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Greedy Algorithms with Regard to Multivariate
Systems with Special Structure

V. N. Temlyakov

Abstract. The question of finding an optimal dictionary for nonlinearm-term approx-
imation is studied in this paper. We consider this problem in the periodic multivariate
(d variables) case for classes of functions with mixed smoothness. We prove that the
well-known dictionaryUd which consists of trigonometric polynomials (shifts of the
Dirichlet kernels) is nearly optimal among orthonormal dictionaries. Next, it is estab-
lished that for these classes near-bestm-term approximation, with regard toUd, can be
achieved by simple greedy-type (thresholding-type) algorithms.

The univariate dictionaryU is used to construct a dictionary which is optimal among
dictionaries with the tensor product structure.

1. Introduction

This paper is devoted to nonlinear approximation, namely, tom-term approximation.
Nonlinearm-term approximation is important in applications in image and signal pro-
cessing (see, for instance, the recent survey [D]). One of the major questions in approx-
imation (theoretical and numerical) is: What is an optimal method? We discuss here this
question in a theoretical setting, with the only criterion of the quality of the approxi-
mating method its accuracy. One more important point in the setting of the optimization
problem is to specify a set of methods over which we are going to optimize. Most of the
problems which approximation theory deals with are of this nature. Let us give some
examples from classical approximation theory. These examples will help us understand
the question we are studying in this paper.

Example 1. When we are searching for thenth best trigonometric approximation of a
given function we are optimizing, in the sense of accuracy over the subspace of trigono-
metric polynomials of degreen.

Example 2. When we are solving the problem on Kolmogorov’sn-width for a given
function class we are optimizing, in the sense of accuracy for a given class over all
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subspaces of dimensionn.

Example 3. When we find the bestm-term approximation of a given function with re-
gard to a given system of functions (dictionary), we are optimizing over allm-dimensional
subspaces spanned by elements from a given dictionary.

Example 2 is a development of Example 1 in the sense that in Example 2 we are
looking for an optimaln-dimensional subspace instead of being confined to a given one
(trigonometric polynomials of degreen). Example 3 is a nonlinear analog of Example 1,
where instead of a trigonometric system we take a dictionaryD and allow approximating
elements fromD to depend on a function. In this paper we take some steps in the direction
of developing Example 3 to a setting which is a nonlinear analog of Example 2. In other
words, we want to optimize over some sets of dictionaries. We will discuss two classical
structural properties of the dictionaries:

1. orthogonality; and
2. tensor product structure (multivariate case).

Denote byD a dictionary in a Banach spaceX and by

σm( f,D)X := inf
gi∈D,ci ,i=1,...,m

∥∥∥∥∥ f −
m∑

i=1

ci gi

∥∥∥∥∥
X

the bestm-term approximation off with regard toD. For a function classF ⊂ X and
a collectionD of dictionaries we consider

σm(F,D)X := sup
f ∈F

σm( f,D)X,

σm(F,D)X := inf
D∈D

σm(F,D)X.

Thus the quantityσm(F,D)X gives the sharp lower bound for the bestm-term approxi-
mation of a given function classF with regard to any dictionaryD ∈ D.

Denote byO the set of all orthonormal dictionaries defined on a given domain.
B. S. Kashin [K] proved that for the classHr,α, r = 0,1, . . . , α ∈ (0,1], of univariate
functions such that

‖ f ‖∞ + ‖ f (r )‖∞ ≤ 1 and | f (r )(x)− f (r )(y)| ≤ |x − y|α, x, y ∈ [0,1],

we have

σm(H
r,α,O)L2 ≥ C(r, α)m−r−α.(1.1)

It is interesting to remark that we cannot prove anything like (1.1) withL2 replaced by
L p, p < 2. We proved (see [KT]) that there exists8 ∈ O such that for anyf ∈ L1(0,1)
we haveσ1( f,8)L1 = 0. The proof from [KT] also works forL p, p < 2, instead ofL1.

Remark 1.1. For any 1≤ p < 2 there exists a complete inL2(0,1) orthonormal
system8 such that for eachf ∈ L p(0,1) we haveσ1( f,8)L p = 0.
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This remark means that to obtain nontrivial lower bounds forσm( f,8)L p , p < 2, we
need to impose additional restrictions on8 ∈ O. One way of imposing restrictions was
discussed in [KT], and we present another in Section 4.

In this paper we discuss the approximation of multivariate functions. It is convenient for
us to present results in the periodic case. We consider classes of functions with bounded
mixed derivativeMWr

q (see the definition in Section 3) and classes with restriction of
Lipschitz type on mixed differenceM Hr

q (see the definition in Section 2). These classes
are well known (see, for instance, [T2]) for their importance in numerical integration, in
finding universal methods for the approximation of functions of several variables, in the
average case setting of approximation problems for the spaces equipped with the Wiener
sheet measure (see [W]), and in other problems. In Section 4 we prove

σm(M Hr
q ,O)L2 À m−r (logm)(d−1)(r+1/2), 1≤ q <∞,(1.2)

σm(MWr
q ,O)L2 À m−r (logm)(d−1)r , 1≤ q <∞.(1.3)

In Sections 2 and 3 we prove that the orthogonal basisUd, which we construct at the
end of this section, provides optimal upper estimates (like (1.2) and (1.3)) in bestm-term
approximation of the classesM Hr

q andMWr
q in the L p-norm, 2≤ p <∞. Moreover,

we prove there that for all 1< q, p < ∞ the order of bestm-term approximation
σm(M Hr

q ,U
d)L p and σm(MWr

q ,U
d)L p can be achieved by a greedy-type algorithm

Gp(·,Ud). Assume that a given system9 of functionsψI indexed by dyadic intervals
can be enumerated in such a way that{ψI j }∞j=1 is a basis forL p. Then we define the
greedy algorithmGp(·, 9) as follows. Let

f =
∞∑

j=1

cI j ( f, 9)ψI j

and

cI ( f, p, 9) := ‖cI ( f, 9)ψI ‖p.

ThencI ( f, p, 9)→ 0 as|I | → 0. Denote3m as a set ofm dyadic intervalsI such that

min
I∈3m

cI ( f, p, 9) ≥ max
J /∈3m

cJ( f, p, 9).(1.4)

We defineGp(·, 9) by the formula

Gp
m( f, 9) :=

∑
I∈3m

cI ( f, 9)ψI .

Remark 1.2. Let8 = {ϕk}∞k=1 be a basis for a Banach spaceX and‖ϕk‖X = 1, k =
1,2, . . . . Assume that we can calculate theX-norm of a functionf ∈ X and eachck( f )
from the expansion

f =
∞∑

k=1

ck( f )ϕk

in a finite number of steps. Then there is an algorithm which for anyf ∈ X gives the
biggest|ck( f )| after a finite number of steps.
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Proof. We have, for anyf ∈ X,

|ck( f )| ≤ B‖ f ‖X, k = 1,2, . . . ,

with a constantB and

lim
n→∞

∥∥∥∥∥ ∞∑
k=n+1

ck( f )ϕk

∥∥∥∥∥
X

= 0.

Let f 6= 0. We find a nonzero coefficientcl ( f ) and denoteε := |cl ( f )|/B. Next, we
find n such that ∥∥∥∥∥ ∞∑

k=n+1

ck( f )ϕk

∥∥∥∥∥
X

< ε.

This implies that for allk > n we have|ck( f )| < |cl ( f )| and, therefore, we can restrict
our search for the largest|ck( f )| to 1≤ k ≤ n.

