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Variational Principles and Sobolev-Type Estimates for
Generalized Interpolation on a Riemannian Manifold

N. Dyn, F. J. Narcowich, and J. D. Ward

Abstract. The purpose of this paper is to study certain variational principles and
Sobolev-type estimates for the approximation order resulting from using strictly positive
definite kernels to do generalized Hermite interpolation on a closed (i.e., no boundary),
compact, connected, orientable,m-dimensionalC∞ Riemannian manifoldM, with
C∞ metric gi j . The rate of approximation can be more fully analyzed with rates of
approximation given in terms of Sobolev norms. Estimates on the rate of convergence
for generalized Hermite and other distributional interpolants can be obtained in certain
circumstances and, finally, the constants appearing in the approximation order inequal-
ities are explicit. Our focus in this paper will be on approximation rates in the cases of
the circle, other tori, and the 2-sphere.

0. Introduction

Over the last few years, there has been an increasing interest in approximation methods
based on variational techniques in a reproducing kernel Hilbert space setting. Perhaps the
first paper on this topic was that of Golomb and Weinberger [10]. More recently, Duchon
[5], [6] and Madych and Nelson [15], [16] have extensively investigated approximation
properties of functions having nonnegative Fourier transforms or, more generally, condi-
tionally positive definite functions of ordern onRs. Wu and Schaback [30] used kriging
methods, which are based on variational techniques, in their investigation of the approx-
imation properties for this class of functions. In this framework, the approximation rates
apply to functions in a certain “induced” space.

The object of this paper is to investigate variational principles and Sobolev-type esti-
mates for the approximation order resulting from using strictly positive definite kernels
to do generalized Hermite interpolation on a closed (i.e., no boundary), compact, con-
nected, orientable,m-dimensionalC∞ Riemannian manifoldMm, with C∞ metric gi j

[1], [8], [11]. Generalized Hermite interpolation inRs was introduced in [20] and [29],
and on a manifold in [19]. We should also mention that Xu and Cheney [31] gave con-
ditions for Schoenberg’s spherical positive definite functions [24] to bestrictly positive,
thereby providing a wide class of basis functions with which to do interpolation onSm.
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It frequently happens that the induced spaces contain certain Sobolev spaces. The
rate of approximation can therefore be analyzed in terms of Sobolev norms. Estimates
on the rate of convergence for generalized Hermite and other distributional interpolants
can be obtained in certain circumstances, and finally the constants appearing in the
approximation order inequalities are explicit. Of special interest in this paper will be the
approximation rates obtained in the setting of the 2-sphere. Some work in this direction
has already been done [7], [17], [22], [26], [27]. A crucial ingredient for our estimates
is a recent sampling theorem for band-limited functions on the 2-sphere given in [4].

The outline for the paper is as follows: In Section 1, relevant notation and certain
basic results about Sobolev spaces on Riemannian manifolds are given. In Section 2,
materials about complex-valued kernels are presented. Special attention is given to those
kernels which are positive definite and strictly positive definite within our framework.
Also the abstract interpolation problem is presented. In Section 3, a variational principle
is derived which shows that the solution to the abstract interpolation problem satisfies a
certain minimal norm criterion which in turn gives rise to the “rate of approximation”
estimates. In Section 4, the notion of conditionally positive definite kernels on manifolds
is introduced. In Section 5, rate of approximation estimates are derived in the case of
the circle and other tori for both equally spaced and scattered points. In Section 6,
approximation rates for certain kernels onS2 are derived.

1. Notation and Background

We will introduce notation and discuss pertinent matters related to manifolds. For the
most part, we will use the notation for manifolds and distributions that is used in Friedlan-
der [8, §2.8] and in [19]. In particular, in local coordinates the invariant volume element
dµ induced by the Riemannian metricgi j is

dµ(x) = g(x)1/2 dx where g(x) := detgi j (x) > 0

and dx := dx1 · · ·dxm.

As usual, we denote the components of the inverse ofgi j by gi j . By Ck(Mm) we will
mean the collection of allk-times continuously differentiable functions onMm; the com-
pactness of the closed manifoldMm implies thatCk(Mm) = Ck

0(M
m), whereCk

0(M
m)

comprises allCk functions whose support is contained in a compact subset ofMm.
Much of what we do here is related to expansions involving eigenfunctions of the

Laplace–Beltrami operator, which in local coordinates has the form [8, p. 11]

1w := g−1/2
m∑

i=1

m∑
j=1

∂

∂xi

(
g1/2gi j ∂w

∂x j

)
where g = detgi j .

It is possible to show that1 is self-adjoint relative toL2(Mm, g) [1, p. 54] and that it is
elliptic [28, p. 250]. The eigenfunctions mentioned above arise in connection with the
eigenvalue problem

1F + λF = 0, F ∈ C2(Mm),

concerning which we have the following well-known result:
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Proposition 1.1. The eigenvalues are discrete, nonnegative, and form an increasing
sequence with+∞ as the only accumulation point. The eigenspaces corresponding to
a given eigenvalue are finite-dimensional subspaces of C∞(Mm). The eigenspaces are
orthogonal in L2(Mm, g), and the direct sum of these spaces is all of L2(Mm, g).

Proof. See [1, Chap. 3] and [28, Chap. 6].

We remark that much of what we do here could also be done with other eigenfunc-
tion expansions, provided we replace the Sobolev spaces by weighted eigenfunction
expansions.

Occasionally we need to label the eigenvalues. A common choice for the indexj
comes from labeling in increasing order the eigenvaluesλj , with appropriate repetitions
for degenerate cases. The compactness ofMm impliesλ1 = 0 is the lowest eigenvalue; it
is easy to show that it has multiplicity 1, soλj > 0 if j > 1. Other indexing schemes are, of
course, possible. We will letFj be the eigenfunction corresponding to the eigenvalueλj .
Of course, we can choose theFj ’s so that they form an orthonormal basis forL2(Mm, g),
and we do so here. We also want to point out that the theorem above implies that each
Fj is actually aC∞ function.

In [19] we discussed in detail the definition of a distribution on a Riemannian manifold,
and we refer the reader to that paper for the necessary background material. We shall
denote the set of all distributions on the manifoldMm by D′(Mm). To evaluate any
distribution, we may use any partition of unity subordinated to a finite covering ofMm

to evaluate(u, ϕ). LetP = {(Äν, πν)} be a finite set of coordinate charts that coverMm,
and letX = {χν} be a partition of unity subordinated to this covering. We have

(u, ϕ) =
∑
ν

∫
πν(Äν)

u ◦ π−1
ν (x)(χνϕ) ◦ π−1

ν (x)dµ(x).

This is the precise meaning of the more standard expression

(u, ϕ) =
∫

Mm

u(p)ϕ(p)dµ(p).

We will make heavy use of Sobolev spaces [9, Chap. I; 13, §1.7] in our analysis. In
terms of the eigenvalue problem mentioned above, these spaces can be characterized in
a relatively simple way [13, §1.7.3]. Ifs is an arbitrary real number, then

Hs(Mm) =
{

u ∈ D′(Mm) :
∞∑

j=1

λs
j |̂u( j )|2 <∞

}
, û( j ) := (u, F̄j ),

whereFj being inC∞(Mm) implies that(u, F̄j ) is well defined. The norm on this space
will be taken to be

‖u‖s =
( ∞∑

j=1

(1+ λj )
s|̂u( j )|2

)1/2

.

Below, we collect some important standard results about Sobolev spaces:

Lemma 1.2. If s is an arbitrary real number, H−s = H∗s . If s > k + m/2, then
Hs(Mm) ⊂ Ck(Mm).
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Proof. See Gilkey’s book [9, p. 35].

We need to consider tensor products of distributions. Letκ be aC∞ function κ :
Mm×Mm→ C, and letu andv be inD′(Mm). Using [8, Theorem 2.3.2, p. 42] together
with the partitions of unity discussed above, we may define the tensor product ofu and
v as the distributionu⊗ v that is given via

(u⊗ v, κ) =
∫

Mm

u(p)

{∫
Mm

v(q)κ(p,q)dµ(q)

}
dµ(p)

=
∫

Mm

v(q)

{∫
Mm

u(p)κ(p,q)dµ(p)

}
dµ(q).

It is important to note that the following result holds for the tensor products of distri-
butions:

Proposition 1.3. Let s and t be positive real numbers. If u ∈ H−s(Mm) and v ∈
H−t (Mm), then u⊗ v ∈ H−s−t (Mm ×Mm). Moreover,

‖u⊗ v‖−s−t ≤ ‖u‖−s‖v‖−t .

Proof. The Laplace–Beltrami operator for the product manifoldMm×Mm has eigen-
valuesλj + λk and corresponding eigenfunctionsFj ⊗ Fk. Clearly,(u⊗ v, Fj ⊗ Fk) =
(u, F̄j )(v, F̄k). Consequently,

‖u⊗ v‖2−s−t =
∞∑

j,k=1

(1+ λj + λk)
−s−t |(u⊗ v, Fj ⊗ Fk)|2

=
∞∑

j,k=1

(1+ λj + λk)
−s−t |(u, F̄j )(v, F̄k)|2

=
∞∑

j,k=1

(1+ λj )
s

(1+ λj + λk)s

(1+ λk)
t

(1+ λj + λk)t

×(1+ λj )
−s|(u, F̄j )|2(1+ λk)

−t |(v, F̄k)|2

≤
( ∞∑

j=1

(1+ λj )
−s|(u, F̄j )|2

)( ∞∑
k=1

(1+ λk)
−t |(v, F̄k)|2

)
= ‖u‖2−s‖v‖2−t .

Taking square roots yields the norm-inequality in the lemma.

We will close our introductory remarks with a brief discussion of the mapping prop-
erties associated with a kernelκ ∈ H2s ∩ C0(Mm × Mm). Clearly, we can define the
linear transformation9κ : C0(Mm)→ C0(Mm) via the expression

9κ [ f ](p) =
∫

Mm

κ(p,q) f (q)dµ(q).

Using the same kind of proof as in the last proposition, we can obtain the following
result:
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Proposition 1.4. If 0≤ t ≤ 2s and if κ ∈ H2s ∩C0(Mm×Mm), then the linear map
9κ defined above continuously maps H−t into H2s−t . Moreover, we have that

‖9κ‖ ≤ ‖κ‖2s.

Proof. Omitted.

