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Blossoming: A Geometrical Approach

M.-L. Mazure

Abstract. A geometrical approach of a notion of blossom for piecewise smooth
Chebyshev functions is developed by considering convenient intersections of osculat-
ing flats. A subblossoming principle allows us to obtain all the expected properties and
leads to the notion of blossom for splines based on a given piecewise smooth Chebyshev
function.

1. Introduction

The now well-know theory of blossoming for polynomial functions and splines, first
introduced by L. Ramshaw [34], [35], permits a particularly elegant treatment of the
different tools and algorithms found in traditional CAGD (control points, de Casteljau
and de Boor algorithms, knot insertion, subdivision, recurrence relations. . . ). Recall
that theblossomof a polynomial functionF of degree less than or equal tok is the
unique functionf of k variables which is symmetric, affine with respect to each variable
and which, restricted to the diagonal ofRk, gives F . Let us mention the following
fundamental result: two polynomial functionsF1, F2 of degree less than or equal tok
have aCs contact (s ≤ k) at a ∈ R iff their blossoms f1, f2 coincide on anyk-tuple
containing at least(k − s) times the pointa [34]. This contact theorem is the key tool
for defining the blossom of a polynomial spline, which has the same properties as that
of a polynomial function, except that it is defined only for particulark-tuples, said to be
admissiblewith respect to the corresponding knot vector [27].

Up to now, two main approaches have been developed in order to extend the theory of
blossoming beyond the strict framework of polynomial functions or splines. On the one
hand, a geometrical one, at the root of which we find a remarkable geometrical property
of polynomial blossom. To be more precise, when a polynomial functionF of degree
k is nondegenerate (i.e., when the affine space spanned by its image is of dimension
k), its blossom can be interpreted in geometric terms as follows. Givenr distinct real
numbersτ1, . . . , τr andr positive integersµ1, . . . , µr whose sum is equal tok, consider
thek-tupleT = (τµ1

1 · · · τµr
r ), where the notationτµi

i means that the pointτi is repeated
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µi times. Then, the value atT of the blossomf of F satisfies

{ f (T )} =
r⋂

i=1

Osck−µi F(τi ),(1.1)

Osci F(t) standing for the osculating flat of orderi of F at t . A similar interpretation
exists for nondegenerate polynomial splines [27].

The possibility of defining a blossom by considering intersections of osculating flats
as in (1.1) had first been pointed out by H.-P. Seidel [37] forgeometrically continuous
polynomial splines, then it has been adapted in the case of Q-splines [19], [27]. The
same idea has also been used by H. Pottmann [32], [33], [39] (see also M.-L. Mazure and
H. Pottmann [30], M.-L. Mazure [24], [26]) in order to develop the blossoming theory for
extended Chebyshev spaceswhich, in one variable, appear like the natural generalization
of polynomial spaces. Moreover, within this new framework, the blossoming principle
provides a characterization of theCs contact between two functions belonging tothe same
extended Chebyshev space, which can be stated exactly as in the case of polynomials.
Consequently, all the tools and results known for parametric polynomial splines do exist
for parametric splines based ona singlegiven extended Chebyshev space.

On the other hand, an algebraic approach can be derived from the classical formula
given by C. de Boor and G. Fix [6] for calculating the coefficients of a polynomial spline
of degreek in the B-spline basis. Actually, when the multiplicity at each knotti is equal
to one, this formula leads to the following expression of the value atT = (tj+1, . . . , tj+k)

of the blossoms of such a splineS:

s(T ) =
k∑

i=0

S(i )(a) (−1)k−i9
(k−i )
T (a),(1.2)

wherea is an arbitrary point in ]tj , tj+k+1[ and9T stands for the unique polynomial
of degreek which vanishes onT and satisfies9T (k) ≡ (−1)k, i.e.,9T (t) = (tj+1 −
t) . . . (tj+k − t)/k!.

Recently, P. J. Barry has defined the blossom for a spline each segment of which
belongs to an arbitrary extended Chebyshev space, through an extension of the de Boor–
Fix formula, the ordinary derivatives involved in (1.2) now being replaced by differential
operators related to each section [2]. This is possible as soon as the connections (with
respect to these differential operators) are expressed by means oftotally positivematrices,
the underlying reason being that, under a total positivity assumption, the number of zeros
of a nonzero function belonging to some related(k+1)-dimensional space is bounded by
k. P. J. Barry’s work is in keeping with the general context of duality between piecewise
smooth spaces investigated by M.-L. Mazure and P.-J. Laurent [28], [29] which enables
the interpretation of the blossoming principle through the notions of bilinear form and
reproducing function.

The approach of blossom that we propose here is a geometrical one: hence, osculating
flats will be our basic tools. In particular, we show in Section 2 that it is the relevant
geometrical notion to express the (possibly left or right)Cs contact betweengeometri-
cally regular functions of order k, that is to say, functions which are smooth except at
a finite number of points, their left and right derivatives up to orderk in these points
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being linked by lower triangular matrices with positive diagonal elements, and for which
the k first (left or right) derivatives are everywhere linearly independent. In Section
3, such a function8 is said to bea piecewise smooth Chebyshev function of order k
when, whatever thek-tupleT = (τ

µ1
1 · · · τµr

r ) may be, the corresponding intersection⋂r
i=1 Osck−µi8(τi ) consists of a single point: in a natural way, this point is labeledϕ(T )

andϕ is called the blossom of8. Section 4 is devoted to the fundamentalsubblossoming
principle: for any fixeda, the functiont 7→ ϕ(atk−1) is a piecewise smooth Chebyshev
function of orderk − 1 with values in Osck−18(a). This is the key tool to prove that
the blossom behaves as in the polynomial case, except that the affinity with respect to
each variable is now replaced by a pseudo-affinity property. In particular, the possibility
of characterizing the (left or right) contact through the blossom enables the definition
of blossoms for splines based on a given piecewise smooth Chebyshev function, which
is the object of Section 5. Finally, in Section 6, thanks to the result of P. J. Barry on
the number of zeros mentioned above [2], we give sufficient conditions to construct
piecewise smooth Chebyshev functions. Let us emphasize the fact that all the results
obtained in the present paper can be applied in the general case of splines whose sections
belong todifferentextended Chebyshev spaces, whereas all the previous papers based
on a similar geometrical approach considered only splines built from a single extended
Chebyshev space.

2. Splines Based on a Geometrically Regular Function

LetA be a finite-dimensional affine space, let(A0, . . . , Ap) be an affine frame ofA, and
let I be a real interval with a nonempty interior. Consider a function8 : I → A. Then,
it can be expressed in a unique way as follows:

8(t) =
p∑

i=0

8i (t) Ai , with
p∑

i=0

8i (t) = 1, t ∈ I .(2.1)

2.1. Nondegenerate Functions

Definition 2.1. Theorder of8 is defined as the dimension of the affine space aff Im(8)

spanned by the image of8. The spaceE := span(80, . . . , 8p) = span(1,81, . . . , 8p)

will be calledthe space associated with8.

We can easily verify thatE depends neither on the affine spaceA containing Im(8),
nor on the chosen frame(A0, . . . , Ap) in A.

Theorem 2.2. The function8 is of order k iff its associated space is of dimension
k+ 1.

Proof. We can prove thatk + 1 real valued functionsG0, . . . ,Gk defined on I
are linearly independent iff there existx0, . . . , xk ∈ I such that the determinant
det(Gi (xj ))0≤i, j≤k is nonzero.

