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Wavelet Expansions and Fractal Dimensions

A. Kamont and B. Wolnik

Abstract. Thebounds ofthe upper and lower box dimensions of the graph of a function
in terms of the coefficients in its wavelet decomposition are given. An example, that the
formula for upper box dimension, given in [4], does not hold, is presented.

1. Introduction

This paper consists of two parts. In the first part we propose a method of estimation of
the upper and lower box dimensions of graphs of a continuous function in terms of the
coefficients in its wavelet expansion. Results of this type for some spline bases have been
proved in Z. Ciesielski’s papers [1] and [2]. Our proof of the lower bound for the lower
box dimension follows the ideas of these two papers.

In the paper by A. Deliu and B. Jawerth [4] the authors have stated a formula for the
upper box dimension of the graph of a continuous function (see formula (5) in Section 3).
In the second part of this paper we give a counterexample to their statement.

Let us recall the definition of box dimension. Fpre N andk € Z, let Ijx =
[k/2], (k + 1)/2/] be thekth dyadic interval of ordej, and fork = (ki, ..., kg) € Z¢,
let Ijx = ljk x --- x ljk denote thekth dyadic cube of ordej. For a compact
subsetk c RY, let N(K, j) be the number ofd-dimensional) dyadic cubes of ordgr
intersectingk . Then theupperandlower box dimensionsf K dim,(K) and dim, are
defined by the following formulas:

log N(K; }) logN(K; )

dim,(K) = limsup , dim, (K) = Iijnliorlf TTog2

j—>o0 J |092

If dimp(K) = dim,(K), then the common value is called thex dimensiorf K and
denoted by dim(K). For the equivalent definitions of box dimension, see, for example,
[5].

Let us introduce some notation. For a functonRY — C denote

hj () = 2192 2! . — k) for jez, kez%
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98 A. Kamont and B. Wolnik

For functionsf, g : RY — C we denotég f, g) = fRd f(X)g(x) dx. | - | is the Euclidean
norm onRY; by C we denote a positive constant, which may vary from place to place.

Now we recall briefly the necessary definitions concerning scaling functions and wa-
velets. Following [6], we introduce-regular orthonormal scaling functions.

Definition 1.1. Lety € L?(RY) and
V) = closereygj e kez,  jez.

The functiong is called an orthonormal scaling function if the sequence of spaces
{V;, j €Z} fulfills the following conditions:

(1) -.cVicVgcViC--o

@) Ujez Vi = L2RY;

3) Njez Vi = {0}; and

(4) the systenfpok}keze is an orthonormal basis .

The functiony is called arr -regular scaling function if, in additioms € C' (R%) and it
satisfies the following decay conditions: for apy= N there is a constaiit, , such that

Cor
0% X) 57’)
QT = X

whered% = (3/0X1)* ... (3/9Xg)* and|a| = a1 + - - - + ag.

for « = (ag,...,aq), le| <,

Let ¢ be anr-regular scaling function. Then there aje= 29 — 1 orthonormal
functionsyry, ..., ¥q € Vi such that the functiong, (- —k) with 1 <1 < gandk e A
form an orthonormal basis fal, whereW, is the orthogonal complement bf in V;.
Moreover, the functiong, ..., ¥4 can be chosen in such a way that they satisfy the
same regularity and decay conditionsas.e.,y, € C'(RY) and for anyp € N there is
aconstanCy,, such that

o var
[0=Y1 (X)] < AT IxD?

IxIDP for Jo| <r.
X 3

It follows that the functiong29i/2y,(2ix —k), 1 <1 <q, k € Z%, j € Z} form an
orthonormal basis fok2(RY). (For details, see, e.g., [6, Chap. 3].)

The functionsy, ..., ¥4 are calledvavelets associated with the scaling functjon

It follows from the properties of scaling functions that without loss of generality we
can assume that

(1) Y ex-k=1 foral xeR' and / e(x)dx = 1.
kezd R

2. The Bounds for Upper and Lower Box Dimensions of a Graph

Throughout this section we assume tas a 1-regular scaling function d®, and that
v, 1 =1,...,29 — 1, are the associated wavelets; moreover, to simplify notation we

write Y jx = (¥1)j k-
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For a functionf : RY — R and a parallelepipe® = [ai, bi] x - - x [aq, b], let
I'(f, Q) = {x f(®):xe Q) c R
be the part of the graph df lying over Q.

