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Abstract. The question of finding an optimal dictionary for nonlineaterm approx-
imation is studied in this paper. We consider this problem in the periodic multivariate
(d variables) case for classes of functions with mixed smoothness. We prove that the
well-known dictionaryU® which consists of trigonometric polynomials (shifts of the
Dirichlet kernels) is nearly optimal among orthonormal dictionaries. Next, it is estab-
lished that for these classes near-tragerm approximation, with regard té¢, can be
achieved by simple greedy-type (thresholding-type) algorithms.

The univariate dictionary is used to construct a dictionary which is optimal among
dictionaries with the tensor product structure.

1. Introduction

This paper is devoted to nonlinear approximation, namelynterm approximation.
Nonlinearm-term approximation is important in applications in image and signal pro-
cessing (see, for instance, the recent survey [D]). One of the major questions in approx-
imation (theoretical and numerical) is: What is an optimal method? We discuss here this
question in a theoretical setting, with the only criterion of the quality of the approxi-
mating method its accuracy. One more important point in the setting of the optimization
problem is to specify a set of methods over which we are going to optimize. Most of the
problems which approximation theory deals with are of this nature. Let us give some
examples from classical approximation theory. These examples will help us understand
the question we are studying in this paper.

Example 1. When we are searching for tinh best trigonometric approximation of a
given function we are optimizing, in the sense of accuracy over the subspace of trigono-
metric polynomials of degree.

Example 2. When we are solving the problem on Kolmogorom'svidth for a given
function class we are optimizing, in the sense of accuracy for a given class over all
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subspaces of dimension

Example 3. When we find the besh-term approximation of a given function with re-
gardto a given system of functions (dictionary), we are optimizing overdimensional
subspaces spanned by elements from a given dictionary.

Example 2 is a development of Example 1 in the sense that in Example 2 we are
looking for an optimah-dimensional subspace instead of being confined to a given one
(trigonometric polynomials of degreg. Example 3 is a nonlinear analog of Example 1,
where instead of a trigonometric system we take a dictiofeamd allow approximating
elements fronD to depend on a function. In this paper we take some steps in the direction
of developing Example 3 to a setting which is a nonlinear analog of Example 2. In other
words, we want to optimize over some sets of dictionaries. We will discuss two classical
structural properties of the dictionaries:

1. orthogonality; and
2. tensor product structure (multivariate case).

Denote byD a dictionary in a Banach spa¢eand by

O‘TT'I( fs D)X = |nf
gieD,c,i=1,..., m

the besim-term approximation off with regard toD. For a function clas& c X and
a collectionD of dictionaries we consider

om(F, D)x = supom(f, D)x,
feF

Thus the quantity,(F, D) x gives the sharp lower bound for the besterm approxi-
mation of a given function clads with regard to any dictionarf € D.

Denote byO the set of all orthonormal dictionaries defined on a given domain.
B. S. Kashin [K] proved that for the clas$"%,r =0, 1,...,«a € (0, 1], of univariate
functions such that

[l + 1T <1 and [fO00 - fO(y) <Ix—y|*, x,ye[0,1],
we have
(1.1 om(H"*,0), > C(r,@)m™" %,

It is interesting to remark that we cannot prove anything like (1.1) Witmeplaced by
Lp, p < 2. We proved (see [KT]) that there exisbse O such that for anyf € L1(0, 1)
we haver1(f, @), = 0. The proof from [KT] also works fok.,, p < 2, instead oL ;.

Remark 1.1. For any 1< p < 2 there exists a complete in,(0, 1) orthonormal
system® such that for eachi € L (0, 1) we haveo(f, @), = 0.



Greedy Algorithms with Regard to Multivariate Systems with Special Structure 401

This remark means that to obtain nontrivial lower boundssferf, @), p < 2, we
need to impose additional restrictions @ne O. One way of imposing restrictions was
discussed in [KT], and we present another in Section 4.

In this paper we discuss the approximation of multivariate functions. Itis convenient for
us to present results in the periodic case. We consider classes of functions with bounded
mixed derivativeM W(; (see the definition in Section 3) and classes with restriction of
Lipschitz type on mixed differenck! H (see the definition in Section 2). These classes
are well known (see, for instance, [T2]) for their importance in numerical integration, in
finding universal methods for the approximation of functions of several variables, in the
average case setting of approximation problems for the spaces equipped with the Wiener
sheet measure (see [W]), and in other problems. In Section 4 we prove

1.2) om(MHg, O), > m™" (logm)@-D+1/2), 1<q < oo,
(1.3) om(MW!, 0), > m~" (logm)@-r, 1<q < oo.

In Sections 2 and 3 we prove that the orthogonal Bd$iswhich we construct at the
end of this section, provides optimal upper estimates (like (1.2) and (1.3)) imktesin
approximation of the classed H(; andMWé in the L,-norm, 2< p < oo. Moreover,
we prove there that for all kx g, p < oo the order of besm-term approximation
om(MHE, U, and om(MW,, U%) can be achieved by a greedy-type algorithm
GP(-,U%). Assume that a given systesin of functionsy, indexed by dyadic intervals

can be enumerated in such a way thatj}fil is a basis forL,. Then we define the
greedy algorithnGP(., ¥) as follows. Let

f=> ci(f, Wy,
j=1

and

c (f, p. W) = lci (f, W) lp.
Thenc, (f, p, ¥) — Oas|l| — 0. DenoteA, as a set ofn dyadic intervald such that

(1.4) min ¢ (f,p,¥) > 5{;%030, p, ).

