Constr. Approx. (1999) 15: 175-208

CONSTRUCTIVE
APPROXIMATION

© 1999 Springer-Verlag New York Inc.

Variational Principles and Sobolev-Type Estimates for
Generalized Interpolation on a Riemannian Manifold

N. Dyn, F. J. Narcowich, and J. D. Ward

Abstract. The purpose of this paper is to study certain variational principles and
Sobolev-type estimates for the approximation order resulting from using strictly positive
definite kernels to do generalized Hermite interpolation on a closed (i.e., no boundary),
compact, connected, orientable;dimensionalC*® Riemannian manifold\, with

C® metric gij. The rate of approximation can be more fully analyzed with rates of
approximation given in terms of Sobolev norms. Estimates on the rate of convergence
for generalized Hermite and other distributional interpolants can be obtained in certain
circumstances and, finally, the constants appearing in the approximation order inequal-
ities are explicit. Our focus in this paper will be on approximation rates in the cases of
the circle, other tori, and the 2-sphere.

0. Introduction

Over the last few years, there has been an increasing interest in approximation methods
based on variational techniques in a reproducing kernel Hilbert space setting. Perhaps the
first paper on this topic was that of Golomb and Weinberger [10]. More recently, Duchon
[5], [6] and Madych and Nelson [15], [16] have extensively investigated approximation
properties of functions having nonnegative Fourier transforms or, more generally, condi-
tionally positive definite functions of ordaron RS. Wu and Schaback [30] used kriging
methods, which are based on variational techniques, in their investigation of the approx-
imation properties for this class of functions. In this framework, the approximation rates
apply to functions in a certain “induced” space.

The object of this paper is to investigate variational principles and Sobolev-type esti-
mates for the approximation order resulting from using strictly positive definite kernels
to do generalized Hermite interpolation on a closed (i.e., no boundary), compact, con-
nected, orientablen-dimensionalC*> Riemannian manifoldM™, with C* metric g;;

[1], [8], [11]. Generalized Hermite interpolation R® was introduced in [20] and [29],
and on a manifold in [19]. We should also mention that Xu and Cheney [31] gave con-
ditions for Schoenberg’s spherical positive definite functions [24] tsthetly positive
thereby providing a wide class of basis functions with which to do interpolatid®"on
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It frequently happens that the induced spaces contain certain Sobolev spaces. The
rate of approximation can therefore be analyzed in terms of Sobolev norms. Estimates
on the rate of convergence for generalized Hermite and other distributional interpolants
can be obtained in certain circumstances, and finally the constants appearing in the
approximation order inequalities are explicit. Of special interest in this paper will be the
approximation rates obtained in the setting of the 2-sphere. Some work in this direction
has already been done [7], [17], [22], [26], [27]. A crucial ingredient for our estimates
is a recent sampling theorem for band-limited functions on the 2-sphere given in [4].

The outline for the paper is as follows: In Section 1, relevant notation and certain
basic results about Sobolev spaces on Riemannian manifolds are given. In Section 2,
materials about complex-valued kernels are presented. Special attention is given to those
kernels which are positive definite and strictly positive definite within our framework.
Also the abstract interpolation problem is presented. In Section 3, a variational principle
is derived which shows that the solution to the abstract interpolation problem satisfies a
certain minimal norm criterion which in turn gives rise to the “rate of approximation”
estimates. In Section 4, the notion of conditionally positive definite kernels on manifolds
is introduced. In Section 5, rate of approximation estimates are derived in the case of
the circle and other tori for both equally spaced and scattered points. In Section 6,
approximation rates for certain kernels $hare derived.

1. Notation and Background

We will introduce notation and discuss pertinent matters related to manifolds. For the
most part, we will use the notation for manifolds and distributions thatis used in Friedlan-
der [8, 82.8] and in [19]. In particular, in local coordinates the invariant volume element
du induced by the Riemannian metgg is

du(x) = g(x)¥2dx  where g(x) := detg;j(x) > 0
and  dx:=dxt...dx™.

As usual, we denote the components of the inversg;oby g'. By CK(M™) we wiill
mean the collection of ak-times continuously differentiable functions bH"; the com-
pactness of the closed manifdid™ implies thatCX(M™) = CK(M™), whereC§(M™)
comprises alCX functions whose support is contained in a compact subddt™of

Much of what we do here is related to expansions involving eigenfunctions of the
Laplace—Beltrami operator, which in local coordinates has the form [8, p. 11]

LI Loow
Z 9 <gl/zgu _> where g = detg;.

m
—1/2
i i
o 0x ax

Aw =g

It is possible to show thah is self-adjoint relative td.>(M™, g) [1, p. 54] and that it is
elliptic [28, p. 250]. The eigenfunctions mentioned above arise in connection with the
eigenvalue problem

AF +AF =0, F e C3(M™M),

concerning which we have the following well-known result:
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Proposition 1.1. The eigenvalues are discreteonnegativeand form an increasing
sequence with-oo as the only accumulation pointhe eigenspaces corresponding to
a given eigenvalue are finite-dimensional subspaces”®f\C™). The eigenspaces are
orthogonal in 12(M™, g), and the direct sum of these spaces is all 8NL™, g).

Proof. See [1, Chap. 3] and [28, Chap. 6]. ]

We remark that much of what we do here could also be done with other eigenfunc-
tion expansions, provided we replace the Sobolev spaces by weighted eigenfunction
expansions.

Occasionally we need to label the eigenvalues. A common choice for the index
comes from labeling in increasing order the eigenvalyewith appropriate repetitions
for degenerate cases. The compactnedsimpliesi; = 0 is the lowest eigenvalue; it
is easy to show thatithas multiplicity 1, 5p> Oif j > 1. Otherindexingschemes are, of
course, possible. We will Ie; be the eigenfunction corresponding to the eigenvajue
Of course, we can choose tRgs so that they form an orthonormal basis EstM™, g),
and we do so here. We also want to point out that the theorem above implies that each
Fj is actually aC* function.

In[19] we discussed in detail the definition of a distribution on a Riemannian manifold,
and we refer the reader to that paper for the necessary background material. We shall
denote the set of all distributions on the maniféid® by D’'(M™). To evaluate any
distribution, we may use any partition of unity subordinated to a finite coverimg"df
to evaluatdu, ¢). LetP = {(Q2,, m,)} be a finite set of coordinate charts that cdveY,
and letX = {x,} be a partition of unity subordinated to this covering. We have

o =3 [ uom00Gue om0 ducx.
v I ()
This is the precise meaning of the more standard expression

U, 9) = /Mm u(p)e(p) du(p).

We will make heavy use of Sobolev spaces [9, Chap. I; 13, §1.7] in our analysis. In
terms of the eigenvalue problem mentioned above, these spaces can be characterized in
a relatively simple way [13, 81.7.3]. is an arbitrary real number, then

o0

Ho(M™) = {u eD'M™ 1Y ASIA() 2 < oo} L G) =W R,

j=1
whereF; being inC>*(M™) implies that(u, Ifj) is well defined. The norm on this space
will be taken to be
o 1/2
lulls = <Z(1+kj)slﬁ(1)|2> :
j=1

i
Below, we collect some important standard results about Sobolev spaces:

Lemmal.2. If s is an arbitrary real numberH_s = HZ. If s > k 4+ m/2, then
Hs(M™) c Ck(M™).
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Proof. See Gilkey's book [9, p. 35]. ]

We need to consider tensor products of distributions.d&e aC* function« :
MM x M™ — C, and letu andv be inD’'(M™). Using [8, Theorem 2.3.2, p. 42] together
with the partitions of unity discussed above, we may define the tensor produetnaf
v as the distributionn ® v that is given via

(U®v,:c)=fM U(p){/M v(q)K(p,q)du(q)}du(p)

= /va(q){/MmU(p)K(p, q)du(p)}du(q).

It is important to note that the following result holds for the tensor products of distri-
butions:

Proposition 1.3. Let s and t be positive real numbed§ u € H_s(M™) andv €
H_{(M™M),thenu® v € H_s_{(M™ x M™). Moreover

lu® vll-s—t < [[ull-s[lv]l-t.
Proof. The Laplace—Beltrami operator for the product manifdi®l x M™ has eigen-
valuesi;j + Ak and corresponding eigenfunctioRs® Fi. Clearly,(u® v, Fj ® Fy) =
(u, F)) (v, F). Consequently,

U@ vl =Y A+4+m) v, F & Rl
k=1

= @44 + M0, B, Fo?
j.k

Il
1N

o (L4+2y)° (L+ )t
= A+2+20)SA4+A + At

X (L4 2) 73U, FIPA + 10", Fol?