In order to emphasize the kernel generating9κ , we will adopt the convention that

κ ∗ u := 9κ [u].

The symbol “∗” is used to suggest convolution, although in using the symbol we should
keep in mind that∗ is not commutative.

Any continuous kernelκ(p,q) defined onMm has an eigenfunction expansion of the
form

κ(p,q) =
∑
j,k

αj,k Fk(p)F̄j (q).

Later on, we will work with the subclass of kernels for whichαj,k = akδj,k. Specifically,
these kernels have the form

κ(p,q) :=
∞∑

k=1

ak Fk(p)F̄k(q) where
∞∑

k=1

(1+ 2λk)
2s|ak|2 <∞.(1.1)

The condition on theak’s is equivalent to assuming thatκ is in H2s(Mm×Mm). Kernels
of the form (1.1) are analogous to convolution kernels and are similar to those treated in
Section 3 of [19]. Concerning such kernels, we have the following:

Proposition 1.5. Let s be a positive real number. If κ(p,q) has the form(1.1),thenκ
is a self-adjoint kernel, κ̄(p,q) = κ(q, p). In addition, if u andv be in H−s(Mm), then

(u⊗ v, κ) =
∞∑

k=1

ak(u, Fk)(v, F̄k).(1.2)

Proof. That κ is self-adjoint is obvious from (1.1). By Proposition 1.3,u ⊗ v is in
H−2s(Mm×Mm). Sinceκ ∈ H2s(Mm×Mm) has the expansion (1.1), which is obviously
convergent inH2s(Mm ×Mm), we can replaceκ by (1.1) on the left in (1.2), and then
interchange the sum with the continuous linear functionalu ⊗ v to obtain the series
expansion on the left in (1.2).

2. Strictly Positive Definite Kernels

A complex-valued kernelκ ∈ C(Mm × Mm) is termedpositive definite onMm if
κ̄(q, p) = κ(p,q) and if for every finite set of pointsC = {p1, . . . , pn} in Mm, the
self-adjoint,N × N matrix with entriesκ(pj , pk) is positive semidefinite. The case in
whichκ is C∞ was studied in detail in [19]. Positive definite kernels have arisen in many
contexts [25]. The definition that we use here is motivated by Schoenberg’s [24], and is
related to the ones studied by M. G. Krein [12], Yu. M. Berezanskii [2], and K. Maurin
[14]. We will be especially interested inH2s positive definite kernels, for which we have
the following result, which is similar to one for theC∞ case [19, Theorem 2.1]:
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Theorem 2.1. Let the kernelκ be in H2s(Mm×Mm)∩C0(Mm×Mm), and letκ satisfy
κ̄(q, p) = κ(p,q). Then, κ is positive definite if and only if for every u∈ H−s(Mm),

(ū⊗ u, κ) ≥ 0.(2.1)

Proof. The proof is similar to that given in [19, Theorem 2.1], and we will omit it.

Later on, we will construct a number of examples of positive definite kernels, but first
we need to define precisely the generalized Hermite interpolation problem that we wish
to study. Let{uj }Nj=1 ⊂ H−s be a linearly independent set of distributions onMm, and
let f ∈ Hs. We may think of f as being “measured” and producing data in the form:∫

Mm

ūj (p) f (p)dµ(p) = dj for j = 1, . . . , N

where thedj ’s are complex numbers. The condition that the set{uj }Nj=1 be linearly
independent is equivalent to there being no redundancy in the data.

Problem 2.2. Given a linearly independent set{uj }Nj=1 ⊂ H−s(Mm), complex numbers
dj , j = 1, . . . , N, and an H2s(Mm ×Mm) ∩ C0(Mm ×Mm) positive definite kernelκ
onMm, find u∈ Span{u1, . . . ,uN} such that∫

Mm

ūj (p)(κ ∗ u)(p)dµ(p) = dj for j = 1, . . . , N.

Equivalently, find u ∈ Span{u1, . . . ,uN} such that the functionκ ∗ u is a Hs(Mm)

interpolant for the data generated by the function f above.

The problem itself encompasses the problem of scattered data interpolation on a
manifold; it also includes almost any problem involving data generated by derivatives,
differences, and even continuous distributions. We will say that such a problem iswell-
poisedif there exists a solution and the solution is unique. The next theorem characterizes
the types of positive definite kernelsκ on Mm relative to which generalized Hermite
problems are well-poised. Before we can state it, we need a definition: Letκ be a
H2s(Mm ×Mm ∩ C0(Mm ×Mm) positive definite kernel onMm. If the equation(ū⊗
u, κ) = 0 implies that the distributionu = 0, then we will say thatκ is strictly positive
definite (SPD) onMm. The results given below have proofs nearly identical to the
corresponding results [19, Theorem 2.4 and Corollary 2.5]; they will be stated without
proof.

Theorem 2.3. Problem2.2 is well-poised ifκ is strictly positive definite onMm.

Corollary 2.4. If κ is a strictly positive definite kernel onMm, and if the set of dis-
tributions {uj }Nj=1 is linearly independent, then the interpolation matrix A with entries
given by

Aj,k :=
∫

Mm

ūj (p)(κ ∗ uk)(p)dµ(p) where j, k = 1, . . . , N,(2.2)

is self-adjoint and positive definite.
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Theorem 2.3 establishes that Problem 2.2 will be well-poisedprovidedwe have a
strictly positive definite kernelκ defined onMm, and Corollary 2.4 gives us that the
corresponding interpolation matrices will be positive definite. The next result gives us a
large class of strictly positive definite kernels.

Corollary 2.5. Let s be a positive real number. If κ(p,q) has the form(1.1),thenκ is
strictly positive definite if and only if ak > 0 for all k ≥ 1.

Proof. By Proposition 1.5, we have thatκ̄(p,q) = κ(q, p), and that, ifu ∈ H−s(Mm),

(ū⊗ u, κ) =
∞∑

k=1

ak(ū, Fk)(u, F̄k)(2.3)

=
∞∑

k=1

ak|(u, F̄k)|2

=
∞∑

k=1

ak |̂u(k)|2,

whereû(k) = (u, F̄k) is thekth coefficient in the eigenfunction expansion foru. Since
ak ≥ 0, the expansion (2.3) clearly establishes thatκ is a positive definite kernel.
Moreover, choosingu = Fj in (2.3) gives(ū⊗ u, κ) = aj . Thus, ifκ is strictly positive
definite, we see that all theak’s are positive.

We want to show that the converse is also true. Assume thatak > 0 for all k. If
(ū ⊗ u, κ) = 0 for someu ∈ H−s(Mm), then sinceak > 0 we have that̂u(k) =
(u, F̄k) = 0 for all k, from which it follows thatu = 0. Hence,κ is strictly positive.

Many manifolds of interest—tori of dimension 2 or greater, for example— are products
of compact, connected Riemannian manifolds. Choosing the Riemannian metric on
Mm := Mm

1 × · · · ×Mm
d to be the one induced by the Riemannian metrics on each of

theMm
γ ’s, we get a Laplace–Beltrami operator that is the sum of those coming from the

Mm
γ ’s. For such an operator, we easily see that the eigenvalues and eigenfunctions have,

respectively, the forms

λα = λ1
j1 + · · · + λd

αd
and Fα(p1, . . . , pd) = F1

α1
(p1) · · · Fd

αd
(pd),(2.4)

whereα = (α1, . . . , αd) is a multi-index. The eigenfunctions being products allows us
to obtain strictly positive definite kernels onMm

1 × · · · ×Mm
d from products of kernels

that are strictly positive definite on eachMm
γ and that have the form (1.1).

Corollary 2.6. If the factors in the product

κ(p1, . . . , pd,q1, . . . ,qd) := κ1(p1,q1) · · · κd(pd,qd)(2.5)

are strictly positive definite kernels in H2s(Mm
γ ×Mm

γ ) and have the form(1.1),then the
kernelκ defined by(2.5) is in H2s(Mm×Mm), has the form(1.1),and is strictly positive
definite on the product manifoldMm

1 × · · · ×Mm
d . Moreover,

‖κ‖2s ≤
d∏
γ=1

‖κγ ‖2s.(2.6)



182 N. Dyn, F. J. Narcowich, and J. D. Ward

Proof. The proof thatκ has an expansion of the form (1.1) with positive coefficients
is identical to the one for [19, Corollary 3.10] in theC∞ case. If

κγ =
∞∑

k=1

aγk Fk(pγ )F̄k(qγ ),

then the coefficient multiplying the termFα(p1, . . . , pd)F̄α(q1, . . . ,qd) is

aα =
d∏
γ=1

aγαγ .(2.7)

From the inequality(1+ 2λ1
α1
+ · · · + 2λd

αd
)2s ≤∏d

γ=1(1+ 2λγαγ )
2s, it follows that

‖κ‖22s =
∑
α

(1+ 2λ1
α1
+ · · · + 2λd

αd
)2s(aα)

2

≤
d∏
γ=1

 ∞∑
αγ=1

(1+ 2λγαγ )
2s(aγαγ )

2


=

d∏
γ=1

‖κγ ‖22s.

Taking square roots in the last inequality establishes (2.6) and completes the proof.

3. A Variational Principle

Let κ be a strictly positive definite kernel inH2s(Mm × Mm). We can useκ to define
an inner product on the spaceH−s(Mm). If u andv are in H−s(Mm), thenv̄ ⊗ u is in
H−2s(Mm ×Mm). Thus, the form

[u, v] := (v̄ ⊗ u, κ)(3.1)

is well defined, and by Proposition 1.3 satisfies the inequality

|[u, v]| ≤ ‖u‖−s‖v‖−s‖κ‖2s.(3.2)

The self-adjointness and strict positivity ofκ imply that (3.1) is an inner product on
H−s(Mm). The norm associated with this inner product is

[]u[] :=
√
(ū⊗ u, κ).(3.3)

Of course, the inner product space that we obtain this way isnot a Hilbert space. We
could complete it to be one, but the space that we would obtain would be too large to be
useful, at least in theH∞ = C∞ case. Finally, by means of the inner product defined in
(3.1), we can recast Problem 2.2.

