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Wavelet Expansions and Fractal Dimensions

A. Kamont and B. Wolnik

Abstract. The bounds of the upper and lower box dimensions of the graph of a function
in terms of the coefficients in its wavelet decomposition are given. An example, that the
formula for upper box dimension, given in [4], does not hold, is presented.

1. Introduction

This paper consists of two parts. In the first part we propose a method of estimation of
the upper and lower box dimensions of graphs of a continuous function in terms of the
coefficients in its wavelet expansion. Results of this type for some spline bases have been
proved in Z. Ciesielski’s papers [1] and [2]. Our proof of the lower bound for the lower
box dimension follows the ideas of these two papers.

In the paper by A. Deliu and B. Jawerth [4] the authors have stated a formula for the
upper box dimension of the graph of a continuous function (see formula (5) in Section 3).
In the second part of this paper we give a counterexample to their statement.

Let us recall the definition of box dimension. Forj ∈ N and k ∈ Z, let I j,k =
[k/2 j , (k+ 1)/2 j ] be thekth dyadic interval of orderj , and fork = (k1, . . . , kd) ∈ Zd,
let I j,k = I j,k1 × · · · × I j,kd denote thekth dyadic cube of orderj . For a compact
subsetK ⊂ Rd, let N(K , j ) be the number of (d-dimensional) dyadic cubes of orderj
intersectingK . Then theupperandlower box dimensionsof K dimb(K ) and dimb are
defined by the following formulas:

dimb(K ) = lim sup
j→∞

log N(K ; j )

j log 2
, dimb(K ) = lim inf

j→∞
log N(K ; j )

j log 2
.

If dimb(K ) = dimb(K ), then the common value is called thebox dimensionof K and
denoted by dimb(K ). For the equivalent definitions of box dimension, see, for example,
[5].

Let us introduce some notation. For a functionh : Rd → C denote

hj,k(·) = 2 jd/2h(2 j · − k) for j ∈ Z, k ∈ Zd.
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For functionsf, g : Rd → C we denote( f, g) = ∫Rd f (x)g(x)dx. ‖ ·‖ is the Euclidean
norm onRd; by C we denote a positive constant, which may vary from place to place.

Now we recall briefly the necessary definitions concerning scaling functions and wa-
velets. Following [6], we introducer -regular orthonormal scaling functions.

Definition 1.1. Let ϕ ∈ L2(Rd) and

Vj = closL2(Rd){ϕj,k, k ∈ Zd}, j ∈ Z.

The functionϕ is called an orthonormal scaling function if the sequence of spaces
{Vj , j ∈Z} fulfills the following conditions:

(1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·;
(2)

⋃
j∈Z Vj = L2(Rd);

(3)
⋂

j∈Z Vj = {0}; and
(4) the system{ϕ0,k}k∈Zd is an orthonormal basis inV0.

The functionϕ is called anr -regular scaling function if, in addition,ϕ ∈ Cr (Rd) and it
satisfies the following decay conditions: for anyp ∈ N there is a constantCp,r such that

|∂αϕ(x)| ≤ Cp,r

(1+ ‖x‖)p
for α = (α1, . . . , αd), |α| ≤ r,

where∂α = (∂/∂x1)
α1 . . . (∂/∂xd)

αd and|α| = α1+ · · · + αd.

Let ϕ be anr -regular scaling function. Then there areq = 2d − 1 orthonormal
functionsψ1, . . . , ψq ∈ V1 such that the functionsψl (· − k) with 1≤ l ≤ q andk ∈ Zd

form an orthonormal basis forW0, whereW0 is the orthogonal complement ofV0 in V1.
Moreover, the functionsψ1, . . . , ψq can be chosen in such a way that they satisfy the
same regularity and decay conditions asϕ, i.e.,ψl ∈ Cr (Rd) and for anyp ∈ N there is
a constantCp,r , such that

|∂αψl (x)| ≤ Cp,r

(1+ ‖x‖)p
for |α| ≤ r.

It follows that the functions{2d j/2ψl (2 j x − k), 1 ≤ l ≤ q, k ∈ Zd, j ∈ Z} form an
orthonormal basis forL2(Rd). (For details, see, e.g., [6, Chap. 3].)