(Z(1+ ) eI, ﬁmz) <2(1+Ak)_t|(v, ﬁk>|2)

=
j=1 k=1
= JulZsllvl?,.
Taking square roots yields the norm-inequality in the lemma. ]

We will close our introductory remarks with a brief discussion of the mapping prop-
erties associated with a kernele Hys N CO(M™ x M™). Clearly, we can define the
linear transformatiow, : C°(M™) — C°(M™) via the expression

lIJK[f](p)=meK(p,q)f(q)du(q).

Using the same kind of proof as in the last proposition, we can obtain the following
result:
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Proposition 1.4. If 0 <t < 2s andifx € Hys N C%(M™ x M™), then the linear map
v, defined above continuously maps:hhto Hps_ ;. Moreoverwe have that

Wl < llc]los.
Proof. Omitted. [ |

In order to emphasize the kernel generating we will adopt the convention that
Kx U= W[u].
The symbol %” is used to suggest convolution, although in using the symbol we should
keep in mind thak is not commutative.

Any continuous kernet (p, q) defined orM™ has an eigenfunction expansion of the
form

k(p.9) =Y ajkF(p)Fj(@).
ik

Later on, we will work with the subclass of kernels for whigh = a4 «. Specifically,
these kernels have the form

[o¢] o0
(LY w(p.g) =) aF(pFda)  where (1+ 200 aul? < oo.
k=1 k=1
The condition on they’s is equivalent to assuming thaiis in Hos(M™ x M™). Kernels
of the form (1.1) are analogous to convolution kernels and are similar to those treated in
Section 3 of [19]. Concerning such kernels, we have the following:

Proposition 1.5. Let s be a positive real numbéf « (p, q) has the form(1.1),thenx
is a self-adjoint kernelk (p, q) = «(q, p). In addition, if u andv be in H.s(M™), then

(1.2) U v, k) =Y au, R, Fo.
k=1

Proof. That«k is self-adjoint is obvious from (1.1). By Proposition 118® v is in
H_2s(M™x M™). Sincex € Hps(M™ x M™) has the expansion (1.1), which is obviously
convergent inHxs(M™ x M™), we can replace by (1.1) on the left in (1.2), and then
interchange the sum with the continuous linear functiana v to obtain the series
expansion on the leftin (1.2). ]

2. Strictly Positive Definite Kernels

A complex-valued kernek ¢ C(M™ x M™) is termedpositive definite orM™ if

(g, p) = «(p,q) and if for every finite set of point€ = {ps,..., pa} iIn M™, the
self-adjoint,N x N matrix with entriesc(p;, px) is positive semidefinite. The case in
whichx is C* was studied in detail in [19]. Positive definite kernels have arisen in many
contexts [25]. The definition that we use here is motivated by Schoenberg’s [24], and is
related to the ones studied by M. G. Krein [12], Yu. M. Berezanskii [2], and K. Maurin
[14]. We will be especially interested id,s positive definite kernels, for which we have

the following result, which is similar to one for t&™ case [19, Theorem 2.1]:
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Theorem 2.1. Letthe kernek bein Hs(M™x M™NCO(M™ x M™), and letx satisfy
k(g, p) = «(p, q). Then « is positive definite if and only if for everyat H_s(M™),

(2.1) U®u,k)>0.
Proof. The proof is similar to that given in [19, Theorem 2.1], and we will omitiik.

Later on, we will construct a number of examples of positive definite kernels, but first
we need to define precisely the generalized Hermite interpolation problem that we wish
to study. Let{u; }1N=1 C H_g be a linearly independent set of distributionsMfi', and
let f € Hs. We may think off as being “measured” and producing data in the form:

/Mml]j(p)f(p)d,u(p):dj for j=1...N

where thed;’s are complex numbers. The condition that the {:u,e}j’\':l be linearly
independent is equivalent to there being no redundancy in the data.

Problem 2.2. Givenalinearly independent sg; }szl C H_s(M™), complex numbers
d,j=1....,N,andan Hs(M™ x MM N CO(M™ x M™) positive definite kerned

onM™ find ue Sparuy, ..., uy} such that
/ 0 (p) (e * u)(p) du(p) = dj for j=1,...,N.
Mm
Equivalently find u € Sparus, ..., un} such that the functior % u is a H(M™)

interpolant for the data generated by the function f above

The problem itself encompasses the problem of scattered data interpolation on a
manifold; it also includes almost any problem involving data generated by derivatives,
differences, and even continuous distributions. We will say that such a probieetlis
poisedfthere exists a solution and the solution is unique. The nexttheorem characterizes
the types of positive definite kernetson M™ relative to which generalized Hermite
problems are well-poised. Before we can state it, we need a definitiork bet a
Has(M™ x M™ N COM™ x M™) positive definite kernel oM™. If the equation(d ®
u, ¥) = 0 implies that the distribution = 0, then we will say that is strictly positive
definite (SPD) onM™. The results given below have proofs nearly identical to the
corresponding results [19, Theorem 2.4 and Corollary 2.5]; they will be stated without
proof.

Theorem 2.3. Problem2.2is well-poised ifc is strictly positive definite oM™,

Corollary 2.4. If « is a strictly positive definite kernel dd™, and if the set of dis-
tributions {u; 1N:1 is linearly independenthen the interpolation matrix A with entries
given by

(2.2) A= / G; () (« * u) (p) du(p) where jk=1,...,N,
Mm

is self-adjoint and positive definite
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Theorem 2.3 establishes that Problem 2.2 will be well-pomedidedwe have a
strictly positive definite kernet defined onM™, and Corollary 2.4 gives us that the

corresponding interpolation matrices will be positive definite. The next result gives us a
large class of strictly positive definite kernels.

Corollary 2.5. Let s be a positive real numbéir« (p, g) has the forn(1.1),thenx is
strictly positive definite if and only ifia> O for all k > 1.

Proof. By Proposition 1.5, we have thatp, q) = «(q, p), and that, iu € H_g(M™),
(2.3) @®u,x) =Y a(d, R, F)
al(u, Rl

auk) %,

Il
e T

x
1
1N

whereli(k) = (u, F) is thekth coefficient in the eigenfunction expansion orSince
ax > 0, the expansion (2.3) clearly establishes thats a positive definite kernel.
Moreover, choosing = Fj in (2.3) gives(i ® u, k) = &;. Thus, if« is strictly positive
definite, we see that all treg’s are positive.

We want to show that the converse is also true. Assumeaghat O for all k. If
(0 ®u,k) = 0 for someu € H_g(M™), then sinceay > 0 we have thafi(k) =
(u, F) = 0 for all k, from which it follows thatu = 0. Hence is strictly positive. ®

Many manifolds of interest—tori of dimension 2 or greater, for example— are products
of compact, connected Riemannian manifolds. Choosing the Riemannian metric on
MM :=MT x --- x M to be the one induced by the Riemannian metrics on each of
theM's, we get a Laplace—Beltrami operator that is the sum of those coming from the
M™s. For such an operator, we easily see that the eigenvalues and eigenfunctions have,

Y
respectively, the forms

(24) rg=A 4425 and  Fe(pr. ..., Pa) = Fy (p) - F (pa),
wherea = (g, ..., ag) is a multi-index. The eigenfunctions being products allows us

to obtain strictly positive definite kernels &' x --- x M from products of kernels
that are strictly positive definite on eabl}' and that have the form (1.1).