Problem 2.2′. Given a linearly independent set{uj }Nj=1 ⊂ H−s(Mm), complex num-
bers dj , j = 1, . . . , N, and a positive definite kernelκ ∈ H2s(Mm) ∩ C0(Mm), find
u ∈ U := Span{u1, . . . ,uN} such that[u,uj ] = dj for j = 1, . . . , N.
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Since we are assuming thatκ is strictly positive definite, we know by Theorem 2.3
that this problem is well-poised. The unique solution to it isu = ∑N

j=1 cj uj , where

c = ( c1 · · · cN )
T ∈ RN is the unique solution toAc= d. Here,d = (d1 · · ·dN )

T . The
interpolant we arrive at in this way isκ ∗ u. The distributionu satisfies the following
minimization principle:

Theorem 3.1. Let u ∈ H−s(Mm) be the unique distribution inU for which κ ∗ u
solves Problem2.2′. If v ∈ H−s(Mm) is any other distribution for whichκ ∗ v also
interpolates the data in Problem2.2′—that is, [v,uj ] = dj for j = 1, . . . , N—then
v − u is orthogonal toSpan{u1, . . . ,uN} with respect to the inner product(3.1). In
addition,

[]v[] 2 = []v − u[] 2+ []u[] 2.

Finally, if v 6= u,

[]u[] < []v[] .

Proof. Since bothu and v interpolate the data, we have that[v − u,uj ] = 0 for
j = 1 . . . N; thus,v − u is orthogonal toU . The rest of the theorem follows from
standard linear algebra.

We remark that this is quite similar to the variational principle derived by Madych
and Nelson [15], [16] in the radial basis function (RBF) case. (For a review of RBFs, see
[21].) The last inequality in the theorem amounts to saying that among allv ∈ H−s(Mm)

for which κ ∗ v interpolates the data, the distributionu minimizes the norm (3.3). We
now turn to the estimates that we mentioned earlier.

We again suppose thatu andv are as above, that the functions

f := κ ∗ v and f̃ := κ ∗ u(3.4)

both interpolate the data, and thatu ∈ U is the unique solution to Problem 2.2′. If
we regard f as having generated the data in the first place, we can ask how well the
interpolant f̃ approximates the original functionf .

Proposition 3.2. Let f and f̃ be as in(3.4),and letw be an arbitrary distribution in
H−s(Mm). If g and gw are defined by

g := f − f̃ = κ ∗ (v − u) and gw := (w̄, g),(3.5)

then

|gw| ≤ dist(v,U)dist(w,U),(3.6)

where the distances are computed relative to the norm(3.3).

Proof. As we noted earlier,v − u is orthogonal toU = Span{u1, . . . ,uN}. Thus, if
c1, . . . , cN are arbitrary complex numbers, then

gw :=
∫

Mm

w̄(p)g(p)dµ(p)(3.7)
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= [v − u, w]

= [v − u, w −
N∑

j=1

cj uj].
Applying Schwarz’s inequality to (3.7) yields

|gw| ≤ []v − u[]

[]
w −

N∑
j=1

cj uj

[]
.(3.8)

Sincev − u is orthogonal toU , u is the orthogonal projection ofv ontoU . Hence,

[]v − u[] = dist(v,U).(3.9)

Also, we have that

dist(v,U) = min
c1,...,cN

[]
w −

N∑
j=1

cj uj

[]
.(3.10)

Coupling these facts with (3.8) yields (3.6).

Remark 3.3. Formula (3.6) is a version of the hypercircle inequality [3, p. 230].

The utility in (3.6) is that, because the right side separates into a product of a term
depending only ong and a term involving onlyw, we can estimate the effect ofw
independently of the originalg. Another feature is that the distributionsw andv appear
symmetrically on the right side of (3.6), in factors that involve only distances toU . Thus
our strategy for obtaining estimates ongw is to get upper bounds on the distance from a
distribution toU , given that the norm we employ is (3.3).

Remark 3.4. The distance dist(v,U) = []v− u[] depends on the interpolantκ ∗ u. We
can, however, bound dist(v,U) independently ofu. From Theorem 3.1, we see that

dist(v,U) = []v − u[] ≤ []v[] ,(3.11)

which is independent ofκ ∗ u.

Up to now in this section we have treated general SPD kernels. For the rest of it, the
types of kernels that we will work with are ones having the form (1.1), withak > 0 for
all k. By Corollary 2.5, these are strictly positive definite kernels. Moreover, this class
includes a wide variety ofCk kernels, including theC∞ kernels treated in Section 3 of
[19].

If we impose additonal restictions on the rate of decay ofak’s, then for these kernels
we can obtain estimates on dist(w,U) and []v[] in terms of more standard norms. We
have the following result:

Proposition 3.5. Letκ and s be as in(1.1).If there is a t> s for which the ak’s satisfy
a bound of the form

ak ≥ c−1(1+ λk)
−(s+t)/2(3.12)
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for all k and some constant c, then every f∈ Ht (Mm) can be written as f= κ ∗ v for
somev in H−s(Mm). Moreover,

‖v‖−s ≤ c‖ f ‖t and []v[] ≤ ‖κ‖1/22s c‖ f ‖t .(3.13)

Proof. Use the eigenfunctionsFk to expandf ,

f (p) =
∞∑

k=1

f̂ (k)Fk(p).

Let v̂(k) = f̂ (k)/ak, and observe that for allk,

(1+ λk)
−s|̂v(k)|2 ≤ c2(1+ λk)

t | f̂ (k)|2.
Summing both sides over allk ≥ 0 yields

∞∑
k=1

(1+ λk)
−s|̂v(k)|2 ≤ c2‖ f ‖2t .

From this, it follows that

v(p) :=
∞∑

k=1

v̂(k)Fk(p)

defines a distribution inH−s(Mm) that satisfies‖v‖−s ≤ c‖ f ‖t . This inequality when
coupled with(3.2) yields the inequality []v[] ≤ ‖κ‖1/22s c‖ f ‖t .

Our next result sets up a framework that will enable us to discuss how well our
interpolants approximate a given function. The idea is to estimate the distance dist(w,U),
given that the kernels used to generate the inner product onU are of the form (1.1).

Proposition 3.6. Let M be a positive integer, let s> 0, and letκ have the form(1.1)
with ak > 0 for all k ≥ 1. If there are coefficients c1, . . . , cN such that, for k = 1 . . .M ,
(w −∑N

j=1 cj uj , F̄k) = 0, and if there is a sequence bk > 0, k = M + 1,M + 2, . . .,

for which|(w −∑N
j=1 cj uj , F̄k)|2 ≤ bk when k≥ M + 1, then

dist(w,U) ≤
[]
w −

N∑
j=1

cj uj

[]
≤
( ∞∑

k=M+1

akbk

)1/2

.(3.14)

Proof. From (3.3) and (2.3), we have that[]
w −

N∑
j=1

cj uj

[]2

=
∞∑

k=1

ak

∣∣∣∣∣
(
w −

N∑
j=1

cj uj , F̄j

)∣∣∣∣∣
2

,(3.15)

from which (3.14) follows immediately.

Remark 3.7. It is not necessary to choose the ordering of the eigenfunctions to be that
obtained from the labeling of the eigenvalues in increasing order. In fact, the ordering is
arbitrary, and may be chosen to be whatever is convenient.
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We can combine the results above to obtain a variety of estimates on how well the
interpolantκ ∗u fits the original functionκ ∗v. Perhaps the most useful case is when the
function generating the data belongs to one of the Sobolev spaces. This is the situation
that we address below.

Theorem 3.8. Let κ and s be as in(1.1), and let t > s satisfy the conditions in
Proposition3.5.If f is in Ht (Mm), if w is a distribution in H−s, and if f̃ is the solution
to Problem2.2′ for data generated by f, then

|(w̄, f − f̃ )| ≤ ‖κ‖1/22s c‖ f ‖t dist(w,U).(3.16)

In addition, if w and the sequence{bk}∞k=M+1 satisfy the conditions of Proposition3.6,
then

|(w̄, f − f̃ )| ≤ ‖κ‖1/22s c‖ f ‖t
( ∞∑

k=M+1

akbk

)1/2

.(3.17)

Proof. From Proposition 3.5, we have thatf = κ ∗ v for somev in H−s(Mm). Since
f̃ = κ ∗ u, we also haveg = κ ∗ (v − u), so (w̄, f − f̃ ) = (w̄, g) = gw. Thus,
from Proposition 3.2, Remark 3.4, and (3.13), we obtain (3.16). Combining (3.16) with
Proposition 3.6 then yields (3.17).

There are a number of other estimates we can obtain using the results of this section.
The ones given in Theorem 3.8 should be considered representative.

We now turn to the case in whichMm is the product manifoldMm
1 × · · · ×Mm

d , and
the kernels are of the form (2.5). Consider the space of distributions

U := U1⊗ · · · ⊗ Ud,(3.18)

where each spaceUγ is a finite-dimensional subset ofH−sγ (M
m
γ )and wheres1+· · ·+sd =

s.
Standard formulas involving tensor products apply to the inner product induced by

the kernel (2.5). In particular, we have

[w1⊗ w2⊗ · · · ⊗ wd, z1⊗ z2⊗ · · · ⊗ zd] =
d∏
γ=1

[wγ , zγ ]γ ,(3.19)

wherewγ , zγ are in H−sγ (M
m
γ ) and the inner products are of the form (3.1), with the

kernel beingκγ .

Proposition 3.9. If w := w1 ⊗ · · · ⊗ wd, wherewγ 6= 0 is in H−sγ (M
m
γ ) for γ =

1, . . . ,d and if the spaceU is given by(3.18),then we have

dist(w,U) = []w[]

√√√√1−
d∏
γ=1

(1− dist(wγ ,Uγ )2/[]wγ [] 2
γ )(3.20)

and in addition

dist(w,U) ≤ []w[]

(
d∑
γ=1

dist(wγ ,Uγ )2
[]wγ [] 2

γ

)1/2

.(3.21)
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Proof. Let ũγ be the orthogonal projection ofwγ ontoUγ relative to the inner product
[·, ·]γ , and set̃u = ũ1⊗ · · · ⊗ ũd. Note that, from (3.19) and the well-known properties
of orthogonal projections, we can easily show that[w − ũ, ũ] = 0; consequently,̃u is
the orthogonal projection ofw onto the subspaceU . This and the fact that̃uγ is the
orthogonal projection ofwγ ontoUγ imply that

dist(w,U)2 = []w[] 2− [] ũ[] 2

= []w[] 2

(
1−

d∏
γ=1

[] ũγ [] 2
γ /[]w

γ [] 2

)

= []w[] 2

(
1−

d∏
γ=1

(1− dist(wγ ,Uγ )2/[]wγ [] 2
γ )

)
.