Consequently, the spaceE is of dimension greater than or equal to`+1 iff there exist
t0, . . . , t` ∈ I such that the rank of the(p+ 1, ` + 1) matrix (8i (tj ))i=0,...,p, j=0,...,` is
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equal tò + 1. This condition means that the`+ 1 points8(t0), . . . , 8(t`) are affinely
independent. Hence, the condition dimE ≥ `+ 1 is satisfied iff dim(aff Im(8)) ≥ `.

As a direct consequence, Theorem 2.2 leads to the following result:

Corollary 2.3. Consider the function8 defined in(2.1) and letE denote its associated
space. Then, the following three statements are equivalent:

(i) 8 is of order p;
(ii) A0, . . . , Ap belong toaff Im(8);

(iii) (80, . . . , 8p) is a basis ofE .

Definition 2.4. Let E be a(k+ 1)-dimensional space of real valued functions defined
on I . Then, a functionF defined onI , with values in a finite-dimensional affine spaceC
will be called anE-functionif its affine coordinates in any affine frame ofC belong toE
(in other words, if its associated space is a subspace ofE , which implies in particular that
the order ofF is less than or equal tok). AnE-functionF will be said to benondegenerate
if it is of orderk (i.e., if its associated space isE).

Theorem 2.5. LetE be a(k+1)-dimensional space of real valued functions defined on
I and let8 be a nondegenerateE-function. Then, a function F : I → C is anE-function
iff there exists an affine map h: aff Im(8)→ C such that F= h ◦8. AnE-function F
defined by F= h ◦8 is nondegenerate iff h is one-to-one.

Proof. Let (P0, . . . , Pk) be an affine frame of aff Im(8), so that we can write

8(t) =
k∑

j=0

Bj (t) Pj ,

k∑
j=0

Bj (t) = 1, t ∈ I .(2.2)

It follows from Corollary 2.3 that(B0, . . . , Bk) is a basis ofE . Given an affine frame
(C0, . . . ,C`) of C and a functionF : I → C, we can write

F(t) =
∑̀
i=0

Fi (t) Ci ,
∑̀
i=0

Fi (t) = 1 for all t ∈ I .

If F is anE-function, eachFi belongs toE . ThenFi =
∑k

j=0 aji Bj , i = 0, . . . , `. Hence,

F(t) =
k∑

j=0

Bj (t)
∑̀
i=0

aji Ci .(2.3)

On the other hand, the equality
∑`

i=0 Fi = 1 implies that

k∑
j=0

∑̀
i=0

aji Bj = 1.(2.4)
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Since (B0, . . . , Bk) is a basis ofE , comparing (2.4) and
∑k

j=0 Bj = 1 proves that,

for j = 0, . . . , k,
∑`

i=0 aji = 1. Consequently, settingh(Pj ) := ∑`
i=0 aji Ci for j =

0, . . . , k, provides an affine maph : aff Im(8) → C such thatF = h ◦ 8. Clearly,
aff Im(F) = h(aff Im(8)). HenceF is of orderk iff h is one-to-one.

The converse part is obvious.

2.2. Geometrically Regular Functions

Consider a function8 : I → A. Let us recall that, if8 is Ck on I , its osculating flat
of order i (0 ≤ i ≤ k) at a pointa ∈ I is the affine flat going through8(a) and the
direction of which is the linear space spanned by8′(a), . . . , 8(i )(a). It will be denoted
by Osci 8(a). In particular, Osc08(a) = {8(a)}. Let us observe that

Osck8(a) ⊂ aff Im(8).(2.5)

Consequently, if8 is of orderk and if thek derivatives8′(a), . . . , 8(k)(a) are linearly
independent, then Osck8(a) = aff Im(8).

More generally, suppose now thata is an interior point ofI , and consider the two
intervalsI − := {x ∈ I | x ≤ a} andI + := {x ∈ I | x ≥ a}. Suppose that8 is continuous
on I andCk on I − andI + separately. Then, for 0≤ i ≤ k, it is possible to define similarly
Osc−i 8(a) from the left derivatives8′(a−), . . . , 8(i )(a−) of8 ata and Osc+i 8(a) from
its right derivatives8′(a+), . . . , 8(i )(a+). When Osc−i 8(a) = Osc+i 8(a), this affine
flat will be simply denoted by Osci 8(a).

Suppose that thek left (or right) derivatives of8 ata are linearly independent. Then,
the existence of thek osculating flats Osci 8(a), i = 1, . . . , k, is guaranteed iff there is
a (unique) regular lower triangular matrixM of orderk such that

Dk8(a
+) = M · Dk8(a

−),(2.6)

where, forε = − or ε = +, Dk8(aε) is defined by

Dk8(a
ε) := (8′(aε), . . . , 8(k)(aε))T .(2.7)

However, this is not a sufficient condition for8 to provide a “smooth” curve. Indeed, if
8′(a+) = −8′(a−), the tangent line Osc18(a) does exist, and yet, the curve defined
by 8 has a cusp at the point8(a). In case thek derivatives at a pointt are linearly
independent, a rough localization of the curve near a pointt is obtained by means of the
Frénet frame of orderk (i.e., the orthonormal system obtained from(8′(t), . . . , 8(k)(t))
by the Gram–Schmidt process). So, if we want8 to provide a “nice” curve, we have (at
least) to require the Fr´enet frames ata− anda+ to be identical. As a matter of fact, this
occurs iff relation (2.6) holds with the additional assumption that the diagonal elements
of M are positive. This will give sense to the definition hereunder.

Throughout this paper, we shall consider a fixed sequencet1 < t2 < · · · < tn (n ≥ 0)
of interior points ofI and the corresponding sequence of consecutive intervals

I0 := {x ∈ I | x ≤ t1}, In := {x ∈ I | x ≥ tn},

Ii := [ti , ti+1], i = 1, . . . ,n− 1,(2.8)
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if n ≥ 1, with the conventionI0 := I if n = 0. Let us setI∗ := I \{t1, . . . , tn}. In all the
formulas to come, givent ∈ I , the notationtε can be replaced byt whent ∈ I∗, while
it is to be read either ast+ or t− whent is one of theti ’s. But, of course, in caseI has a
left endpointt0, tε0 will stand only fort+0 , with a similar convention for a possible right
endpoint.

Definition 2.6. Suppose that8 : I → A is continuous onI andCk on each interval
I j , j = 0, . . . ,n. Then8 is said to begeometrically k-regularif the following two
properties are satisfied:

(i) for all tε ∈ I , thek vectors8′(tε), . . . , 8(k)(tε) are linearly independent; and
(ii) for all ` = 1, . . . ,n there exists a lower triangular matrixM` = (m`

i j )1≤i, j≤k with
positive diagonal elements, such that

Dk8(t
+
` ) = M` · Dk8(t

−
` ).(2.9)

Accordingly, if 8 is geometricallyk-regular, for all i = 1, . . . , k and all t ∈ I ,
Osci 8(t) exists and is of dimensioni . It results from (2.5) that the order of a geo-
metrically k-regular function is greater than or equal tok. If 8 is of orderk and is
geometricallyk-regular, it will simply be said to bea geometrically regular function of
order k. As an example, a continuous function8 : I → A, assumed to be piecewiseC1

(i.e.,C1 everywhere except at theti ’s), is a geometrically regular function of order 1 iff
it is strictly monotone onI , with values in an affine line.