Corollary 2.6. If the factors in the product

(2.5) k(P1, ..., Pd, Ou. - -+ Oa) = k1(P1, Q) - - - ka(Pg, Ga)
are strictly positive definite kernels inHM™ x M™) and have the forn(l.1),then the
kernelkx defined by(2.5)is in Hys(M™ x M™), has the form{1.1),and is strictly positive
definite on the product manifod ' x - -- x M. Moreovey

d

(2.6) licllzs < | | llxy llzs-
y=1
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Proof. The proof thatc has an expansion of the form (1.1) with positive coefficients
is identical to the one for [19, Corollary 3.10] in tkE° case. If

Ky =Y al F(py) F(@y).
k=1
then the coefficient multiplying the terf, (pa, . .., Pa)Fa (0, . .., Gg) iS
d
y=1
From the inequality1 + 237 +--- + 248 )% < ]_[Szl(l + 2).%,)%, it follows that

Ikl =D (A+2% + -+ 228 )% (@)

IA

y=1 \a,=1

d
2
T T ey 13-
y=1

Taking square roots in the last inequality establishes (2.6) and completes the fmoof.

d 00
I1 (Z 1+ 2xgy)25<agy>2)

3. A Variational Principle

Let « be a strictly positive definite kernel iH,s(M™ x M™). We can use to define
an inner product on the spaté s(M™). If u andv are inH_g(M™), thenv ® uis in
H_>s(M™ x M™). Thus, the form

(3.1) lu,v] =W U,«K)
is well defined, and by Proposition 1.3 satisfies the inequality
(3.2) [[u, v[| = llull=sllvll-slix [l2s.

The self-adjointness and strict positivity efimply that (3.1) is an inner product on
H_s(M™). The norm associated with this inner product is

(3.3) ful :=+v O ®u, k).

Of course, the inner product space that we obtain this wapis Hilbert space. We
could complete it to be one, but the space that we would obtain would be too large to be
useful, at least in thél,, = C* case. Finally, by means of the inner product defined in
(3.1), we can recast Problem 2.2.

Problem 2.2. Given a linearly independent s@i; }szl C H_s(M™), complex num-
bersd, j = 1,..., N, and a positive definite kernel € Hy(M™) N Cco(M™), find
U el :=Spanuy,...,un}suchthaju,u;] =djfor j =1,..., N.
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Since we are assuming thatis strictly positive definite, we know by Theorem 2.3
that this problem is well-poised. The unique solution to itiis= Zszl Cju;, where
c=(cy---cy)" € RN is the unique solution té\c = d. Here,d = (d;---dy)". The
interpolant we arrive at in this way is * u. The distributionu satisfies the following
minimization principle:

Theorem 3.1. Let u € H_s(M™) be the unique distribution i@/ for which x * u
solves Problen2.2. If v € H_(M™) is any other distribution for whiclr = v also
interpolates the data in Proble.2—that is [v, u;] = d; forj = 1,..., N—then
v — u is orthogonal toSparfuy, ..., uy} with respect to the inner produ¢8.1). In
addition,

[vl? =[v —ul®+ [ul?
Finally, if v # u,
ful <ol

Proof. Since bothu and v interpolate the data, we have that— u, u;| = 0 for
j = 1...N; thus,v — u is orthogonal ta{. The rest of the theorem follows from
standard linear algebra. ]

We remark that this is quite similar to the variational principle derived by Madych
and Nelson [15], [16] in the radial basis function (RBF) case. (For a review of RBFs, see
[21].) The last inequality in the theorem amounts to saying that amongzat_s(M™)
for which « v interpolates the data, the distributiamminimizes the norm (3.3). We
now turn to the estimates that we mentioned earlier.

We again suppose thatandv are as above, that the functions

(3.4) f:=kxv and f:=«=*u

both interpolate the data, and thate U/ is the unique solution to Problem 2.2f
we regardf as having generated the data in the first place, we can ask how well the
interpolantf approximates the original functioh.

Proposition 3.2. Let f andf be as in(3.4),and letw be an arbitrary distribution in
H_s(M™). If g and g, are defined by

(3.5) g=f—f=kx(@w—-u and g, :=(,Q),
then
(3.6) |gw!| < dist(v, U) dist(w, U),

where the distances are computed relative to the N@&3).

Proof. As we noted earliery — u is orthogonal td/ = Sparfuy, ..., un}. Thus, if
i1, ..., Cy are arbitrary complex numbers, then

(3.7) Gy = f (PP du(p)



184 N. Dyn, F. J. Narcowich, and J. D. Ward
= [[U —u, w]]
N
ﬂv —Uu,w— ZC]'UJ' H
j=1

Applying Schwarz’s inequality to (3.7) yields

N
(3.8) |gw|§ﬂv_u|]|:|w_zcjuj|:|-
j=1

Sincev — u is orthogonal td/, u is the orthogonal projection af ontol/. Hence,
(3.9) lv —u] = dist(v, U).

Also, we have that

N
(3.10) dist(v, U) = Clm|rgN|:|w - jXz;cj uj H

44444

Coupling these facts with (3.8) yields (3.6). [ ]
Remark 3.3. Formula (3.6) is a version of the hypercircle inequality [3, p. 230].

The utility in (3.6) is that, because the right side separates into a product of a term
depending only org and a term involving onlyw, we can estimate the effect af
independently of the origina. Another feature is that the distributionsandv appear
symmetrically on the right side of (3.6), in factors that involve only distancés Tthus
our strategy for obtaining estimates gpis to get upper bounds on the distance from a
distribution tol{, given that the norm we employ is (3.3).

Remark 3.4. The distance digt, ¢/) = [[v — u] depends on the interpolants u. We
can, however, bound dist, /) independently ofi. From Theorem 3.1, we see that

(3.11) dist(v,U) = v —ul <[],

which is independent of x u. ]

Up to now in this section we have treated general SPD kernels. For the rest of it, the
types of kernels that we will work with are ones having the form (1.1), aijtls- O for
all k. By Corollary 2.5, these are strictly positive definite kernels. Moreover, this class
includes a wide variety oE¥ kernels, including th€> kernels treated in Section 3 of
[19].

If we impose additonal restictions on the rate of decag, then for these kernels
we can obtain estimates on dist /) and [v] in terms of more standard norms. We
have the following result:

Proposition 3.5. Letx and s be asitfl.1).If there is at> s for which the g's satisfy
a bound of the form

(3.12) a > L+ ay) ST/
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for all k and some constant then every fe H,(M™) can be written as = « * v for
somev in H_s(M™). Moreover

(3.13) lvl-s<clflle and ol < lcl3Zcll f .

Proof. Use the eigenfunctions, to expandf,
f(p) =) TRF(p).
k=1

Leto(k) = f(k)/a, and observe that for &,
L+ 1) KR12 < AL+ a0t TR

Summing both sides over &l> 0 yields
D @+ MR < ) 2
k=1

From this, it follows that

v(p) =Y DK F(p)
k=1
defines a distribution itH_g(M™) that satisfiegjv||_s < c|| f ||;. This inequality when
coupled with(3.2) yields the inequality {}]] < ||/<||;é2c|| flis. [ ]

Our next result sets up a framework that will enable us to discuss how well our
interpolants approximate a given function. The idea is to estimate the distar{ae 83t
given that the kernels used to generate the inner produgtane of the form (1.1).

Proposition 3.6. Let M be a positive integglet s > 0, and letk have the form{1.1)
with a > Ofor aII_k > 1.If there are coefficients,c. .., cy such thatfork =1... M,
(w — Zszl ciuj, F) = 0,and if there is a sequencg - O,k = M + 1, M + 2, ...,

for which |(w — Zszl cuj, F)|? < by when k> M + 1, then

N N 112
(3.14) dist(w, U) < |:|w -> g Ujﬂ < ( > akbk) :
j=1

j k=M+1

Proof. From (3.3) and (2.3), we have that

N 2 o) N
(3.15) Hw—chujH =Y a (w—ZCJUjJEJ)
=1 k=1 =1

from which (3.14) follows immediately. [ ]

2

)

Remark 3.7. Itis not necessary to choose the ordering of the eigenfunctions to be that
obtained from the labeling of the eigenvalues in increasing order. In fact, the ordering is
arbitrary, and may be chosen to be whatever is convenient.
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We can combine the results above to obtain a variety of estimates on how well the
interpolantc * u fits the original functiorx * v. Perhaps the most useful case is when the
function generating the data belongs to one of the Sobolev spaces. This is the situation
that we address below.

Theorem 3.8. Letk and s be as inl.1), and let t > s satisfy the conditions in
Proposition3.5.1f f isin H;(M™), if w is a distribution in H 5, and if f is the solution
to Problem2.2 for data generated by ,fthen

(3.16) (@, f — ) < [lelzZcl Il dist(w, ).