Remark 1.3. In this paper, we study only theoretical aspects of the efficiency ofm-
term approximation and possible ways to realize this efficiency. An upper estimate for
σm( f, 9) is in essence a theorem of existence and does not provide a procedure to
construct an approximant. The above defined “greedy algorithm”Gp

m( f, 9) gives a
procedure to construct an approximant which turns out to be a good approximant (see
(1.7) below). The procedure of constructingGp

m( f, 9) is not a numerical algorithm
ready for computational implementation. Therefore it would be more precise to call this
procedure a “theoretical greedy algorithm” or “stepwise optimizing process.” Keeping
this remark in mind we, however, use the term “greedy algorithm” because it has been
used in previous papers and has become a standard name for procedures likeGp

m( f, 9)
and for more general procedures of this type (see, for instance, [D]).

The question of constructing a procedure (theoretical algorithm) which realizes (in
the sense of order) the best possible accuracy is a very important one and we discuss it
in detail. LetAm(·,D) be a mapping which maps eachf ∈ X to a linear combination of
m elements from a given dictionaryD. Then the best we can hope for with this mapping
is to have, for eachf ∈ X,

‖ f − Am( f,D)‖X = σm( f,D)X(1.5)

or a little weaker

‖ f − Am( f,D)‖X ≤ C(D, X)σm( f,D)X.(1.6)

There are some known trivial and nontrivial examples when (1.5) holds in a Hilbert space
X. We do not touch this kind of relations in this paper. Concerning (1.6) it is proved in
[T3] that, for any basis9 which isL p-equivalent to the univariate Haar basis, we have

‖ f − Gp
m( f, 9)‖L p ≤ C(p)σm( f, 9)p, 1< p <∞.(1.7)

However, as is shown in [T4] and in Section 5, the inequality (1.7) does not hold for
particular dictionaries with tensor product structure. We have, for instance (see Section 5),

sup
f ∈L p

‖ f − Gp
m( f,Ud)‖L p/σm( f,Ud)L p À (logm)(d−1)|1/2−1/p|.(1.8)
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The inequality (1.8) shows that using the algorithmGp(·,Ud)we lose near-best accuracy
for some functionsf ∈ L p, p 6= 2. In the light of (1.8) the results of Sections 2 and 3
look encouraging for usingGp(·,Ud): we have, for 1< q, p <∞ and big enoughr :

sup
f ∈M Hr

q

‖ f − Gp
m( f,Ud)‖p ³ σm(M Hr

q ,U
d)p ³ m−r (logm)(d−1)(r+1/2),(1.9)

sup
f ∈MWr

q

‖ f − Gp
m( f,Ud)‖p ³ σm(MWr

q ,U
d)p ³ m−r (logm)(d−1)r ,(1.10)

where we use the abbreviated notation‖ · ‖p := ‖ · ‖L p .
Comparing (1.9) with (1.2) and (1.10) with (1.3), we conclude that the dictionary

Ud is the best (in the sense of order) among all orthogonal dictionaries form-term
approximation of the classesM Hr

q andMWr
q in L p where 1< q <∞ and 2≤ p <∞.

The dictionaryUd has one more important feature. The near-bestm-term approximation
of functions fromM Hr

q andMWr
q in theL p-norm can be realized by the simple greedy-

type algorithmGp(·,Ud) for all 1< q, p <∞.
Let us now compare the performance ofUd with the performance of the best dictio-

nary with a tensor product structure. Denote by5d the set of all functions of the form
u1(x1) . . .ud(xd), whereuj ∈ L p, j = 1, . . . ,d. Then it is clear that for any dictionary
D, with a tensor product structure, we haveD ⊂ 5d, and

σm( f,D)p ≥ σm( f,5d)p.

The problem of estimatingσm( f,52)2 (bestm-term bilinear approximation inL2) is a
classical one and was considered for the first time by E. Schmidt [S] in 1907. For many
function classesF an asymptotic behavior ofσm(F,52)p is known. For instance, the
relation

σm(MWr
q ,5

2)p ³ σm(M Hr
q ,5

2)p ³ m−2r+(1/q−max(1/2,1/p))+(1.11)

for r > 1 and 1≤ q, p ≤ ∞ follows from the more general results in [T5]. In the
cased > 2 almost nothing is known. There is (see [T6]) an upper estimate in the case
q = p = 2:

σm(MWr
2 ,5

d)2¿ m−dr/(d−1).(1.12)

Comparing (1.9), (1.10) with (1.11), (1.12) we conclude thatm-term approximation with
regard toUd does not provide an optimal rate of approximation among dictionaries with
a tensor product structure. This observation motivated us to studym-term approximation
with regard to the following dictionary:

Y := (U × L p) ∪ (L p ×U ) = {y(x1, x2)}

with y(x1, x2) of the form y(x1, x2) = UI (x1)v(x2),UI ∈ U, v ∈ L p, or y(x1, x2) =
v(x1)UI (x2), v ∈ L p,UI ∈ U . We prove, in Section 6, that we have, forr > (1/q −
1/p)+:

σm(M Hr
q ,Y)p ³ σm(MWr

q ,Y)p ³ m−2r+(1/q−1/p)+ , 1< q, p <∞.(1.13)
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Comparing (1.13) with (1.11) we realize that for 1< q ≤ p ≤ 2 and 1< p ≤ q <∞
the dictionaryY, which is much smaller than52, provides optimalm-term bilinear
approximation for the classesM Hr

q andMWr
q . We also make the following important

point. The error of approximation in (1.13) can be achieved by combination of a linear
method and the greedy algorithmGp(·,U2).

We define at the end of this section a system of orthogonal trigonometric polynomials
which is optimal in a certain sense (see above) form-term approximations. Variants of
this system are well known and very useful in interpolation of functions by trigonometric
polynomials. We define first the systemU := {UI } in the univariate case. Denote

U+n (x) :=
2n−1∑
k=0

eikx = ei 2nx − 1

eix − 1
, n = 0,1,2, . . . ,

U+n,k(x) := ei 2nxU+n (x − 2πk2−n), k = 0,1, . . . ,2n − 1,

U−n,k(x) := e−i 2nxU+n (−x + 2πk2−n), k = 0,1, . . . ,2n − 1.

It will be more convenient for us to normalize inL2 the system of functions{U+m,k,U−n,k}
and to enumerate it by dyadic intervals. We writeU[0,1)(x) := 1,

UI (x) := 2−n/2U+n,k(x) with I = [(k+ 1
2)2
−n, (k+ 1)2−n

]
and

UI (x) := 2−n/2U−n,k(x) with I = [k2−n, (k+ 1
2)2
−n
]
.

Denote

D+n := {I : I = [(k+ 1
2

)
2−n, (k+ 1)2−n

]
, k = 0,1, . . . ,2n − 1

}
and

D−n := {I : I = [k2−n, (k+ 1
2)2
−n], k = 0,1, . . . ,2n − 1

}
,

D+0 = D−0 = D0 := [0,1), D :=
⋃
n≥1

(D+n ∪ D−n ) ∪ D0.

It is easy to check that for anyI , J ∈ D, I 6= J we have

〈UI ,UJ〉 = (2π)−1
∫ 2π

0
UI (x)ŪJ(x)dx = 0,

and

‖UI ‖22 = 1.