We defineGP(-, ¥) by the formula
GR(f, ¥):= ) a(f, ¥y

leAm

Remark 1.2. Let ® = {¢}p2; be a basis for a Banach spaXeand|¢«llx = 1,k =
1,2, .... Assume that we can calculate tKenorm of a functionf € X and eactry(f)
from the expansion

f=>"cfe
k=1

in a finite number of steps. Then there is an algorithm which for firy X gives the
biggest|ck( )| after a finite number of steps.
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Proof. We have, for anyf € X,
lee ()] < Bl flix, k=12...,

with a constanB and

]

Z C(F)ox

k=n-+1

=0.
X
Let f £ 0. We find a nonzero coefficient( f) and denote := |¢ (f)|/B. Next, we
find n such that

lim
n—o00

Z a(Pok| <e.

k=n+1 X
This implies that for alk > n we havelck(f)| < |¢ (f)| and, therefore, we can restrict
our search for the largegt (f)|to 1 < k < n. [ |

Remark 1.3. In this paper, we study only theoretical aspects of the efficienep-of

term approximation and possible ways to realize this efficiency. An upper estimate for
om(f, &) is in essence a theorem of existence and does not provide a procedure to
construct an approximant. The above defined “greedy algoritG®{ f, ¥) gives a
procedure to construct an approximant which turns out to be a good approximant (see
(1.7) below). The procedure of constructiGh(f, ¥) is not a numerical algorithm
ready for computational implementation. Therefore it would be more precise to call this
procedure a “theoretical greedy algorithm” or “stepwise optimizing process.” Keeping
this remark in mind we, however, use the term “greedy algorithm” because it has been
used in previous papers and has become a standard name for procedu@gg like)

and for more general procedures of this type (see, for instance, [D]).

The question of constructing a procedure (theoretical algorithm) which realizes (in
the sense of order) the best possible accuracy is a very important one and we discuss it
in detail. LetAny (-, D) be a mapping which maps eathe X to a linear combination of
m elements from a given dictionafy. Then the best we can hope for with this mapping
is to have, for eachl € X,

or a little weaker
(1.6) If — An(f,D)lIx < C(D, X)om(f, D)x.

There are some known trivial and nontrivial examples when (1.5) holds in a Hilbert space
X. We do not touch this kind of relations in this paper. Concerning (1.6) it is proved in
[T3] that, for any basisl which isL ,-equivalent to the univariate Haar basis, we have

(1.7) If —GR(f, W)L, < C(P)am(f, ¥)p, l<p<oo.

However, as is shown in [T4] and in Section 5, the inequality (1.7) does not hold for
particular dictionaries with tensor product structure. We have, forinstance (see Section 5),

(1.8) sup |l f — GA(f, UYL, /om(f, UYL, > (logm)@-DIV2-1/pl
felp
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The inequality (1.8) shows that using the algoritG®y-, U%) we lose near-best accuracy
for some functionsf € Ly, p # 2. In the light of (1.8) the results of Sections 2 and 3
look encouraging for usinGP(-, U%): we have, for 1< g, p < oo and big enough:

(1.9) sup |f —GP(f,UY,

X

om(MHg, U, < m™ (logm)@-DC+1/2),

feMHg

(1.10) sup |If —GR(f.UD[p < om(MWE, U, =< m™" (logm)@-2r,
feMW

where we use the abbreviated notatjon|, := || - [|.,-

Comparing (1.9) with (1.2) and (1.10) with (1.3), we conclude that the dictionary
U is the best (in the sense of order) among all orthogonal dictionaries frm
approximation of the classééHg andMW in L, where 1< g < oo and 2< p < oo.

The dictionany @ has one more important feature. The near-bestrm approximation
of functions fromM Hg andM W in theL ,-norm can be realized by the simple greedy-
type algorithmGP(-, U%) forall1 < g, p < oo.

Let us now compare the performanceldt with the performance of the best dictio-
nary with a tensor product structure. Denotelby the set of all functions of the form
U1(X1) ...Ud(Xq), whereu; € Ly, j =1,...,d. Thenitis clear that for any dictionary
D, with a tensor product structure, we ha®e 19, and

om(f, D)p > om(f, Hd)p~

The problem of estimatingy,( f, I1%), (bestm-term bilinear approximation i) is a
classical one and was considered for the first time by E. Schmidt [S] in 1907. For many
function classe$ an asymptotic behavior efn(F, I12), is known. For instance, the
relation

(111)  om(MW., %), < om(MH(, %), < m=2 +H{t/a-maxt/21/p.

forr > 1and 1< g, p < oo follows from the more general results in [T5]. In the
cased > 2 almost nothing is known. There is (see [T6]) an upper estimate in the case

q=p=2

(1.12) om(MW}, TT%), « m=a7@=D,

Comparing (1.9), (1.10) with (1.11), (1.12) we conclude thaerm approximation with
regard tdJ ¢ does not provide an optimal rate of approximation among dictionaries with

atensor product structure. This observation motivated us to stetéym approximation
with regard to the following dictionary:

Y = (U x Lp U(Lp xU) = {y(X1, X2)}

with y(X, X2) of the formy(xy, X2) = Uj (Xp)v(X2), Uy € U,v € Lp, or y(Xg, Xo) =
v(X)U; (X2), v € Lp,U; € U. We prove, in Section 6, that we have, for- (1/9 —
1/p)+:

(1.13)  om(MH], Y)p < om(MW, Y)p < m-Z+/a-2/p 1<q,p < oo.
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Comparing (1.13) with (1.11) we realize thatfolg < p<2andl< p<(q < o

the dictionaryY, which is much smaller thafil?, provides optimalim-term bilinear
approximation for the classeéd H; and MW;. We also make the following important
point. The error of approximation in (1.13) can be achieved by combination of a linear
method and the greedy algorith@P(-, U?).

We define at the end of this section a system of orthogonal trigonometric polynomials
which is optimal in a certain sense (see abovenfieierm approximations. Variants of
this system are well known and very useful in interpolation of functions by trigonometric
polynomials. We define first the systdi:= {U, } in the univariate case. Denote

+ - ikx e|2”
U (x) = Ze =1 n=012...,

Uf () = é“u;(x—znkz m, k=0,1,...,2"—1,
Up () = e ZXUF (—x + 27k2™), k=0,1,...,2"— 1.