In addition, if w and the sequenciiy )2, , satisfy the conditions of Propositidh6,
then

o 1/2
(3.17) @, f— ) < ||f<||$§c||f||t< > akbk> :

k=M+1

Proof. From Proposition 3.5, we have th&t= « * v for somev in H_¢(M™). Since
f = k+u, we also havey = «k « (v —u), sow, f — f) = (w,g) = g,. Thus,
from Proposition 3.2, Remark 3.4, and (3.13), we obtain (3.16). Combining (3.16) with
Proposition 3.6 then yields (3.17). ]

There are a number of other estimates we can obtain using the results of this section.
The ones given in Theorem 3.8 should be considered representative.

We now turn to the case in whidfi™ is the product manifold]' x --- x M{, and
the kernels are of the form (2.5). Consider the space of distributions
(3.18) U=U'e®- - Ui,
where each spacg’ is afinite-dimensional subsetHsf s (M ry") andwheres; +- - -+5 =
S.

Standard formulas involving tensor products apply to the inner product induced by
the kernel (2.5). In particular, we have

d
(3.19) w'eouw'e -euhZ®e - =[] 2],
y=1

wherew?”, z” are inH_s, (M g‘) and the inner products are of the form (3.1), with the
kernel being,, .

Proposition 3.9. If w = w!® --- ® w’, wherew” # 0is in H. (M g‘) for y =
1,...,d and if the spacé( is given by(3.18),then we have

d
(3.20) dist(w, ) = uwuj 1- [ Ja-distwr, un)2/jwr2)
y=1

and in addition

4 distw?, Ur)? 12
(3.21) dist(w, ) < [w] Z dAwe. )

y=1 [Iwy")z/
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Proof. Let0” be the orthogonal projection af” ontol(” relative to the inner product
[, -],,and seti = i'® - ® 09 Note that, from (3.19) and the well-known properties
of orthogonal projections, we can easily show that— 0, (] = 0; consequentlyj is
the orthogonal projection ab onto the subspad¥. This and the fact thail” is the
orthogonal projection of” ontol/” imply that

dist(w, 1)? = [w]? — [d]?
d
= |]w|]2<1—]_[[|ay[|';‘/|]wy[|2)
y=1
d
= [w[? <1— [Ja- dist(wy,uy)2/[|wy[|§)) .
y=1

Equation (3.20) then follows from taking square roots in the previous equation. To
establish (3.21), use induction anto show that the inequalitﬂgzl(l — x}%) >1-

ch':l xﬁ holds for allx, s that satisfy 0< x,, < 1. Apply this to the right side of (3.20)

to get (3.21). ]

The quality of an approximation method is measured by the error estimates, by its
stability, and by the amount of computation it requires. It is known for methods based
on radial functions that better rates of approximation are coupled with worse stability
constants [23]. Numerical results indicate a similar trade-off in the cases where we deal
with the torus or the sphere, and it should be possible to quantify such a trade-off in the
situation described here.

We will discuss specific examples in Sections 5 and 6. We now turn to dealing with
kernels that are analogous to RBFs of order 1 or higher.

4. Conditionally Positive Definite Kernels on Manifolds

In practical applications we often want interpolants that reproduce exactly some fixed,
finite-dimensional space of functions. For example, in Euclidean spaces we would like to
useinterpolants that reproduce exactly the space of polynomials of degte® less. On

the circle, the functions to be reproduced exactly would be all trigonometric polynomials
of degree less tham and on the sphere they would be all spherical harmonics, again with
degree less than some fixed number. Trigonometric polynomials are linear combinations
of €X?’s and spherical harmonics are linear combination¥;gf's (see Section 6); the
ek”’s and they] «'s are eigenfunctions of the Laplace—Beltrami operators for the circle
and the sphere, respectively. It is thus natural to consider interpolation problevh8 on

in which we want interpolants that reproduce exactly a space of functions with a basis
comprising finitely many eigenfunctions of the Laplace—Beltrami operator.

To formulate and solve such problems, we will introduce a classooflitionally
positive definite kernels. L&t be a finite set of indices i, and consider the finite-
dimensional space defined By := SpariF : i € Z}. In addition, define the space of
distributionsSf ‘={ue H.¢(M™ : (u,F) =0, F e Sz}. We will say that a self-
adjoint kernek in Hxs(M™ x M™) N CO%(M™ x M™) is conditionallypositive definite
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(CPD) with respect to a finite set of indicésc Z, if for everyu € S7 we have
@®u,ik)>0.

If the inequality above is strict far # 0, then we will say that is conditionallystrictly
positive definite (CSPD) okl ™.

Since the proofs of the elementary properties of the CPD and CSPD kernels are similar
to those of the corresponding properties for PD and SPD kernels, in the propositions
below we will list them without proofs.

Proposition 4.1. If « is a conditionally strictly positive definite kernel &n™, and
if the set of distributiongv; }szl C Sy is linearly independenthen the interpolation
matrix A having entries f = (v, k % vx), where [k =1, ..., N, is self-adjoint and
positive definite

We remark that, as in the case of SPD kernels, we have a whole class of CSPD kernels
arising from self-adjoint kernels of the form (1.1).

Proposition 4.2. Letk € Hx(M™ x M™) N CO(M™ x M™) be a self-adjoint kernel
of the form(1.1).« is a CPD kernel if and only if@> Ofor allk ¢ Z. In addition « is
a CSPD kernel if and only ifia> Oforallk ¢ 7.

We will refer to such kernels at the end of the section. For the present, we do not need
to require thak be of the form (1.1).

Proposition 4.3. Letx be a conditionally strictly positive definite kernel d". If u
andv arein H.s(M™),andifuy =u— ), _s(u, F)F andvz = v — > (v, F)F,
then the Hermitian form

(41) |[us U]II = (EI ® UI» K)y
defines a semi-inner product on_ §{M™), and an inner product 06‘%.

We will denote the associated seminorm (or norm, if we aréphby
(4.2) fulz := [u, v][¥?
We now want to consider the following problem, which is analogous to Problem 2.2:

Problem 4.4. Given alinearly independent sig; }szl C H_s(M™), complex numbers
{dj}}L,, and a CPD kernek in Has(M™) N CO(M™), find u € Uz := Spary; : j =
1,....N}NSz and F € Sz, such that

(Gj, k «xu+ F) =d for j=1,...,N;

that is the function f:= « * u + F interpolates the data

Concerning this problem, we have the result below.
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Theorem 4.5. Letx be CSPDin H,(M™)NC%(M™), and let the matrix C with entries
Cii = (G, F),where je {1,...,N} and i € Z, be of full rank If rankC) = N,
then Problem4.4 has one or more solutionsll of the form f = F € S7. If the
rank(C) = |Z| < N, then Problen¥.4 has a unique solutigrmoreoverwhen the data
set{d }szl is generated by a function ifiz, then this solution reproduces the function

Proof. Problem 4.4 can be reformulated in terms of a system of equations for the
unknownsb € CN ande e C7! for whichu = Y"1, bjuj andF = ¥, ;e F. The
system has the form

(4.3) Bb+ Ce=d, C*bh =0,
whereB is the matrix with elements
(4.4) Bj,k = (Uj,K*Uk), j,k=1,...,N.

The condition thaC*b = 0 comes from requiring that be inS7.

In the caseN < |Z|, we have raniC) = N; this implies both that the only vector
b satisfying the second condition in (4.3)bs= 0 and that there is a vecterc C!
satisfyingCe = d. If N < |Z], thenC has a nontrivial null space, arwill not be
unique. In that case, there are infinitely many solutions to Problem 4.4, all of the form
f=F=>%.aF.

For rankKC) = |Z| < N, the matricesC* and C have nullitiesN — |Z| and 0,
respectively. We want to show that the rank of the system in (418HSZ|, from which
it follows that the (4.3) can be uniquely solved foande.

To find the nullity of this system, led = 0 in (4.3), and observe th&*b = 0
implies thatb*Ce = 0; hencep*Bb = 0. On the other handy*Bb = (0 ® u, «), with
u= Zj bju;. Taken together, these yield ® u, ) = 0. Sincex is a CSPD kernel,
u = 0. The linear independence of thgs then also gives us that= 0. From this and
(4.3), we then ge€e = 0, and because the nullity @f is 0,e = 0. Thus the nullity of
(4.3)is 0.

The statement concerning the reproduction of functiorSsifollows from the exis-
tence and uniqueness result just proved. ]

The solution of the generalized Hermite problem satisfies a variational principle rel-
ative to the seminorm (4.2). Since the proof is straightforward, we omit it.