We use the notations forf ∈ L1:

f I := 〈 f,UI 〉 = (2π)−1
∫ 2π

0
f (x)ŪI (x)dx, f̂ (k) := (2π)−1

∫ 2π

0
f (x)e−ikx dx,

and

δ+s ( f ) :=
2s+1−1∑
k=2s

f̂ (k)eikx, δ−s ( f ) :=
−2s∑

k=−2s+1+1

f̂ (k)eikx, δ0( f ) := f̂ (0).
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Then, for eachs and f ∈ L1, we have

δ+s ( f ) =
∑
I∈D+s

f I UI , δ−s ( f ) =
∑
I∈D−s

f I UI , δ0( f ) = f[0,1).

Moreover, the following important analog of the Marcinkiewicz theorem holds

‖δ+s ( f )‖p
p ³

∑
I∈D+s

‖ f I UI ‖p
p, ‖δ−s ( f )‖p

p ³
∑
I∈D−s

‖ f I UI ‖p
p,(1.14)

for 1< p <∞ with constants depending only onp.
We remark that

‖UI ‖p ³ |I |1/p−1/2, 1< p ≤ ∞,(1.15)

which implies that for any 1< q, p <∞
‖UI ‖p ³ ‖UI ‖q|I |1/p−1/q.(1.16)

In the multivariate case ofx = (x1, . . . , xd) we define the systemUd as the tensor
product of the univariate systemsU . Let I = I1× · · · × Id, I j ∈ D, j = 1, . . . ,d, then

UI (x) :=
d∏

j=1

UIj (xj ).

For s= (s1, . . . , sd) andε = (ε1, . . . , εd), εj = + or−, denote

Dε
s := {I : I = I1× · · · × Id, I j ∈ D

εj
sj , j = 1, . . . ,d}.

It is easy to see that (1.15) and (1.16) are also true in the multivariate case. It is not
difficult to derive from (1.14) that for anyε we have

‖δεs( f )‖p
p ³

∑
I∈Dε

s

‖ f I UI ‖p
p, 1< p <∞,(1.17)

with constants depending onp andd. Here we denote

δεs( f ) :=
∑

k∈ρ(s,ε)
f̂ (k)ei (k,x),

where

ρ(s, ε) := ε1[2s1,2s1+1− 1)× · · · × εd[2sd ,2sd+1− 1).

We will often use the following inequalities:(∑
s,ε

‖δεs( f )‖p
p

)1/p

¿ ‖ f ‖p ¿
(∑

s,ε

‖δεs( f )‖2p
)1/2

, 2≤ p <∞,(1.18)

(∑
s,ε

‖δεs( f )‖2p
)1/2

¿ ‖ f ‖p ¿
(∑

s,ε

‖δεs( f )‖p
p

)1/p

, 1< p ≤ 2,
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which are corollaries of the well-known Littlewood–Paley inequalities

‖ f ‖p ³

∥∥∥∥∥∥∥
∑

s

∣∣∣∣∣∑
ε

δεs( f )

∣∣∣∣∣
2
1/2

∥∥∥∥∥∥∥
p

.(1.19)

We note that the systemUd
I can be enumerated in such a way that{UI l }∞l=1 forms a

basis for eachL p, 1 < p < ∞. Indeed, let us first enumerate vectorss = (s1, . . . , sd)

with integer nonnegative components in such a way that for allj = 1,2, . . . we have
‖sj ‖∞ ≤ ‖sj+1‖∞. Then we enumerate all the dyadic intervals inD following the rule:
we enumerate the intervals fromDε

sj+1 after enumerating all the intervals fromDε
sj for

all ε. Any partial sum with regard to{UI l }∞l=1 can be represented in the form

n−1∑
j=1

∑
ε

δεsj ( f )+
∑
I∈3n

f I UI =: f 1+ f 2,

where3n ⊂
⋃
ε Dε

sn . Then we get from (1.19):∥∥ f 1
∥∥

p ¿ ‖ f ‖p.(1.20)

In order to prove the estimate ∥∥ f 2
∥∥

p
¿ ‖ f ‖p(1.21)

we use the following inequalities:

‖δεs( f )‖p ¿
∥∥∥∥∥∑

ε

δεs( f )

∥∥∥∥∥
p

¿ ‖ f ‖p

and the relation (1.17). Thus, the norms of the operators of taking partial sums with
regard to{UI l }∞l=1 are uniformly bounded. This implies that{UI l }∞l=1 is a basis forL p,
1< p <∞. We remark that P. Wojtaszczyk [Wo] proved recently that the systemU is
equivalent to the Haar system in allL p, 1< p <∞, and, therefore, is an unconditional
basis for allL p, 1< p <∞.

In Sections 2 and 3 we study the efficiency of greedy algorithms with regard toUd on
the classes of functions with bounded mixed derivative or difference.

2. The Upper Estimates for the ClassesMH r
q

In this section we study the classesM Hr
q . We define these classes as follows (see, for

instance, [T2, p. 196]). Let1l
u( j ) denote the operator of thel th difference with step

u in the variablexj . For a nonempty sete of natural numbers from [1,d] and a vector
t = (t1, . . . , td) we denote

1l
t (e) :=

∏
j∈e

1l
tj ( j ).
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We define the classM Hr
q as the set off ∈ Lq such that‖ f ‖q ≤ 1 and for any nonempty

sete we have

‖1l
t (e) f (x)‖q ≤

∏
j∈e

|tj |r

with l = [r ] + 1, where [a] denotes the integral part ofa. We first prove two auxiliary
results.

Lemma 2.1. For a fixed real number a denote

hn(s) := 2−n(r+1/2)+a(‖s‖1−n),

and for f ∈ M Hr
q consider the sets

A( f,n,a) := {I : | f I | ≥ hn(s), if I ∈ Dε
s}, n = 1,2, . . . .

Then if r> 1/q − 1
2 − a we have

#A( f,n,a)¿ 2nnd−1

with a constant independent of n and f.

Proof. It is known (see [T1, p. 33] and [T2, p. 197]) that forf ∈ M Hr
q we have for

all ε

‖δεs( f )‖q ¿ 2−r ‖s‖1.(2.1)

For convenience we will omitε in the notationsδεs( f ), Dε
s, Nε

s (see below) meaning
that we are estimating a quantityδεs( f ) or Nε

s for a fixedε, and all the estimates we are
going to do are the same for allε.

Using the following two properties of the system{UI }:
‖δs( f )‖qq ³

∑
I∈Ds

‖ f I UI ‖qq,(2.2)

‖UI ‖q ³ 2‖s‖1(1/2−1/q), I ∈ Ds,(2.3)

we get, from (2.1), ∑
I∈Ds

| f I |q ¿ 2−‖s‖1(rq+q/2−1).(2.4)

DenoteNε
s := #(A( f,n,a) ∩ Dε

s). Then (2.4) implies

Nshn(s)
q ¿ 2−‖s‖1(rq+q/2−1)

and

Ns¿ 2n(r+1/2+a)q2−‖s‖1(rq+q/2−1+aq).

Using the assumptionr > 1/q − 1
2 − a, we get∑
‖s‖1≥n

Ns¿ 2nnd−1
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and ∑
ε

∑
‖s‖1≥n

Nε
s ¿ 2nnd−1.(2.5)

It remains to remark that for‖s‖1 < n we have the following trivial estimates:∑
ε

∑
‖s‖1<n

Nε
s ≤

∑
ε

∑
‖s‖1<n

#Dε
s ¿ 2nnd−1.(2.6)

Combining (2.5) and (2.6) we complete the proof.

Lemma 2.2. Let hn(s) and A( f,n,a) be from Lemma2.1and let a> − 1
2. For each n

denote

gn( f ) :=
∑

I∈A( f,n,a)

f I UI , f n := f − gn( f ).