Equation (3.20) then follows from taking square roots in the previous equation. To
establish (3.21), use induction ond to show that the inequality

∏d
γ=1(1− x2

γ ) ≥ 1−∑d
γ=1 x2

γ holds for allxγ ’s that satisfy 0≤ xγ < 1. Apply this to the right side of (3.20)
to get (3.21).

The quality of an approximation method is measured by the error estimates, by its
stability, and by the amount of computation it requires. It is known for methods based
on radial functions that better rates of approximation are coupled with worse stability
constants [23]. Numerical results indicate a similar trade-off in the cases where we deal
with the torus or the sphere, and it should be possible to quantify such a trade-off in the
situation described here.

We will discuss specific examples in Sections 5 and 6. We now turn to dealing with
kernels that are analogous to RBFs of order 1 or higher.

4. Conditionally Positive Definite Kernels on Manifolds

In practical applications we often want interpolants that reproduce exactly some fixed,
finite-dimensional space of functions. For example, in Euclidean spaces we would like to
use interpolants that reproduce exactly the space of polynomials of degreen−1 or less. On
the circle, the functions to be reproduced exactly would be all trigonometric polynomials
of degree less thann, and on the sphere they would be all spherical harmonics, again with
degree less than some fixed number. Trigonometric polynomials are linear combinations
of eikθ ’s and spherical harmonics are linear combinations ofỲ ,m’s (see Section 6); the
eikθ ’s and theYj,k’s are eigenfunctions of the Laplace–Beltrami operators for the circle
and the sphere, respectively. It is thus natural to consider interpolation problems onMm

in which we want interpolants that reproduce exactly a space of functions with a basis
comprising finitely many eigenfunctions of the Laplace–Beltrami operator.

To formulate and solve such problems, we will introduce a class ofconditionally
positive definite kernels. LetI be a finite set of indices inZ+, and consider the finite-
dimensional space defined bySI := Span{Fi : i ∈ I}. In addition, define the space of
distributionsS⊥I := {u ∈ H−s(Mm) : (u, F̄) = 0, F ∈ SI}. We will say that a self-
adjoint kernelκ in H2s(Mm ×Mm) ∩ C0(Mm ×Mm) is conditionallypositive definite
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(CPD) with respect to a finite set of indicesI ⊂ Z+ if for everyu ∈ S⊥I we have

(ū⊗ u, κ̄) ≥ 0.

If the inequality above is strict foru 6= 0, then we will say thatκ is conditionallystrictly
positive definite (CSPD) onMm.

Since the proofs of the elementary properties of the CPD and CSPD kernels are similar
to those of the corresponding properties for PD and SPD kernels, in the propositions
below we will list them without proofs.

Proposition 4.1. If κ is a conditionally strictly positive definite kernel onMm, and
if the set of distributions{vj }Nj=1 ⊂ S⊥I is linearly independent, then the interpolation
matrix A having entries Aj,k := (v̄j , κ ∗ vk), where j, k = 1, . . . , N, is self-adjoint and
positive definite.

We remark that, as in the case of SPD kernels, we have a whole class of CSPD kernels
arising from self-adjoint kernels of the form (1.1).

Proposition 4.2. Let κ ∈ H2s(Mm ×Mm) ∩ C0(Mm ×Mm) be a self-adjoint kernel
of the form(1.1).κ is a CPD kernel if and only if ak ≥ 0 for all k 6∈ I. In addition, κ is
a CSPD kernel if and only if ak > 0 for all k 6∈ I.

We will refer to such kernels at the end of the section. For the present, we do not need
to require thatκ be of the form (1.1).

Proposition 4.3. Let κ be a conditionally strictly positive definite kernel onMm. If u
andv are in H−s(Mm), and if uI = u−∑i∈I(u, F̄i )Fi andvI = v −

∑
i∈I(v, F̄i )Fi ,

then the Hermitian form

[u, v]I := (v̄I ⊗ uI, κ),(4.1)

defines a semi-inner product on H−s(Mm), and an inner product onS⊥I .

We will denote the associated seminorm (or norm, if we are onS⊥I ) by

[]u[]I := [u, v]
1/2
I .(4.2)

We now want to consider the following problem, which is analogous to Problem 2.2:

Problem 4.4. Given a linearly independent set{uj }Nj=1 ⊂ H−s(Mm), complex numbers

{dj }Nj=1, and a CPD kernelκ in H2s(Mm) ∩ C0(Mm), find u ∈ UI := Span{uj : j =
1, . . . , N} ∩ S⊥I and F ∈ SI , such that

(ūj , κ ∗ u+ F) = dj for j = 1, . . . , N;
that is, the function f := κ ∗ u+ F interpolates the data.

Concerning this problem, we have the result below.
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Theorem 4.5. Letκ be CSPD in H2s(Mm)∩C0(Mm), and let the matrix C with entries
Cj,i = (ūj , Fi ), where j ∈ {1, . . . , N} and i ∈ I, be of full rank. If rank(C) = N,
then Problem4.4 has one or more solutions, all of the form f = F ∈ SI . If the
rank(C) = |I| < N, then Problem4.4has a unique solution; moreover, when the data
set{dj }Nj=1 is generated by a function inSI , then this solution reproduces the function.

Proof. Problem 4.4 can be reformulated in terms of a system of equations for the
unknownsb ∈ CN ande ∈ C|I| for which u = ∑N

j=1 bj uj and F = ∑
i∈I ei Fi . The

system has the form

Bb+ Ce= d, C∗b = 0,(4.3)

whereB is the matrix with elements

Bj,k := (ūj , κ ∗ uk), j, k = 1, . . . , N.(4.4)

The condition thatC∗b = 0 comes from requiring thatu be inS⊥I .
In the caseN ≤ |I|, we have rank(C) = N; this implies both that the only vector

b satisfying the second condition in (4.3) isb = 0 and that there is a vectore ∈ C|I|

satisfyingCe = d. If N < |I|, thenC has a nontrivial null space, ande will not be
unique. In that case, there are infinitely many solutions to Problem 4.4, all of the form
f = F =∑i∈I ei Fi .

For rank(C) = |I| < N, the matricesC∗ and C have nullitiesN − |I| and 0,
respectively. We want to show that the rank of the system in (4.3) isN+|I|, from which
it follows that the (4.3) can be uniquely solved forb ande.

To find the nullity of this system, letd = 0 in (4.3), and observe thatC∗b = 0
implies thatb∗Ce= 0; hence,b∗Bb= 0. On the other hand,b∗Bb= (ū⊗ u, κ), with
u = ∑

j bj uj . Taken together, these yield(ū ⊗ u, κ) = 0. Sinceκ is a CSPD kernel,
u = 0. The linear independence of theuj ’s then also gives us thatb = 0. From this and
(4.3), we then getCe= 0, and because the nullity ofC is 0,e= 0. Thus the nullity of
(4.3) is 0.

The statement concerning the reproduction of functions inSI follows from the exis-
tence and uniqueness result just proved.

The solution of the generalized Hermite problem satisfies a variational principle rel-
ative to the seminorm (4.2). Since the proof is straightforward, we omit it.

Theorem 4.6. Letκ be a CSPD kernel in H2s(Mm)∩C0(Mm), let rank(C) = |I| < N,
and let f = κ ∗ u+ F be the unique solution to Problem4.4.If

f̃ = κ ∗ ũ+ F̃, ũ ∈ S⊥I and F̃ ∈ SI,(4.5)

also satisfies(ūj , f̃ ) = dj , j = 1, . . . , N, thenũ− u is orthogonal to the subspaceUI ,
relative to the inner product in(4.1).Moreover

[] ũ[] 2
I = [] ũ− u[] 2

I + []u[] 2
I,(4.6)

from which we conclude that the solution to Problem4.4minimizes the seminorm(4.2)
among all other functions that are of the form(4.5)and satisfy the interpolation condi-
tions.
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We want to obtain an error estimate for distributions inH−s(Mm) applied to the
difference f̃ − f . That is, ifw ∈ H−s(Mm), we want bounds on(w̄, f̃ − f ) similar to
those given in Section 3. To do this, we will prove the following lemma:

Lemma 4.7. Adopt the notation and assumptions of Theorem4.6. If w ∈ H−s(Mm),
then there exists a set{αj }Nj=1 ⊂ C for whichw −∑N

j=1 αj uj ∈ S⊥I . Moreover, for any
such set

(w̄, f̃ − f ) =
(
w̄ −

N∑
j=1

ᾱj ūj , f̃ − f

)
= [ũ− u, w −

N∑
j=1

αj uj]I .(4.7)

Proof. Since f̃ and f both satisfy the interpolation conditions in Problem 4.4, we
have that(ūj , f̃ − f ) = 0 for j = 1, . . . , N. Consequently, for every choice ofαj ’s,
we see that(w̄, f̃ − f ) = (w̄ −∑N

j=1 ᾱj ūj , κ ∗ (ũ − u) + F̃ − F). If we can find

αj ’s such thatw −∑N
j=1 αj uj is in S⊥I , then, sinceF̃ − F is in SI , we would have

(w̄ −∑N
j=1 ᾱj ūj , F̃ − F) = 0, and so

(w̄, f̃ − f ) =
(
w̄ −

N∑
j=1

ᾱj ūj , κ ∗ (ũ− u)

)
.

From this equation, the definition of[ ·, ·]I , and that both̃u− u andw−∑N
j=1 αj uj are

in S⊥I , we obtain (4.7).
Thus, the whole result will follow if we can show the existence ofαj ’s for which

w −∑N
j=1 αj uj is in S⊥I . Doing this is equivalent to solving the system of equations

below for all i ∈ I:

(w, F̄i ) =
N∑

j=1

αj (uj , F̄i )︸ ︷︷ ︸
C̄j,i

= [C∗α] i .

Solving this is possible because rank(C) = |I|.

If we combine the results in Theorems 4.5, 4.6, and Lemma 4.7, we easily obtain the
following variant of the hypercircle inequality [3, p. 230]:

Corollary 4.8. With the notation and assumptions of Theorem4.6,we have

|(w̄, f̃ − f )| ≤ dist(ũ,UI)dist

(
w −

N∑
j=1

αj uj ,UI
)
,

where distances are computed relative to the norm(4.2).