Theorem 4.6. Letx be a CSPD kernelin §(M™)NCO%(M™), letrank(C) = |Z| < N,
and let f =k x u+ F be the unique solution to Proble#n4. If

(4.5) f=kxl+F, eSSy and F eS8y,

also satisfiegu;, f)= dj, j =1,..., N, thenl — u is orthogonal to the subspaté;,
relative to the inner product if4.1). Moreover

(4.6) 1a0% =00 - ulZ +Qul3,

from which we conclude that the solution to Problém minimizes the seminor(d.2)
among all other functions that are of the fofh5) and satisfy the interpolation condi-
tions
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We want to obtain an error estimate for distributionsHns(M™) applied to the
differencef — f. Thatis, ifw € H_s(M™), we want bounds otw, f — f) similar to
those given in Section 3. To do this, we will prove the following lemma:

Lemma 4.7. Adopt the notation and assumptions of Theokef If w € H_g(M™),
then there exists a sé; }J-N=1 C C for whichw — Zszl aju; € S7. Moreover for any
such set

N N
@7 @, f-f)= (w—Zaju,-, f— f) = |[ﬁ—u,w—2ajuj]] .
j=1 j=1 7

Proof. Since)c~ and f both satisfy the interpolation conditions in Problem 4.4, we
have that(i;, f — f) = Ofor j = 1,..., N. Consequently, for every choice of’s,

we see thatw, f — f) = (w — Zszl&j 0j, k% (0 —u) + F — F). If we can find
@j’s such thatw — Zszlozj uj is in Sy, then, sinceF — F is in Sz, we would have
(W — YL, &0, F— F)=0,andso

N
w, f—f)= (w—Z&juj,x*(u—u)>.
j=1

J

From this equation, the definition of, -];, and that botlli — u andw — Zszl oju;j are
in S, we obtain (4.7).
Thus, the whole result will follow if we can show the existencexgf for which
w — Z]-N:l aju; is in Sf. Doing this is equivalent to solving the system of equations
below for alli € Z:

N
w, F) =)o (U, F) =[Ca].
CLi
Solving this is possible because r&6k = |Z]|. ]

If we combine the results in Theorems 4.5, 4.6, and Lemma 4.7, we easily obtain the
following variant of the hypercircle inequality [3, p. 230]:

Corollary 4.8. With the notation and assumptions of TheokeB we have
- N
(w, f — )| < dist(l],Z/lI)dist(w -) g u,-,u1>,
=1

where distances are computed relative to the n¢4).

Remark 4.9. With the exception of results that make specific use of kernels of the
form (1.1), all the results in this section hold if we regdtg as a finite-dimensional
subspace of smooth functions and the{$gt: i € Z} is interpreted as an orthonormal
basis forSt.
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Remark 4.10. With minor modifications, most results involving Problem 2.2 and based
on Proposition 3.6 will also be true for Problem 4.4, provided the CSPD kernels employed
have the form (1.1).

5. The Torus

In this section and Section 6 below, we will apply Proposition 3.6, Theorem 3.8, and other
results from previous sections to several types of interpolation problems. For the circle
and higher-dimensional tori, we will obtain rates for scattered data point interpolation
and for a restricted class of Hermite problems that involve interpolating a fixed linear
combination of function values and derivatives at scattered sites. In the next section we
will deal with a point-evaluation problem for the 2-sphere. To apply Proposition 3.6 in
any of these cases requires two things. First, we must show that the coeff{cje}:ﬁ:'@
exist. Second, we need to bound the sequéhgeso that the estimates in (3.14) and
(3.17) are useful. Doing these two things is, in essence, our goal here and in the next
section. In all cases the rates that we obtain reflect the smoothness of both the underlying
data-generating function and the functions in the approximating subspace.

Let T™ be them torus. Consider a kernel of the form

(5.1) k(p. @) =[] Prle” — o™,
y=1

whereg andg’ are standard periodic coordinates. Suppose that for somed each
P, € Ha,s(T1) is continuous and has the Fourier series expansion

1 > .
(5.2) P,(¢) = — Ydk¢  where a’ > 0.
, = k;ooak a
Noting that the eigenfunctions faf™ are just the functionsy, k. (9%, ..., o™ =

(2rr)~™2¢ (k' +-+kne™ and using Corollary 2.6, we see that the kern@p, ¢') is
strictly positive definite, continuous, has the form (1.1), and also belong@™).
C kernels of this type were described in [19] and [5].

The simplest case is the circl&!. The kernel in (5.1) is then a single function,
P(p — ¢), andF(p) = €5¢//2. We want to apply the estimates from Section 3 to
the Hermite Problem 2.2n which the distributions; are

(5.3) Ui(p) =Y undP@—g), j=0..N-1

n=0
where thep;’s are distinct angles in the interval,[Rr). To get rates of approximation,
we will have to put further restrictions on these angles; we will do this later. Also, we
have labeled the distributions in the natural wiay; 0... N —1rathertharj = 1... N.
In (5.3),v is some finite integer, and the coefficientsare inC. In addition, we require

(5.4) v<s—3 w#0 v, #0, and Y vi"k"#0 foral keZ.

n=0
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For later use, we remark that these conditions imply that

2\v/2

(5.5) Occte BT o io foral kez.

12_n—o tni "K"|
To solve the Hermite problem using the distributians we needP to be at least 2
times continuously differentiable. From Lemma 1.2, we can achieve this if we assume
S>v+ ‘—11; this is the reason for the condition< s — %1. As in Section 3, we will take
U to be the span of the;’s. We remark that the basis functions that we use to solve our
Hermite problem are

(5.6) Pi(p) == P *uj(p)

2
_ /0 Pl — ¢)u; () d¢/

=Y P —¢p.
n=0
Our basic tool will be Proposition 3.6. Using it requires the following two lemmas:

Lemma5.1. Let the y's be as in(5.3), with the ¢;’s being distinct angles in the
interval[0, 2), letthe g’s be arbitrary complex numbersnd suppose thgb.4)holds
If we Hog(TY) and if W := (w, F) — ZjN:_Ol ¢ (uj, Fx), then for all ke Z we have

1 . v
5.7 Wy = —— e ikey _ i"k") &t
(5.7) k m!(w ) (;v ) k}
where
N-1 _
(5.8) G=) e
j=0

Moreovey there exist unique scalarg ¢ .., cy such that W = 0 for all integers ke
In=[=[N/2,[N-D)/2]InZ.

Proof. We have the following chain of equations:

N—-1
W = (w, e™*/v/2m) = > "¢ (uj, e //2)
=0

N—-1 v
= w.e™/V2m) = > g Y vy (5('”((0 — 9, e_ik‘p/@)
ji=0 n=0

1 —ikg - ingn = —iko;
—_ , _ n k X @i .
_F{(we ) (ngovl )(jEOCJe

Combining this and (5.8) yields (5.7). F&re Jn, we wish to solve the system of
equations

N-1 ik
i N (w?e : W)
5.9 E ce ki = -~
&9 i=o : 2_n—o tni "K"



Variational Principles and Sobolev-Type Estimates for Generalized Interpolation 193

The determinant of the coefficient matrix for this system is a Vandermonde determinant.
Since thep;’s are distinct angles in [@x), the exponentiale~'¢ correspond to distinct
points on the unit circle. Inspecting the usual formula for a Vandermonde determinant
shows that it is not zero; the system thus has a unique solution. With this chaics, of

we have

. (w ek
5.10 == forall k .
(5.10) = orall ke Jn
Inserting this expression in (5.7) then yieMg& = 0 fork € Jy. ]

Lemmab5.2. With the notation and assumptions of Lembnh, if k ¢ 7y, we have

6 11 W Lk S/2< . Cu|Ckl )
( ) Wk = (1+Kk9) lwll +m(1+([|\|/z])2)(s—v)/2

In addition if the G’s are taken to be the unique coefficients for whigh2\0,k € J,
then
(5.12) sup & < vV2r C (1+ [N/2]) 52 |w]| .

ke In

Proof. The distributionw is in H_g(T?); its Fourier coefficients thus satisfy a bound
of the form

(5.13) |(w, &) < V2r|lw|_s(1+ kY%,  keZ,
If we combine (5.13) with (5.7) and (5.5), we arrive at the estimate

14 Wi | < (1+ k)52 _ GulGd .

(5.14) Wl = @1 (s + SO

Note thats > v and that ifk ¢ 7y, then|k| > [N/2]. Consequently1 + k?)S—"/2 >
(1+([N/2])?)s—/2 Using thisin (5.14) yields (5.11). Next, take tt)és to be those for
which Wi = 0 holds wherk € Jy. The€'s then satisfy (5.10). If we combine (5.10),
(5.5), and (5.13), we get the following inequality:

(5.15) 16 < V21 Cyllw|_s(1+k>»HE /2 forall ke Jy.