The functionsψ1, . . . , ψq are calledwavelets associated with the scaling functionϕ.
It follows from the properties of scaling functions that without loss of generality we

can assume that∑
k∈Zd

ϕ(x − k) = 1 for all x ∈ Rd and
∫

Rd

ϕ(x)dx = 1.(1)

2. The Bounds for Upper and Lower Box Dimensions of a Graph

Throughout this section we assume thatϕ is a 1-regular scaling function onRd, and that
ψl , l = 1, . . . ,2d − 1, are the associated wavelets; moreover, to simplify notation we
writeψl , j,k = (ψl )j,k.
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For a functionf : Rd → R and a parallelepipedQ = [a1,b1] × · · · × [ad,bd], let

0( f, Q) = {(x, f (x)) : x ∈ Q} ⊂ Rd+1

be the part of the graph off lying over Q.

2.1. The Upper Bound for Box Dimensions of a Graph

It is well known that if a functionf satisfies the H¨older condition with exponentα,
0 < α ≤ 1, on ad-dimensional parallelepiped, thendimb(0( f, Q)) ≤ d + 1− α (see,
e.g., [5, Chap. 11]). Now we formulate some conditions for the wavelet coefficients of
f , which imply the Hölder condition with exponentα for f on Q.

Let f : Rd → R and letQ ⊂ Rd be a nondegenerated parallelepiped. Given 0< α ≤
1 and 0≤ γ < 1 consider the following conditions:

(i) There are a constantC > 0 andn ∈ N such that for allk ∈ Zd

|( f, ϕ0,k)| ≤ C(1+ |k|)n.

(ii) There are a constantC > 0 andn ∈ N such that for all 1≤ l ≤ 2d − 1, j ≥ 0,
andk ∈ Zd with dist(k/2 j , Q) ≥ 1/2 j γ

|( f, ψl , j,k)| ≤ C2−d j/2(1+ 2− j |k|)n.

(iii) There are a constantC > 0 andn ∈ N such that for all 1≤ l ≤ 2d − 1, j ≥ 0,
andk ∈ Zd with dist(k/2 j , Q) < 1/2 j γ

|( f, ψl , j,k)| ≤ C2− j (α+d/2)

(
1+ 2 j dist

(
k

2 j
, Q

))n

.

Note that the decay conditions imposed onϕ andψl imply that if f is of polynomial
growth, i.e., there areC > 0 andm ∈ N such that

| f (x)| ≤ C(1+ ‖x‖)m for x ∈ Rd,

then f satisfies conditions (i) and (ii).

Lemma 2.1. Let 0 < α < 1, 0 ≤ γ < 1, and let Q ⊂ Rd be a nondegenerated
parallelepiped. Suppose that f: Rd → R satisfies conditions(i), (ii), and(iii). Then f
satisfies the Ḧolder condition with exponentα on Q.

Proof. Using the estimate

|ψl (x)−ψl (y)| ≤ min

(
|ψl (x)| + |ψl (y)|, ‖x − y‖ sup

0≤θ≤1

d∑
i=1

∣∣∣∣∂ψl

∂ti
(θx + (1− θ)y)

∣∣∣∣
)
,
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the decay conditions imposed onψl , and condition (iii), we check that the function

2d−1∑
l=1

∑
j≥0

∑
dist(k/2 j ,Q)<2− j γ

( f, ψl , j,k)ψl , j,k(·)

satisfies the H¨older condition with exponentα on Q.
Moreover, the decay properties ofϕ andψl , and conditions (i) and (ii), imply that

∑
k∈Zd

( f, ϕ0,k)ϕ0,k(·)+
2d−1∑
l=1

∑
j≥0

∑
dist(k/2 j ,Q)≥2− j γ

( f, ψl , j,k)ψl , j,k(·)

satisfies the Lipschitz condition onQ.
The details of the calculations are omitted, as they are analogous to the proof of

Theorem 6.5 in [6].

Theorem 2.2. Let 0 < α ≤ 1, 0 ≤ γ < 1, and let Q⊂ Rd be a nondegenerated
parallelepiped. Suppose that f: Rd → R satisfies conditions(i), (ii), and (iii). Then
dimb(0( f, Q)) ≤ d + 1− α.

Proof. Supposeα < 1. Then it follows from Lemma 2.1 thatf satisfies the H¨older
condition with exponentα on Q, which givesdimb(0( f, Q)) ≤ d+1−α. If α = 1, then
for anyε > 0 f satisfies condition (iii) withα′ = 1−ε, which impliesdimb(0( f, Q)) ≤
d + ε for anyε > 0, and finallydimb(0( f, Q)) ≤ d.