It will be more convenient for us to normalize i the system of functlon{sUm ko Unkl
and to enumerate it by dyadic intervals. We wtikg 1)(x) := 1,

Ui =205 with | =[(k+DH2™" (k+1)27"]
and

Ui ) := 22U (x) with | =[k2™" (k+$27"].
Denote

D ={l:1=[(k+3)2". k+D2"], k=0,1,....,2" -1}

and

Dy ={l: 1 =[k2" (k+ 52", k=0,1,...,2" -1},

D =Dy = Do :=10, 1), D= U(D; U D;) U Dy.

n>1

Itis easy to check that forarly J € D, | # J we have

21
Uy, Ug) = (Zn)*lf U, 00U (x) dx = 0
0

and
Uy 15 = 1.
We use the notations for € Lq:

21 2
firi=(f,U1) = (271)‘1/ fo0U; (x) dx, fk) = (271)_1/ f (e **dx,
0 0

and

25+1_1 _2s
s(f) = ) fek, s(f)y= Y fek, So(f) := f(0).

k=2s k=—2st141
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Then, for eacts and f € L1, we have

se(hHy=Y fiU, s(hHh=> fiU,  So(f) = fo.

leDf leDg

Moreover, the following important analog of the Marcinkiewicz theorem holds

L.14)  sS(HIE =< D IRUME. 1 (DIE = Y I1fiUE,

leDg leDg

for 1 < p < oo with constants depending only qn
We remark that

(1.15) Uil < 1YP7Y2, 1< p < oo,
which implies that forany k g, p < oo
(1.16) U1 llp =< Uy llg 1P,
In the multivariate case of = (xy, ..., Xq) we define the systetd? as the tensor
product of the univariate systerts Letl = I; x --- x Ig,lj € D, j =1,...,d, then

d
U0 = [y, ).
j=1

Fors=(sy,...,s) ande = (g1, ..., &4), & = + or —, denote
Dii={l: 1 =lyx--xlg ljeDd, j=1,....d}.

It is easy to see that (1.15) and (1.16) are also true in the multivariate case. It is not
difficult to derive from (1.14) that for any we have

(1.17) ISSCHIE =< D Ifiup. 1< p<oo,
leDE

with constants depending gnandd. Here we denote
()= Y fd®,
kep(s,e)
where
p(S, €) 1= e1[2%, 291 — 1) x ... x gq[2%, 2% _ 1),
We will often use the following inequalities:
1/p 1/2

(1.18) (Z |I5§(f)||,§> < N fllp < (Z ||3§(f)||%> , 2= p<oo,
S,e S,&

1/p

1/2
(Z ||5§(f>||f,) < Ifllp < (Z ||8§<f)||§) . 1<p=2
S, S,e
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which are corollaries of the well-known Littlewood—Paley inequalities

o\ 1/2

(1.19) = [ >

S

D8

p

We note that the systetd® can be enumerated in such a way tfidg }7°, forms a
basis for each.,, 1 < p < oo. Indeed, let us first enumerate vecters: (s, . .., &)
with integer nonnegative components in such a way that foy all 1, 2, ... we have
[S'lse < lIS!*1]|o. Then we enumerate all the dyadic intervalfirfiollowing the rule:
we enumerate the intervals froby, ., after enumerating all the intervals froby; for
all e. Any partial sum with regard tJ,: }72, can be represented in the form

nz_fzfséj(f)%- Z fiu = f1+ 2
i=1 = l€An

whereA, C |, D& . Then we get from (1.19):

(1.20) I, < I fllp

In order to prove the estimate

(1.21) 2], < 11 fllp

we use the following inequalities:

65 ()llp < < I fllp

p

> 85

and the relation (1.17). Thus, the norms of the operators of taking partial sums with
regard to{U1};°, are uniformly bounded. This implies thelt; i }72, is a basis forl,
1 < p < oo. We remark that P. Wojtaszczyk [Wo] proved recently that the sy&teim
equivalent to the Haar system in &l, 1 < p < oo, and, therefore, is an unconditional
basis forallLp, 1 < p < 0.

In Sections 2 and 3 we study the efficiency of greedy algorithms with regatfl tm
the classes of functions with bounded mixed derivative or difference.

2. The Upper Estimates for the ClasseMH,,

In this section we study the classkkH;. We define these classes as follows (see, for

instance, [T2, p. 196]). LeA'u(j) denote the operator of tHéh difference with step
u in the variablex;. For a nonempty set of natural numbers from [I] and a vector
t = (ty, ..., tg) we denote

Ay =[] a, 0.

jee
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We define the clasil H(; asthesetof € Lqsuchthat| f|q < 1and for any nonempty
setewe have

lay@ foollq < [Tl

jee
with | = [r] 4+ 1, where f] denotes the integral part ef We first prove two auxiliary
results.

Lemma 2.1. For a fixed real number a denote

hn(s) ;= 27 N+Y/2+adsli—n
and for f € MHg consider the sets
A(f,n,a) ;== {l: [f|| = hy(9), if | € D5}, n=12....
Thenifr>1/q — 3 —a we have
#A(f,n, a) < 2"n??

with a constant independent of n and f

Proof. Itis known (see [T1, p. 33] and [T2, p. 197]) that fére M Hg we have for
all

(2.1) 185(F)llq < 27" IS,

For convenience we will omit in the notationg:(f), DS, N¢ (see below) meaning
that we are estimating a quanti§( f) or N{ for a fixede, and all the estimates we are
going to do are the same for all

Using the following two properties of the systdt, }:

(2.2) 18s(HNE =< D> 1 fiU g,
| eDg
(2.3) U, llq =< 2||SH1(1/2—1/Q), | € Ds,
we get, from (2.1),
(2.4) |9 « 27 MIshtra+a/2=1)

DenoteN¢ := #(A(f, n, a) N Df). Then (2.4) implies
Nshp(5)% « 2 Islra+a/2=1)

and

N « 20 +1/2+a)ap-lslra+a/2-1+aq)
1
2

Z NS << 2nnd—1

Isllz=n

Using the assumption> 1/q — 5 — a, we get
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and

(2.5) > Y NE« 2t

e |islli=n
It remains to remark that fdfs||; < n we have the following trivial estimates:
(2.6) DD NG =Y Y #DE < 20t
e [slla<n e |Islla<n