Remark 2.7. (i) If 8 : I −→ A is a geometrically regular function of orderk, any
basis(U0, . . . ,Uk) of its associated spaceE satisfies

det(Ui
( j )(tε))0≤i, j≤k 6= 0 for all tε ∈ I .(2.10)

Moreover, if the connections for8 are expressed by (2.9), anyE-function F = h ◦ 8
(in particular, anyF ∈ E) also satisfies

Dk F(t`
+) = M` · Dk F(t`

−), ` = 1, . . . ,n.(2.11)

Conversely, letE be a(k+1)-dimensional subspace of piecewiseCk functionsF satisfy-
ing (2.11) where theM`’s are lower triangular matrices with positive diagonal elements,
and for which (2.10) holds for a given basis(U0, . . . ,Uk). Then, any nondegenerate
E-function8 is a geometrically regular function of orderk.

(ii) Let 8 be a geometrically regular function of orderk and letE be its associated
space. FromF = h ◦ 8, it results that the order of anE-function F is equal to the
dimension of Osck F(a), wherea is a given point inI . Accordingly, given a subinterval
J ⊂ I supposed to have a nonempty interior,F and its restrictionF |J have the same
order. For instance, as soon as anE-function vanishes onJ, it vanishes on the whole
interval I .

Suppose that8 : I → A is a geometrically regular function of orderk satisfying
(2.9). Let us choose, once and for all, a basis in the direction1 of aff Im(8) and denote
by 〈·, ·〉 the inner product in1 for which this basis is an orthonormal basis, and by “det”
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the determinant with respect to this basis. Then, givenk−1 vectorsW1, . . . ,Wk−1 ∈ 1,
W1 ∧ · · · ∧Wk−1 will stand for the only element of1 satisfying

det(W1, . . . ,Wk−1, X) = 〈W1 ∧ · · · ∧Wk−1, X〉 for all X ∈ 1.

So that, for alltε ∈ I ,8′(tε)∧ · · · ∧8(k−1)(tε) provides the orthogonal direction to the
osculating hyperplane Osck−18(t). This direction is also given by the vector8](tε) ∈ 1
defined by

8](tε) := 8′(tε) ∧ · · · ∧8(k−1)(tε)

det(8′(tε), . . . , 8(k)(tε))
,(2.12)

which is characterized by the followingk relations:

〈8](tε),8(i )(tε)〉 = 0, i = 1, . . . , k− 1, 〈8](tε)),8(k)(tε))〉 = 1.(2.13)

Let us observe that relations (2.9) imply that

8](t+` ) =
1

m`
kk

8](t−` ), ` = 1, . . . ,n.(2.14)

In other words,8] can be considered as a function defined on the setI∗ ∪ {t−` , t+` , ` =
1, . . . ,n}: it will be calledthe normal functionof8. On the other hand, the very definition
of 8](tε), tε ∈ I , provides the following equivalence:

P ∈ Osck−18(t) ⇔ 〈P −8(t),8](tε)〉 = 0.(2.15)

As soon as8 is assumed to beC2k−1 on eachI j , its normal function8] isCk−1 on each
I j . Then, by differentiating relations (2.13) on each subinterval, a recursive argument
proves that, for alltε ∈ I , for 1≤ i ≤ k and 0≤ j ≤ k− 1,

〈8]( j )(tε),8(i )(tε)〉 =
{

0 if i + j ≤ k− 1,
(−1) j if i + j = k.

(2.16)

This immediately implies that, for alltε ∈ I , thek vectors8](tε), . . . , 8](k−1)(tε) are
linearly independent. Consequently, the two linear spaces span(8′(tε), . . . , 8(k−i )(tε))⊥

(whereV⊥ denotes the subspace orthogonal toV) and span(8](tε), . . . , 8](i−1)(tε))
are both of dimensioni . Therefore, relations (2.16) eventually lead to the following
equalities:

span(8′(tε), . . . , 8(k−i )(tε))⊥ = span(8](tε), . . . , 8](i−1)(tε)), 0≤ i ≤ k.(2.17)

Thus, a pointP belongs to Osck−i 8(t) iff it satisfies

〈P −8(t),8](s)(tε)〉 = 0, s= 0, . . . , i − 1.(2.18)

As an immediate consequence of (2.17), for all` = 1, . . . ,n and alli = 0, . . . , k − 1,
the two spaces spanned, respectively, by(8](t`−), . . . , 8](i−1)(t`−)) and
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(8](t`+), . . . , 8](i−1)(t`+)), are identical. Accordingly, there existn regular lower tri-
angular matricesM]

1, . . . ,M]
n, such that

(8](t+` ), . . . , 8
](k−1)(t+` ))

T = M]

` · (8](t−` ), . . . , 8
](k−1)(t−` ))

T ,(2.19)

` = 1, . . . ,n.

Actually, using (2.9) and (2.16), we can verify that the diagonal of matrixM]

` is equal to(
1

m`
kk

,
1

m`
k−1,k−1

, . . . ,
1

m`
11

)
.(2.20)

2.3. E-Splines

Throughout this subsection, we shall deal with a given geometrically regular function
of orderk, 8 : I → A. We shall denote byM1, . . . ,Mn the corresponding connection
matrices, and byE the space associated to8.

Inside any tuple, we shall use a multiplicative notation,τµ meaning that the pointτ is
repeatedµ times. Moreover, associated with an arbitraryp-tupleT ∈ I p, we consider
the p-tupleT ord composed of the same elements asT but arranged in ascending order.
Using the multiplicative notation introduced above, thisp-tuple T ord will be written
T ord = (τµ1

1 . . . τ
µr
r ), with positive integersµi andτi < τi+1.

2.3.1. Osculating Flats and Contact.

For s ≤ k, two E-functionsF1, F2 will be saidto have a contact of order s at a∈ I if

F (i )
1 (aε) = F (i )

2 (aε), i = 0, . . . , s,(2.21)

for ε = + or ε = − such thataε ∈ I . Observe that, sinceF1 andF2 both satisfy (2.11),
if a is any interior point ofI , (2.21) holds forε = + iff it holds for ε = −.

Theorem 2.8. TwoE-functions F1 = h1 ◦8 and F2 = h2 ◦8 have a contact of order
s ≤ k at a∈ I iff h1(P) = h2(P) for all P ∈ Oscs8(a).

Proof. Let us denote bȳh1 andh̄2 the linear maps associated withh1 andh2, respec-
tively. Since Oscs8(a) is the affine flat going through8(a) and the direction of which
is spanned by the linearly independent vectors8′(aε), . . . , 8(s)(aε), h1 andh2 are equal
on Oscs8(a) iff

h1(8(a)) = h2(8(a)), h̄1(8
(i )(aε)) = h̄2(8

(i )(aε)), i = 1, . . . , s.

Now, hj (8(a)) = Fj (a) andh̄j (8
(i )(aε)) = Fj

(i )(aε) for j = 1,2, i = 1, . . . , s, which
concludes the proof.