Remark. If the scaling functionϕ and the associated waveletsψl are of compact
support (e.g., ifϕ is the tensor product of the compactly supported orthonormal scaling
functions of one variable), then assumptions (i) and (ii) of Theorem 2.2 can be omitted,
and assumption (iii) can be replaced by the following:

(iii ′) There is a constantC > 0 such that for allj ≥ 0 andk ∈ Zd with suppψl , j,k ∩
int Q 6= ∅

|( f, ψl , j,k)| ≤ C2− j (α+d/2).

2.2. The Lower Bound for Box Dimensions of a Graph

The next theorem gives an estimate from below for the lower box dimension of0( f, Q).
Recall thatI j,k denotes thekth dyadic cube of orderj . For a function f denote by
osc( f, I j,k) the oscillation off over I j,k, i.e.,

osc( f, I j,k) = sup
x∈I j,k

f (x)− inf
x∈I j,k

f (x).

Moreover, for the given parallelepipedQ define

OscQ( f, j ) =
∑

I j,k⊂Q

osc( f, I j,k).
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Before the formulation of the theorem, let us introduce some notation: for two vectors
n = (n1, . . . ,nd),m= (m1, . . . ,md)wewriten∧m= (min(n1,m1), . . . ,min(nd,md)),
n∨m= (max(n1,m1), . . . ,max(nd,md)), andn ≤ m iff ni ≤ mi for all i = 1, . . . ,d.

Theorem 2.3. Let Q⊂ Rd be a nondegenerated parallelepiped and let f: Rd → R
be a function of polynomial growth, continuous on Q, 0≤ β ≤ 1. If

lim inf
j→∞

2 j (β−d/2)
q∑

l=1

∑
I j,k⊂Q

|( f, ψl , j,k)|
 > 0,(2)

then

dimb(0( f, Q)) ≥ d + 1− β.

For the proof of Theorem 2.3, we need the following lemma (see [6, Prop. 6.7]):

Lemma 2.4. There exist constants c1 and c2 such that for any j≥ 0 and for any
gj (x) =

∑q
l=1

∑
k∈Zd al , j,kψl , j,k(x) we have:

c1||gj ||1 ≤ 2− jd/2
q∑

l=1

∑
k∈Zd

|al , j,k| ≤ c2||gj ||1.

Proof of Theorem 2.3. Let Tj be the orthogonal projection ontoVj , i.e.,

Tj f (x) :=
∫

Rd

Kj (x, y) f (y)dy,

where

Kj (x, y) =
∑
k∈Zd

ϕj,k(x)ϕ j,k(y) for x, y ∈ Rd,

and putQj =
⋃

I j,k⊂Q I j,k. Denoteal , j,k = ( f, ψl , j,k); now we have

Tj+1 f − Tj f =
q∑

l=1

∑
k∈Zd

al , j,kψl , j,k.

Applying Lemma 2.4 we get

2− jd/2
q∑

l=1

∑
I j,k⊂Q

|al , j,k| ≤ C
∫

Rd

∣∣∣∣∣∣
q∑

l=1

∑
I j,k⊂Q

al , j,kψl , j,k(x)

∣∣∣∣∣∣ dx

≤ C

(∫
Qj

|Tj+1 f (x)− Tj f (x)|dx
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+
∫

Qj

q∑
l=1

∑
I j,k 6⊂Q

|al , j,kψl , j,k(x)|dx

+
∫

Rd\Qj

q∑
l=1

∑
I j,k⊂Q

|al , j,kψl , j,k(x)|dx

 .
We will show that each of the terms appearing on the right-hand side of this inequality
can be bounded by 2−(d+1) j N(0( f, Q), j + 1)).

At first, using (1), we get∫
Qj

| f (x)− Tj f (x)|dx =
∫

Qj

∣∣∣∣∣∣ f (x)−
∑
k∈Zd

( f, ϕj,k)ϕj,k(x)

∣∣∣∣∣∣dx

=
∫

Qj

∣∣∣∣∣∣ f (x)2− jd/2
∑
k∈Zd

ϕj,k(x)−
∑
k∈Zd

( f, ϕj,k)ϕj,k(x)

∣∣∣∣∣∣dx

≤
∫

Qj

∑
k∈Zd

|ϕj,k(x)|
∫

Rd

| f (x)− f (s)||ϕj,k(s)|ds

dx

=
(∫

Qj

∫
Qj

+
∫

Qj

∫
Rd\Qj

)
×
∑
k∈Zd

| f (x)− f (s)||ϕj,k(x)||ϕj,k(s)|dx ds.