Remark 4.9. With the exception of results that make specific use of kernels of the
form (1.1), all the results in this section hold if we regardSI as a finite-dimensional
subspace of smooth functions and the set{Fi : i ∈ I} is interpreted as an orthonormal
basis forSI .
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Remark 4.10. With minor modifications, most results involving Problem 2.2 and based
on Proposition 3.6 will also be true for Problem 4.4, provided the CSPD kernels employed
have the form (1.1).

5. The Torus

In this section and Section 6 below, we will apply Proposition 3.6, Theorem 3.8, and other
results from previous sections to several types of interpolation problems. For the circle
and higher-dimensional tori, we will obtain rates for scattered data point interpolation
and for a restricted class of Hermite problems that involve interpolating a fixed linear
combination of function values and derivatives at scattered sites. In the next section we
will deal with a point-evaluation problem for the 2-sphere. To apply Proposition 3.6 in
any of these cases requires two things. First, we must show that the coefficients{cj }Nj=1
exist. Second, we need to bound the sequence{bk} so that the estimates in (3.14) and
(3.17) are useful. Doing these two things is, in essence, our goal here and in the next
section. In all cases the rates that we obtain reflect the smoothness of both the underlying
data-generating function and the functions in the approximating subspace.

Let Tm be them torus. Consider a kernel of the form

κ(ϕ, ϕ′) =
m∏
γ=1

Pγ (ϕ
γ − ϕ′γ ),(5.1)

whereϕ andϕ′ are standard periodic coordinates. Suppose that for somes ≥ 0 each
Pγ ∈ H2s(T1) is continuous and has the Fourier series expansion

Pγ (ϕ) = 1√
2π

∞∑
k=−∞

aγk eikϕ where aγk > 0.(5.2)

Noting that the eigenfunctions forTm are just the functionsFk1,...,km(ϕ
1, . . . , ϕm) =

(2π)−m/2ei (k1ϕ
1+···+kmϕ

m) and using Corollary 2.6, we see that the kernelκ(ϕ, ϕ′) is
strictly positive definite, continuous, has the form (1.1), and also belongs toH2s(Tm).
C∞ kernels of this type were described in [19] and [5].

The simplest case is the circle,T1. The kernel in (5.1) is then a single function,
P(ϕ − ϕ′), andFk(ϕ) = eikϕ/

√
2π . We want to apply the estimates from Section 3 to

the Hermite Problem 2.2′ in which the distributionsuj are

uj (ϕ) :=
ν∑

n=0

υnδ
(n)(ϕ − ϕj ), j = 0 . . . N − 1,(5.3)

where theϕj ’s are distinct angles in the interval [0,2π). To get rates of approximation,
we will have to put further restrictions on these angles; we will do this later. Also, we
have labeled the distributions in the natural way,j = 0 . . . N−1 rather thanj = 1 . . . N.
In (5.3),ν is some finite integer, and the coefficientsυn are inC. In addition, we require

ν < s− 1
4, υ0 6= 0, υν 6= 0, and

ν∑
n=0

υni nkn 6= 0 for all k ∈ Z.(5.4)
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For later use, we remark that these conditions imply that

0< c−1
U ≤

(1+ k2)ν/2

|∑ν
n=0 υni nkn| ≤ CU <∞ for all k ∈ Z.(5.5)

To solve the Hermite problem using the distributionsuj , we needP to be at least 2ν
times continuously differentiable. From Lemma 1.2, we can achieve this if we assume
s > ν + 1

4; this is the reason for the conditionν < s− 1
4. As in Section 3, we will take

U to be the span of theuj ’s. We remark that the basis functions that we use to solve our
Hermite problem are

Pj (ϕ) := P ∗ uj (ϕ)(5.6)

=
∫ 2π

0
P(ϕ − ϕ′)uj (ϕ

′)dϕ′

=
ν∑

n=0

υn P(n)(ϕ − ϕj ).

Our basic tool will be Proposition 3.6. Using it requires the following two lemmas:

Lemma 5.1. Let the uj ’s be as in(5.3), with the ϕj ’s being distinct angles in the
interval [0,2π), let the cj ’s be arbitrary complex numbers, and suppose that(5.4)holds.
If w ∈ H−s(T1) and if Wk := (w, F̄k)−

∑N−1
j=0 cj (uj , F̄k), then for all k∈ Z we have

Wk = 1√
2π

{
(w,e−ikϕ)−

(
ν∑

n=0

υni nkn

)
c̃k

}
,(5.7)

where

c̃k =
N−1∑
j=0

cj e
−ikϕj .(5.8)

Moreover, there exist unique scalars c1, . . . , cN such that Wk = 0 for all integers k∈
JN := [−[N/2], [(N − 1)/2]] ∩ Z.

Proof. We have the following chain of equations:

Wk = (w,e−ikϕ/
√

2π)−
N−1∑
j=0

cj (uj ,e
−ikϕ/
√

2π)

= (w,e−ikϕ/
√

2π)−
N−1∑
j=0

cj

ν∑
n=0

υn

(
δ(n)(ϕ − ϕj ),e

−ikϕ/
√

2π
)

= 1√
2π

{
(w,e−ikϕ)−

(
ν∑

n=0

υni nkn

)(
N−1∑
j=0

cj e
−ikϕj

)}
.

Combining this and (5.8) yields (5.7). Fork ∈ JN , we wish to solve the system of
equations

N−1∑
j=0

cj e
−ikϕj = (w,e−ikϕ)∑ν

n=0 υni nkn
.(5.9)
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The determinant of the coefficient matrix for this system is a Vandermonde determinant.
Since theϕj ’s are distinct angles in [0,2π), the exponentialse−iϕj correspond to distinct
points on the unit circle. Inspecting the usual formula for a Vandermonde determinant
shows that it is not zero; the system thus has a unique solution. With this choice ofcj ’s,
we have

c̃k = (w,e−ikϕ)∑ν
n=0 υni nkn

for all k ∈ JN .(5.10)

Inserting this expression in (5.7) then yieldsWk = 0 for k ∈ JN .

Lemma 5.2. With the notation and assumptions of Lemma5.1, if k /∈ JN , we have

|Wk| ≤ (1+ k2)s/2
(
‖w‖−s + cU |c̃k|√

2π(1+ ([N/2])2)(s−ν)/2

)
.(5.11)

In addition, if the cj ’s are taken to be the unique coefficients for which Wk = 0,k ∈ JN ,
then

sup
k∈JN

|c̃k| ≤
√

2πCU (1+ [N/2]2)(s−ν)/2‖w‖−s.(5.12)

Proof. The distributionw is in H−s(T1); its Fourier coefficients thus satisfy a bound
of the form

|(w,e−ikϕ)| ≤
√

2π‖w‖−s(1+ k2)s/2, k ∈ Z,(5.13)

If we combine (5.13) with (5.7) and (5.5), we arrive at the estimate

|Wk| ≤ (1+ k2)s/2
(
‖w‖−s + cU |c̃k|√

2π(1+ k2)(s−ν)/2)

)
.(5.14)

Note thats > ν and that ifk /∈ JN , then|k| ≥ [N/2]. Consequently,(1+ k2)(s−ν)/2 ≥
(1+([N/2])2)(s−ν)/2. Using this in (5.14) yields (5.11). Next, take thecj ’s to be those for
which Wk = 0 holds whenk ∈ JN . Thec̃k’s then satisfy (5.10). If we combine (5.10),
(5.5), and (5.13), we get the following inequality:

|c̃k| ≤
√

2πCU‖w‖−s(1+ k2)(s−ν)/2 for all k ∈ JN .(5.15)

Again, sinces > ν and |k| ≤ [N/2] if k ∈ JN , we see that(1+ k2)(s−ν)/2 ≤ (1+
([N/2])2)(s−ν)/2. Employing this in conjunction with (5.15) then yields (5.12).

Thus far, we have made no real restrictions on theϕj ’s used in theuj ’s. At this point,
we will assume that these angles are distributed quasi-uniformly in the following sense.
Specifically, let

ϕj = 2π

N
( j + εj ),(5.16)

where theεj ’s are real numbers that satisfy

sup
j
|εj | = L , 0≤ L < 1

4.(5.17)

Using a discrete analogue of a theorem of Kadec [32, p. 43], we are able to estimate the
distance fromw to U , provided the norm (3.3) is used to compute the distances.
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Theorem 5.3. Let the uj ’s be as in(5.3),with theϕj ’s being given by(5.16),and let
JN be as in Lemma5.1. If P ∈ H2s(T1), and if

∑
k∈Z(1+ k2)sak converges, then, for

anyw ∈ H−s(T1), we have

dist(w,U) ≤ ‖w‖−sσ(L , N)

(∑
k/∈JN

(1+ k2)sak

)1/2

,(5.18)

where the ak’s are the Fourier coefficients of P, and

σ(L , N) := 1+ cUCU

{
1, if L = 0;√

N/2 csc(π/4− πL) if 0 < L < 1
4.

(5.19)

Here, cU and CU are given in(5.5).

Proof. By Lemma 5.1, there are uniquecj ’s for which Wk = 0 whenk ∈ JN . With
this choice ofcj ’s, whenk is inJN , c̃k is given by (5.10) and satisfies (5.12). There are
now two cases. IfL = 0 in (5.17), then theϕj ’s are equally spaced angles, andc̃k = ĉk,
the discrete Fourier transform of thecj ’s. Since thêck’s are periodic ink with periodN,
we see that supk∈Z |c̃k| = supk∈JN

|c̃k|. The second case is the one in which 0< L < 1
4.

From Theorem A.2, we have

|c̃k| ≤
√

N/2 csc
(π

4
− πL

)
sup
j∈JN

|c̃j |, k /∈ JN (0< L < 1
4).

Combining the estimates for|c̃k| from the two cases and using (5.19), we get

|c̃k| ≤ σ(L , N) sup
j∈JN

|c̃j |, k /∈ JN .

Now use (5.12) to replace supj∈JN
|c̃j | in the inequality above, and then insert the result

in (5.11) to get

|Wk| ≤ (1+ k2)s/2‖w‖−sσ(L , N), k /∈ JN (0≤ L < 1
4).(5.20)

Clearly, Proposition 3.6 and Remark 3.7 now apply, provided that in (3.14) we takebk

to be the square of the right side of (5.20). Doing so then yields (5.18).

