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Analyzing the Characteristic Map of Triangular
Subdivision Schemes

G. Umlauf

Abstract. Tools for the analysis of generalized triangular box spline subdivision
schemes are developed. For the first time the full analysis of Loop’s algorithm can
be carried out with these tools.

1. Introduction

In the last two decades many subdivision schemes for different purposes were devised,
see, e.g., [1], [2], [3], [4], [6], [7], and [11]. All these algorithms generate, from an initial
control net, a sequence of nets which converges to a limiting surface. Although sufficient
conditions for the convergence to a smooth limiting surface were given in [12] and [9],
their rigorous application has been carried out only for some of the above-mentioned
schemes by Peters and Reif [7], [8].

In this paper we will investigate the smoothness of the limiting surfaces obtained by
subdivision algorithms for triangular nets. According to the sufficient conditions of [12]
and [9], we have to analyze the spectral properties of the subdivision matrix associated
with the algorithm and the so-called characteristic map. Symmetry properties of the
algorithms help to simplify this analysis significantly.

Subsequently, the analysis is carried out for Loop’s algorithm [6]. The spectral prop-
erties of the subdivision matrix imply some characteristics of the algorithm as already
observed by Loop [6]. To prove regularity and injectivity of the characteristic map we
use its Bzier representation as in [13] and [8]. This leads to a rigorous proof of tangent
continuity of the limiting surface of Loop’s algorithm.

2. Generalized Subdivision

We presume that all subdivision algorithms considered herstatimnary local, and
linear schemes for tri- or quadrilateral nets. Such an algorithm generates starting from
an initial arbitrary tri- or quadrilateral nély a sequence of ever finer NS} .
Thereby only finite, affine combinations, represented by so-caflasks are used to
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Fig. 2.1. The initial triangular neCq (top left) and the net€,, ..., C4 of the first four iteration steps of
Loop’s algorithm.

compute the points of the n€}, from Cr,_1, m > 1. This makes up for the locality and
linearity of these schemes. Since we use the same affine combinations in evary step
of the iteration, the subdivision algorithm is said to be stationary.

The sequence of neff€m}5_, generated by such an algorithm will eventually converge
to a limiting surfaces consisting of infinitely many tri- or quadrilateral patches.

An example for Loop’s algorithm is shown in Figure 2.1. The upper left net is the
initial netCy. The other net€,, . . ., C4 are the result of the first four iterations of Loop’s
algorithm starting fronCy.

Suppose that on the regular parts of a net, i.e., parts of the net that contadmdnéry
verticesof valence 6 or 4 for tri- or quadrilateral nets, respectively, standard subdivision
rules for symmetric box splines apply. Examples for such standard subdivision rules
are the subdivision rules for tensor product splines [5] or for quartic box splines over
the three-directional grid. On this condition the regular parts of a net detei@fine
surfaces.

Near vertices of valencg 6 (# 4) for tri- (quadri-)lateral nets, the so-callegtraor-
dinary vertices special subdivision rules are used, which do not change the number of
extraordinary vertices in two consecutive n€tg_; andC,, m > 2. Since the subdivi-
sion masks of stationary, local schemes have fixed finite size, we can restrict the analysis
to netsCy with a single extraordinary vertex surroundedrlyyngs of ordinary vertices.

An example is illustrated in Figure 2.2 for= 3.

The particular choice of depends on the subdivision algorithm. It must be such
that the regular parts @, define at least one complete surface ring. Loop’s algorithm
requires, for example, = 3.

If we denote bys, the surface that corresponds to the regular partS,gfthen the
limiting surface is given bys = [ J sy. Obviouslysy,_; is part ofs, for m > 1. So
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Fig. 2.2. An initial net Co with an extraordinary vertex of valence 5 (markedd)ysurrounded by = 3
rings of ordinary vertices.

takingsy_1 away froms,, we obtain a surface ring, which is added t@,_; in themth
iteration step. This yields= 55U [J;1»1 'm-

At an extraordinary vertex of valencethe surface rings,, can be parametrized over
a common domaif2 x Z, in terms of a subndd,, c C, and certain functionl¥. If
dd, ..., dK denote the vertices @, we have

rm Qx Zp - R®

K
W, v, ) = rhau,v) =Y N, v, jdk = N, v, j)dn,
k=0

where is either
Q4 ={(u,v)|u,v>0andl<u+v <2}
in case of trilateral nets or
Q" = {(u,v) |u, v > 0and 1< maxu, v} < 2}

in case of quadrilateral nets, see Figure 2.3.
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Fig. 2.3. The domaing2? (left) andQ" (right).
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Note that all netd,, have equally many vertices. Hence the stationary, local, and
linear subdivision algorithm can be described by a sqeabglivision matrix Ai.e.,

dm - Adm_l.