Theorem 2.9. If two nondegenerateE-functions F1 and F2 have a contact of order
s ≤ k at a ∈ I , then, for any p-tupleT ∈ I p (p ≤ k) containing(ak−s) (i.e., in which



Blossoming: A Geometrical Approach 41

the point a is repeated at least k− s times), assuming thatT ord = (τ1
µ1 . . . τr

µr ), we
have

r⋂
i=1

Osck−µi F1(τi ) =
r⋂

i=1

Osck−µi F2(τi ) .(2.22)

Proof. Since F1 and F2 are nondegenerate, we can define anyE-function from F1

instead of8. In particular,F2 = h◦F1, whereh denotes a one-to-one affine map defined
on aff Im(F1). Sinceh is one-to-one, we have:

r⋂
i=1

h(Osck−µi F1(τi )) = h

(
r⋂

i=1

Osck−µi F1(τi )

)
.(2.23)

Clearly, for all t ∈ I and all j ≤ k, Oscj F2(t) = h(Oscj F1(t)). Hence, (2.23) can be
replaced by

r⋂
i=1

Osck−µi F2(τi ) = h

(
r⋂

i=1

Osck−µi F1(τi )

)
.(2.24)

On the other hand, Theorem 2.8 ensures that

h(P) = P for all P ∈ Oscs F1(a).(2.25)

Sincea appears at leastk− s times inT , without any loss of generality, we can suppose
that a = τ1, so thatµ1 ≥ k − s or, as well,k − µ1 ≤ s. Consequently, anyP in⋂r

i=1 Osck−µi F1(τi ) belongs to Oscs F1(a), hence, by (2.25),P is invariant underh.
Consequently, (2.24) proves that

r⋂
i=1

Osck−µi F1(τi ) ⊂
r⋂

i=1

Osck−µi F2(τi ).

This finally leads to equality (2.22) by exchanging the rˆoles ofF1 andF2.

2.3.2. Admissible Tuples.

Givenn fixed integersm1, . . . ,mn, such that 0≤ mi ≤ k for i = 1, . . . ,n, we define
the corresponding knot vector by

T := (tm1
1 . . . tmn

n ).(2.26)

Definition 2.10. Let T be an element ofI p, p ≤ k + 1, with T ord = (τ
µ1
1 . . . τ

µr
r ).

Then,T will said to beadmissiblewith respect to the knot vectorT if everyti (1≤ i ≤ n)
belonging to ri[τ1, τr ] is repeated at leastmi times inT .

The notation ri[α, β] stands for the relative interior of interval [α, β], i.e., ]α, β[ when
α < β and{α}whenα = β. Therefore, forp ≤ k+1 and 1≤ i ≤ n, thep-tuple(t p

i ) is
admissible iffp ≥ mi . In particular, since the multiplicity at each knotti is supposed to
be less than or equal tok, thek-tuple(tk) is admissible whatever the pointt ∈ I may be.
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Definition 2.11. If T is an admissiblep-tuple, p ≤ k, its domainis defined as

D(T) := {t ∈ I /(t, T ) is admissible}.(2.27)

Theorem 2.12. Let T be an admissible p-tuple, p ≤ k. Then, D(T) is a union of
consecutive intervals Ii , i.e.,

D(T) =
⋃

i∈J (T)
Ii ,(2.28)

whereJ (T) is a nonempty subset of consecutive integers.

Proof. For simplicity, we shall assume thatmi > 0 for i = 1, . . . ,n. If not, we can
get rid of all theti ’s which do not really appear in the knot vectorT , and simultaneously
join the corresponding consecutive intervals into a single one. LetN (T) denote the set
of all integersi , 1≤ i ≤ n, such thatti appears at leastmi times inT . Two possibilities
have to be examined.

(1)N (T) 6= ∅.
In that case, clearly

J (T) = {Min N (T)− 1, . . . ,MaxN (T)}.(2.29)

For example, ifT = (t p
i ), with 1≤ i ≤ n, we haveN (T) = {i } since the admissibility

of T implies p ≥ mi . Thus,J (T) = {i − 1, i }, so thatD(T) = Ii−1 ∪ Ii .

(2)N (T) = ∅.
In that case, on account of the admissibility ofT , we can verify that there exists a unique
integer` ∈ {0, . . . ,n} such thatτ1, . . . , τr ∈ I` and thatD(T) = I`, or, equivalently,
thatJ (T) = {`}.

2.3.3. Splines and Osculating Flats.

Given the sequence(m1, . . . ,mn) of integers introduced in the previous subsection, for
` = 1, . . . ,n, M̂` will stand for the(k −m`, k −m`) lower triangular matrix obtained
by suppressing them` last rows and columns ofM`.

Definition 2.13. A continuous functionS : I → A is said to bean E-spline (with
respect to the knot vectorT) if the following two properties are satisfied:

(i) there existn+ 1 E-functionsFj : I → A, j = 0, . . . ,n, such that

S(t) = Fj (t) for all t ∈ I j and all j = 0, . . . ,n;(2.30)

(ii) Dk−m`
S(t`+) = M̂` · Dk−m`

S(t`−) for all ` = 1, . . . ,n.

Moreover, theE-splineSwill be said to benondegenerateif eachFj is a nondegenerate
E-function.

Clearly,S : I → A is anE-spline iff it is anS-function, whereS denotes the space
of all real valuedE-splines. Due to the regularity of8, this spaceS is a (k +m+ 1)-
dimensional space, wherem :=∑n

`=1 m`. On account of Remark 2.7(ii), anE-splineS
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given by (2.30) satisfies

aff Im(S|I j ) = aff Im(Fj ), j = 0, . . . ,n.(2.31)

Let us observe in particular that any nondegenerateS-function (i.e., anyE-spline such
that dim(aff Im(8)) = k+m+ 1) is a nondegenerateE-spline.

Lemma 2.14. Consider a nondegenerateE-spline S satisfying(2.30), and a p-tuple
T (p ≤ k) supposed to contain(tm`

` ), for a given integer̀ ∈ {1, . . . ,n}. Then, if
T ord = (τµ1

1 . . . τ
µr
r ), we have

r⋂
i=1

Osck−µi F`(τi ) =
r⋂

i=1

Osck−µi F`−1(τi ).(2.32)

Proof. According to Theorem 2.9, sinceF`−1 andF` are nondegenerate, it is sufficient
to prove that they have a contact of orderk−m` at t`.

SinceS is anE-spline, it satisfies condition (ii) of Definition 2.14, which can also be
written

Dk−m`
F`(t

+
` ) = M̂` · Dk−m`

F`−1(t
−
` ),(2.33)

due to the fact thatF`−1 andF` coincide withSon I`−1 andI`, respectively. On the other
hand, anyE-function being anE-spline, we have

Dk−m`
F`−1(t

+
` ) = M̂` · Dk−m`

F`−1(t
−
` ).(2.34)

Comparing (2.33) and (2.34), we obtain

Dk−m`
F`(t

+
` ) = Dk−m`

F`−1(t
+
` ),(2.35)

and of course a similar equality fort−` . As we additionally haveF`(t`) = F`−1(t`) =
S(t`), equality (2.35) means thatF`−1 andF` have ak−m` contact att`.

Lemma 2.15. Let S be a nondegenerateE-spline and letT ∈ I p be an admissible
p-tuple(p ≤ k) such thatT ord = (τµ1

1 . . . τ
µr
r ). Then, the affine flat

⋂r
i=1 Osck−µi F`(τi )

does not depend oǹ∈ J (T).

Proof. As soon asJ (T) contains two consecutive integers`− 1 and`, 1 ≤ ` ≤ n,
the pointt` appears necessarily at leastm` times inT . Consequently, equality (2.32) is
valid. This yields the desired result.