Suppose thatu ∈ U is the unique solution to Problem 2.2′, given that the data is
generated by a functionf := κ ∗ v, wherev ∈ H−s(T1). Here,κ is of the form (5.1),
P is as in (5.2), and theuj ’s are as in (5.3). In addition, the interpolant generated is
f̃ := κ ∗ u. We obtain the following:

Corollary 5.4. With the notation used above and the assumptions from Theorem5.3,
if w ∈ H−s(T1), then

|(w, f − f̃ )| ≤ ‖v‖−s‖w‖−sσ(L , N)2
(∑

k/∈JN

(1+ k2)sak

)
.(5.21)

Proof. Combine Proposition 3.2 and Theorem 5.3 to get (5.21).
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We now wish to obtain a result for the case in whichf is in Ht (T1), wheret > s. To
do this, we will assume that (3.12) holds. If we also assume that the series

∑
k∈Z(1+

k2)sak converges, then we must have
∑

k∈Z(1+ k2)(s−t)/2 convergent, which implies the
additional constraint thatt has to be larger thans+ 1.

Corollary 5.5. Let t > s + 1 and let f ∈ Ht (T1) have f̃ as the interpolant de-
scribed above, and suppose that

∑
k∈Z(1+k2)sak converges. With the assumptions from

Theorem5.3, if (3.12)holds for the ak’s and ifw ∈ H−s(T1), then

|(w, f − f̃ )| ≤ c‖ f ‖t‖w‖−sσ(L , N)2
(∑

k/∈JN

(1+ k2)sak

)
,(5.22)

where c is as in(3.12).

Proof. Since (3.12) holds and sincet > s+ 1> s, Proposition 3.5 applies. Thus, we
see thatf = κ ∗ v, with ‖v‖−s ≤ c‖ f ‖t . Using this in (5.21) yields (5.22).

Remark 5.6. In Corollary 5.5, the right side of (5.22) is the tail end of a convergent
series, so we would like to have theak’s decay as quickly as possible. On the other hand,
(3.12) limits the rate at which the coefficients can decay. Now, the rate at which the
ak’s decay roughly translates into the smoothness class to whichP belongs. Lets′ ≥ s.
With a little work we can show that ifP ∈ Hs+s′(T1), thens ≤ s′ < t − 1

2. We also
remark that it should be true that ifw ∈ H−r , r < s, then we should get better estimates.
Unfortunately, the Hilbert space techniques used here do not provide a suitable means
for establishing this. Finally, we note the mesh sizehN = max0≤ j≤N−1(ϕj+1 − ϕj ),
whereϕj is given by (5.16) andϕN := ϕ0 + 2π , satisfiesπ/N ≤ hN ≤ 3π/N. Conse-
quently, the estimates we derive can be related to classical estimates employing the mesh
size.

We now turn to higher-dimensional tori,Tm, with m≥ 2. We will use a kernel of the
form (5.1), and our space of distributions will be

U := U1⊗ · · · ⊗ Um,(5.23)

where each spaceUγ is a finite-dimensional subset ofH−sγ (T
1)and wheres1+· · ·+sm =

s. In addition, we will assume that eachUγ is spanned byNγ distributions of the form
(5.3), with angles involved being not only distinct but also of the form (5.16), withN
replaced byNγ , and the correspondingεj ’s there satisfying (5.17) withL replaced by
Lγ .

Corollary 5.7. If
∑

k∈Z (1+ k2)sγ aγk converges forγ = 1, . . . ,m, and ifw := w1 ⊗
· · · ⊗ wm, wherewγ 6= 0 is in H−sγ (T

1), then

dist(w,U) ≤
(

m∏
γ=1

‖κγ ‖2sγ ‖wγ ‖−sγ

)
(5.24)

×
 m∑
γ=1

σ(Lγ , Nγ )2

‖κγ ‖22sγ

( ∑
k/∈INγ

(1+ k2)sγ aγk

)1/2

,
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where the aγk ’s are the Fourier coefficients of Pγ , the setINγ is as in Lemma5.1,and the
factorσ(·, ·) is given in(5.19).

Proof. By Theorem 5.3, we have that

dist(wγ ,Uγ )2 ≤ ‖wγ ‖2−sγ σ (Lγ , Nγ )
2

(∑
k/∈JN

(1+ k2)sγ aγk

)
.

From (3.19), we also see that

[]w[] 2 =
m∏
β=1

[]wβ [] 2
β.

Multiply both sides of the previous inequality by []w[] 2/[]wγ [] 2
γ and use the last equation

to obtain

[]w[] 2 dist(wγ ,Uγ )2
[]wγ [] 2

γ

≤ ‖wγ ‖2−sγ σ (Lγ , Nγ )
2

(∑
k/∈JN

(1+ k2)sγ aγk

)
m∏
β 6=γ

[]wβ [] 2
β.

Recall that

[]wβ [] 2
β ≤ ‖κβ‖22sβ‖wβ‖2−sβ .

Combining this with the previous inequality yields

[]w[] 2 dist(wγ ,Uγ )2
[]wγ [] 2

γ

≤ σ(Lγ , Nγ )2

‖κγ ‖22sγ

(∑
k/∈JN

(1+ k2)sγ aγk

)(
m∏
β=1

‖κβ‖22sβ‖wβ‖2−sβ

)
.

The inequality (5.24) follows from using the inequality above in conjunction with (3.20)
of Proposition 3.9.

We can now use this result to obtain rate estimates for the case ofTm.

Theorem 5.8. With the notation and assumptions of Corollary5.7, if u ∈ H−s(Tm) is
the unique distribution inU for whichκ ∗ u solves Problem2.2′, and ifv ∈ H−s(Tm) is
any other distribution for whichκ ∗ v also interpolates the data in Problem2.2′, then

|(w̄, f − f̃ )| ≤ Ks‖v‖−s

(
m∏
γ=1

‖wγ ‖−sγ

)
(5.25)

×
 m∑
γ=1

σ(Lγ , Nγ )2

‖κγ ‖22sγ

( ∑
k/∈INγ

(1+ k2)sγ aγk

)1/2

,

where

Ks := ‖κ‖2s

m∏
γ=1

‖κγ ‖2sγ .(5.26)
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Proof. By Remark 3.4 and the inequality []v[] ≤ ‖κ‖2s‖v‖−s, we see that dist(v,U) ≤
‖κ‖2s‖v‖−s. The result then follows on combining this with Proposition 3.2 and Corol-
lary 5.7.

If each of thePγ ’s in the product (5.1) has coefficients that satisfy a bound of the form

aγk ≥ c−1
γ (1+ k2)−(sγ+tγ )/2,(5.27)

thenak1,...,km =
∏m
γ=1 aγkγ satisfies

ak1,...,km ≥ c−1

(
1+

m∑
γ=1

k2
γ

)−(s+t)/2

= c−1(1+ λk1,...,km)
−(s+t)/2,

wherec =∏m
γ=1 cγ , s=∑m

γ=1 sγ , andt =∑m
γ=1 tγ . This, coupled with Theorems 3.8

and 5.8, yields the following result:

Corollary 5.9. If the aγk ’s satisfy(5.27),and if f = κ ∗ v is in Ht (Tm), then we may
replace(5.25)by

|(w̄, f − f̃ )| ≤ Ksc‖ f ‖t
(

m∏
γ=1

‖wγ ‖−sγ

)
(5.28)

×
 m∑
γ=1

σ(Lγ , Nγ )2

‖κγ ‖22sγ

( ∑
k/∈INγ

(1+ k2)sγ aγk

)1/2

.

We close this section by remarking that the higher-dimensional tori estimates we
obtained in Theorem 5.8 and Corollary 5.9 are not optimal. We conjecture that estimates
similar to ones for the circle can be found.

6. The2-Sphere

Our next example deals with the 2-sphere,S2. The interpolation problem that we will
deal with in this section will be one in which the distributions in Problem 2.2′ are point
evaluations at pointspj,k that we will describe below; that is,

uj,k = δpj,k and U := Span{uj,k}.(6.1)

The results we obtain in this section depend on recent results of Driscoll and Healy [4],
and we will adopt the convention for spherical coordinates that is used by them and that
is customary in physics: the angleθ ∈ [0, π ] is measured off the positivez-axis and the
angleϕ ∈ [0,2π) is measured off thex-axis in thex–y plane. In addition, take3 to be
a fixed positive integer, then let

θj = π j

23
, j = 0, . . . ,23− 1,

ϕk = πk

3
, k = 0, . . . ,23− 1,

(θj , ϕk)= coordinates ofpj,k.

(6.2)
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The eigenfunctions of the Laplace–Beltrami operator forS2 are theỲ ,m’s, where
` = 0,1,2, . . . and where, for̀ fixed, m = −`, . . . , `; these functions are described
in detail in [4(§2)], [18], and [19], and in spherical coordinates are related to associated
Legendre functions. We will not need their explicit form here, although we will need
some of their properties. TheỲ ,m’s form an orthonormal basis forL2(S2) with respect
to the standard measure on the sphere,dµ, which has the formdµ = sin(θ)dθ dϕ in the
coordinates above. As in [4], we will denote the expansion coefficient for a distribution
h relative toỲ ,m by ĥ(`,m); that is, set

ĥ(`,m) =
∫

S2
hY`,m dµ.

We will say thath isband-limitedif the orthogonal expansion forh contains only finitely
many terms. Driscoll and Healy have established the following “sampling theorem.”

Theorem 6.1(4, Theorem 3).If f (p) is a band-limited function onS2 for which
f̂ (`,m) = 0 for ` ≥ 3, then there exist coefficientsα(3)j that are independent of f
such that

f̂ (`,m) =
√

2π

23

23−1∑
j=0

23−1∑
k=0

α
(3)
j f (pj,k)Y`,m(pj,k)

for ` < 3 and|m| ≤ `.

We are now ready to proceed with the “rate of approximation” estimates, which we
will obtain by applying Proposition 3.6. To apply this proposition, we will need the
lemmas below.