Combining (2.5) and (2.6) we complete the proof. ]

Lemma2.2. Leth,(s)and A(f, n, a) be from Lemm&.1and leta> —%. Foreachn
denote

g(f) = Y fiU, M= —ga(h).

leA(f,n,a)
Then for any fe MH!, and p > 2 satisfyingl < q < p < oo, we have for
r>(+3)(p/q-1,
1f"]lp < 27 "n@-b/2

with a constant independent of n and f

Proof. For2< p < oo we have, by a corollary to the Littlewood—Paley inequalities,
2 <y (Z ||8§(f“>||§)
& S
= Z( DTUSEEMIE+ > ||8§(f">||,%> =) (' +%).

e \llsli<n lIsllz=n
We first estimatez’. By the definition ofA( f, n, a) we have, for alll ,
(2.7 [ "] < hn(s), | € Ds.
Therefore,

18s(EMIIE < ()P Y Ui [|f < 2 NP Isluatyze
1 eDg

and
(2.8) D I8s(EMIE < 27t L,

lIsll<n
We proceed to estimating” now. We have
(2.9) [18s(EFMIE < D IfUI] < (ha(s)2ISh@/271/Pyp=a 3= 0y, |9
1eDs 1eDsg

< (hn(s)zllsH1(1/2—1/p))p—q Z I f|nUI ”ngSIIl(l/q—l/p)q‘
1 eDg
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Using (2.1) we get

(2.10) Do IFUE = Y IHUNIG < l18s(FIIg < 277 1ol
I €Ds 1 eDsg

and from (2.9)

(2.11) ll8s( n)HS < 2N +1/2+a)(p—a) olisll1(~rq+@+1/2)(p-)
Using the assumption > (a + %)(p/q — 1) we get

(2.12) ¥ « 272npd-t,

Combining (2.8) and (2.12) we complete the proof of Lemma 2.2. [ ]

It is clear from the proof of Lemma 2.2 that the following statement holds:

Lemma?2.2. Lethy(s) be fromLemma.1landleta> —%. Assume that a function f
satisfies the restrictions

I185(F)llq < 2710, 1<g<oo,
[fil < ha(s), | € Dg,

with constants independent of i, and s Then formax2,q) < p < ccandr >
@+ 3)(p/q — 1) we have

with a constant independent of n and f

Consider the following greedy-type algorith®$-2. Take a real numberand rearrange
the sequencef, ||1 |2 in the decreasing order

Ll 12 > | f 122 > -
Define

m
GRA(f,Uh =" filpw.
k=1

Theorem 2.1. Letl < q < oo and letmax2,q) < p < oo. Then for any a> —%
andr > max{(a+ 3)(p/q — 1), 1/q — 3 — a} we have

sup [|f — GEA(f,UN)|lp < om(MH!, U%), < m™" (logm)@-De+1/2,
feMHa

Proof. Letm be given. Denote bg(m) the biggesh satisfying

sup #A(f,n,a) <m.
feMHa
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Lemma 2.1 implies
2"™ > m(logm)* ¢,

and for
g:=f —G%a(f,U%) wehave |gi| < hnm(S), | € Ds.
Similarly to (2.10) it is easy to check that
185(Q)lq < 27"l
with a constant independent 8indg. Applying Lemma 2.2to g we get
”g”p << Zfrn(m)n(m)(dfl)/z << mfl‘ (Iog m)(dfl)(r+1/2)’
that proves the upper estimate in Theorem 2.1

sup ||f — GEA(f,U%)|lp, « m™ (logm)@-DC+1/2),
feMH;g

The lower estimate
om(MHg, U%p > m™" (logm)@-D+1/2

follows from Theorem 4.2.
The proof of Theorem 2.1 is complete. [ ]

Consider now the_p-greedy algorithmGP(-, U9). Take a number < b < oo and
rearrange the sequenggf, U, ||} in decreasing order

Il fi,Uillb = 1 f1,Ullb - ...
Define
m
Gn(f.Uh =>"f,U,.
k=1
It is clear from the relation
I F1Ullp = | 11022

that the algorithm&® andG®2 witha = 1/b — % are closely connected. The following
proposition can be proved similarly to Theorem 2.1:

Theorem 2.2. Letl < q < oo andletmax2,q) < p < oo. Thenforanyl < b < oo
andr > max{(p/q — 1)/b, 1/q — 1/b} we have

fshhlg | f —GE(f, Ud)Hp = om(MHg, U, < m™ (logm) @D +1/2),
€MHg

We formulate now the corollary of Theorem 2.2 in the most interestinglcase.
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Theorem 2.3. Letl < q, p < oco. Thenforallr > r(q, p) we have

sup [[f —GR(f,UNp < om(MHL, U%, < m™ (logm)@-D+1/2
feMHé
with

r( ) . (l/q - 1/p)+1 fOI’ p > 2,
4P = 1 (max2/q,2/p) — 1)/p, otherwise

Proof. The lower estimates follow from Theorem 4.2. We prove the upper estimates.
Consider first the case2 p < o0. If 1 < g < p we use Theorem 2.2 with= p and
get a restrictiom > 1/g —1/p . If p < g < oo we use the inequality

(2.13) sup | f —GR(f, ud Mp < sup || f —GA(f, ud )lp
feMH’ EMHr

and reduce this case to the cape= p which has already been considered above. It
remains to consider the case<lp < 2. If 1 < q < p we use Theorem 2.2 with = 2
andb = p and get

sup |If —GR(f,UYp < sup If —GA(f,U%|l, < m (logm)@-D+1/2
feMHr EMH

providedr > (2/q — 1)/p . If p < q < co we use the inequality (2.13) to reduce this
case to the casg = p. In this case, we get a restriction> (2/p — 1)/p.
Theorem 2.3 is now proved. [ ]

3. The Upper Estimates for the CIasseB/IW{1

In this section we study the cIassMsWé which we define for positive (not necessarily
an integer). Let