Again, sinces > v and|k| < [N/2]if k € Jy, we see thatl + k?)S/2 < (14
([N/2])?)=/2_ Employing this in conjunction with (5.15) then yields (5.12). =

Thus far, we have made no real restrictions oryifie used in thay;’s. At this point,
we will assume that these angles are distributed quasi-uniformly in the following sense.
Specifically, let

2r .
(5.16) @] = W(J +¢j),
where thes;’s are real numbers that satisfy
(5.17) suplej| = L, 0<L<3
I

Using a discrete analogue of a theorem of Kadec [32, p. 43], we are able to estimate the
distance fromw to i/, provided the norm (3.3) is used to compute the distances.
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Theorem 5.3. Let the y's be as in(5.3), with they;’s being given by5.16),and let
Jn be asin Lemm&.1.1f P € Hy(TY), and it ez 1+ k?)Sa, convergesthen for
anyw € H_s(T?1), we have

1/2
(5.18) distw, U) < [lwll s (L, N) (Z 1+ k2>3ak> ,
k¢ In

where the g's are the Fourier coefficients of ,Rnd

if L=0;

1
(5.19) o(L,N):=1+c,C { : !
U\ /N2 csdn /4 — L) If0<L<‘—11.

Here ¢, and G, are given in(5.5).

Proof. By Lemma 5.1, there are uniqug's for which Wy = 0 whenk € Jy. With
this choice oft;’s, whenk is in Jy, € is given by (5.10) and satisfies (5.12). There are
now two cases. IL = 0in (5.17), then they’s are equally spaced angles, aid= &,

the discrete Fourier transform of thgs. Since thel’s are periodic irk with periodN,

we see that syp, |Ck| = Sup. 7, IC|. The second case is the one in whick Q. < %1.
From Theorem A.2, we have

. 4 -
16| < ,/N/chc(z —nL) ‘Sl:,|7p|Cj|, k¢ v O<L<3).
JeIN

Combining the estimates fd¢&| from the two cases and using (5.19), we get

&l <o(L,N) sup|Gjl, k¢ In.
jedn

!\Iow use (5.12) to replace syp;, |G| in the inequality above, and then insert the result
in (5.11) to get
(5.20) Wil = @ +K)*?|wll-so(L,N), k¢ In O=L <.

Clearly, Proposition 3.6 and Remark 3.7 now apply, provided that in (3.14) wedtake
to be the square of the right side of (5.20). Doing so then yields (5.18). ]

Suppose thati € U is the unique solution to Problem 2.3jiven that the data is
generated by a functiof := « * v, wherev € H_g(T'). Here,« is of the form (5.1),
P is as in (5.2), and the;’s are as in (5.3). In addition, the interpolant generated is
f := k % u. We obtain the following:

Corollary 5.4. With the notation used above and the assumptions from Theaf&m
if we H_s(TY), then

(5.21) [w, f = O < vl sllwl-so (L, N)? (Z (1+k2)5ak> :

k¢ In

Proof. Combine Proposition 3.2 and Theorem 5.3 to get (5.21). ]
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We now wish to obtain a result for the case in whiths in H;(T1), wheret > s. To
do this, we will assume that (3.12) holds. If we also assume that the Sefigs1 +
k?)Sa, converges, then we must hayg,_, (1+ k?)¢~Y/2 convergent, which implies the
additional constraint thdthas to be larger thas+ 1.

Corollary5.5. Lett > s+ 1 and let f € H,(T}) have f as the interpolant de-
scribed aboveand suppose thadt, _, (1+k?)Sax convergeswith the assumptions from
Theoren®.3,if (3.12)holds for the @'s and ifw € H_s(T?), then

(5.22) lw, f = D)l <cllfllellwl-so(L, N)? (Z 1+ k2>3ak),
k¢ In
where cis as ir{3.12).

Proof. Since (3.12) holds and sinte- s+ 1 > s, Proposition 3.5 applies. Thus, we

see thatf = « * v, with ||v]|_s < c| f||;. Using this in (5.21) yields (5.22). [ |
Remark 5.6. In Corollary 5.5, the right side of (5.22) is the tail end of a convergent
series, so we would like to have thgs decay as quickly as possible. On the other hand,
(3.12) limits the rate at which the coefficients can decay. Now, the rate at which the
ay’s decay roughly translates into the smoothness class to Whioblongs. Let’ > s.

With a little work we can show that iP € Hs.s(T%), thens < s’ <t — 2. We also
remark that it should be true thatif € H_,,r < s, then we should get better estimates.
Unfortunately, the Hilbert space techniques used here do not provide a suitable means
for establishing this. Finally, we note the mesh dise = max<j<n-1(¢j+1 — ¢j),
whereg; is given by (5.16) angn = ¢g + 2, satisfiest/N < hy < 37/N. Conse-
guently, the estimates we derive can be related to classical estimates employing the mesh
size. ]

We now turn to higher-dimensional tofi", with m > 2. We will use a kernel of the
form (5.1), and our space of distributions will be
(5.23) U=Ue --u™,
where each spac¢¢’ is afinite-dimensional subsetbif s, (TH andwhers,+- - -+sy =
s. In addition, we will assume that eatt is spanned by, distributions of the form
(5.3), with angles involved being not only distinct but also of the form (5.16), With

replaced byN, , and the corresponding’s there satisfying (5.17) witth. replaced by
L,.

Corollary 5.7. 1f }",., (1 + k»)>a] converges foy = 1,...,m,and ifw := w! ®
- ®w", wherew” # 0isin H_s (Th), then

(5.24)  distw,U) < <]_[ ||/<y||25V||wV||Sy>

y=1
1/2

2
i U S
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where the §'s are the Fourier coefficients of, Pthe setZy, is as in Lemma&.1,and the
factoro (-, -) is given in(5.19).

Proof. By Theorem 5.3, we have that

distw”, U)? < w24 o (L, N,)? (Z 1+ kZ)SyakV> .
k¢ Tn

From (3.19), we also see that
m
Jwl? = [ 1’13
p=1

Multiply both sides of the previous inequality bywj?/[ le]ﬁ and use the last equation
to obtain

wl?dist(w”, U”)? m
Ll o2 < w250 (Ly, NO? [ D @+ Kkd¥al | [T1w’13
wrlly KeTn B#y

Recall that

115 < D5, lw’ 112,
Combining this with the previous inequality yields

wl]2distw?,U?)2  o(L,, N,)2 m
Dol distw?, U)oLy T (5 (4 ey | (T s i, 1?12, ).
p=1

2 2
Tw[Z 0% \&,

The inequality (5.24) follows from using the inequality above in conjunction with (3.20)
of Proposition 3.9. ]

We can now use this result to obtain rate estimates for the cag®. of

Theorem 5.8. With the notation and assumptions of Coroll&ry,ifu € H_s(T™) is
the unique distribution i/ for which« * u solves Probler@.2, and ifv € H_s(T™) is
any other distribution for whicl * v also interpolates the data in Proble2, then

(5.25) |, f - )] < Ksllvll—s< Ilwyll—s,)
1

)/:
) 1/2
™ o(Ly, N,) < 2 y>
o i =ank2u 1+ k) ,
(; s 1%, %ﬁy *

where

m
(5.26) Ks = [licllzs ]  llkey lzs, -
y=1
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Proof. By Remark 3.4 and the inequality] < |l«|l2sllv]—s, we see that digt, /) <
llx|l2sllvll—s. The result then follows on combining this with Proposition 3.2 and Corol-
lary 5.7. ]

If each of theP, ’s in the product (5.1) has coefficients that satisfy a bound of the form
(5.27) al > ¢, (1+KkH) &2,

thenay, . x, = ]_[;’:1 a&’y satisfies

wherec = [])_,¢c,,s= )" ;s,,andt = 7', t,. This, coupled with Theorems 3.8
and 5.8, yields the following result:

Corollary 5.9. If the g’s satisfy(5.27),and if f = « * v isin H(T™), then we may
replace(5.25)by

m
(5.28) [|(w, f — )] < Ksc|l flit ( IIw)’II—s,>
y=1
1/2

PR 2k NV)Z( > (1+k2>sraky)

2
= Ikl Nz,

We close this section by remarking that the higher-dimensional tori estimates we
obtained in Theorem 5.8 and Corollary 5.9 are not optimal. We conjecture that estimates
similar to ones for the circle can be found.