Lemma 6.2. Letw ∈ H−s(S2) and let the expansion coefficients forw beŵ(`,m) =
(w,Y`,m). If w3 is the band-limited function defined by

w3(p) :=
3−1∑
`=0

∑̀
m=−`

ŵ(`,m)Ỳ ,m(p),(6.3)

and if

cj,k :=
√

2π

23
w3(pj,k)α

3
j , 0≤ j, k ≤ 23− 1,(6.4)

then

ŵ(`,m)−
23−1∑
j=0

23−1∑
k=0

cj,k(uj,k,Y`,m) = 0, 0≤ ` < 3, |m| ≤ `.(6.5)

Proof. By Theorem 6.1,

ŵ(`,m) =
√

2π

23

23−1∑
j=0

23−1∑
k=0

w3(pj,k)α
3
j Ỳ ,m(pj,k), 0≤ ` < 3, |m| ≤ `.

SinceỲ ,m(pj,k) = (uj,k, Ỳ ,m), choosing thecj,k’s to be the coefficients given in (6.4)
results in (6.5).
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Next, we need to estimate various quantities related to ones appearing in the lemma
above. For all̀ andm, define

W`,m := ŵ(`,m)−
√

2π

23

23−1∑
j=0

23−1∑
k=0

w3(pj,k)α
3
j (uj,kY`,m),(6.6)

where theα3j ’s are the coefficients from Theorem 6.1. By the previous lemma, we see
thatW`,m = 0 for all 0≤ ` < 3, |m| ≤ `. The results below provide a bound on this
quantity in the case wherè≥ 3.

Lemma 6.3. If w3(p) is given by(6.3)and if3 ≥ 1, then for all p

|w3(p)| ≤ 3
1+s

√
4π
‖w‖−s.(6.7)

In addition, for all ` ≥ 3, we have∣∣∣∣
√

2π

23

23−1∑
j=0

23−1∑
k=0

w3(pj,k)α
3
j (uj,kY`,m)

∣∣∣∣ ≤
√

2`+ 1

8π
3s+1‖w‖−s

23−1∑
j=0

|α3j |.(6.8)

Proof. From Schwarz’s inequality applied to the right-hand side of (6.3), we see that

|w3(p)|2 ≤
(
3−1∑
`=0

∑̀
m=−`
|ŵ(`,m)|2

)(
3−1∑
`=0

∑̀
m=−`

Ỳ ,m(p)Ȳ̀ ,m(p)

)
.(6.9)

The first term on the right above satisfies this chain of inequalities:

3−1∑
`=0

∑̀
m=−`
|ŵ(`,m)|2 =

3−1∑
`=0

∑̀
m=−`

(1+ `(`+ 1))s
|ŵ(`,m)|2

(1+ `(`+ 1))s
(6.10)

≤ (1+3(3− 1))s
3−1∑
`=0

∑̀
m=−`

|ŵ(`,m)|2
(1+ `(`+ 1))s

≤ 32s‖w‖2−s.

The second term on the right of (6.9) can be evaluated exactly via the Addition Theorem
for spherical harmonics [18, p. 10]; the result is this:

3−1∑
`=0

∑̀
m=−`

Ỳ ,m(p)Ȳ̀ ,m(p) =
3−1∑
`=0

2`+ 1

4π
P̀ (p · p︸︷︷︸

1

),

whereP̀ is the standard Legendre polynomial of degree`, which satisfies the normal-
ization condition thatP̀ (1) = 1. Since

∑3−1
`=0 (2`+ 1) = 32, we see that

3−1∑
`=0

∑̀
m=−`

Ỳ ,m(p)Ȳ̀ ,m(p) = 32

4π
.(6.11)

Taking square roots after combining (6.9), (6.10), and (6.11) yields (6.7).
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To establish (6.8), first note that from (6.7) we have∣∣∣∣∣
√

2π

23

23−1∑
j=0

23−1∑
k=0

w3(pj,k)α
3
j (uj,k,Y`,m)

∣∣∣∣∣(6.12)

≤ 3
s‖w‖−s√

8

23−1∑
j=0

23−1∑
k=0

|α3j ||(uj,kY`,m)|.

As we noted in the previous proof,(uj,k,Y`,m) = Y`,m(pj,k). Also, by [18, Lemma 8,
p. 14], we have

|Ỳ ,m(p)| ≤
√

2`+ 1

4π
.

Combining these two facts and using them in conjunction with (6.12), we find that∣∣∣∣∣
√

2π

23

23−1∑
j=0

23−1∑
k=0

w3(pj,k)α
3
j (uj,k,Y`,m)

∣∣∣∣∣ ≤ 3s‖w‖−s
√

2`+ 1√
32π

23−1∑
j=0

23−1∑
k=0

|α3j |

≤
√

2`+ 1

8π
3s+1‖w‖−s

23−1∑
j=0

|α3j |.

We next wish to estimate the sum
∑23−1

j=0 |α3j |. This we can do when the integer3 is
a power of 2.

Lemma 6.4. If 3 is a power of2, then

23−1∑
j=0

|α3j | ≤ log2(163).(6.13)

Proof. From [4, p. 216], if3 is a power of 2, then

α3j =
2
√

2

23
sin

(
π j

23

)3−1∑
`=0

1

2`+ 1
sin

(
π j (2`+ 1)

23

)
, j = 0, . . . ,23− 1.

From this it follows that, forj = 0, . . . ,23− 1,

|α3j | ≤
2
√

2

23

3−1∑
`=0

1

2`+ 1

≤
√

2

3

(
1+

∫ 3−1

0

dx

2x + 1

)
≤
√

2

3

(
1+ 1

2 ln(23− 1)
)

≤ 1

23
log2(163).
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Consequently,|α3j | ≤ log2(163)/23 and so

23−1∑
j=0

|α3j | ≤
log2(163)

23
(23)

= log2(163).

We can now bound theW`,m’s defined in (6.6). The estimate that we obtain will allow
us to use Proposition 3.6 to get rates of approximation.

Lemma 6.5. Let3 be a power of2. If ` ≥ 3, then

|W`,m| ≤
(

1+ 1

2
√
π
33/2 log2(163)

)
(1+ `(`+ 1))s/2‖w‖−s.(6.14)

Proof. Note that, sincew is in H−s, its Fourier expansion coefficients satisfy

|ŵ(`,m)| ≤ (1+ `(`+ 1))s/2‖w‖−s.

This provides a bound for the first term in (6.6). A bound for the second term in (6.6) may
be obtained by combining (6.8) and (6.13). This yields the following bound onW`,m:

|W`,m| ≤ (1+ `(`+ 1))s/2‖w‖−s +
√

2`+ 1

8π
3s+1‖w‖−s log2(163).

Rearranging terms on the right above, we have

|W`,m| ≤ (1+ `(`+ 1))s/2‖w‖−s(1+ As(`,3)),(6.15)

where

As(`,3) = (1+ `(`+ 1))−s/2

√
2`+ 1

8π
3s+1 log2(163).

With a little algebra, we see that

As(`,3) = 1

2
√
π

(
3

`+ 1
2

)s−1/2

(1+ 3
4(`+ 1

2)
−2)−(s/2), 33/2 log2(163).

Since` ≥ 3, it follows that

As(`,3) ≤ 1

2
√
π
33/2 log2(163).

Using this bound in (6.15) results in (6.14).

We are now ready to apply Proposition 3.6. In what follows, we assume that the SPD
kernelκ ∈ H2s(S2× S2) has the form

κ(p,q) :=
∞∑
`=0

∑̀
m=−`

a`,mỲ ,m(p)Y`,m(q),(6.16)

where the coefficients satisfya`,m > 0 for all ` andm. We will now prove the estimate
on the distance from a distributionw to the subspaceU .
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Theorem 6.6. Letw be in H−s, letU be as in(6.1),and letκ be as in(6.16).If 3 is a
power of2, and if the series

∑∞
`=0

∑`
m=−`(1+ `(`+ 1))sa`,m is convergent, then

(6.17)

dist(w,U) ≤
(

1+ 1√
π
33/2 log2(163)

)
‖w‖−s

( ∞∑
`=3

∑̀
m=−`

(1+ `(`+ 1))sa`,m

)1/2

.

Proof. Combine Lemmas 6.2 and 6.5 with Proposition 3.6.

We can now use this result to obtain rate estimates for the case of the 2-sphere,S2.

Corollary 6.7. With the notation and assumptions of Theorem6.6, if u ∈ H−s(S2) is
the unique distribution inU for whichκ ∗ u solves Problem2.2′, and if v ∈ H−s(S2) is
any other distribution for whichκ ∗ v also interpolates the data in Problem2.2′, then
for all w ∈ H−s

|(w̄, f − f̃ )| ≤
(

1+ 1

2
√
π
33/2 log2(163)

)2

‖v‖−s‖w‖−s(6.18)

×
( ∞∑
`=3

∑̀
m=−`

(1+ `(`+ 1))sa`,m

)
.

Proof. By Proposition 3.2,

|(w̄, f − f̃ )| ≤ dist(v,U)dist(w,U).

Both w andv are in H−s. Thus, (6.18) follows on applying the distance estimates in
Theorem 6.6.

We now wish to obtain a result for the case in whichf is in f ∈ Ht (S2), where
t > s. To do this, we will assume that (3.12) holds. If we also assume that the series∑∞

`=0

∑`
m=−`(1+`(`+1))sa`,m converges, then we must have

∑∞
`=0(2`+1)(1+`(`+

1))−(t−s)/2 convergent, which implies the additional constraint thatt has to be larger than
s+ 2.

Corollary 6.8. Let t > s+ 2, and adopt the notation of Corollary6.7. If f ∈ Ht (S2)

and if (3.12)holds, then

|(w, f − f̃ )| ≤ c‖ f ‖t‖w‖−s

(
1+ 1

2
√
π
33/2 log2(163)

)2

(6.19)

×
( ∞∑
`=3

∑̀
m=−`

(1+ `(`+ 1))sa`,m

)
,

where c is as in(3.12).

Proof. Since (3.12) holds and sincet > s+ 2> s, Proposition 3.5 applies. Thus, we
see thatf = κ ∗ v, with ‖v‖−s ≤ c‖ f ‖t . Using this in (6.18) yields (6.19).
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Remark 6.9. As in the the case of the circle (see Remark 5.6), we would like to have
the a`,m’s decay as quickly as possible, but again (3.12) limits the rate at which these
coefficients can decay. This roughly translates into limiting the smoothness class to which
κ belongs. Ifs′ ≥ s, then we can show that ifκ ∈ Hs+s′(S2×S2), thens ≤ s′ < t −1.