For ` ∈ {1, . . . ,n} and i ≤ k, Osc+i S(t`) = Osci F`(t`) and Osc−i S(t`) =
Osci F`−1(t`). If i ≤ k−m`, as an obvious application of (2.32) we have Osci F`(t`) =
Osci F`−1(t`), i.e., Osc+i S(t`) = Osc−i S(t`). In other words, Osci S(t`) is well defined
for all i ≤ k−m`. On the contrary, fori > k−m`, we can deal only with Osc+i S(t`) and
Osc−i S(t`). On the other hand, Osci S(t) is well defined for anyt ∈ I∗ and anyi ≤ k.
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Theorem 2.16. With the same assumptions as in Lemma2.15,let us set D:= D(T)
and denote by SD the restriction of S to D. Then, for all ` ∈ J (T),

r⋂
i=1

Osck−µi F`(τi ) =
r⋂

i=1

Osck−µi SD(τi ).(2.36)

Proof. (1) On account of the admissibility ofT , it may be the case that Osck−µi S(τi )

is not defined only ifr ≥ 2, more precisely in the following two situations:

Either i = 1, τ1 = t`, with 1 ≤ ` ≤ n andµ1 < m`, in which caseτ1 is the left
endpoint ofD. Then, Osck−µ1 SD(τ1) stands for Osck−µ1 F`(t`).

Or i = r , τr = t`, with 1≤ ` ≤ n andµr < m`, in which caseτr is the right endpoint
of D. Then, Osck−µr SD(τr ) stands for Osck−µr F`−1(t`).

(2) Taking Lemma 2.15 into account, it is sufficient to prove the existence of an integer
` ∈ J (T) such that

r⋂
i=1

Osck−µi F`(τi ) =
r⋂

i=1

Osck−µi SD(τi ).(2.37)

The proof will be done by induction onr . Observe first that, wheneverτ1, . . . , τr are
all located in a union of consecutive subintervalsI j , . . . , I j+r such thatmj+1 = · · · =
mj+r−1 = 0, any integer̀ ∈ { j, . . . , j + r −1} belongs toJ (T), and, sinceFj = · · · =
Fj+r−1, we have additionally Osck−µi SD(τi ) = Osck−µi F`(τi ) for all i = 1, . . . , r .
Therefore, (2.37) is trivially satisfied by any such integer`. In particular, on account of
the admissibility ofT , this occurs as soon asr ≤ 2.

So, assume thatr ≥ 3 and that the result has already been proved forr − 1. Then
T ′ := (τ1

µ1 . . . τr−1
µr−1) is also admissible.

According to the observation above, we can also suppose that there exists at least one
knot of nonzero multiplicity in ]τ1, τr [. Let t` be the greatest one. The multiplicity of all
possible knots located betweent` andτr being equal to 0, we have

Osck−µr SD(τr ) = Osck−µr F`(τr ).(2.38)

On the other hand, the admissibility ofT implies that we have eitherτr−1 > t` or
τr−1 = t` with µr−1 ≥ m`. In both cases, we can derive that` belongs toJ (T ′). Hence,
the recursive hypothesis applied toT ′ leads to

r−1⋂
i=1

Osck−µi F`(τi ) =
r−1⋂
i=1

Osck−µi SD′(τi ),(2.39)

whereD′ := D(T ′). Moreover, fori = 1, . . . , r − 1, τi is not the right endpoint ofD′.
Thus,

Osck−µi SD′(τi ) = Osck−µi SD(τi ) for i = 1, . . . , r − 1.(2.40)

Finally, we can write

r−1⋂
i=1

Osck−µi F`(τi ) =
r−1⋂
i=1

Osck−µi SD(τi ),(2.41)

which, together with (2.38), proves that the integer` satisfies (2.37).
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3. Blossom

For some particular geometrically regular functions, it will be possible to define a notion
of blossom by means of intersections of convenient osculating flats.

3.1. Piecewise Smooth Chebyshev Functions and Blossoming

Definition and Theorem 3.1. A geometrically regular function of order k, 8 : I →
A, will be said to be apiecewise smooth Chebyshev function of orderk on I if, for all
distinct pointsτ1, . . . , τr ∈ I and all positive integersµ1, . . . , µr whose sum is equal
to k, the affine flat

⋂r
i=1 Osck−µi 8(τi ) consists of a single point. If so, for all k-tuple

T ∈ I k, such thatT ord = (τµ1
1 . . . τ

µr
r ), we shall set

{ϕ(T )} :=
r⋂

i=1

Osck−µi 8(τi ).(3.1)

The functionϕ : I k → A so defined will be calledthe blossom of8. It is a symmetric
function and it satisfies

ϕ(tk) = 8(t) for all t ∈ I .(3.2)

Proof. The symmetry ofϕ is evident. On the other hand, ift ∈ I , by (3.1),{ϕ(tk)} :=
Osc08(t), whence (3.2).

Suppose that8 is a piecewise smooth Chebyshev function of orderk on I , the con-
nections being still given by (2.9). Then, ifa,b are two distinct points ofI , for all
i = 0, . . . , k, the value of the blossomϕ at thek-tuple(ak−i bi ) is given by

{ϕ(ak−i bi )} := Osci 8(a) ∩ Osck−i 8(b).(3.3)

So, foraε,bε
′ ∈ I , the linear system

8(a)+
i∑

s=1

λs8
(s)(aε) = 8(b)+

k−i∑
s=1

νs8
(s)(bε

′
)

has a unique solution, which implies the linear independence of thek vectors8′(aε), . . .,
8(i )(aε),8′(bε

′
), . . . , 8(k−i )(bε

′
).

Let us consider the functionN : I → R defined fort ∈ I by

N(t) := det(8′(aε), . . . , 8(k−1)(aε),8(t)−8(a)).(3.4)

Clearly, functionN belongs to the spaceE associated with8, hence it satisfies (2.11).
Furthermore, for alltε

′ ∈ I ,

N ′(tε
′
) = det(8′(aε), . . . , 8(k−1)(aε),8′(tε

′
)).

Thus, from the two propertiesN ′(tε
′
) 6= 0 for t 6= a, and N ′(t`+) = m`

11 N ′(t`−),
` = 1, . . . ,n, we can derive thatN is strictly monotone onI . Accordingly, the obvious
equalityN(a) = 0 implies thatN(t) 6= 0 for t ∈ I \a. Equivalently, this means that

8(t) /∈ Osck−18(a) for t 6= a.(3.5)
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In particular, it results from (3.5) that8 is one-to-one onI .

Definition 3.2. Let8 be a given piecewise smooth Chebyshev function of orderk, and
let E be its associated space. For any affine maph : aff Im(8)→ C, the blossom of the
E-function F := h ◦8 will be defined by

f := h ◦ ϕ.(3.6)

Theorem 3.3. Let8 be a given piecewise smooth Chebyshev function of order k, let
E be its associated space, and let F be anE-function. Then, F is a piecewise smooth
Chebyshev function of order k iff it is nondegenerate. If so, the blossom f of F satisfies

{ f (τµ1
1 . . . τµr

r )} =
r⋂

i=1

Osck−µi F(τi ),(3.7)

for all distinct pointsτ1, . . . , τr ∈ I and all positive integersµ1, . . . , µr whose sum is
equal to k.

Proof. On account of Remark 2.7,F is a geometrically regular function of orderk iff
it is nondegenerate. Now, assume thatF = h ◦ 8 is nondegenerate, i.e., by Theorem
2.5, thath is one-to-one. Then, for all distinct pointsτ1, . . . , , τr ∈ I and all positive
integersµ1, . . . , µr whose sum is equal tok,

h

(
r⋂

i=1

Osck−µi 8(τi )

)
=

r⋂
i=1

Osck−µi F(τi ).(3.8)

This equality shows that the affine flat appearing in the right-hand side of (3.8) consists of
the single pointh(ϕ(τµ1

1 . . . τ
µr
r )). Hence,F is a Chebyshev function and, using definition

(3.6) yields (3.7).