2.1. The Upper Bound for Box Dimensions of a Graph

It is well known that if a functionf satisfies the ditder condition with exponent,
0 < « < 1, on ad-dimensional parallelepiped, theim,(I'(f, Q)) < d + 1 — « (see,
e.g., [5, Chap. 11]). Now we formulate some conditions for the wavelet coefficients of
f, which imply the Holder condition with exponent for f on Q.
Let f : RY - RandletQ c RYbe a nondegenerated parallelepiped. Given® <
1 and 0< y < 1 consider the following conditions:

() There are a constaf > 0 andn e N such that for alk € 29
[(f, o) < C(1+ kD"

(i) There are a constar@ >0 andn € N suchthatforalll<|l <294 —1,j >0,
andk e z9 with dist(k/2!, Q) > 1/2¥

I(f, ¥1,j00] < C27972(1 4 27T k™.

(iii) There are a constar@ > 0 andn € N such that for all 1< | < 29 _-1,j >0,
andk e Z9 with dist(k/2/, Q) < 1/217

. . k n
((F 0] < G2l (1+ 2 dist<§, Q)) .

Note that the decay conditions imposedgandy, imply that if f is of polynomial
growth, i.e., there ar€ > 0 andm € N such that

1fx)| <C@+xID™  for xeRY,

then f satisfies conditions (i) and (ii).

Lemma2.l. Let0 <o < 1,0< y < 1,and let Q c RY be a nondegenerated
parallelepiped Suppose that f RY — R satisfies condition§), (i), and(iii). Then f
satisfies the Elder condition with exponert on Q.

Proof. Using the estimate

1Y (X)— WWH<mmOWUN+WNWHM—

(ex +(1- 0)y)‘>

0<0<11 3L
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the decay conditions imposed @, and condition (iii), we check that the function

291
> > (B v kO

I=1 j=0 dist(k/2i,Q)<2-i

satisfies the dlder condition with exponent on Q.
Moreover, the decay properties@fandy,, and conditions (i) and (i), imply that

291
PR ZIZTOE D B DD DR ¢ & NI /BTI0)

kezd I=1 j>0 distk/2i,Q)>2ir

satisfies the Lipschitz condition d@.
The details of the calculations are omitted, as they are analogous to the proof of
Theorem 6.5 in [6]. [ ]

Theorem 2.2. Let0 <« < 1,0< y < 1,and let Q c RY be a nondegenerated
parallelepiped Suppose that f RY — R satisfies condition§), (i), and (iii). Then
dimp(C(f, Q) <d+1—c.

Proof. Supposer < 1. Then it follows from Lemma 2.1 thaft satisfies the dider
condition with exponent on Q, which givesdimy(I'(f, Q)) < d+1—a.If « = 1, then
foranye > O f satisfies condition (jii) withe’ = 1— &, which impliesdimy, (' (f, Q)) <
d + ¢ for anye > 0, and finallydimy(I'(f, Q)) < d. [

Remark. If the scaling functionp and the associated wavelets are of compact
support (e.g., ifp is the tensor product of the compactly supported orthonormal scaling
functions of one variable), then assumptions (i) and (ii) of Theorem 2.2 can be omitted,
and assumption (iii) can be replaced by the following:

(iii") There is a constar@ > 0 such that for alj > 0 andk e 29 with suppy jx N
intQ # ¢
|(f, 4 0l < C271EF9/2,

2.2. The Lower Bound for Box Dimensions of a Graph

The next theorem gives an estimate from below for the lower box dimensioafolQ).
Recall thatl; x denotes thekth dyadic cube of ordej. For a functionf denote by
osa f, Ij ¢) the oscillation off overl;y, i.e.,

osd f, ljx) = sup f(x) — Xienlfk f(X).
2511k

56|j_5
Moreover, for the given parallelepipeg define

Osgy(f, j) = Z osd f, 1j ).