Then for any f ∈ M Hr
q , and p ≥ 2 satisfying1 < q ≤ p < ∞, we have, for

r > (a+ 1
2)(p/q − 1),

‖ f n‖p ¿ 2−rnn(d−1)/2

with a constant independent of n and f.

Proof. For 2≤ p <∞ we have, by a corollary to the Littlewood–Paley inequalities,

‖ f n‖2p ¿
∑
ε

(∑
s

‖δεs( f n)‖2p
)

=
∑
ε

( ∑
‖s‖1<n

‖δεs( f n)‖2p +
∑
‖s‖1≥n

‖δεs( f n)‖2p
)
=:
∑
ε

(6′ +6′′).

We first estimate6′. By the definition ofA( f,n,a) we have, for allI ,

| f n
I | < hn(s), I ∈ Ds.(2.7)

Therefore,

‖δs( f n)‖p
p ¿ hn(s)

p
∑
I∈Ds

‖UI ‖p
p ¿ 2−n(r+1/2+a)p2‖s‖1(a+1/2)p

and ∑
‖s‖1<n

‖δs( f n)‖2p ¿ 2−2rnnd−1.(2.8)

We proceed to estimating6′′ now. We have

‖δs( f n)‖p
p ¿

∑
I∈Ds

‖ f n
I UI ‖p

p ¿ (hn(s)2
‖s‖1(1/2−1/p))p−q

∑
I∈Ds

‖ f n
I UI ‖qp(2.9)

¿ (hn(s)2
‖s‖1(1/2−1/p))p−q

∑
I∈Ds

‖ f n
I UI ‖qq2‖s‖1(1/q−1/p)q.
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Using (2.1) we get∑
I∈Ds

‖ f n
I UI ‖qq ≤

∑
I∈Ds

‖ f I UI ‖qq ¿ ‖δs( f )‖qq ¿ 2−r ‖s‖1q(2.10)

and from (2.9)

‖δs( f n)‖p
p ¿ 2−n(r+1/2+a)(p−q)2‖s‖1(−rq+(a+1/2)(p−q)).(2.11)

Using the assumptionr > (a+ 1
2)(p/q − 1) we get

6′′ ¿ 2−2rnnd−1.(2.12)

Combining (2.8) and (2.12) we complete the proof of Lemma 2.2.

It is clear from the proof of Lemma 2.2 that the following statement holds:

Lemma 2.2′. Let hn(s) be from Lemma2.1and let a> − 1
2. Assume that a function f

satisfies the restrictions

‖δεs( f )‖q ¿ 2−r ‖s‖1, 1< q <∞,
| f I | ¿ hn(s), I ∈ Dε

s,

with constants independent of f, n, and s. Then formax(2,q) ≤ p < ∞ and r >
(a+ 1

2)(p/q − 1) we have

‖ f ‖p ¿ 2−rnn(d−1)/2

with a constant independent of n and f.

Consider the following greedy-type algorithmGc,a. Take a real numberaand rearrange
the sequence| f I ||I |a in the decreasing order

| f I 1||I 1|a ≥ | f I 2||I 2|a ≥ · · · .
Define

Gc,a
m ( f,Ud) :=

m∑
k=1

f I kUI k .

Theorem 2.1. Let 1 < q < ∞ and letmax(2,q) ≤ p < ∞. Then for any a> − 1
2

and r > max{(a+ 1
2)(p/q − 1),1/q − 1

2 − a} we have

sup
f ∈M Hr

q

‖ f − Gc,a
m ( f,Ud)‖p ³ σm(M Hr

q ,U
d)p ³ m−r (logm)(d−1)(r+1/2).

Proof. Let m be given. Denote byn(m) the biggestn satisfying

sup
f ∈M Hr

q

#A( f,n,a) ≤ m.
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Lemma 2.1 implies

2n(m) À m(logm)1−d,

and for

g := f − Gc,a
m ( f,Ud) we have |gI | ≤ hn(m)(s), I ∈ Ds.

Similarly to (2.10) it is easy to check that

‖δs(g)‖q ¿ 2−r ‖s‖1

with a constant independent ofs andg. Applying Lemma 2.2′ to g we get

‖g‖p ¿ 2−rn(m)n(m)(d−1)/2¿ m−r (logm)(d−1)(r+1/2),

that proves the upper estimate in Theorem 2.1:

sup
f ∈M Hr

q

‖ f − Gc,a
m ( f,Ud)‖p ¿ m−r (logm)(d−1)(r+1/2).

The lower estimate

σm(M Hr
q ,U

d)p À m−r (logm)(d−1)(r+1/2)

follows from Theorem 4.2.
The proof of Theorem 2.1 is complete.

Consider now theLb-greedy algorithmGb(·,Ud). Take a number 1≤ b ≤ ∞ and
rearrange the sequence{‖ f I UI ‖b} in decreasing order

‖ f I1UI1‖b ≥ ‖ f I2UI2‖b . . . .
Define

Gb
m( f,Ud) :=

m∑
k=1

f IkUIk .

It is clear from the relation

‖ f I UI ‖b ³ | f I ||I |1/b−1/2

that the algorithmsGb andGc,a with a = 1/b− 1
2 are closely connected. The following

proposition can be proved similarly to Theorem 2.1:

Theorem 2.2. Let1< q <∞ and letmax(2,q) ≤ p <∞. Then for any1< b <∞
and r > max{(p/q − 1)/b,1/q − 1/b} we have

sup
f ∈M Hr

q

∥∥ f − Gb
m( f,Ud)

∥∥
p
³ σm(M Hr

q ,U
d)p ³ m−r (logm)(d−1)(r+1/2).

We formulate now the corollary of Theorem 2.2 in the most interesting caseb = p.
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Theorem 2.3. Let1< q, p <∞. Then for all r> r (q, p) we have

sup
f ∈M Hr

q

‖ f − Gp
m( f,Ud)‖p ³ σm(M Hr

q ,U
d)p ³ m−r (logm)(d−1)(r+1/2)

with

r (q, p) :=
{
(1/q − 1/p)+, for p ≥ 2,
(max(2/q,2/p)− 1)/p, otherwise.

Proof. The lower estimates follow from Theorem 4.2. We prove the upper estimates.
Consider first the case 2≤ p <∞. If 1 < q ≤ p we use Theorem 2.2 withb = p and
get a restrictionr > 1/q − 1/p . If p < q <∞ we use the inequality

sup
f ∈M Hr

q

‖ f − Gp
m( f,Ud)‖p ≤ sup

f ∈M Hr
p

‖ f − Gp
m( f,Ud)‖p(2.13)

and reduce this case to the caseq = p which has already been considered above. It
remains to consider the case 1< p < 2. If 1 < q ≤ p we use Theorem 2.2 withp = 2
andb = p and get

sup
f ∈M Hr

q

‖ f − Gp
m( f,Ud)‖p ≤ sup

f ∈M Hr
q

‖ f − Gp
m( f,Ud)‖2¿ m−r (logm)(d−1)(r+1/2)

providedr > (2/q − 1)/p . If p < q < ∞ we use the inequality (2.13) to reduce this
case to the caseq = p. In this case, we get a restrictionr > (2/p− 1)/p.

Theorem 2.3 is now proved.

3. The Upper Estimates for the ClassesMWr
q

In this section we study the classesMWr
q which we define for positiver (not necessarily

an integer). Let

Fr (u) := 1+ 2
∞∑

k=1

k−r cos(ku− πr/2)

be the univariate Bernoulli kernel and let

Fr (x) := Fr (x1, . . . , xd) :=
d∏

j=1

Fr (xj )

be its multivariate analog. We define

MWr
q := { f : f = Fr ∗ ϕ, ‖ϕ‖q ≤ 1},

where∗ denotes the convolution.
Results and their proofs in this section are similar to those from the previous section.