F(u:=1+2) k' cogku—rr/2)
k=1

be the univariate Bernoulli kernel and let
d
RO =R, ..., %) =] [Fog)

be its multivariate analog. We define
MW, = {f: f =F x¢, llolq <1},

wherex denotes the convolution.
Results and their proofs in this section are similar to those from the previous section.
The technique in this section is a little more involved. We start with two lemmas.
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Lemma 3.1. For a fixed real number a denote
Wn(S) 1= 27N +Y/2+allsli-m p—(d-1)/2.
and for f € MW consider the sets
W(f,n,a) :={l:|fi| > wn(s), if| € D}, n=12....
Thenforl <q<2andr>1/q— % — a we have
#W(f,n, a) <« 2™

with a constant independent of n and f

Proof. Itis known ([T1, p. 36] and [T2, p. 242]) that fdr € MW(; we have

> s

lIsll=l

<< 2—I"| .
q

(3.1)

Further, for 1< q < 2, we have as a corollary of the Littlewood—Paley inequalities

1/2
D ss(h] > (Z ||ss<f)||§> :
q

Islla=! lIsll2=l

(3.2)

Similar to the proof of Lemma 2.1 we get folf := #(W(f, n, a) N DY)
(3.3) Nswn (5)% < [|8s( f)”gZ*”SHl(q/Z*l).
Using (3.1) and (3.2) we obtain

Z Ng « 2nr+1/2+aand-1a/25-1@/2-1+aq Z ||53(f)||g

lIsll2=l lIsll2=l

a/2
< 2n(r+1/2+a)qn(dfl)q/224(q/271+aq)|(dfl)(lfq/Z) ( Z ||(Ss(f)||§>

lIsllz=I
< oN(r+1/24+a)q(d-1)a/29-1(q/2-1+ag+ra)| (d-1)(1-6/2)

Using the assumption> 1/q — % — a we get from here

(3.4) > > Ne<2'n?

I=n [sll1=l

For Ng with ||s||1 < nwe have

(3.5) > Ne< ) #Ds < 2"

Isll1<n lIsllz<n

Combining (3.4) and (3.5) and summing o¥exre complete the proof of Lemma 3M.
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Lemma 3.2. Letwy(s) be from Lemm&.1and leta> —%. Assume that a function f
satisfies the restrictions

1/2
(Z ||6§(f>||§) <2, 1l<g<oo,

lIsll2=l

Ifi] < wn(s), | € Dg,

with constants independent of f, and s Then formax2,q) < p < ccandr >
@+ H(p/q — 1) we have

il <27
with a constant independent of n and f

Proof. By a corollary to the Littlewood—Paley inequalities we have,gor 2,

15 < D> 1sehHi
= Z( Yo IR+ D ||6§(f)||$,) =) (¥'+3).

e \lslli<n lIslli=n
Similar to the corresponding part (see (2.8)) of the proof of Lemma 2.1 we obtain
(3.6) ¥ g 27,
Analogously to (2.9) and (2.11) we get
(3.7) [18s(F)I) < y P 92Ish@HY2P-0 550 ))2,

where we use the notation

— 2—n(r+1/2+a)n—(d—1)/2.

Vn
Next,
Z ||55(f)||§ < yn2(P*CI)/922|(a+l/2)(P*CI)/P Z ||5S(f)”c21fI/P
[Isllz=I Isll1=!

q/p
< yn2(P—q)/D22| (@+1/2)(p—a)/p| =D (1-a/p) ( Z 1185 ( f)”g)

lIsll=!
& y2P-0/PQ(-1a+@+1/2(P-0))/p| @-1)1-a/p)
Using the assumption > (a + %)(p/q — 1) we get from here
(3.8) v & 27,

Combining (3.6) and (3.8) we complete the proof. ]
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Using Lemmas 3.1 and 3.2 instead of Lemmas 2.1 anda&2rove, in the same way
as in Section 2, the following analogs of Theorems 2.1 and 2.2. We note that the lower
estimates follow from Theorem 4.1.

Theorem 3.1. Letl < q <2 < p < oo. Then for any a> —% and r > maxX{(a +
$(p/d—1),1/q — 3 — a} we have

sup || f — GRA(f, UY | < om(MWj, U%), < m™" (logm)@-r.
feMWé

Theorem3.2. Letl < q <2 < p < oo. Thenforanyl < b < oo and r >
max{(p/q — 1)/b, 1/q — 1/b} we have

sup || f —GB(f, UM p =< om(MW!, U9, < m™ (logm)©@-2r,
feMW{]

We now derive one more theorem from Theorem 3.2.

Theorem 3.3. Letl < g, p < oo.Thenforallr>r’(q, p) we have

sup || — Gh(f,UDllp = om(MWg, U%), = m™ (logm) ="
feMWy

with

" (max(2/q,2/p) — 1/p, forp<2
Proof. The lower estimates follow from Theorem 4.1. Proving the upper estimates we
consider first the case2 p < 00. If 1 < g < 2 we use Theorem 3.2 with= p. This
will result in a restrictior > 1/g —1/p . If 2 < q < co we use the inequality

(3.9) sup | f —GR(f.UY,p < SUP If —GR(f.Ublp
feMWy

toreduce this case to that which has already been treated. We geta restri:et%}n 1/p
in this case. We proceed to4 p < 2 now. If 1 < g < p we use Theorem 3.2 with
p =2 andb = p and get

sup [If —GR(f,UNp < sup |If —GE(f,UY | < m™ (Jlogm)@-Pr,
feMWr feM Wr

providedr > (2/g —1)/p.If p < g < oo we use an analog of inequality (3.9) to
reduce this case = p. Here we get a restriction> (2/p — 1)/p.
Theorem 3.3 is now proved. ]

4. Lower Bounds for Bestm-Term Approximation for the CIassesMHa and MW{;1

We begin this section by proving the following two lower estimates:
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Theorem4.1. Foranyl<q,p <ooandr> (1/q —1/p), we have

om(MW;, U%p > m™ (logm) @2

Theorem4.2. Foranyl<(q,p<ocandr> (1/q—1/p),. we have

om(MHg, U, > m" (logm)@-D+1/2,

To prove these theorems we use a method thatis based on the geometrical charateristics
ofthe setM W(; andM Hr; . Thefirstrealizations (see [DT] and [KT]) of this method used
volume estimates of projections of the set under consideration onto the appropriately
chosen finite-dimensional subspaces. We will use a variant of this method (see [T7])
expressed in terms of the entropy numbers of the given set.