The function f has polynomial growth, so for someC > 0 andλ ∈ N

| f (x)| ≤ C(1+ ‖x‖)λ.
Using this property off and the decay conditions imposed onϕ we now get for some
p ∈ N big enough∫

Qj

∫
Rd\Qj

∑
k∈Zd

| f (x)− f (s)||ϕj,k(x)||ϕj,k(s)|dx ds

≤ C
∑

I j,n⊂Q

∑
I j,m 6⊂Q

∑
k∈Zd

∫
I j,n

∫
I j,m

(1+ ‖x‖)λ(1+ ‖s‖)λ|ϕj,k(x)||ϕj,k(s)|dx ds

≤ C

2d j

∑
I j,n⊂Q

∑
I j,m 6⊂Q

∑
k∈Zd

d∏
i=1

(1+ 2− j |mi |)λ
(1+ |ni − ki |)p(1+ |mi − ki |)p

≤ C

2d j

∑
I j,n⊂Q

∑
I j,m 6⊂Q

d∏
i=1

(1+ 2− j |mi |)λ
(1+ |ni −mi |)p−1

≤ C

2 j
.

On the other hand, we have forx ∈ I j,n, s ∈ I j,m

| f (x)− f (s)| ≤
∑

m∧n≤l≤m∨n

osc( f, I j,l ).
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Using this inequality and the decay properties ofϕ we get∫
Qj

∫
Qj

∑
k∈Zd

| f (x)− f (s)||ϕj,k(x)||ϕj,k(s)|dx ds

=
∑

I j,m,I j,n⊂Q

∑
k∈Zd

∫
I j,m

∫
I j,n

| f (x)− f (s)||ϕj,k(x)||ϕj,k(s)|dx ds

≤
∑

I j,m,I j,n⊂Q

∑
k∈Zd

∑
m∧n≤l≤m∨n

osc( f, I j,l )

∫
I j,m

∫
I j,n

|ϕj,k(x)||ϕj,k(s)|dx ds

≤ C

2d j

∑
I j,l⊂Q

osc( f, I j,l ) ·
 ∑

m∧n≤l≤m∨n

∑
k∈Zd

d∏
i=1

1

(1+ |ni − ki |)p(1+ |mi − ki |)p


≤ C

2d j

∑
I j,l⊂Q

osc( f, I j,l )
∑

m∧n≤l≤m∨n

d∏
i=1

1

(1+ |ni −mi |)p−1

≤ C

2d j

∑
I j,l⊂Q

osc( f, I j,l ) = C

2d j
OscQ( f, j ).

The function f is continuous onQ, so

OscQ( f, j ) ≤ 1

2 j
N(0( f, Q), j ).

Moreover, note that

2d j ≤ C N(0( f, Q), j ),

so we obtain ∫
Qj

| f (x)− Tj f (x)|dx ≤ C

2(d+1) j
N(0( f, Q), j ).

The bounds for the growth off imply that

|al , j,k| ≤ C

2d j/2
(1+ 2− j |k|)λ.

Therefore, using the decay properties ofψl , we get

∑
I j,k 6⊂Q

∫
Qj

|al , j,kψl , j,k(x)|dx ≤ C

2d j

∑
I j,k 6⊂Q

∑
I j,n⊂Q

d∏
i=1

(1+ 2− j |ki |)λ
(1+ |ni − ki |)p

≤ C

2 j
≤ C

2(d+1) j
N(0( f, Q), j ),
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and ∑
I j,k⊂Q

∫
Rd\Qj

|al , j,kψl , j,k(x)|dx ≤ C

2d j/2

∑
I j,k⊂Q

∑
I j,n 6⊂Q

∫
I j,n

|ψl , j,k(x)|dx

≤ C

2d j

∑
I j,k⊂Q

∑
I j,n 6⊂Q

d∏
i=1

1

(1+ |ni − ki |)p

≤ C

2(d+1) j
N(0( f, Q), j ).

The above calculations now give

2− jd/2
q∑

l=1

∑
I j,k⊂Q

|al , j,k| ≤ C

∫
Qj

|Tj f (x)− f (x)|dx+
∫

Qj+1

|Tj+1 f (x)− f (x)|dx

+
∫

Qj

q∑
l=1

∑
I j,k 6⊂Q

|al , j,kψl , j,k(x)|dx

+
∫

Rd\Qj

q∑
l=1

∑
I j,k⊂Q

|al , j,kψl , j,k(x)|dx


≤ C

N(0( f, Q), j + 1)

2(d+1)( j+1)
.