In particular, the blossom of anE-function depends only onE , not on the particular
function8 which definesE .

3.2. A Characterization of Piecewise Smooth Chebyshev Functions

Theorem 3.4. Let 8 be a geometrically regular function of order k, supposed to
be C2k−1 on each interval Ij , j = 0, . . . ,n, and let8] be the normal function of
8. Then, 8 is a piecewise smooth Chebyshev function of order k iff, for all distinct
points τ1, . . . , τr ∈ I , all εi = + or − such thatτ εi

i ∈ I , and all positive integers
µ1, . . . , µr whose sum is equal to k, the k vectors8](τ1),8

]′(τ1
ε1) . . . , 8](µ1−1)(τ1

ε1),

8](τ2
ε2), . . . , 8](τr

εr ), . . . , 8](µr−1)(τr
εr ), are linearly independent.

Proof. Let us fix r distinct pointsτ1, . . . , τr ∈ I , andr positive integersµ1, . . . , µr
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such that
∑r

i=1µi = k. Using (2.18), forX ∈ A, we can write

X ∈
r⋂

i=1

Osck−µi 8(τi ) ⇔ 〈 X −8(τi ) ,8
]( j )(τi

εi ) 〉 = 0,(3.9)

1≤ i ≤ r, 0≤ j ≤ µi − 1.

The right-hand side of (3.9) can be regarded as a linear system ofk =∑r
i=1µi equations

in k unknowns. This system has a unique solution iff thek vectors8]( j )(τi
εi ), 1≤ i ≤ r ,

0≤ j ≤ µi − 1, are linearly independent.
Hence,8 is a piecewise smooth Chebyshev function of orderk iff this holds for any

choice of distinct pointsτ1, . . . , τr ∈ I , and of positive integersµ1, . . . , µr whose sum
is equal tok.

Corollary 3.5. Let8 be a piecewise smooth Chebyshev function of order k, supposed
to be C2k−1 on each interval Ij . Then, for all distinct pointsτ1, . . . , τr ∈ I and all
positive integersµ1, . . . , µr such that

∑r
i=1µi ≤ k,

dim

(
r⋂

i=1

Osck−µi 8(τi )

)
= k−

r∑
i=1

µi .(3.10)

Proof. Given anyr distinct pointsτ1, . . . , τr ∈ I (with τi
εi ∈ I ) and any positive

integersµ1, . . . , µr such that
∑r

i=1µi ≤ k, the equivalence (3.9) is still valid. By the
previous theorem,8]( j )(τi

εi ), 1 ≤ i ≤ r , 0 ≤ j ≤ µi − 1, are linearly independent,
so that the solutions of the linear system involved in (3.9) now form a(k −∑r

i=1µi )-
dimensional affine flat.

Inparticular, let usfixk−1pointsx1, . . . , xk−1 ∈ I and suppose that(x1, . . . , xk−1)
ord =

(τ
µ1
1 . . . τ

µr
r ). Then, according to Corollary 3.5, the affine space

D =
r⋂

i=1

Osck−µi 8(τi ),(3.11)

is an affine line. Now, it follows from the definition of the blossom that, whilet varies
on I , the pointϕ(x1, . . . , xk−1, t) moves along the affine lineD. As a matter of fact, it
will be pointed out in the following section that functionϕ satisfies a pseudo-affinity
property with respect to each variable in the sense thatϕ(x1, . . . , xk−1, ·) is always a
strictly monotone function.

4. The Subblossoming Principle

This section is devoted to the subblossoming principle, that is to say, to the possibility of
constructing piecewise smooth Chebyshev functions of lesser orders from a given one
by fixing some of the variables in its blossom.

Let 8 : I → A be a piecewise smooth Chebyshev function of orderk. Again, we
denote byM1, . . . ,Mn the connection matrices and byE the space associated with8.
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For simplicity, we shall assume that8 is infinitely many times differentiable on each
interval I j , although the results can be adapted in cases of lower order of differentiability
(see [26]). So, from now on, the expression “piecewise smooth” (with respect to theti ’s)
is always to be interpreted as “piecewiseC∞”.

4.1. Constructing Subblossoms

Theorem 4.1. Given a∈ I , the functioñ8 : I → Osck−18(a), defined for all t∈ I
by

8̃(t) = ϕ(atk−1),(4.1)

is a piecewise smooth Chebyshev function of order(k − 1) on I, the blossom of which
is given by

ϕ̃(t1, . . . , tk−1) = ϕ(a, t1, . . . , tk−1) for all t1, . . . , tk−1 ∈ I .(4.2)

Proof. The proof includes several steps.
(1) Let us first show that̃8 is a geometrically regular function of orderk− 1.
By (4.1), we havẽ8(a) = 8(a) and, for eacht ∈ I \{a},

{8̃(t)} = Osck−1 8(a) ∩Osc1 8(t).(4.3)

Since the values of̃8 all belong to Osck−1 8(a), it is in fact sufficient to prove that̃8
is (k− 1)-regular.

• Suppose first thata ∈ I∗.
(i) Let us show that̃8 is C∞ on each intervalI j .
For all t ∈ I , there exist real numbersµ(tε), λ1(t), . . . , λk−1(t) such that

8̃(t) = 8(t)+ µ(tε)8′(tε) = 8(a)+
k−1∑
s=1

λs(t)8
(s)(a),(4.4)

and, on account of (3.5),µ(tε) 6= 0 for t 6= a. Observe that

µ(t+` ) =
µ(t−` )
m`

11

, ` = 1, . . . ,n.(4.5)

In order to prove that̃8 is C∞ on eachI j , it is sufficient to prove thatµ is a C∞

function on eachI j . For this purpose, let us consider the functionN : I → R introduced
in (3.4). Here,

N(t) := det(8′(a), . . . , 8(k−1)(a),8(t)−8(a)),(4.6)

and, for alltε ∈ I ,

N(i )(tε) = det(8′(a), . . . , 8(k−1)(a),8(i )(tε)).(4.7)

Indeed, whent ∈ I∗, we can get rid ofε everywhere. In particular, fort = a, (4.6) and
(4.7) lead to

N(a) = N ′(a) = · · · = N(k−1)(a) = 0,
1 := N(k)(a) = det(8′(a), . . . , 8(k)(a)) 6= 0.

(4.8)

Moreover, it results from Section 3 thatN ′(tε) 6= 0 for all t ∈ I \{a}.
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On the other hand, from (4.4) we can deduce that

8(t)−8(a) = −µ(tε)8′(tε) +
k−1∑
s=1

λs(t)8
(s)(a),

which proves that

µ(tε) =
0 if t = a,

− N(t)

N ′(tε)
if t 6= a.

(4.9)

Given j ∈ {0, . . . ,n}, if a /∈ I j , µ is clearlyC∞ on I j . Actually, the lemma which
follows will prove thatµ is C∞ on I j even ifa ∈ I j and that, additionally,

µ′(a) = −1/k.(4.10)

Lemma 4.2. Let J be a real interval containing a. Suppose that f: J → R is C∞ on
J and satisfies f(a) = f ′(a) = · · · = f (k−1)(a) = 0, f (k)(a) 6= 0, and f′(t) 6= 0 for
all t ∈ J\{a}. Then the function g defined on J by

g(t) = f (t)

f ′(t)
if t 6= 0, g(a) = 0,(4.11)

is C∞ on J and g′(a) = 1/k.