IJ,KCQ
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Before the formulation of the theorem, let us introduce some notation: for two vectors

n=(ng,...,Ng),M= (Mg, ..., Myg) wewritenAm = (min(ny, my), ..., min(ng, Mg)),

nvm= (maxny, M),..., maxng, Mg)), andn < miff n; <m; foralli =1,...,d.

Theorem 2.3. Let Q ¢ RY be a nondegenerated parallelepiped and letRY — R
be a function of polynomial growtleontinuous on Q0 < g < 1.If

1=1 1jxkCQ

@) I|m|nf (21('3 d/z)z >, ]k)|)

then

dim,(T'(f, Q) >d+1-8.
For the proof of Theorem 2.3, we need the following lemma (see [6, Prop. 6.7]):

Lemma 2.4. There exist constants; @nd ¢ such that for any j> 0 and for any
Gi (%) = 211y Ykeze &1k ¥1,j.k(X) We have

) q
cillgilla < 279923 3 " a ikl < callgjlla-

=1 kezd

Proof of Theorem 2.3. Let T; be the orthogonal projection ontg, i.e.,

T = /R Kix. y) () dy.

where

Kix.y) =Y g @@ (y) for x,yeR?

kezd B
and putQ; = U,jVECQ lj k- Denoteay j k = (f, ¥1.j.k); now we have
Tpf =T f —Zzalklﬁuk
=1 kezd

Applying Lemma 2.4 we get

“’/ZZZIaukls / ZZa,m,k(x) dx
=11xCQ =11jxCQ
< ( T f 0 — Tj F 01 dx
Q
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q
+ [ 303 laktn k0l dx

Qi 1=1 11,7 Q
g
# [ Y tausnasoldx) .
RUQ; 1=1 1j,cQ

We will show that each of the terms appearing on the right-hand side of this inequality
can be bounded by 2+VIN(I'(f, Q), j + 1)).
At first, using (1), we get

/ 1fO) =T f0dx = [ f(x) — Z(f, @ P k(X) | dX
Qj Qi kezo
= [ |02 3 6400 - 3 (fga 00| d
Qj kezd kezd
< [ (Z |<o,-,5(5>|/ 0 — f(§)||¢,-,5(§>|d§) dx
Q \keze R

o fo o)

x D110 = F©)llgj kg k(S)] dxds.

kezd
The functionf has polynomial growth, so for soni2 > 0 andx € N

|f ()] < CA+IxID*.
Using this property off and the decay conditions imposed @rve now get for some
p € N big enough

[ [ Y1100~ f©ligulia o) dxds
Qj /R

N\Q kezd

ccY T %O /| /| L+ XD @ + 8193 0 9y(9) dxdls

ljnCQ ljmZ Q kezd

< —_—

oz 'EC:Q'J';%XZ;E A+ 0 — ki DPL+ [m; — ki])P
C d A+27 1 mip* C

S TJ f . p—l S E
2 1nCQ I mgZQi=1 A+ |nj —m;))

On the other hand, we have fere Ij n, s € Ijm

fo-fel< ) osafl.



Wavelet Expansions and Fractal Dimensions 103

Using this inequality and the decay propertiegafe get

//Zlf(x)—f(S)Ilek(X)llek(S)IdXdS
QJ/Q

i kezd

= Z/ 1) — F(OlejcXlgj k() dxds

lm linCQkezd < lim Jlin

Z > L osaih | | sollaoidxds

IA

C d 1
= o5 osdaf, lj) -
2 |j,IZCQ " (m/\Q;mvgke;'n @A+ = kiDP@ 4+ m; —k I)p)
C d 1
< = osa f, lj))
ZdJ Ij,IZC:Q " mAD;m\/DH (1 + |ni —m; |)D*l
C C _
=29 IZQOSG(fa i) = g7 Os&Q(f. ).
j1C

The functionf is continuous orQ, so

_ 1 .
Osqy(f, j) < EN(F(f, Q). ).