This inequality and assumption (2) imply that

N(0( f, Q), j ) ≥ C2 j (d+1−β)

and

lim inf
j→∞

log N(0( f, Q), j )

j log 2
≥ d + 1− β,

so the proof is complete.

Remark. If the waveletsψl are of compact support, then the assumption on the growth
of f in Theorem 2.3 can be replaced by the condition thatf is bounded in some neigh-
borhood ofQ.

2.3. Local Upper and Lower Box Dimensions of Graphs

Let f : Rd → R andx ∈ Rd. The upper and lower box dimensions of the graph off at
point x are defined by the formulas

dimb( f ; x) = lim sup
diam(Q)→0

dimb(0( f, Q)),

dimb( f ; x) = lim inf
diam(Q)→0

dimb(0( f, Q)),
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respectively, where lim sup and lim inf are taken over all parallelepipeds with edges
parallel to the corresponding coordinate axes and containing a given pointx in its interior
and diam(Q) is the diameter ofQ (see also [3]).

As a corollary of the results of this section we get an estimate of the local upper and
lower box dimensions of the graph of a function in terms of the asymptotics of its wavelet
coefficients.

Proposition 2.5. Let τj,k be the center of the cube Ij,k and let f : Rd → R be a
function of polynomial growth. Letα, β : Rd → [0,1].

If x is a point of the lower semicontinuity ofα(·) and there are a neighborhood U of
x and a constant C> 0 such that

|( f, ψl , j,k)| ≤ C2−d j/2− jα(τj,k) for l = 1, . . . ,2d − 1, I j,k ⊂ U,(3)

then

dimb( f ; x) ≤ d + 1− α(x).
If f is continuous in a neighborhood V of x, x is a point of the upper semicontinuity

of β(·), and there are a neighborhood U of xand a constant C> 0 such that

|( f, ψl , j,k)| ≥ C2−d j/2− jβ(τj,k) for l = 1, . . . ,2d − 1, I j,k ⊂ U,(4)

then

dimb( f ; x) ≥ d + 1− β(x).

Proof. Let us prove the upper bound fordimb( f ; x). As 0( f, Q) ⊂ Rd+1, we have
dimb( f ; x) ≤ d + 1, so the assertion holds ifα(x) = 0.

Assume now thatx is a point of the lower semicontinuity ofα(·) andα(x) > 0. Let
condition (3) be satisfied on a neighborhoodU of x. For 0< η < α(x), let Qη be a cube
containingx in its interior such that

α(y) ≥ α(x)− η for y ∈ Qη.

Let τj,k ∈ Qη ∩U . Then

|( f, ψl , j,k)| ≤ C2−d j/2− jα(τj,k) ≤ C2−d j/2− j (α(x)−η).

Consequently, ifQ ⊂ Qη ∩ U , then the assumptions of Theorem 2.2 are satisfied with
α = α(x)− η, which gives

dimb(0( f, Q)) ≤ d + 1− α(x)+ η,
so applying the definition ofdimb( f ; x) we get

dimb( f ; x) ≤ d + 1− α(x).
The lower bound of dimb( f ; x) is proved in an analogous way, with the use of Theorem

2.3.
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Corollary 2.6. Let f : Rd → R be a continuous function of polynomial growth. If
conditions (3) and (4) are satisfied in some neighborhood ofx with α(·) = β(·) andx is
a point of continuity ofα(·), then

dimb( f ; x) = dimb( f ; x) = d + 1− α(x).
If the functionα(·) is Riemann integrable on a nondegenerated parallelepipedQ, then
the above equality holds almost everywhere (in the Lebesgue sense) onQ.

Remark. If the wavelets under consideration are of compact support, then the assump-
tions concerning the growth off can be omitted.

3. Box Dimensions and Smoothness of Function

It would be interesting to have an intrinsic characterization of the class of functions with
given box dimensions. An attempt to find such a characterization has been made in [4].
Those authors have stated the following formula for the upper box dimension of a given
continuous functionf : [0,1]→ R:

dimb(0 f ) = 2− γ iff γ = sup{α ∈ (0,1) : Bα1,∞ 3 f },(5)

where Bα1,∞ is the space of a function satisfying the H¨older condition on [0,1] with
exponentα in the L1-norm. (0 f := 0( f, [0,1]) to simplify the notation.) However,
there is a mistake in their proof and the example presented below shows that the above
formula fordimb(0 f ) does not hold.

Following [4], letVα, 0< α < 1, be the space of all measurable functionsf on [0,1],
such that

sup
j≥0

Osc[0,1]( f, j )

2 j (1−α) <∞.