For a bounded sédt in a Banach spack, we denote for integan

2m
em(F. X) :=infJe: 3y, ... fn e X0 F | J(fj +eB(X) ¢
j=1

whereB(X) is the unit ball of the Banach spadeand fj + ¢ B(X) is the ball of radius

e with the center aff;. The entropy numbers are closely connected with metric entropy.
Both characteristics had been well studied for different function classes (see, for instance,
[BS] and [T8], and historical remarks there). In this section we will use the following
two known estimates (see [T9] and [T8]):

(W) forany 1< g < oo andr > 0 we have

(4.1) em(MW!, L) 3> m™" (logm) -2
(H) for anyr > 0 we have

(4-2) em(MHL, L1) 3> m™ (logm) @D +1/2,

These estimates will be used in the general method which, roughly speaking, states that
m-term approximations with regard to any reasonable basis are bounded from below by
the entropy numbers. We now formulate one result from [T7].

Assume that a systedt := {; 321 of elements inX satisfies the condition:

(VP) There exist three positive constamfts i = 1, 2, 3, and a sequend@i 2 ;,
Nki1 < Aing, k= 1,2,..., such that there is a sequence of the de laeé&alPoussin
type operator¥y with the properties

(4.3) V(W) = j ¥,  Aj=1 for j=1,...,n; Ak, j =0 for > A,
(4.4) Vklix—x < As, k=12 ....

Theorem 4.3. Assume that for some:a 0 and be R we have

em(F, X) > Cym~2(logm)°®, m=23....
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Thenif a systen¥ satisfies conditio(VP) and also satisfies the following two conditions

n
f—> ¢
j=1

< Cn2(logn)®, n=12...,

..... Cn
X

(4.6) Vi(F) c CsF,
we have
om(F, ¥)x > m~3(logm)°.

Proof of Theorem 4.1. Let p > 1 be fixed. We speciffg = U9, X = L, and the
sequence of operato¥y = Sq,, whereSy, is defined as follows:

So.(f) 1= ) flod®?

keQn
with

Q= U rso,

e lIslli=n

wherep(s, ¢) is defined at the end of Section 1. It is known [T2, p. 20] that for any
l<p<oo:

(4.7) I1SQulIL,—1, < C(p, d),
implies in particular that
(4.8) So, (MWg) C Ca(q, d)MW, 1l<qg<oo.

It remains to check the relation (4.5). We use the known estimate [T1, p. 36] and [T2,
p. 242]:

(4.9) Eq,(MWp)p < 271, 1<p<oo.

Firstlet1< p < q < oo. Then

(4.10)  Eq,(MWg)p < Eq,(MW)p < 27 & (#Qn) " (log #Qn) @'
Using (4.1), (4.8), and (4.10) we get from Theorem 4.3 that

(4.11) om(MW;, U%) > m™" (logm) =",

It remains to prove (4.11) for £ q < p. This follows from (4.11) withq = p and the
embedding

MW, c MW, g < p.

Theorem 4.1 is now proved. ]
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Proof of Theorem 4.2. This proof is similar to the previous one. We specify as above
v =U9 X= Ly, andV, = Sg,. Property (4.7) and the following characterization of
the classeMHg, 1 < g < oo (see [T1, p. 33] and [T2, p. 197]):

(4.12) fe MH] = [185()llq < 277181,
(4.13) [18s(F)llq < 2718t = C(q,d) f € MH,
imply that

(4.14) S, (MH{) € C4(q. d)MH, 1<q < oo.

Itis clear that it suffices to prove Theorem 4.2 for bigsay 2< q < oo, and smallp,
say 1< p < 2. In this case we use the estimate [T1, p. 37] and [T2, p. 244]:

(4.15) Eo(MHg)p < Eq,(MHg)q < 27"n@"1/2
< (#Qn)_r (log #Qn)(d—l)(r"rl/z).

Using (4.2), (4.14), and (4.15) and applying Theorem 4.3 we get, fol< 2 < q <
oo, r > 0:

O'm(M HI‘ , Ud)p > mfr (|Og m)(dfl)(l‘le/Z).

The general case k g, p < oo follows from the case considered by embedding
arguments. Theorem 4.2 is now proved. ]

We now prove the lower bounds (1.2) and (1.3).
Theorem 4.4. For any orthonormal basi® we haveforr > (1/q — %)+:
om(MHg, ®)2 > Ca(r, g, dym™" (logm)@ P+ 1 < q < oo,
and

om(MW, ®)2 > Ca(r, g, d)ym™" (logm)©@~r, 1<q<oo.

Proof. This proof is based on a proposition from [K] (see Corollary 2) which we
formulate as a lemma. ]

Lemma4.1. There exists an absolute constant- 0 such that for any orthonormal
basis® and anyN-dimensional cube

N
By (W) = Za,— Yi, gl <1, j=1,...,N; ¥ :i={y }l-Nzlan orthonormal syste}n
i=1
we have
3
om(Bn, )2 > ZNl/z

if m< coN.
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Letq < oo be fixed and letm be given. Denote

D) := [ J D{FP

lIsllz=n
and find a minimah such that
m < co#D(n),
then
(4.16) m = 2"nd-1,

We setN := #D(n) and choose in place di/; }szl the systemJ (n) := {U; }icpm)-
Then for anyf € By (U (n)) we have

(4.17) 18s(HNE =< D IFUE < Y IU g < 292

| eDg 1eDs

This estimate and relation (4.13) imply that for some posi@ivg, d) we have
C(q, d)2 "2 By (U (n)) C MHy.
Therefore, Lemma 4.1 gives
om(MHg, @)z 3> 27""n@"D/2 < m~" (logm) @D +1/2),