3. The Subdivision Matrix and the Characteristic Map
Let o, ..., Ak be the eigenvalues & listed with all their algebraic multiplicities and
ordered by their modulus
Aol = [A1] = -+ = |Ak]

and denote byy, ..., vk the corresponding generalized eigenvectorgidf > |A1] =
|A2] > |13, the two-dimensional surface that is defined by the wgt\j]

X(U, v, ) == N, v, )[V1, V2] Q x Zp — R?

is called thecharacteristic mapof the subdivision scheme [12]. Note thatcan be
regarded as consisting nfsegments! (u, v) := X(u, v, j). An example for the charac-
teristic map of Loop’s algorithm is shown in Figure 3.1.

The crucial theorem for the analysis of subdivision algorithms can now be stated in
terms of thesubdominant eigenvalue:= A, = A3 andx:

Theorem 3.1. Letx be a real eigenvalue with geometric multiplicRylIf the charac-
teristic mapx is regular and injective and

o =1>|A] > |Ag],
then the limiting surface is a Emanifold for almost all initial control net€,.

Proofs of this theorem can be found in [12] or in a more general setting in [9].

Fig. 3.1. The characteristic map of Loop’s algorithm foe= 7.
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In the sequel we apply Theorem 3.1 to subdivision schemes with two additional
properties.

1. A subdivision algorithm is said to b&ymmetric if it is invariant under shifts
and reflections of the labeling af,. This means if permutation matricésand R
characterized by

N, v, j +1)dm = N(u, v, j)Sdn
and
N(v,u, —j)dm = N(u, v, j)Rdn,

exist, thenA commutes withS and R:
AS= SA and AR=RA

Note thatS and R exist especially for subdivision algorithms based on box splines with
regular hexagonal or square support.

2. A subdivision algorithm is said to havanarmalizedcharacteristic map, ¥°(p) =
(p, 0) with p > O andp = e; + & or p = 2e; + 2, in case of tri- or quadrilateral nets,
respectively, see Figure 2.3.

The first property implies that the subdivision matfas a block-circulant structure
with square block®\;, j =0, ..., n — 1. ThusA s unitary similar to a block-diagonal
matrix A. The diagonal blocks oA result fromA; by the discrete Fourier transform:

n—1
,K]—:ng“‘Ak for j=0,...,n—1,
k=0

wherew, = exp(2ri /n) denotes amth root of unity. This means, i is an eigenvector
of some blockA; corresponding to the eigenvalug thenu is also an eigenvalue ok
with an eigenvector

(3.1) V= [a)gv, a)rjf\?, e a)#“_l)V] .
If + denotes the complex-conjugate, the bIocksﬁoBatisfy K, = K;_j for j =
1,..., n/2]. Hence there are always to linear independent, real eigenvegtersi(v)

andv, = ¥(v) corresponding to the real subdominant eigenvaluErom this a first
necessary condition for the subdominant eigenvalue can easily be deduced [8]:

Lemma 3.2. The characteristic map of a symmetric subdivision scheme is notinjective
if the subdominant eigenvalue is from a blogkfor j # 1,n — 1.

Equation (3.1) shows also that normalization of an injective characteristic map can
always be achieved by an appropriate scaling.of

4. Sufficient Conditions for Regularity and Injectivity

Throughout this chapter we will assume that the subdominant eigenvaki@ real
eigenvalue from the block&; and A,_;.
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Fig. 4.1. Converting a triangular to a quadrilateral net.

The two properties of the last chapter imply that the characteristioasagymmetric
under rotations and reflections for subdivision schemes for tri- or quadrilateral nets [8].
They allow us to restrict the analysis of the characteristic map to its single segfnent

Theorem 4.1. Letx® = [x, y] and denote by? := [x,, y,] the partial derivatives of
x% with respect ta. If the normalized characteristic mapof a symmetric subdivision
scheme for quadrilateral nets satisfies

xX°(u,v) >0 forall (u,v) e Q"

componentwiséhen the characteristic mapis regular and injective

For a proof of this theorem see [8]. The proof also applies to anymay’ x Z, — R?
that shares the above symmetry properties of the xnap

Theorem 4.1 can be transferred to triangular nets by the observation that any triangular
net as in Figure 2.2 can be viewed as a quadrilateral net with diagonal edges. This is
shown in Figure 4.1 for the domaiigs® and2".

