Canann S, Saigal S (1999) Q-morph: an
indirect approach to advancing front quad meshing. Int J Num
Methods Eng 9:1317–1340

15. O‘Rourke J (1998) Computational geometry in C. Cambridge
University Press, Cambridge

16. Kraftcheck J (2000) Virtual geometry: a mechanism for modi-
fication of cad model topology for improved meshability. PhD
thesis, University of Wisconsin, Madison

17. Sheffer A, Blacker T, Clements J, Bercovier M (1997) Virtual
topology operators for meshing. In: Proceedings of the 6th
international meshing roundtable, Park City, Utah, October
1997, pp 49–66

18. White D, Tautges T (2000) Automatic scheme selection for
Toolkit hex meshing. Int J Methods Eng 49:127–144

19. Guttman A (1984) R-Trees: a dynamic index structure for
spatial searching. In: Proceedings of the ACM international
conference on management of data (SIGMOD’84), Boston,
Massachusetts, June 1984, pp 47–57

20. Roussopoulos N, Kelley S, Frederic V (1995) Nearest neighbor
queries. In: Proceedings of the ACM international conference
on management of data (SIGMOD’95), San Jose, California,
May 1995, pp 71–79

21. White D, Saigal S (2002) Improved imprint and merge for
conformal meshing. In: Proceedings of the 11th international
meshing roundtable, Ithaca, New York, September 2002, pp
285–296

22. Pratt V (1987) Direct least-squares fitting of algebraic surfaces.
Comput Graphics 21:145–152

23. Bowyer A (1981) Computing Dirichlet tessellations. Comput J
24(2):162–166

24. Watson D (1981) Computing the Delaunay tesselation with
application to Voronoi polytopes. Comput J 24:167–172

25. George P, Hecht F, Saltel E (1991) Automatic mesh generator
with specified boundary. Comput Methods Appl Mech Eng
92:269–288

26. Owen S, White D (2001) Mesh-based geometry: a systematic
approach to constructing geometry from a finite element mesh.
In: Proceedings of the 10th international meshing roundtable,
Newport Beach, California, October 2001, pp 83–96

27. Shepherd J (11/2003) CUBIT home page. Available at
http://cubit.sandia.gov.

236