Then (see Theorem 3.1 of [4]), for a continuous functionf : [0,1]→ R andγ ∈ (0,1),
we have

dimb(0 f ) = 2− γ iff γ = sup{α ∈ (0,1); Vα 3 f }.
Let us recall the definition of the Besov spaceBα1,∞:

f ∈ Bα1,∞ ⇔ f ∈ L1[0,1] and sup
0<δ≤1

ω1( f ; δ)
δα

<∞,

whereω1( f, δ) = sup0<h<δ

∫ 1−h
0 | f (x) − f (x + h)|dx is the modulus of smoothness

of f in theL1-norm.
For a continuous functionf denote

γV ( f ) = sup{α ∈ (0,1) : Vα 3 f },
γB( f ) = sup{α ∈ (0,1) : Bα1,∞ 3 f }.

In terms ofγV ( f ) andγB( f ), formula (5) means thatγV ( f ) = γB( f ). Now we give an
example of a functionfβ with γV ( fβ) < γB( fβ).
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Let sj,k denote thekth Faber–Schauder function from thej th generation, i.e., let
sj,k : [0,1]→ R be given by the formula

sj,k(x) = max(0, 1− |2 j+1x − (2k− 1)|), j = 0,1, . . . ; k = 1,2, . . . ,2 j .

For fixedβ, 0< β < 1, consider the functionfβ : [0,1]→ R defined as

fβ(x) =
∞∑

j=0

2− jβ
2 j∑

k=1

s2 j,2 j k(x).

Note that in the 2j th generation we have 22 j functionss2 j,k, but for the construction
of fβ we take every 2j th function from this generation, so only the 2j functions from
the 2j th generation are used. The functionfβ is not only continuous, but it satisfies the
Hölder condition with exponentβ/2 in the uniform norm as well.

Let us start with the estimation from below ofγB( fβ). For the modulus of smoothness
we have

ω1(g, δ) ≤ 2||g||1, ω1(g, δ) ≤ δ||g′||1.
Applying these inequalities to the functionssj,k we obtain

ω1

(
fβ,

1

2m

)
≤

∞∑
j=0

2− jβ
2 j∑

k=1

ω1

(
s2 j,2 j k,

1

2m

)
≤
∞∑

j=0

2 j (1−β) min

(
1

22 j
,

1

2m

)
≤

∑
0≤ j<m/2

2 j (1−β−m) +
∑

j≥m/2

2− j (1+β) ≤ C2−m(β+1)/2,

whereC depends only onβ. This means thatfβ ∈ B(β+1)/2
1,∞ , and therefore

γB( fβ) ≥ β + 1

2
.

Now we estimate from aboveγV ( fβ). Form≥ 0 and 0≤ l ≤ 2m − 1 denote

x(1)m,l =
2m+1(l + 1)− 2

22m+1
, x(2)m,l =

2m+1(l + 1)− 1

22m+1
, x(3)m,l =

2m+1(l + 1)

22m+1
,

and

Mm,l = max(| fβ(x(2)m,l )− fβ(x
(1)
m,l )|, | fβ(x(2)m,l )− fβ(x

(3)
m,l )|).

As x(i )m,l ∈ Im,l , i = 1,2,3, we have osc( fβ, Im,l ) ≥ Mm,l . Note that for all j > m and

1≤ k ≤ 22 j we haves2 j,k(x(i )m,l ) = 0, i = 1,2,3; moreover, the function

m−1∑
j=0

2− jβ
2 j∑

k=1

s2 j,2 j k(x)
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is linear on [x(1)m,l , x(3)m,l ]. In addition,

s2m,2mk(x(i )m,l ) = 0 for 1≤ k ≤ 2m, k 6= l + 1, i = 1,2,3,

s2m,2m(l+1)(x(2)m,l ) = 1 and s2m,2m(l+1)(x(1)m,l ) = s2m,2m(l+1)(x(3)m,l ) = 0.

This implies thatMm,l ≥ 2−βm, and consequently

osc( fβ, Im,l ) ≥ 2−βm,

which leads to

Osc[0,1]( fβ,m) ≥ 2m(1−β).

Now, if f ∈ Vα, then

sup
m∈N

2m(α−β) ≤ sup
m∈N

2m(α−1) Osc[0,1]( fβ,m) <∞,

which means thatα ≤ β; therefore,

γV ( fβ) ≤ β.

Thus we have obtained

γV ( fβ) ≤ β < β + 1

2
≤ γB( fβ),

and therefore formula (5) is not correct.
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