Appendix

Consider angles of the form

ϕj = 2π

N
( j + εj ), i = 0, . . . , N − 1, |εj | ≤ L < 1

4.(A.1)

Recall that in (5.8), we defined

c̃k :=
N−1∑
j=0

cj e
−ikϕj(A.2)

for all k. Let JN := [−[N/2], [(N − 1)/2]] ∩ Z . From the proof of Lemma 5.1, we
can solve the equations above to get thecj ’s in terms of thec̃k’s, with k ∈ JN . We
wish to get estimates on the 2-norm of the column matrixc := ( c0 · · · cN−1 )

T

in terms of the 2-norm of̃c := ( c̃−[N/2] · · · c̃[(N−1)/2] )
T . We remark that, if̂c :=

( ĉ−[N/2] · · · ĉ[(N−1)/2] )
T , where

ĉk =
N−1∑
j=0

cj e
2π ik j/N(A.3)

is the discrete Fourier transform of thecj ’s, thenc̃ = ĉ.
The technique that we use in this appendix is a modification of the one employed by

Young to prove a version of a famous theorem of Kadec [32, 1.10]. We begin with the
observation that fork ∈ JN ,

e−ikϕj = e2π i jk/N(1− (1− e2π i εj k/N))(A.4)

= e2π i jk/N − e2π i jk/N(1− e2π i εj k/N).

From this equation and (A.3), we can writec̃k in the form

c̃k = ĉk −
N−1∑
j=0

cj e
−2π i jk/N(1− e−2π i εj k/N).(A.5)

For k ∈ JN , set

t = −2πk

N
and δ = εj

in the expansion [32, p. 43]

1− ei δt =
(

1− sinπδ

πδ

)
+
∞∑

m=1

2(−1)mδ sin(δπ)

π(m2− δ2)
cos(mt)

+ i
∞∑

m=1

(−1)m2δ cos(πδ)

π((m− 1
2)

2− δ2)
sin((m− 1

2)t),
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and insert the result in (A.5):

c̃k = ĉk −
N−1∑
j=0

cj e
−2π i jk/N

(
1− sin(πεj )

πεj

)

−
∞∑

m=1

2(−1)m cos(2πkm/N)

π

N−1∑
j=0

cj e
−2π i jk/N εj sin(εjπ)

m2− ε2
j

−
∞∑

m=1

2i (−1)m+1 sin
(
2πk

(
m− 1

2

)
/π
)

N

N−1∑
j=0

cj e
−2π i jk/N εj cos(εjπ)(

m− 1
2

)2− ε2
j

.

Define the quantities 

Aj = 1− sin(πεj )

πεj
,

Bm
j =

εj sin(εjπ)

m2− ε2
j

,

Cm
j =

εj cos(εjπ)

(m− 1
2)

2− ε2
j

.

(A.6)

This putsc̃k into the form

c̃k = ĉk −
N−1∑
j=0

cj Aj e
−2π i jk/N

−
∞∑

m=1

2(−1)m cos

(
2πkm

N

)
π

(
N−1∑
j=0

cj B
m
j e−2π i jk/N

)

−
∞∑

m=1

2(−1)m+1i sin

(
2πk

N
(m− 1

2)

)
π

(
N−1∑
j=0

cj C
m
j e−2π i jk/N

)
By the convolution theorem, we have

c̃k = ĉk − 1

N
(ĉ ∗ Â)k

−
∞∑

m=1

2(−1)m

π
cos

(
2πkm

N

)
(ĉ ∗ B̂m)k

N

−
∞∑

m=1

2(−1)m+1i

π
sin

(
2πk

N
(m− 1

2)

)
(ĉ ∗ Ĉm)k

N
.

Setting

B̂m
k = (−1)m cos

(
2πkm

N

)
(ĉ ∗ B̂m)k

N
,

Ĉm
k = (−1)m+1i sin

(
2πk

N
(m− 1

2)

)
(ĉ ∗ Ĉm)k

N
,
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we may rewrite the previous equation as

c̃ = ĉ− Tĉ = (I − T)ĉ,(A.7)

where the linear transformationT : CN → CN is defined via

Tĉ = 1

N
(ĉ ∗ Â)+

∞∑
m=1

2

π
(B̂m + Ĉm).(A.8)

We wish to estimate‖T‖2,2. By the triangle inequality, we have

‖Tĉ‖ ≤ 1

N
‖ĉ ∗ Â‖ +

∞∑
m=1

2

π
(‖B̂m‖ + ‖Ĉm‖).

Recall that‖X̂‖2 =
√

N‖X‖, so∥∥∥∥∥ ĉ ∗ Â

N

∥∥∥∥∥ = ‖F [· · · cj Aj · · ·]‖2

=
√

N‖ · · · cj Aj · · · ‖2
≤
√

N‖c‖2‖A‖∞ = ‖ĉ‖2‖A‖∞.
Similarly,

‖B̂m‖ ≤
∥∥∥∥∥ ĉ ∗ B̂m

N

∥∥∥∥∥ ≤ ‖ĉ‖2‖Bm‖∞,

‖Ĉm‖ ≤
∥∥∥∥∥ ĉ ∗ Ĉm

N

∥∥∥∥∥ ≤ ‖ĉ‖2‖Cm‖∞.

We thus have the following estimate onTĉ:

‖Tĉ‖2
‖ĉ‖2 ≤ ‖A‖∞ +

∞∑
m=1

2

π

(‖Bm‖∞ + ‖Cm‖∞
)
.(A.9)

From the definitions ofAj , Bm
j ,C

m
j in (A.6), we have

‖A‖∞ ≤ 1− sin(πL)

πL
,

‖Bm‖∞ ≤ L sin(πL)

m2− L2
,

‖Cm‖∞ ≤ L cos(πL)

(m− 1
2)

2− L2
.

(A.10)

Combining (A.9) and (A.10), we get

‖Tĉ‖2
‖ĉ‖2 ≤ 1− sin(πL)

πL
+
∞∑

m=1

2L sin(πL)

π(m2− L2)

+
∞∑

m=1

2L cos(πL)

π
(
(m− 1

2)
2− L2

) .
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The series on the right are known expansions:

∞∑
m=1

2L

π(m2− L2)
= 1

πL
− cot(Lπ),

∞∑
m=1

2L

π
(
(m− 1

2)
2− L2

) = tan(Lπ).

Using these above gets us

‖Tĉ‖2
‖ĉ‖2 ≤ 1− cos(πL)+ sin(πL) = 1−

√
2 sin

(π
4
− Lπ

)
.(A.11)

We state this result as a lemma:

Lemma A.1. If L < 1
4, then

‖T‖2,2 ≤ 1−
√

2 sin
(π

4
− πL

)
< 1.

The point is that we can now invert the linear transformation in (A.7) and estimate the
norm of I − T . WhenL < 1

4, we haveĉ = (I − T)−1c̃. Since‖T‖ < 1, the standard
Neumann expansion gives

‖ĉ‖2 ≤ ‖c̃‖2
1− ‖T‖2,2(A.12)

≤ (
√

2/2) csc
(π

4
− πL

)
‖c̃‖2,

which leads to the following result:

Theorem A.2. If L < 1
4 andc̃ = ( c̃−[N/2] · · · c̃[(N−1)/2] )

T , then for all k /∈ JN

|c̃k| ≤
√

2/2 csc
(π

4
− πL

)
‖c̃‖2 ≤

√
N/2 csc

(π
4
− πL

)
sup

k∈JN

|c̃k|.(A.13)

Proof. From (A.2), Schwarz’s inequality, and‖X̂‖2 =
√

N‖X‖, we have that for all
k /∈ JN

|c̃k| ≤
√

N‖c‖2 = ‖ĉ‖2.

Combining this inequality with (A.12) then yields the left inequality in (A.13). The right
inequality follows from the observation that‖c̃‖2 ≤

√
N‖c̃‖∞.
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18. C. MÜLLER (1966): Spherical Harmonics. Berlin: Springer-Verlag.
19. F. J. NARCOWICH (1995):Generalized Hermite interpolation and positive definite kernels on a Rieman-

nian manifold. J. Math. Anal. Appl.,190:165–193.
20. F. J. NARCOWICH, J. D. WARD (1994):Generalized Hermite interpolation via matrix-valued conditionally

positive definite kernels. Math. Comp.,63:661–688.
21. M. J. D. POWELL (1990):The theory of radial basis approximation in1990. In: Wavelets, Subdivision

and Radial Functions (W. Light, ed.). Oxford, UK: Oxford University Press.
22. A. RON, X. SUN (1996):Strictly positive definite functions on spheres. Math. Comp.,65:1513–1530.
23. R. SCHABACK (1995):Error estimates and condition numbers for radial basis function interpolation.

Adv. in Comput. Math.,3:251–264.
24. I. J. SCHOENBERG(1942):Positive definite functions on spheres. Duke Math. J.,9:96–108.
25. J. STEWART(1976):Positive definite functions and generalizations,an historical survey. Rocky Mountain

J. Math.,6:409–434.
26. G. WAHBA (1981):Spline interpolation and smoothing on the sphere. SIAM J. Sci. Statist. Comput.,

2:5–16.
27. G. WAHBA (1984):Surface fitting with scattered noisy data on Euclidean d-space and on the sphere.

Rocky Mountain J. Math.,14:281–299.
28. F. W. WARNER (1971): Foundations of Differentiable Manifolds and Lie Groups. Glenview, IL: Scott,

Foresman.



208 N. Dyn, F. J. Narcowich, and J. D. Ward

29. Z. WU (1992): Hermite–Birkhoff interpolation of scattered data by radial basis functions. Approx.
Theory Appl.,24:201–215.

30. Z. WU, R. SCHABACK (1993):Local error estimates for radial basis function interpolation of scattered
data. IMA J. Numer. Anal.,13:13–27.

31. Y. XU, E. W. CHENEY (1992):Strictly positive definite functions on spheres. Proc. Amer. Math. Soc.,
116:977–981.

32. R. M. YOUNG (1980): An Introduction to Nonharmonic Fourier Series. New York: Academic Press.

N. Dyn
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv 69978
Israel

F. J. Narcowich
Department of Mathematics
Texas A&M University
College Station
Texas 77843
USA

J. D. Ward
Department of Mathematics
Texas A&M University
College Station
Texas 77843
USA