Moreover, note that
29 <CN(I'(f, Q) }),

So we obtain

C
1100 =Ty feoldx < o N (E. Q). )

The bounds for the growth off imply that

C .
2kl = gL +27 kD™

Therefore, using the decay properties/of we get
L+ 2711k )"
[aj k¥ jk)dX < o
|j_EZ¢Q Qj - - 24 |J§Q |JHZCQ|1_! L+ Inj — kP

C
< 5 = saa N Q)L ),
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and
Z/ & k¥ jx (01 dX < 2,,1/2 D3 [ Wikoldx
1. QYRNQ; I,chI,nng lin
< - @ @
< 2(M,N(F(f Q). ).

The above calculations now give
2 ld/ZZ Z lajkl < C / ITi f(x) — fX)dx+ / ITyea f () — F(X)] dx
e Qi Qj+1
q
+/ Z Z &y, j k¥, jk (X)X
Q

i 1=1 11,2 Q

NQ =1 15,cQ

_ o NI Q.+
= 2@+ (+D)

* /R Z Z &y, j k¥, k(X)|dX)

This inequality and assumption (2) imply that

N(C(f, Q), j) > C2@+1=A

and
iimint CONTC Q-1 gy
j—o0 jlog2
so the proof is complete. ]

Remark. Ifthe wavelets), are of compact support, then the assumption on the growth
of f in Theorem 2.3 can be replaced by the condition tha& bounded in some neigh-
borhood ofQ.

2.3. Local Upper and Lower Box Dimensions of Graphs

Let f : RY — R andx € RY. The upper and lower box dimensions of the grapli ait
point x are defined by the formulas

dimp(f;x) = limsup dimy(I'(f, Q)),
diam(Q)—0

dim,(f; x) = dignrwiocﬁ_mb(r(f, Q)),
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respectively, where limsup and liminf are taken over all parallelepipeds with edges
parallel to the corresponding coordinate axes and containing a giverxpoii$ interior
and dianiQ) is the diameter of (see also [3]).

As a corollary of the results of this section we get an estimate of the local upper and
lower box dimensions of the graph of a function in terms of the asymptotics of its wavelet
coefficients.

Proposition 2.5. Let 7j be the center of the cubgand let f : R — R be a
function of polynomial growth_eta, 8 : RY — [0, 1].

If x is a point of the lower semicontinuity ef-) and there are a neighborhood U of
X and a constant C> 0 such that

@) I(f,y 0l <Cc2 W@y for 1=1,...,2 -1 ljxcCU,
then
dimp(f;x) <d +1—a(x).

If f is continuous in a neighborhood V of x is a point of the upper semicontinuity
of B8(-), and there are a neighborhood U ofand a constant C> 0 such that

@) |(fynjl = C2WFIFEO for 1 =1,...,20 -1, U,
then

dim,(f;x) >d+1— B(x).

Proof. Let us prove the upper bound fdimp(f; x). As T'(f, Q) c R%+1, we have
dim,(f; x) <d+ 1, so the assertion holdsdf(x) = 0.

Assume now thax is a point of the lower semicontinuity of(-) anda(x) > 0. Let
condition (3) be satisfied on a neighborhdéaf x. For 0 < n < a(x), let Q, be a cube
containingx in its interior such that

a(y) > a(X) —n for yeQ,.
Lettjx € Q,NU. Then
[(f, Y1501 < c2 4i2mletm < co-di/z-i-mn,

Consequently, iQ c Q, NU, then the assumptions of Theorem 2.2 are satisfied with
a = a(X) — n, which gives

dimy(M'(f, Q) <d +1—a(x) +mn,
so applying the definition adim,( f; X) we get
dimy(f;x) <d+1—a(x).

The lower bound of difg) f; X) is proved in an analogous way, with the use of Theorem
2.3. ]
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Corollary 2.6. Let f : R — R be a continuous function of polynomial growth. If
conditions (3) and (4) are satisfied in some neighborhoodvaith «(-) = 8(-) andx is
a point of continuity ofx(-), then

dimp(f; x) =dimy(f;x) =d+1—a(X).

If the functiona(-) is Riemann integrable on a nondegenerated parallelefieden
the above equality holds almost everywhere (in the Lebesgue sen&e) on

Remark. Ifthe wavelets under consideration are of compact support, then the assump-
tions concerning the growth df can be omitted.