The technique in this section is a little more involved. We start with two lemmas.



412 V. N. Temlyakov

Lemma 3.1. For a fixed real number a denote

wn(s) := 2−n(r+1/2)+a(‖s‖1−n)n−(d−1)/2,

and for f ∈ MWr
q consider the sets

W( f,n,a) := {I : | f I | ≥ wn(s), if I ∈ Dε
s}, n = 1,2, . . . .

Then for1< q ≤ 2 and r > 1/q − 1
2 − a we have

#W( f,n,a)¿ 2nnd−1

with a constant independent of n and f.

Proof. It is known ([T1, p. 36] and [T2, p. 242]) that forf ∈ MWr
q we have∥∥∥∥∥ ∑‖s‖1=l

δs( f )

∥∥∥∥∥
q

¿ 2−rl .(3.1)

Further, for 1< q ≤ 2, we have as a corollary of the Littlewood–Paley inequalities∥∥∥∥∥ ∑‖s‖1=l

δs( f )

∥∥∥∥∥
q

À
( ∑
‖s‖1=l

‖δs( f )‖2q
)1/2

.(3.2)

Similar to the proof of Lemma 2.1 we get forNε
s := #(W( f,n,a) ∩ Dε

s)

Nswn(s)
q ¿ ‖δs( f )‖qq2−‖s‖1(q/2−1).(3.3)

Using (3.1) and (3.2) we obtain∑
‖s‖1=l

Ns ¿ 2n(r+1/2+a)qn(d−1)q/22−l (q/2−1+aq)
∑
‖s‖1=l

‖δs( f )‖qq

¿ 2n(r+1/2+a)qn(d−1)q/22−l (q/2−1+aq)l (d−1)(1−q/2)

( ∑
‖s‖1=l

‖δs( f )‖2q
)q/2

¿ 2n(r+1/2+a)qn(d−1)q/22−l (q/2−1+aq+rq)l (d−1)(1−q/2).

Using the assumptionr > 1/q − 1
2 − a we get from here∑

l≥n

∑
‖s‖1=l

Ns¿ 2nnd−1.(3.4)

For Ns with ‖s‖1 ≤ n we have∑
‖s‖1<n

Ns ≤
∑
‖s‖1<n

#Ds¿ 2nnd−1.(3.5)

Combining (3.4) and (3.5) and summing overε we complete the proof of Lemma 3.1.
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Lemma 3.2. Letwn(s) be from Lemma3.1and let a> − 1
2. Assume that a function f

satisfies the restrictions( ∑
‖s‖1=l

‖δεs( f )‖2q
)1/2

¿ 2−rl , 1< q <∞,

| f I | ¿ wn(s), I ∈ Dε
s,

with constants independent of f, n, and s. Then formax(2,q) ≤ p < ∞ and r >
(a+ 1

2)(p/q − 1) we have

‖ f ‖p ¿ 2−rn

with a constant independent of n and f.

Proof. By a corollary to the Littlewood–Paley inequalities we have, forp ≥ 2,

‖ f ‖2p ¿
∑
ε

∑
s

‖δεs( f )‖2p

=
∑
ε

( ∑
‖s‖1<n

‖δεs( f )‖2p +
∑
‖s‖1≥n

‖δεs( f )‖2p
)
=:
∑
ε

(6′ +6′′).

Similar to the corresponding part (see (2.8)) of the proof of Lemma 2.1 we obtain

6′ ¿ 2−2rn.(3.6)

Analogously to (2.9) and (2.11) we get

‖δs( f )‖p
p ¿ γ p−q

n 2‖s‖1(a+1/2)(p−q)‖δs( f )‖qq,(3.7)

where we use the notation

γn := 2−n(r+1/2+a)n−(d−1)/2.

Next,∑
‖s‖1=l

‖δs( f )‖2p ¿ γ 2(p−q)/p
n 22l (a+1/2)(p−q)/p

∑
‖s‖1=l

‖δs( f )‖2q/p
q

≤ γ 2(p−q)/p
n 22l (a+1/2)(p−q)/pl (d−1)(1−q/p)

( ∑
‖s‖1=l

‖δs( f )‖2q
)q/p

¿ γ 2(p−q)/p
n 22l (−rq+(a+1/2)(p−q))/pl (d−1)(1−q/p).

Using the assumptionr > (a+ 1
2)(p/q − 1) we get from here

6′′ ¿ 2−2rn.(3.8)

Combining (3.6) and (3.8) we complete the proof.
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Using Lemmas 3.1 and 3.2 instead of Lemmas 2.1 and 2.2′ we prove, in the same way
as in Section 2, the following analogs of Theorems 2.1 and 2.2. We note that the lower
estimates follow from Theorem 4.1.

Theorem 3.1. Let 1 < q ≤ 2 ≤ p < ∞. Then for any a> − 1
2 and r > max{(a +

1
2)(p/q − 1),1/q − 1

2 − a} we have

sup
f ∈MWr

q

‖ f − Gc,a
m ( f,Ud)‖p ³ σm(MWr

q ,U
d)p ³ m−r (logm)(d−1)r .

Theorem 3.2. Let 1 < q ≤ 2 ≤ p < ∞. Then for any1 < b < ∞ and r >
max{(p/q − 1)/b,1/q − 1/b} we have

sup
f ∈MWr

q

‖ f − Gb
m( f,Ud)‖p ³ σm(MWr

q ,U
d)p ³ m−r (logm)(d−1)r .

We now derive one more theorem from Theorem 3.2.

Theorem 3.3. Let1< q, p <∞. Then for all r> r ′(q, p) we have

sup
f ∈MWr

q

‖ f − Gp
m( f,Ud)‖p ³ σm(MWr

q ,U
d)p ³ m−r (logm)(d−1)r

with

r ′(q, p) :=
{

max(1/q, 1
2)− 1/p, for p ≥ 2,

(max(2/q,2/p)− 1)/p, for p < 2.

Proof. The lower estimates follow from Theorem 4.1. Proving the upper estimates we
consider first the case 2≤ p <∞. If 1 < q ≤ 2 we use Theorem 3.2 withb = p. This
will result in a restrictionr > 1/q − 1/p . If 2 < q <∞ we use the inequality

sup
f ∈MWr

q

‖ f − Gp
m( f,Ud)‖p ≤ sup

f ∈MWr
2

‖ f − Gp
m( f,Ud)‖p(3.9)

to reduce this case to that which has already been treated. We get a restrictionr > 1
2−1/p

in this case. We proceed to 1< p < 2 now. If 1< q ≤ p we use Theorem 3.2 with
p = 2 andb = p and get

sup
f ∈MWr

q

‖ f − Gp
m( f,Ud)‖p ≤ sup

f ∈MWr
q

‖ f − Gp
m( f,Ud)‖2¿ m−r (logm)(d−1)r ,

providedr > (2/q − 1)/p . If p < q < ∞ we use an analog of inequality (3.9) to
reduce this case toq = p. Here we get a restrictionr > (2/p− 1)/p.

Theorem 3.3 is now proved.

4. Lower Bounds for Bestm-Term Approximation for the ClassesMHr
q and MWr

q

We begin this section by proving the following two lower estimates:
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Theorem 4.1. For any1< q, p <∞ and r > (1/q − 1/p)+ we have

σm(MWr
q ,U

d)p À m−r (logm)(d−1)r .