Proof. The assumptionf (a) = f ′(a) = · · · = f (k−1)(a) = 0 implies the existence
of a function f1 which isC∞ on J and which satisfies (see [26])

f (t) = (t − a)k f1(t) for all t ∈ J.

Consequently,f ′(t) = (t−a)k−1[k f1(t) + (t−a) f1
′(t)], and the assumptionf ′(t) 6= 0

for all t ∈ J\{a} implies thatk f1(t) + (t − a) f1
′(t) 6= 0 for t 6= a. Therefore, we have

g(t) = (t − a)
f1(t)

k f1(t) + (t − a) f1
′(t)

for all t ∈ J\{a}.

As a matter of fact, sinceg(a) = 0 and f1(a) = f (k)(a)/k! 6= 0, this expression is still
valid for t = a, which proves thatg is C∞ on the whole intervalJ. Moreover,

g′(a) = lim
t→a

f1(t)

k f1(t) + (t − a) f1
′(t)
= 1

k
.

(ii) Let us study the connections att1, . . . , tn. According to part (i), we can differentiate

(4.4) up to orderi (i ≤ k− 1) on eachI`, which gives

8̃(i )(tε) = µ(tε)8(i+1)(tε) + (1+ iµ′(tε))8(i )(tε) + Gi (t
ε),(4.12)
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where Gi (tε) is a linear combination of8′(tε), . . . , 8(i−1)(tε). In particular, since
µ(a) = 0, for t = a, (4.12) reduces to

8̃(i )(a) = (1+ iµ′(a))8(i )(a) + Gi (a).(4.13)

Observe that the coefficient(1+ iµ′(a)) does not vanish fori ≤ k− 1, due to equality
(4.10). So, we eventually obtain

Osci 8̃(a) = Osci 8(a), i = 0, . . . , k− 1.(4.14)

On the contrary, fort 6= a, relations (4.12), together with the left equality in (4.4), can
be summarized as follows:

(8̃(t)−8(t), 8̃′(tε), . . . , 8̃(k−1)(tε))T = R(tε) · Dk8(t
ε),(4.15)

whereR(tε) stands for a lower triangular matrix of orderk, all the diagonal elements
of which are equal toµ(tε). For t 6= a, on account of (3.5) and (4.4),µ(tε) 6= 0, and
(4.15) proves the linear independence of thek vectors involved in its left-hand side. In
particular, for alli ≤ k−1, Oscεi 8̃(t) is of dimensioni . Moreover, relation (4.12) clearly
implies that for allt 6= a,

Oscεi 8̃(t) ⊂ Osci+18(t) ∩Osck−18(a), i = 0, . . . , k− 1.(4.16)

By Corollary 3.5, the right-hand side of (4.16) has dimensioni , i.e., the same dimension
as Oscεi 8̃(t). Thus, we obtain the equality

Oscεi 8̃(t) = Osci+18(t) ∩Osck−18(a) for all t 6= a.(4.17)

Consequently, for̀ = 1, . . . ,n, (4.17) proves that Osc+i 8̃(t`) = Osc−i 8̃(t`) for all
i = 0, . . . , k− 1. This proves the existence ofn regular lower triangular matrices̃M` of
orderk− 1 such that

Dk−18̃(t`
+) = M̃` · Dk−18̃(t`

−).(4.18)

Moreover, on account of (4.15) and (4.5), the diagonal elements ofM̃` are

m̃`
i i =

µ(t`+)
µ(t`−)

m`
i+1,i+1 =

m`
i+1,i+1

m`
11

, i = 1, . . . , k− 1,(4.19)

hence they are positive.

• Suppose now thata = t`0, `0 ∈ {1, . . . ,n}.
For t 6= a, we can write

8̃(t) = 8(t) + µ(tε)8′(tε) = 8(a)+
k−1∑
s=1

λs(t)8
(s)(a+),(4.20)

whereµ(tε) is defined as in (4.9), but now with

N(t) := det(8′(a+), . . . , 8(k−1)(a+),8(t)−8(a)).
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Again, it appears clearly thatµ is C∞ on eachI j , hence so is̃8. Moreover, formulas
(4.12) and (4.17) are still valid fort 6= a. In particular, the connections at the points
t`, ` 6= `0, are still given by (4.18) and (4.19). On the other hand, (4.13) must now be
replaced by

8̃(i )(a+) = (1+ iµ′(a+))8(i )(a+) + Gi (a
+), i = 1, . . . , k− 1.(4.21)

Here,µ′(a+) = −1/k. Therefore, relations (4.21) can be summarized by

Dk−18̃(a
+) = R+ · Dk−18(a

+),(4.22)

whereR+ is a lower triangular matrix of orderk−1, with(1−i /k)i=1...,k−1 as its diagonal
elements. Starting from the left derivatives of8 at a instead of its right derivatives in
(4.20) would symmetrically give

Dk−18̃(a
−) = R− · Dk−18(a

−),(4.23)

where the lower triangular matrixR− has the same diagonal elements asR+. Taking into
account the equalityDk8(a+) = M`0 · Dk8(a−), (4.22) and (4.23) eventually lead to
the following relation:

Dk−18̃(t`0
+) = M̃`0 . Dk−18̃(t`0

−),

with M̃`0 := R+ · M`0 · R−1
− , the matrixM`0 being obtained by suppressing the last

row and column ofM`0. Hence, the diagonal elements of̃M`0 are(m`0
11, . . . ,m

`0
k−1,k−1).

Again, they are positive.

(2) In any case, we have proved that8̃ is a regular function of orderk− 1 and that its
osculating flats at a pointt are obtained by (4.14) or (4.17) depending on whethert = a
or not. The proof of Theorem 4.1 will be carried out by verifying that

r⋂
i=1

Osck−1−µi 8̃(τi ) = {ϕ(aτ1
µ1 . . . τr

µr )},(4.24)

for any distinctτ1, . . . , τr ∈ I and any positive integersµ1, . . . , µr such that
∑r

i=1µi =
k− 1. Suppose first thata /∈ {τ1, . . . , τr }. Then, equality (4.17) implies

r⋂
i=1

Osck−1−µi 8̃(τi ) =
r⋂

i=1

Osck−µi 8(τi ) ∩ Osck−1 8(a) ,

from which (4.24) results by definition (3.1).
Suppose now thata ∈ {τ1, . . . , τr }, for instancea = τr . Then, we can derive from

(4.17) and (4.14) that

r⋂
i=1

Osck−1−µi 8̃(τi ) =
r−1⋂
i=1

(
Osck−µi 8(τi ) ∩Osck−1 8(a)

) ∩ Osck−1−µr 8(a)

=
r−1⋂
i=1

Osck−µi 8(τi ) ∩ Osck−(µr+1) 8(a)

= {ϕ(τµ1
1 . . . τ

µr−1
r−1 aµr+1},

which, in this case, is the exact equality (4.24).
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4.2. A de Casteljau-Type Algorithm

The construction ofsubblossomscan be iterated: this eventually leads to the pseudo-
affinity property of the blossom.

Corollary 4.3. Let x1, . . . , xk−1 be any fixed points in I. Then, given a,b ∈ I , with
a < b, there exists a strictly increasing continuous functionα : I → R such that, for
all E-functions F and for all t∈ I ,

f (x1, . . . , xk−1, t) = [1− α(t)] f (x1, . . . , xk−1,a)+ α(t) f (x1, . . . , xk−1,b),(4.25)

with α(a) = 0 andα(b) = 1. Moreover, this functionα is C∞ on each interval Ij .