3. Box Dimensions and Smoothness of Function

It would be interesting to have an intrinsic characterization of the class of functions with
given box dimensions. An attempt to find such a characterization has been made in [4].
Those authors have stated the following formula for the upper box dimension of a given
continuous functiorf : [0, 1] - R:

(5) dim,(Ts) =2—y iff y=sugae,1): B > f},

where Bf  is the space of a function satisfying theldér condition on [01] with
exponentx in the L-norm. (Cs := T'(f, [0, 1]) to simplify the notation.) However,
there is a mistake in their proof and the example presented below shows that the above
formula fordim, (') does not hold.

Following [4], letV*, 0 < « < 1, be the space of all measurable functidren [0, 1],
such that

Osqo,13(f, )
|0 2j(1~a)
Then (see Theorem 3.1 of [4]), for a continuous functfon[0, 1] - Randy € (0, 1),
we have
dimy(T) =2—y iff y =supee 0,1); V*> f}.

Let us recall the definition of the Besov spa8g, :

feBf, « fell0,1] and
’ 0<s<1 0%

3

wherew:(f, §) = sup_ns fol_h | f(X) — f(x 4+ h)|dxis the modulus of smoothness
of f intheL!-norm.
For a continuous functiori denote

wi(f) = suda € (0,1): V¥ > f},
ye(f) = suga € (0,1): Bf , > f}.

In terms ofyy (f) andyg( ), formula (5) means that, (f) = yg(f). Now we give an
example of a functiorfg with v (fg) < ye(fp).
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Let si* denote thekth Faber—Schauder function from théh generation, i.e., let
shk [0, 1] — R be given by the formula

shk(x) = max©0, 1— |21*1x — (2k — 1)), ji=01,...; k=12...,2.

For fixed8, 0 < 8 < 1, consider the functiorig : [0, 1] — R defined as

00 2 )
fa(x) = Z 2-1p ZSZj'Z'k(x)
=0 k=1

Note that in the 2th generation we have?2functionss?X, but for the construction
of fz we take every &h function from this generation, so only thé finctions from
the 2jth generation are used. The functidpnis not only continuous, but it satisfies the
Holder condition with exponerg/2 in the uniform norm as well.

Let us start with the estimation from belowf( fz). For the modulus of smoothness
we have

w1(9, 8) < 2|9l1, w1(9,8) < 8l19']]1.

Applying these inequalities to the functios’s we obtain

f 1 2—iB 212’k 1 oo21(1 B) 11
w1 /3’2_m Z Zw om Z min 221 2m

j=0
< Z 2iA=p—m) | Z 2—i(1+8) < C2 MEB+D/2.

0<j<m/2 j>m/2
whereC depends only o This means thaf; € B{’*/? and therefore
+1
VB(fﬂ) > ﬂT

Now we estimate from abowg, ( fz). Form > 0 and 0<| < 2™ — 1 denote

N 2M( 4+ 1) —

- ) _ 2Mi4+1) -1 NE 2ML( 4+ 1)
m 22m+1 ’

Xn 2zl ml = T amil
and

Mini = max(| f5 e = fsOmDl 50 = f5GDD.
As xr(ri]fl € Imi, i =1,2,3, we have oscfg, Im) > Mm,. Note that for allj > m and
1<k < 2% we haves?*(x))) = 0,i = 1, 2, 3; moreover, the function

m-1 ) 2 )
DI
k=1

j=0
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@ O

is linear on k.|, X |

]. In addition,

Szm,zmk(xg?l) =0 for 1<k<2™ Kk=#l+1 i=123,

P (@) =1 and LM () = LMD () — 0,
This implies thatM,; > 2=#M, and consequently
osq fg, Im) = 277",

which leads to
0sGo 15( fg, m) > 2M3=A),
Now, if f € V,, then

sup2™@=F) < sup2™@=Y Osgg 15(f5, M) < oo,
meN meN

which means that < 8, therefore,

wi(fg) <B.

Thus we have obtained

1
wifs) <8< PEL <ty

and therefore formula (5) is not correct.
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