In case of triangular nets the domain of the characteristic xnamsists oh plane
copies of2*. Further we havg - Q" c 1. Q2 UQA, as llustrated in Figure 4.1. Define
the mapy as

y. % . QD X Zn — Rzy
. xI(u,v) - if (u,v) € @5,
U, v, j) {,\xj(u, v) if (U v) € 5- Q8

Thusy is “covered” byx andix and adopts its symmetry properties. Hence Theorem 4.1
is valid for the mapy and can be applied to subdivision schemes for triangular nets, if
Q" is replaced by2:

Theorem 4.2. If for the normalized characteristic mapof a symmetric subdivision
scheme for triangular nets the segmghisatisfies

xX°(u,v) >0  forall (u,v) e Q®

componentwise¢hen the map characteristicis regular and injective
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In practice we will use the &Zier representation of to apply Theorem 4.2. Hence
the proof of the positivity ok for all (u, v) € Q reduces to the proof of the positivity
of its Bézier points.

Corollary 4.3. Ifall Bézier points ok? are positivethen the normalized characteristic
mapx of a symmetric subdivision scheme for triangular nets is regular and injective

5. Loop’s Algorithm

Loop’s algorithm is a generalization of the subdivision scheme for quartic box-splines
over a regular triangular grid. The masks are given in Figure 5.1, where the parameter
can be chosen arbitrarily from the interval

(5.1) (—co92r/n)/4, (34 coq2z/n))/4) .

The limiting surface generated by this algorithm is a piecewise quaftsurface ex-
cept at its extraordinary points. Here the surface is conjectured to be tangent continuous,
see [6].

Obviously, Loop’s algorithm is a symmetric scheme. The form of its subdivision
matrix A depends on the labeling of the vertices in the contropgtif we label them
segment after segment, counterclockwise, as in Figure 5.2 the subdivision Aatix
a block-circulant structure:

Ac A - Ag
An—l AO e An—2
A — c R?nx?n.
At - Al Ao

Now we can use the discrete Fourier transform as in Chapter 3 to yield a unitary similar

3/8

1/8 1/8

3/8

Fig. 5.1. The masks of Loop’s algorithm.
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Fig. 5.2. The labeling of the vertices of the control &t for n = 5.

block-diagonal matrixA with blocks

[ o |1—« |
3 5
8 8
1 3 1 1
16 4 16 8
fo=| 4| 3 |0 ¢
0 g g /0 0 0
o| 2 [ 2loo0oO
0] 3 |5 2/0 0 O]
and
- 0 -
0] 3+cn/4 |
0| 2+ci/8 | & L+4+ow/16
Aj=| 0] 3+3w,'/8] 0 :
0 : 3 14+ wh/8 0 0
0 34w'/8| 3 2 000
| 0| L +3w,/8| wn'/8 2 0 0 |
forj =1,...,n-1 andc) + is! = wl. From this we get the eigenvalues of the
subdivision matrixA as follows:
o 1;

. 3.
® [y .=Ol—§,

o uji=2+ch/aforj=1,...,n-1;
e £ and4 eachn-fold; and
e 0 which occurg4n — 1)-fold.
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Note thatuj = pn_j for j = 1,...,[n/2], andps > p for j = 2,...,[n/2].
Furthermore A; = A?_,, so thatu; has geometric multiplicity 2. Therefoge, is the
double subdominant eigenvalaeof A, if |u,| < wi. This last inequality yields the
interval (5.1) fora given by [6].

This verifies the conditions of Theorem 3.1 for the subdominant eigenvalue of the
subdivision matrix. What remains is the analysis of the characteristic map.

Remark 5.1. The spectral analysis ok can also be used to modify the subdivision
algorithm so as to generate smoother limiting surfaces [10].

6. The Characteristic Map of Loop’s Algorithm

According to Corollary 4.3 we only need to show positivity of thezi&r points ok° to
prove regularity and injectivity of the characteristic mapf Loop’s algorithm.

Some calculations using a computer algebra system yield ézeeBpoints ok? as
given in Figure 6.1. Except for positive constants the denominators are given by

D} = 5+4c,
DZ = 54+ 36c;,

D3 = 194 22¢! + 4c2.

ObviouslyD}, D2, D2 are positive for arbitrary > 3 sincec? > —1.

The numerators in Figure 6.1 are of the form
ES = ap + &G} + axC? + agc?, ao, ay, a, ag € Z,
or
ES = byst + bps? + bsb?, by, by, bz € Z.
Sinceag, a; > 0, the numeratorg? are positive if
& > a1/2+ |az| + |ag|.

This last condition is fulfilled by alES. The positivity of the other numeratoEs; for
n > 3 can be shown in a similar fashion. This completes the proof for:

Lemma 6.1. Loop’s algorithm generatestmanifolds for almost all initial triangular
netsCo.

Remark 6.2. This proofapplies also to the subdivision schemes proposed in[10]. Thus
these schemes generate curvature continuous surfaces with flat spots at the extraordinary
points for almost all initial triangular net,.
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