Theorem 4.2. For any1< q, p <∞ and r > (1/q − 1/p)+ we have

σm(M Hr
q ,U

d)p À m−r (logm)(d−1)(r+1/2).

To prove these theorems we use a method that is based on the geometrical charateristics
of the setsMWr

q andM Hr
q . The first realizations (see [DT] and [KT]) of this method used

volume estimates of projections of the set under consideration onto the appropriately
chosen finite-dimensional subspaces. We will use a variant of this method (see [T7])
expressed in terms of the entropy numbers of the given set.

For a bounded setF in a Banach spaceX, we denote for integerm

εm(F, X) := inf

{
ε: ∃ f1, . . . , f2m ∈ X: F ⊂

2m⋃
j=1

( f j + εB(X))

}
,

whereB(X) is the unit ball of the Banach spaceX and f j + εB(X) is the ball of radius
ε with the center atf j . The entropy numbers are closely connected with metric entropy.
Both characteristics had been well studied for different function classes (see, for instance,
[BS] and [T8], and historical remarks there). In this section we will use the following
two known estimates (see [T9] and [T8]):

(W) for any 1≤ q <∞ andr > 0 we have

εm(MWr
q , L1)À m−r (logm)(d−1)r ;(4.1)

(H) for anyr > 0 we have

εm(M Hr
∞, L1)À m−r (logm)(d−1)(r+1/2).(4.2)

These estimates will be used in the general method which, roughly speaking, states that
m-term approximations with regard to any reasonable basis are bounded from below by
the entropy numbers. We now formulate one result from [T7].

Assume that a system9 := {ψj }∞j=1 of elements inX satisfies the condition:

(VP) There exist three positive constantsAi , i = 1,2,3, and a sequence{nk}∞k=1,
nk+1 ≤ A1nk, k = 1,2, . . . , such that there is a sequence of the de la Vall´ee-Poussin
type operatorsVk with the properties

Vk(ψj )=λk, jψj , λk, j =1 for j =1, . . . ,nk; λk, j =0 for j > A2nk,(4.3)

‖Vk‖X→X ≤ A3, k = 1,2, . . . .(4.4)

Theorem 4.3. Assume that for some a> 0 and b∈ R we have

εm(F, X) ≥ C1m−a(logm)b, m= 2,3 . . . .
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Then if a system9 satisfies condition(VP)and also satisfies the following two conditions:

En(F, 9) := sup
f ∈F

inf
c1,...,cn

∥∥∥∥∥ f −
n∑

j=1

cjψj

∥∥∥∥∥
X

≤ C2n−a(logn)b, n = 1,2, . . . ,(4.5)

Vk(F) ⊂ C3F,(4.6)

we have

σm(F, 9)X À m−a(logm)b.

Proof of Theorem 4.1. Let p > 1 be fixed. We specify9 = Ud, X = L p and the
sequence of operatorsVn = SQn , whereSQn is defined as follows:

SQn( f ) :=
∑
k∈Qn

f̂ (k)ei (k,x)

with

Qn :=
⋃
ε

⋃
‖s‖1≤n

ρ(s, ε),

whereρ(s, ε) is defined at the end of Section 1. It is known [T2, p. 20] that for any
1< p <∞:

‖SQn‖L p→L p ≤ C(p,d),(4.7)

implies in particular that

SQn(MWr
q ) ⊂ C3(q,d)MWr

q , 1< q <∞.(4.8)

It remains to check the relation (4.5). We use the known estimate [T1, p. 36] and [T2,
p. 242]:

EQn(MWr
p)p ¿ 2−rn, 1< p <∞.(4.9)

First let 1< p ≤ q <∞. Then

EQn(MWr
q )p ≤ EQn(MWr

p)p ¿ 2−rn ¿ (#Qn)
−r (log #Qn)

(d−1)r .(4.10)

Using (4.1), (4.8), and (4.10) we get from Theorem 4.3 that

σm(MWr
q ,U

d)p À m−r (logm)(d−1)r .(4.11)

It remains to prove (4.11) for 1< q < p. This follows from (4.11) withq = p and the
embedding

MWr
p ⊂ MWr

q , q ≤ p.

Theorem 4.1 is now proved.
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Proof of Theorem 4.2. This proof is similar to the previous one. We specify as above
9 = Ud, X = L p, andVn = SQn . Property (4.7) and the following characterization of
the classesM Hr

q , 1< q <∞ (see [T1, p. 33] and [T2, p. 197]):

f ∈ M Hr
q ⇒ ‖δs( f )‖q ¿ 2−r ‖s‖1,(4.12)

‖δs( f )‖q ¿ 2−r ‖s‖1 ⇒ C(q,d) f ∈ M Hr
q ,(4.13)

imply that

SQn(M Hr
q ) ⊂ C′3(q,d)M Hr

q , 1< q <∞.(4.14)

It is clear that it suffices to prove Theorem 4.2 for bigq, say 2≤ q <∞, and smallp,
say 1< p ≤ 2. In this case we use the estimate [T1, p. 37] and [T2, p. 244]:

EQn(M Hr
q )p ≤ EQn(M Hr

q )q ¿ 2−rnn(d−1)/2(4.15)

¿ (#Qn)
−r (log #Qn)

(d−1)(r+1/2).

Using (4.2), (4.14), and (4.15) and applying Theorem 4.3 we get, for 1< p ≤ 2≤ q <
∞, r > 0:

σm(M Hr
q ,U

d)p À m−r (logm)(d−1)(r+1/2).

The general case 1< q, p < ∞ follows from the case considered by embedding
arguments. Theorem 4.2 is now proved.

We now prove the lower bounds (1.2) and (1.3).

Theorem 4.4. For any orthonormal basis8 we have, for r > (1/q − 1
2)+:

σm(M Hr
q ,8)2 ≥ C1(r,q,d)m

−r (logm)(d−1)(r+1/2), 1≤ q <∞,
and

σm(MWr
q ,8)2 ≥ C2(r,q,d)m

−r (logm)(d−1)r , 1≤ q <∞.

Proof. This proof is based on a proposition from [K] (see Corollary 2) which we
formulate as a lemma.

Lemma 4.1. There exists an absolute constantc0 > 0 such that for any orthonormal
basis8 and anyN-dimensional cube

BN(9) :=
{

N∑
j=1

ajψj , |aj | ≤ 1, j = 1, . . . , N; 9 := {ψj }Nj=1 an orthonormal system

}

we have

σm(BN,8)2 ≥ 3

4
N1/2

if m≤ c0N.
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Let q <∞ be fixed and letm be given. Denote

D(n) :=
⋃
‖s‖1=n

D(+,...,+)
s

and find a minimaln such that

m≤ c0#D(n),

then

m³ 2nnd−1.(4.16)

We setN := #D(n) and choose in place of{ψj }Nj=1 the systemU (n) := {UI }I∈D(n).
Then for anyf ∈ BN(U (n)) we have

‖δs( f )‖qq ³
∑
I∈Ds

‖ f I UI ‖qq ≤
∑
I∈Ds

‖UI ‖qq ¿ 2nq/2.(4.17)

This estimate and relation (4.13) imply that for some positiveC(q,d) we have

C(q,d)2−n(r+1/2)BN(U (n)) ⊂ M Hr
q .

Therefore, Lemma 4.1 gives

σm(M Hr
q ,8)2À 2−rnn(d−1)/2 ³ m−r (logm)(d−1)(r+1/2).