Next, for 2< q < oo forany f € By (U (n)), we have

1/2
(4.18) 1fllq < (Z ||55(f)||g> « 2V2nd-1/2,
S

By the Bernstein inequality [T1, p. 12] and [T2, p. 209] we get from (4.18):
I f(r,...ﬁr)”q < 27| f lg < oN(r+1/2) n(d-1)/2
Consequently, for some positig&q, d) we have
C(q. d)2 "2~ @D2By (U (n)) ¢ MW,
. Therefore, by Lemma 4.1, we get
om(MW, ®); > m™" (logm) =",

It is clear that the general case< q < oo follows from the above considered case
2 < g < oo. Theorem 4.4 is now proved. ]
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5. Efficiency of GP for Individual Functions

We prove in this section that for eaohand 1< p < oo there is a functionfy, , € L

such that

(5.1) I =GR, UDp/om(f,U%)p > (logm)@-Di/2=1/el,

We prove this inequality fom of the form

(5.2) mp ;= #D(n) = #Dg = 2"n91, D := Db,
S

Isllz=n

For a givenn we construct two functionsfy(n, x) and f,(n, x). The first function is
defined as follows:

fi(n,x) =y @tz

Islla=n

Then foranyl € D,, ||ull1 # n, we have( fi(n)); = 0and forl € D,, [|ull1 = n, we
have

fiy =272 and | fu(n) Uy flp < 27VP.
Next, by the Littlewood—Paley inequalities we get
I f2()[|p = n@=D72, l<p<oo
We proceed to define the second function. Wd get= [(logm,)/d] + 1 and define

fz(n) = an/zn(d*l)(l/pfl/z) Z U| ,

leAn)

whereA(n) C Dgmy....1cny With #A(n) = m,. Then for eacH € A(n) we have

fo(n), = 27"2n@-DA/p-1/2)
and
| f2(n) Uy [lp < 27/P.
We also have
| f2M)lp < #A(n)2")YP < n@-b/p,
Let 2 < p < oo and a constar:(d, p) be such that

(5.3) lg}\i{;) | f2(m) U [lp > Ci(d, p) mIaXH f2(n) Uy lp.

Consider

fm,.p 7= C1(d, p) fr(n) + f2(n).
Then, by (5.3), we have

(54) I finy.p = Gy (fin,p, UDIlp = Ca(d, P fa(m)llp =< n@72.
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Next,
(5.5) oy (. ps UD)p < [ F2(n) | p = n@-D7P,

Combining (5.4) with (5.5) we get (5.1) fon = m,.
Now let 1 < p < 2 and a constar@@,(d, p) be such that

Igg(r;) [l f1(n) Ui llp > Ca(d, p) .?Aa&‘) | f2(m) Uy [l

Consider
fna,p = f1(n) + Ca(d, p) f2(n).
Then we have, on the one hand,
(5.6) I frmpp — GB, (fmpp. UDlp = Co(d, p) | F2(n)]| < n@-2/P
and, on the other hand,
(5.7) om, (fmy,ps UDp < | fa(mlp < n@H72,

Combining (5.6) with (5.7) we get (5.1) fan = m,. It is easy to see that the general
case ofmn can be derived from the cage= m,.

We note that using the result of P. Wojtaszczyk [Wo] on the equivalends tuf
the Haar system in allp, 1 < p < oo, we can derive some results i from the
corresponding results on the multivariate Haar systétr(see [T4]). For instance, we
get from [T4, Theorems 2.1, 2.2] that for arfiye L, 1 < p < oo, the inequality

(5.8) If —GR(f,Udp < C(p, d)(logm)?om(f, U,

holds, and from [T4, Theorem 2.1, Section 3] that in the achse 2, ‘5‘ < p < 4,the

factor (logm)¢ in (5.8) can be replaced yog m)@-DI/2-1/pl The last remark shows
that the inequality (5.1) is sharp.

6. One Special Dictionary with Tensor Product Structure

In this section we studgn-term approximation with regard to the dictionafy(see the
Introduction for the definition) which is something intermediate between the dictionaries
U? andIT2. We prove here the following theorem:

Theorem 6.1. Ford =2and1 < g, p < oo we have
om(M H(;’ Y)p = Gm(Mqu, Y)p = m‘2r+<1/q—1/p)+’

providedr> (1/q — 1/p)+.

Proof. Thelowerestimatesinthe casedp < < occandinthecasek q<p=<2
follow from the corresponding result for bilinear approximations (see (1.11)). We remark
only that the restriction > 1 in (1.11) was used to prove upper estimates. For details,
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see [T5]. We now prove the lower estimates in the casedl< p < oo. Itis clear that
it suffices to carry out the proof fan of the formm = 2 —1. Consider a function

f X %) i= Y Ui xpU; (%).

leD/
We have
11§ = 2@, 1<qg<oo,
and by the Bernstein inequality
(6.1) I f(”)llq < @+,

Assume that am-term approximant with regard t6 has the form

g0 = Y U x)vi ) + > vE(x)U) (x2)

| EQl | EQQ

with #Q1 + #Q, = m. Then, for 1< p < oo, we have

(6.2) If =gl = CpIssh”(f —olp
p

> Y UUite)| 200,
1 €D \(Q1UR2)

The inequalities (6.1) and (6.2) imply
O'm(MW(;, Y)p > 2I(—2r+1/q—1/p) = m—2r+1/q—1/p'

It remains to note that! W, is embedded iM Hg.
We proceed to prove the upper estimates. It is sufficient to prove the upper estimates
in the case 1< < p < oo. We prove the upper estimates for the wider clibsd; .
We use, in the proof, a combination of a linear method and the algofihm U?2). For
a fixedn we define a linear operat&, as follows:

SHO = D (%), Ui ()i (x),
[1=2="
SHO = SHO+ D (Foxa, ) = S(Hx, ), Ui (O (x2).