6. The2-Sphere

Our next example deals with the 2-sphe®&, The interpolation problem that we will
deal with in this section will be one in which the distributions in Problem &8 point
evaluations at pointg; « that we will describe below; that is,

(6.1) Uik =30p, and U :=Sparujg}.

The results we obtain in this section depend on recent results of Driscoll and Healy [4],
and we will adopt the convention for spherical coordinates that is used by them and that
is customary in physics: the andles [0, 7] is measured off the positiveaxis and the
angley € [0, 2) is measured off thg-axis in thex—y plane. In addition, take\ to be

a fixed positive integer, then let

] .
0»:—’ =0,...,2A_15
7oA :
6.2 K
(6.2) ¢k=’%, k=0.....2A -1,

(6, k) = coordinates op; k.
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The eigenfunctions of the Laplace—Beltrami operator Sbrare theY, y’s, where
¢ =0,1,2,... and where, for fixed,m = —¢, ..., ¢; these functions are described
in detail in [4(82)], [18], and [19], and in spherical coordinates are related to associated
Legendre functions. We will not need their explicit form here, although we will need
some of their properties. Th& ,'s form an orthonormal basis fdr?(S?) with respect
to the standard measure on the spheére which has the forndu = sin(6) dé dg in the
coordinates above. As in [4], we will denote the expansion coefficient for a distribution
h relative toY, m by h(¢, m); that is, set

hee, m) = / hY o.mde.
?

We will say thath is band-limitedif the orthogonal expansion forcontains only finitely
many terms. Driscoll and Healy have established the following “sampling theorem.”

Theorem 6.1(4, Theorem 3).If f(p) is a band-limited function ors? for which
f(e.m) = Ofor ¢ > A, then there exist coefficients™’ that are independent of f
such that

R 27 2A—12A-1 " -

fee,m=—— Z Z o™ £ (PO Yem(PjK)

j=0 k=0
for¢ < Aand|m| < £.
We are now ready to proceed with the “rate of approximation” estimates, which we

will obtain by applying Proposition 3.6. To apply this proposition, we will need the
lemmas below.

Lemma6.2. Letw € H_s(S?) and let the expansion coefficients forbe w(¢, m) =
(w, Yem). If wy is the band-limited function defined by

A-1 ¢
(6.3) wa(p) =Y Y D MYy m(p),
=0 m=—¢
and if
V2r
(6.4) Cik = TwA(pj,k)ajA, 0<j, k=2Aa-1,
then
2A—12A-1 N
6.5) WE.M— > > Gkl Yem) =0, 0<t<A, [m=<C
j=0 k=0

Proof. By Theorem 6.1,

2A-12A-1
@(ﬁ,m)=—2n AX: AX: wa(P e Yem(Pik),  0<f€<A, |ml<¢
2A 3 i S - -

SinceY,m(pjk) = (Ujk, Y;.m), choosing theg; i 's to be the coefficients given in (6.4)
results in (6.5). ]
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Next, we need to estimate various quantities related to ones appearing in the lemma
above. For alt andm, define

2A 12A-1

(6.6) Wim = (€, m) — Z Z wa (P10 (Uj kY em),

where theosz’s are the coefficients from Theorem 6.1. By the previous lemma, we see
thatW, m = 0forall0< ¢ < A, |m| < £. The results below provide a bound on this
quantity in the case wheie> A.

Lemma 6.3. If w,(p)is given by(6.3)and if A > 1,thenforall p

1+s
(6.7) lwa (P < N lwll-s.
In addition for all £ > A, we have
2 2A—12A-1 N 2A-1
6:8) |5 > D wa(Po UjxYem) s,/ AS“II s Z .
=0 k=0

Proof. From Schwarz’s inequality applied to the right-hand side of (6.3), we see that

A-1 ¢
6.9)  lwa(pl < (Z > lwce, m ) (Z > Ye,m<pm,m<p)).

0 m=—¢ =0 m=—¢

The first term on the right above satisfies this chain of inequalities:

s lwee,mp
6.10 £, = 1+06+1
610 33 it~ e v

(e, m?
(14 A(A — 1))° -
;; ng L+ ee+1)

IA

IA

25, 112
A% |lw]|Z.

The second term on the right of (6.9) can be evaluated exactly via the Addition Theorem
for spherical harmonics [18, p. 10]; the result is this:

— [4 B A-1 20 + 1
Z Y@,m<p>vz,m<p> =2 PP P,

£=0 m= =0 1

whereP, is the standard Legendre polynomial of degfeerhich satisfies the normal-
ization condition thaf, (1) = 1. SinceZﬁ;ol(Zﬁ + 1) = A2, we see that

(6.11) Z Z Yem(P)Yem(p) =

=0 m=—¢

Taking square roots after combining (6.9), (6.10), and (6.11) yields (6.7).
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To establish (6.8), first note that from (6.7) we have

2 2A—12A-1

T —
j=0 k=0

2A—12A-1

_ Al
”w” > Z o 1Y ).
j=0

As we noted in the previous proaiy; k, Yim) = Vz,m(pj,k)- Also, by [18, Lemma 8,
p. 14], we have

20+1

Yem(P)| < “an

Combining these two facts and using them in conjunction with (6.12), we find that

2 2A—12A-1 - AS ||U)||_ 2£+12A 12A-1
N D0 walpe Uik Yem)| < - Z Z o
=0 k=0

20+1 21
=\ A ||_SZ|a| m

?A5 Yl |. This we can do when the integaris

We next wish to estimate the supi;Z,
a power of 2.
Lemma6.4. If A is a power of2, then

2A—-1

(6.13) D lef| < logy(16A).
j=0

Proof. From [4, p. 216], ifA is a power of 2, then

2V2 =1 (mjee+1 .
A_ Ve = =0,...,2A — 1.
“ = 2A ”(2A);2z+1sm( oA ) F=5
From this it follows that, forj =0, ..., 2A — 1,
A 2\/51\—1 1
R T ST
¢=0 +
2 A-1
§£ 1+/ dx
A 0 2X+1
NZJ
= (1+3In@2A — 1))

1
oA l0g,(16A).
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Consequently|,osz| < log,(16A)/2A and so

2A-1
log,(16A
Z|061-A|§ Ou( )
2A

= log,(16A). [ |

(20)
=0

We can now bound the/, ,’s defined in (6.6). The estimate that we obtain will allow
us to use Proposition 3.6 to get rates of approximation.

Lemma 6.5. LetA be a power oR.If £ > A, then

(6.14)  [Wonl < (1+ L pee Iogz(16A)> L+ 00+ 1) w]l_s.
’ NG

Proof. Note that, sincew is in H_g, its Fourier expansion coefficients satisfy

(e, M) < L+ €€+ 1) w]s.
This provides a bound for the first termin (6.6). A bound for the second term in (6.6) may
be obtained by combining (6.8) and (6.13). This yields the following bound/og:

Weml < (1+€(¢+ 1) w5 + 258—;41\“1”10”_5 log,(16A).
Rearranging terms on the right above, we have
(6.15) IWeml < (14 £(¢ + D)¥?[lwll—s(1+ As(€, A)),
where
20+1

As(f, A) = (1+ £(£ + 1))~5/2 S—AS+l log,(16A).
7T

With a little algebra, we see that
1 A
2ym \t+}

Sincet? > A, it follows that

s—1/2
As(l, A) = ) L+ 3+ 2752 A¥?l0g,(16A).