Next, for 2≤ q <∞ for any f ∈ BN(U (n)), we have

‖ f ‖q ¿
(∑

s

‖δs( f )‖2q
)1/2

¿ 2n/2n(d−1)/2.(4.18)

By the Bernstein inequality [T1, p. 12] and [T2, p. 209] we get from (4.18):

‖ f (r,...,r )‖q ¿ 2rn‖ f ‖q ¿ 2n(r+1/2)n(d−1)/2.

Consequently, for some positiveC(q,d) we have

C(q,d)2−n(r+1/2)n−(d−1)/2BN(U (n)) ⊂ MWr
q .

. Therefore, by Lemma 4.1, we get

σm(MWr
q ,8)2À m−r (logm)(d−1)r .

It is clear that the general case 1≤ q < ∞ follows from the above considered case
2≤ q <∞. Theorem 4.4 is now proved.
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5. Efficiency ofGp for Individual Functions

We prove in this section that for eachm and 1< p <∞ there is a functionfm,p ∈ L p

such that

‖ f − Gp
m( f,Ud)‖p/σm( f,Ud)p À (logm)(d−1)|1/2−1/p|.(5.1)

We prove this inequality form of the form

mn := #D(n) =
∑
‖s‖1=n

#Ds ³ 2nnd−1, Ds := D(+,...,+)
s .(5.2)

For a givenn we construct two functions,f1(n, x) and f2(n, x). The first function is
defined as follows:

f1(n, x) :=
∑
‖s‖1=n

ei (2s1 x1+···+2sd xd).

Then for anyI ∈ Dµ, ‖µ‖1 6= n, we have( f1(n))I = 0 and forI ∈ Dµ, ‖µ‖1 = n, we
have

f1(n)I = 2−n/2 and ‖ f1(n)I UI ‖p ³ 2−n/p.

Next, by the Littlewood–Paley inequalities we get

‖ f1(n)‖p ³ n(d−1)/2, 1< p <∞.
We proceed to define the second function. We setl (n) = [(logmn)/d] + 1 and define

f2(n) := 2−n/2n(d−1)(1/p−1/2)
∑

I∈3(n)
UI ,

where3(n) ⊂ D(l (n),...,l (n)) with #3(n) = mn. Then for eachI ∈ 3(n) we have

f2(n)I = 2−n/2n(d−1)(1/p−1/2)

and

‖ f2(n)I UI ‖p ³ 2−n/p.

We also have

‖ f2(n)‖p ³ (#3(n)2−n)1/p ³ n(d−1)/p.

Let 2≤ p <∞ and a constantC1(d, p) be such that

min
I∈3(n)

‖ f2(n)I UI ‖p > C1(d, p)max
I
‖ f1(n)I UI ‖p.(5.3)

Consider

fmn,p := C1(d, p) f1(n)+ f2(n).

Then, by (5.3), we have

‖ fmn,p − Gp
mn
( fmn,p,U

d)‖p = C1(d, p)‖ f1(n)‖p ³ n(d−1)/2.(5.4)
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Next,

σmn( fmn,p,U
d)p ≤ ‖ f2(n)‖p ³ n(d−1)/p.(5.5)

Combining (5.4) with (5.5) we get (5.1) form= mn.
Now let 1< p ≤ 2 and a constantC2(d, p) be such that

min
I∈D(n)

‖ f1(n)I UI ‖p > C2(d, p) max
I∈3(n)

‖ f2(n)I UI ‖p.

Consider

fmn,p := f1(n)+ C2(d, p) f2(n).

Then we have, on the one hand,

‖ fmn,p − Gp
mn
( fmn,p,U

d)‖p = C2(d, p)‖ f2(n)‖p ³ n(d−1)/p(5.6)

and, on the other hand,

σmn( fmn,p,U
d)p ≤ ‖ f1(n)‖p ³ n(d−1)/2.(5.7)

Combining (5.6) with (5.7) we get (5.1) form = mn. It is easy to see that the general
case ofm can be derived from the casem= mn.

We note that using the result of P. Wojtaszczyk [Wo] on the equivalence ofU to
the Haar system in allL p, 1 < p < ∞, we can derive some results onUd from the
corresponding results on the multivariate Haar systemHd (see [T4]). For instance, we
get from [T4, Theorems 2.1, 2.2] that for anyf ∈ L p, 1< p <∞, the inequality

‖ f − Gp
m( f,Ud)‖p ≤ C(p,d)(logm)dσm( f,Ud)p(5.8)

holds, and from [T4, Theorem 2.1, Section 3] that in the cased = 2, 4
3 ≤ p ≤ 4, the

factor(logm)d in (5.8) can be replaced by(logm)(d−1)|1/2−1/p|. The last remark shows
that the inequality (5.1) is sharp.

6. One Special Dictionary with Tensor Product Structure

In this section we studym-term approximation with regard to the dictionaryY (see the
Introduction for the definition) which is something intermediate between the dictionaries
U2 and52. We prove here the following theorem:

Theorem 6.1. For d = 2 and1< q, p <∞ we have

σm(M Hr
q ,Y)p ³ σm(MWr

q ,Y)p ³ m−2r+(1/q−1/p)+ ,

provided r> (1/q − 1/p)+.

Proof. The lower estimates in the case 1< p ≤ q <∞ and in the case 1< q ≤ p ≤ 2
follow from the corresponding result for bilinear approximations (see (1.11)). We remark
only that the restrictionr > 1 in (1.11) was used to prove upper estimates. For details,
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see [T5]. We now prove the lower estimates in the case 1< q ≤ p <∞. It is clear that
it suffices to carry out the proof form of the formm= 2l−1. Consider a function

f (x1, x2) :=
∑
I∈D+l

UI (x1)UI (x2).

We have

‖ f ‖qq ³ 2l (q−1), 1< q <∞,
and by the Bernstein inequality

‖ f (r,r )‖q ¿ 2l (2r+1−1/q).(6.1)

Assume that anm-term approximant with regard toY has the form

g(x) =
∑
I∈Ä1

UI (x1)v
1
I (x2)+

∑
I∈Ä2

v2
I (x1)UI (x2)

with #Ä1+ #Ä2 = m. Then, for 1< p <∞, we have

‖ f − g‖p
p ≥ C(p)‖δ(+,+)(l ,l ) ( f − g)‖p

p(6.2)

À
∥∥∥∥∥∥

∑
I∈D+l \(Ä1∪Ä2)

UI (x1)UI (x2)

∥∥∥∥∥∥
p

p

À 2l (p−1).

The inequalities (6.1) and (6.2) imply

σm(MWr
q ,Y)p À 2l (−2r+1/q−1/p) ³ m−2r+1/q−1/p.

It remains to note thatMWr
q is embedded inM Hr

q .
We proceed to prove the upper estimates. It is sufficient to prove the upper estimates

in the case 1< q ≤ p < ∞. We prove the upper estimates for the wider classM Hr
q .

We use, in the proof, a combination of a linear method and the algorithmGp(·,U2). For
a fixedn we define a linear operatorSn as follows:

S′n( f )(x) :=
∑
|I |≥2−n

〈 f (·, x2),UI (·)〉UI (x1),

Sn( f )(x) := S′n( f )(x)+
∑
|I |≥2−n

〈 f (x1, ·)− S′n( f )(x1, ·),UI (·)〉UI (x2).

Then

f n := f − Sn( f ) =
∑

|I1|<2−n,|I2|<2−n

f I UI .

We apply the greedy algorithmGp(·,U2) to f n. The proof is similar to, but simpler
than, the corresponding proofs in Sections 2 and 3.
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Lemma 6.1. Let 1< q ≤ p <∞. Denote

h(n) := 2−n(2r−1/q+2/p).