[H=2-"
Then
fl=f-SfH= >  fu.

[11]<27",|lp| <27

We apply the greedy algorithi®P(-, U?) to f". The proof is similar to, but simpler
than, the corresponding proofs in Sections 2 and 3.
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Lemma6.1l. Letl< g < p < oo. Denote
h(n) := 2—N(2r—1/g+2/p)
Then for any functionf of the form
(6.3) f= > fiU. [8(5)lq=<C.d g2,
[11]<27",|15] <27
we have
#H, < 2,
where
Hn = {12 [[fiUillp > h(n)}.

Proof. DenoteN¢ := #(H, N D). Then similar to the proof of Lemma 2.1 we get
NS < h(n)_q2||SH1(—I’Q—q/p+1)’
and using > 1/q — 1/p we get
Z NS << h(n)_q22n(—rq—q/p+1) = 2n. .

$12N,$=N

Lemma 6.2. Leth(n) be from Lemma 6.1. Assume that a functibrof the form (6.3)
satisfies the restriction

I fiUillp < h(n) foralll.

Then we have
” .I: ”p < an(erl/qul/p).

Proof. For eachs we have
||5s(f)||,§’ < Z I fiU, IIS < h(n)P Z I fiU, II?,

1 eDs 1eDs

< h(n)r- Z I U, ||32IISII1(1/0I—1/F))0I < h(n)P—qulsHl(—fGHl—Q/p)
| eDg

and
| f llp < Z ||55(f)||p < h(n)l—Q/p Z olisli(-ra+1-a/p)/p_

$12N,$=N $12N,$=N

Usingr > 1/q — 1/p we get from here
| f ”p & oN(=2r+1/q-1/p)

Lemma 6.2 is now proved. [ ]

We continue the proof of Theorem 6.1. From Lemmas 6.1 and 6.2 we obtafif for
(6.4) " — Gh(f", U?)||, « 27 @ -a+i/p),

The estimate (6.4) implies the upper estimate in Theorem 6.hfer5(2"). Itis clear
that this implies the general caserof
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7. Further Remarks

The results we have developed in the previous sections in the periodic case can be
extended to the nonperiodic case and to other systeinstead oU 9. We discuss here

in more detail a generalization of the results from Section 3. The key points of the proofs
of upper estimates in Theorems 3.1-3.3 were the following:

(1) The multivariate systerd ¢ satisfies the relation (1.17)

PRIV

| eDg

p
=Y Ifiuilg,  l<p<oo

1 eDg

p

which is a corollary of the corresponding relation (1.14) for the univariate system
U. This system also satisfies (1.15):

Uil < (HYP7Y2 1< p < oo
(2) The systentd satisfies the Littlewood—Paley inequalities in a weak form
2N\ 1/2

I fllp =< Z , l<p<oo.

S

Z fiuU,

1 eDg

p

(3) The function clas#1W has a certain approximation property (see (3.1)) which
is equivalent to the Jackson inequality: fore MW!, 1 < q < oo, we have

f— > fu

[H=2="

(7.1) 2™

q
and the embedding properMW,;l C MWGrI2 if g1 > Q.

Thus if some systen¥ and function classelé(; satisfy conditions (1)—(3) above, then
the upper estimates in Theorems 3.1-3.3 hold wﬁha\ndMW(; replaced byl andF.

In the paper [DKT] we gave some sufficient conditions on a sysiero be L p-
equivalent to the Haar system. We recall the definition of the Haar system and make
some simple observations about systemsequivalent to the Haar system. Denote
the univariate Haar system By := {H,},, wherel are dyadic intervals of the form
I =[(j—D2™j2™, j=1...,2%n=0,1,...,andl =0, 1] with

Hpo,11(x) =1 for xe€]0,1),
22, xel(j—-D2" (-2,

Hij-p2njam = 1 =22, xe[(j — 32" j2™,
0, otherwise

Consider the multivariate Haar bag := H x - - - x H which consists of functions

d
Hoo=[TH ). T=lixxlg X = (. Xa).
j=1
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We say that a systetr = {y, } is L p-equivalent to the Haar systert if for any finite
setA and for any coefficientéc, } we have

> cH, > ci

leA leA

< Co(¥, p,d)
P

> coH,

leA

p p

It is well known (see, for instance, [KS]) that the Haar system satisfies the Littlewood—
Paley inequalities in a strong form

1/2
(7.3) HZQ H | = (Zm. H.|2> .,  l<p<oo.
| |

P p

Itis clear from (7.2) and (7.3), and the corresponding propertig& pfhat each system
which ist-equivaIent'[d-ld with1l < p < oo satisfies property (1) and a stronger analog
of property (2) from above. In the paper [DKT] we gave some sufficient conditions on a
systemy to have the Jackson inequality (7.1). For particular examplas sétisfying
(7.1), see [Km].

Completing this section we conclude that the results on nice properties of the sys-
temU¢ can be extended onto many other systems including wavelet-type systems. For
instance, the following two theorems hold:

Theorem 7.1. Assume that a syste#nis Lp-equivalent to the Haar systetd?, 1 <
p < oo, and function classesgFhaving the following propertyfor any f € F;, we
have

f— > alf, ¥y

[H=2-"

K2 1<q< oo,

q
with a constant independent of f angdand F{ql - Féz if g1 > go. Then we have

sup || f — GR(f, ¥)|l, « m™" (logm)©@-br, 1<q,p< oo,
feFé

provided r > r’(q, p) with r’(q, p) from Theoren8.3.

Theorem 7.2. Assume a system is Ly-equivalent to the Haar systetdd, 1 < p <
oo, and function classesgFhaving the following propertyfor any f € Fj, we have

Z a(f, My || <« 27 "lslz l<qg<oo,

1eDsg

q
with a constant independent of f andand F,;l C Féz if g1 > gp. Then we have

sup |l f — GR(f, ®)[l, « m~" (logm)@-D+1/2, 1<q,p< oo,
feFg

provided r > r (q, p) with r (g, p) from Theoren?®.3.
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