1
As(t, A) < ﬁAm log,(16A).

Using this bound in (6.15) results in (6.14). ]

We are now ready to apply Proposition 3.6. In what follows, we assume that the SPD
kernelk € Ha(S? x S?) has the form

o0 4
(6.16) k(PO =Y Y amYem(P)Yem(@),

=0 m=—¢

where the coefficients satisty ,, > 0 for all ¢ andm. We will now prove the estimate
on the distance from a distributian to the subspack.
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Theorem 6.6. Letw be in H. g, leti/ be as in(6.1),and letx be as in(6.16).If A isa
power of2, and if the serie$ ;2 an:_((l + £(£ 4 1))3a,.m is convergentthen

(6.17) . o, 12
dist(w, U) < <1+ = Iogz(leA)> lwll-s (Z > (1+e<6+1)>5w,m> :

l=Am=—¢

Proof. Combine Lemmas 6.2 and 6.5 with Proposition 3.6. ]

We can now use this result to obtain rate estimates for the case of the 2-§fhere,

Corollary 6.7. With the notation and assumptions of Theo®®yif u € H_g(S?) is
the unique distribution i/ for whichx * u solves Probler2.2, and ifv € H_s(S?) is
any other distribution for whiclk * v also interpolates the data in Probleth2, then
forall w € H_g

_ - 1 2
(6.18) l(w, f — ) < (1+ ﬁwlogz(lm)) Ivll—slwlls

0 L
x <Z Y A+ 1>)Sa@,m> :

l=A m=—¢

Proof. By Proposition 3.2,
l(w, f — )| < dist(v, U) dist(w, U).

Both w andv are inH_g. Thus, (6.18) follows on applying the distance estimates in
Theorem 6.6. [ |

We now wish to obtain a result for the case in whithis in f € H;(S?), where
t > s. To do this, we will assume that (3.12) holds. If we also assume that the series
Yto an:7@(1+€(€ + 1))%a, m converges, then we must ha¥&: ,(2¢ + 1) (1+£(£ +
1))~ =9/2 convergent, which implies the additional constraint tHes to be larger than
s+ 2.

Corollary 6.8. Lett > s+ 2, and adopt the notation of Corollar§.7.1f f € H,(S?)
and if (3.12)holds then

- 1 2
(6.19) [(w, f = D) <c|fllllwl-s <l+ ﬁAE'/Zlogz(lGA))

00 4
x <Z YA+ 1))Sa£,m) ,

l=Am=—¢

where cis as irn{3.12).

Proof. Since (3.12) holds and sinte- s+ 2 > s, Proposition 3.5 applies. Thus, we
see thatf = « x v, with ||v||_s < c]| f ;. Using this in (6.18) yields (6.19). [ |
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Remark 6.9. As in the the case of the circle (see Remark 5.6), we would like to have
thea, m's decay as quickly as possible, but again (3.12) limits the rate at which these
coefficients can decay. This roughly translates into limiting the smoothness class to which
« belongs. Ifs’ > s, then we can show thatif € Hg, g (S° x §%),thens <8 <t—1.m

Appendix
Consider angles of the form
27 . .

(A1) op=U+e) P=0...N-1 lsjl < L < 3.
Recall that in (5.8), we defined

N-—1 _
(A.2) =) ge v

j=0

for all k. Let 7y := [-[N/2],[(N — 1)/2]] N Z. From the proof of Lemma 5.1, we
can solve the equations above to get ¢}is in terms of theGc's, with k € Jn. We

wish to get estimates on the 2-norm of the column matrix= (¢y - -- cno1)T
inAterms of theA2-norm oTé = (Eqnjg - Gn-y21) - We remark that, i€ =
(C-injz - Gav-nyz)) , where

N-1 .
(A.3) & = Z Cj g ki/N

i=0

is the discrete Fourier transform of thgs, thenc = €.

The technique that we use in this appendix is a modification of the one employed by
Young to prove a version of a famous theorem of Kadec [32, 1.10]. We begin with the
observation that fok € Jy,

(A4) efik(pj — eZnijk/N(l_(l_GZHiajk/N))
— eriik/N _ g2riik/N (1 _ grieik/Ny

From this equation and (A.3), we can wriein the form

N-1
(A.5) G = & — Z G e72nijk/N(1 _ e727risj-k/N).
j=0
Fork € Jn, set
2k
t= —W and s = 8]'

in the expansion [32, p. 43]

g (12 ST $5 2D Mssing)
1-¢€ _<1 )+Z (257 cogmt)

m=1
X (—=1)™M28 cogn )
" Z_:n«m— 2?69

sin((m — t),
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and insert the result in (A.5):

N-1 ;
< A _orii SIN(7T €j
Cx = Cx — E ce 2rijk/N (1—7( J))

= TEj
>, 2(—1)™ cos(2rkm/N) NZ_lC' o 2xijk/N €1 SINGE;T)
_ , bl e M4
m=1 T j=0 m? — &}
& (=h™sin(27k (m — 3) /) NZ_le o~ 2rifk/N _Ei cogejm) ‘
m=1 N j=0 (m_ :_ZL)Z_SI'Z
Define the quantities
A —1_ sin(me;)
! e
gj sin(gjm)
(A.6) W=
cm_ £ cog&j )
2 i

This putst into the form

N-1
6 = 6 — ZC]' Aje—Zka/N
j=0

27k
. 2(—1)mcos( Tm

) N-1 -
_ Z . N (Z G Bijanjk/N)
j=0

m=1

.. 27k
o 2(=DM*l S'”(W(m_ %)) (N_

m—1 7

By the convolution theorem, we have

1

~mo—2rijk/N
¢ Cj'e )
j=0

- R 1. &
& = Ck_N(C* A

X 2(—1)M 27k ¢* BM
-y (=D COS( 4 m) (€x BM)
= N N

< 2(—1)™L 27k 1) (€xCMy

m=1

Setting

’

. 27km\ (€ BM),
m __ _4\m
B = (-1 cos( N ) N

A Am
CM = (=)™ sin (—sz(m — %)) 7(0*:‘: i3
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we may rewrite the previous equation as
(A7) E=C-Té=( —T)E,

where the linear transformatioh: CN — CN is defined via
A 1 . & o~ 2 Am 5m
(A.8) Te=—(ExA+)Y =(B"+CM.
N =
We wish to estimatg T ||.... By the triangle inequality, we have
A 1 ... o~ 2 2 5m
ITCl < NIIC* Al + Z =B + IC™D.-
— T
m=1
Recall thatl] X ||» = +/N|| X||, SO

¢x A
N

= |F[--- A -1z

= W||...chj BT
< V'Nlicll2ll Alloo = l1Ell2]l Alloo-
Similarly,

A Sm

1B < < lI€lI211B™ lloo,

A Am

IC™I =< < EI201C™ [loc-

We thus have the following estimate 3i¢:

ITCll2
I€ll2

From the definitions of;, B]-m, C]-m in (A.6), we have

> 2
(A.9) < Alloe + D — (1B lloo + I1C™lloc)
m=1

sin(rL)
L
L sin(wL)
m2 _ L2 ’
L cognlL)
CMg < ————.

Combining (A.9) and (A.10), we get

[Allo = 1—

(A.10) 1Bl <

ITEl2 1 sin(r L) i 2L sin(z L)

el ~ 7L A am— L2

+

i 2L cogrL)
— 7 ((m—52?-L?%

m=1

205
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The series on the right are known expansions:

i 2L 1 cot(L)
= = 7).
a(m?2—L2%) xL

m=1
i 2L = tan(Lx)
mir(m=3?%-17) '
Using these above gets us
Té . .
a1 T2 g cogal) sinerl)y =1 - «/Esm(z - Ln) .
lICll2 4

We state this result as a lemma:
LemmaA.l. IfL < 3, then

ITlla2<1-— «/Esin(% — nL) <1

The point is that we can now invert the linear transformation in (A.7) and estimate the
norm of| — T. WhenL < %, we havet = (I — T)~1&. Since||T|| < 1, the standard
Neumann expansion gives

) 1€l
A12 16l < — 22—
(A-12) 2= 1Tz

(2/2) ese( 7 L) [z

IA

which leads to the following result:
TheoremA2. IfL <landé= (& Nz -+ Gn-1s2)",thenforallkg¢ Ty

(A13) [&l < v2/2 csc(% — nL) IEll, < \/N/ZCSC(% . nL) Sup ||

ke In

Proof. From (A.2), Schwarz’s inequality, angX|l, = +/N|| X ||, we have that for all
K¢ In

&I < V'Nlicll2 = l|€ll2-
Combining this inequality with (A.12) then yields the left inequality in (A.13). The right
inequality follows from the observation thg||z < /N||€|cc- [ ]
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