Then for any functionf of the form

f =
∑

|I1|<2−n,|I2|<2−n

f I UI , ‖δεs( f )‖q ≤ C(r,d,q)2−r ‖s‖1,(6.3)

we have

#Hn ¿ 2n,

where

Hn := {I : ‖ f I UI ‖p ≥ h(n)}.

Proof. DenoteNε
s := #(Hn ∩ Dε

s). Then similar to the proof of Lemma 2.1 we get

Ns¿ h(n)−q2‖s‖1(−rq−q/p+1),

and usingr > 1/q − 1/p we get∑
s1≥n,s2≥n

Ns ¿ h(n)−q22n(−rq−q/p+1) = 2n.

Lemma 6.2. Let h(n) be from Lemma 6.1. Assume that a functionf of the form (6.3)
satisfies the restriction

‖ f I UI ‖p < h(n) for all I .

Then we have

‖ f ‖p ≤ 2−n(2r−1/q+1/p).

Proof. For eachs we have

‖δs( f )‖p
p ¿

∑
I∈Ds

‖ f I UI ‖p
p ≤ h(n)p−q

∑
I∈Ds

‖ f I UI ‖qp

¿ h(n)p−q
∑
I∈Ds

‖ f I UI ‖qq2‖s‖1(1/q−1/p)q ¿ h(n)p−q2‖s‖1(−rq+1−q/p)

and

‖ f ‖p ≤
∑

s1≥n,s2≥n

‖δs( f )‖p ¿ h(n)1−q/p
∑

s1≥n,s2≥n

2‖s‖1(−rq+1−q/p)/p.

Usingr > 1/q − 1/p we get from here

‖ f ‖p ¿ 2n(−2r+1/q−1/p).

Lemma 6.2 is now proved.

We continue the proof of Theorem 6.1. From Lemmas 6.1 and 6.2 we obtain forf n

‖ f n − Gp
2n( f n,U2)‖p ¿ 2−n(2r−1/q+1/p).(6.4)

The estimate (6.4) implies the upper estimate in Theorem 6.1 form = 5(2n). It is clear
that this implies the general case ofm.



Greedy Algorithms with Regard to Multivariate Systems with Special Structure 423

7. Further Remarks

The results we have developed in the previous sections in the periodic case can be
extended to the nonperiodic case and to other systems9 instead ofUd. We discuss here
in more detail a generalization of the results from Section 3. The key points of the proofs
of upper estimates in Theorems 3.1–3.3 were the following:

(1) The multivariate systemUd satisfies the relation (1.17)∥∥∥∥∥∑
I∈Ds

f I UI

∥∥∥∥∥
p

p

³
∑
I∈Ds

‖ f I UI ‖p
p, 1< p <∞,

which is a corollary of the corresponding relation (1.14) for the univariate system
U . This system also satisfies (1.15):

‖UI ‖p ³ |I |1/p−1/2, 1< p <∞.
(2) The systemUd satisfies the Littlewood–Paley inequalities in a weak form

‖ f ‖p ³
∥∥∥∥∥∥
∑

s

∣∣∣∣∣∑
I∈Ds

f I UI

∣∣∣∣∣
2
1/2∥∥∥∥∥∥

p

, 1< p <∞.

(3) The function classMWr
q has a certain approximation property (see (3.1)) which

is equivalent to the Jackson inequality: forf ∈ MWr
q , 1< q <∞, we have∥∥∥∥∥ f −

∑
|I |≥2−n

f I UI

∥∥∥∥∥
q

¿ 2−rn;(7.1)

and the embedding propertyMWr
q1
⊂ MWr

q2
if q1 ≥ q2.

Thus if some system9 and function classesFr
q satisfy conditions (1)–(3) above, then

the upper estimates in Theorems 3.1–3.3 hold withUd andMWr
q replaced by9 andFr

q .
In the paper [DKT] we gave some sufficient conditions on a system9 to be L p-

equivalent to the Haar system. We recall the definition of the Haar system and make
some simple observations about systemsL p-equivalent to the Haar system. Denote
the univariate Haar system byH := {HI }I , where I are dyadic intervals of the form
I = [( j − 1)2−n, j 2−n), j = 1, . . . ,2n; n = 0,1, . . . , and I = [0,1] with

H[0,1](x) = 1 for x ∈ [0,1),

H[( j−1)2−n, j 2−n) =
2n/2, x ∈ [( j − 1)2−n, ( j − 1

2)2
−n),

−2n/2, x ∈ [( j − 1
2)2
−n, j 2−n),

0, otherwise.

Consider the multivariate Haar basisHd := H× · · · ×H which consists of functions

HI (x) =
d∏

j=1

HIj (xj ), I = I1× · · · × Id, x = (x1, . . . , xd).
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We say that a system9 = {ψI } is L p-equivalent to the Haar systemHd if for any finite
set3 and for any coefficients{cI } we have

C1(9, p,d)

∥∥∥∥∥∑
I∈3

cI HI

∥∥∥∥∥
p

≤
∥∥∥∥∥∑

I∈3
cIψI

∥∥∥∥∥
p

≤ C2(9, p,d)

∥∥∥∥∥∑
I∈3

cI HI

∥∥∥∥∥
p

.(7.2)

It is well known (see, for instance, [KS]) that the Haar system satisfies the Littlewood–
Paley inequalities in a strong form∥∥∥∥∥∑

I

cI HI

∥∥∥∥∥
p

³
∥∥∥∥∥∥
(∑

I

|cI HI |2
)1/2

∥∥∥∥∥∥
p

, 1< p <∞.(7.3)

It is clear from (7.2) and (7.3), and the corresponding properties ofHd, that each system9
which isL p-equivalent toHd with 1< p <∞satisfies property (1) and a stronger analog
of property (2) from above. In the paper [DKT] we gave some sufficient conditions on a
system9 to have the Jackson inequality (7.1). For particular examples of9 satisfying
(7.1), see [Km].

Completing this section we conclude that the results on nice properties of the sys-
temUd can be extended onto many other systems including wavelet-type systems. For
instance, the following two theorems hold:

Theorem 7.1. Assume that a system9 is Lp-equivalent to the Haar systemHd, 1 <
p < ∞, and function classes Frq having the following property: for any f ∈ Fr

q , we
have ∥∥∥∥∥ f −

∑
|I |≥2−n

cI ( f, 9)ψI

∥∥∥∥∥
q

¿ 2−rn, 1< q <∞,

with a constant independent of f and n; and Fr
q1
⊂ Fr

q2
if q1 ≥ q2. Then we have

sup
f ∈Fr

q

‖ f − Gp
m( f, 9)‖p ¿ m−r (logm)(d−1)r , 1< q, p <∞,

provided r> r ′(q, p) with r ′(q, p) from Theorem3.3.

Theorem 7.2. Assume a system9 is Lp-equivalent to the Haar systemHd, 1< p <
∞, and function classes Frq having the following property: for any f ∈ Fr

q , we have∥∥∥∥∥∑
I∈Ds

cI ( f, 9)ψI

∥∥∥∥∥
q

¿ 2−r ‖s‖1, 1< q <∞,

with a constant independent of f and n; and Fr
q1
⊂ Fr

q2
if q1 ≥ q2. Then we have

sup
f ∈Fr

q

‖ f − Gp
m( f, 9)‖p ¿ m−r (logm)(d−1)(r+1/2), 1< q, p <∞,

provided r> r (q, p) with r(q, p) from Theorem2.3.
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