Proof. Step by step, it follows from Theorem 4.1 that the function8̂ defined onI by

8̂(t) = ϕ(x1, . . . , xk−1, t), t ∈ I ,(4.26)

is a piecewise smooth Chebyshev function of order 1 onI with values in the affine line
D = ⋂r

i=1 Osck−µi 8(τi ), where(x1, . . . , xk−1)
ord = (τµ1

1 . . . τ
µr
r ). As already noticed

in Section 3, such a function is one-to-one onI , hence strictly monotone. Thus, it can
be written as

ϕ(x1, . . . , xk−1, t) = [1− α(t)]ϕ(x1, . . . , xk−1,a)+ α(t)ϕ(x1, . . . , xk−1,b),(4.27)

with the required properties forα. Given anyE-function F , equality (4.25) is obtained
by taking the image of (4.27) under the affine maph which satisfiesF = h ◦8.

SettingT := (x1, . . . , xk−1), Corollary 4.3 may be summarized by the following
diagram:

f (T ,a) f (T ,b)
↘ ↙

f (T , t)
(4.28)

in which the two arrows stand for the affine combination involved in (4.25). Then, starting
from the(n+1) points f (ak−i bi ), i = 0, . . . , k, for a givent ∈ I , we can computeF(t)
in k steps as follows:

first iteration: computef (ak−1−i bi t), i = 0, . . . , k− 1;
second iteration: computef (ak−2−i bi t2), i = 0, . . . , k− 2;

and so forth up to:

next to last iteration: computef (atk−1), f (btk−1);
last iteration: computef (tk) = F(t).

Each computation is obtained by means of an affine combination the coefficients of
which do not depend onF and are positive as soon ast belongs to ]a,b[.

This algorithm will be calledthe Chebyshev–de Casteljau algorithm with respect to
(a,b).



Blossoming: A Geometrical Approach 53

Definition and Theorem 4.4. Let a,b be two distinct points of I. Then, for any E-
function F, the k+ 1 points Pi := f (ak−i bi ), i = 0, . . . , k, are called theChebyshev–
Bézier points ofF with respect to(a,b). They satisfy

aff Im(F) = aff(P0, . . . , Pk)(4.29)

(in particular, F is nondegenerate iff its Chebyshev–Bézier points are affinely indepen-
dent), and, for all i = 0, . . . , k,

Osci F(a) = aff(P0, . . . , Pi ), Osci F(b) = aff(Pk−i , . . . , Pk).(4.30)

Proof. Let us denote by50, . . . ,5k, the Chebyshev–B´ezier points of8 with respect
to (a,b), i.e.,5i = ϕ(ak−i bi ), i = 0, . . . , k. By the Chebyshev–de Casteljau algorithm,
each8(t), t ∈ I , can be obtained by means of an affine combination of50, . . . ,5k.
Hence, Im(8) ⊂ aff(50, . . . ,5k). Since aff Im(8) is of dimensionk, it follows that:

aff Im(8) = aff (50, . . . ,5k),(4.31)

and that50, . . . ,5k are affinely independent.
As a matter of fact,50, . . . ,5k are defined by

{5i } = Osci 8(a) ∩Osck−i 8(b), 0≤ i ≤ k.(4.32)

So that, in particular, thei + 1 points50, . . . ,5i belong to Osci 8(a). Their affine
independence and the fact that Osci 8(a) is of dimensioni proves that

Osci 8(a) = aff(50, . . . ,5i ).(4.33)

Now, if F = h ◦8, for all i = 0, . . . , k, Pi = h(5i ). Formula (4.29) and the first part
of (4.30) are obtained by taking the images of (4.31) and (4.33) underh. The second
equality in (4.30) can be obtained by exchanginga andb.

Corollary 4.5. Let τ1, . . . , τr be any distinct points of I and letµ1, . . . , µr be any
positive integers such thatµ :=∑r

i=1µi ≤ k. Then, for any nondegenerateE-function
F ,

r⋂
i=1

Osck−µi F(τi ) = aff{ f (τµ1
1 . . . τµr

r t1 . . . tk−µ) | t1, . . . , tk−µ ∈ W},(4.34)

where W denotes any subset of I containing at least two distinct points.

Proof. Applying Theorem 3.3 and Corollary 3.5 to functionF proves that the affine
flat

⋂r
i=1 Osck−µi F(τi ) is of dimensionk− µ. Furthermore, each point

f (τµ1
1 . . . τµr

r t1 . . . tk−µ)

clearly belongs to
⋂r

i=1 Osck−µi F(τi ).
On the other hand, iterating Theorem 4.1 shows that the function9 defined by

9(t) = f (τµ1
1 . . . τµr

r t k−µ),
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is a piecewise smooth Chebyshev function of orderk−µ on I , the blossom of which is
given by

ψ(t1, . . . , tk−µ) = f (τµ1
1 . . . τµr

r t1 . . . tk−µ) for all (t1, . . . , tk−µ) ∈ I k−µ.

Hence, by Theorem 4.4, thek−µ+1 Chebyshev–B´ezier points of9 with respect to any
two distinct elements ofW are affinely independent; they belong to

⋂r
i=1 Osck−µi F(τi ),

which proves equality (4.34).

Theorem 4.6. TwoE-functions F1 and F2 have a contact of order s≤ k at a point
a ∈ I iff f 1(T ) = f2(T ) for all T ∈ I k containing(ak−s).

Proof. As a particular case of Corollary 4.5, we obtain

Oscs8(a) = aff{ϕ(ak−st1 . . . ts) | t1, . . . , ts ∈ I }.(4.35)

Hence, ifF1 = h1 ◦8, F2 = h2 ◦8, Theorem 2.8 ensures thatF1 andF2 have a contact
of orders at a iff h1(ϕ(ak−st1 . . . ts)) = h2(ϕ(ak−st1 . . . ts)) for all t1, . . . , ts ∈ I , i.e.,
by (3.6), iff f1(T ) = f2(T ) for all T ∈ I k containing(ak−s).

According to Theorem 4.4, the Chebyshev–B´ezier points(50, . . . ,5k) of 8 with
respect to(a,b) form an affine frame of aff Im(8). So, we can express8 as follows:

8(t) =
k∑

i=0

Bi (t)5i ,

k∑
i=0

Bi (t) = 1, t ∈ I .(4.36)

Theorem and Definition 4.7. The functions(B0, . . . ,Bk) form a basis ofE , called the
Chebyshev–Bernstein basisof E with respect to(a,b). They satisfy

0< Bi (t) < 1 for all t ∈ ]a,b[ and for all i = 0, . . . , k,(4.37)

Bi
( j )(aε) = 0 for j < i , Bi

( j )(bε
′
) = 0 for j < k− i,(4.38)

B(i )i (a
ε) = det[8′(aε), . . . , 8(i )(aε),8′(bε

′
), . . . , 8(k−i )(bε

′
)]

det[8′(aε), . . . ,8(i−1)(aε),8(b)−8(a),8′(bε′), . . . ,8(k−i )(bε′)]
.(4.39)

Proof. The fact that(B0, . . . ,Bk) is a basis ofE results from Corollary 2.3. When
t ∈ ]a,b[, as a straightforward consequence of the positivity of all the coefficients
of the Chebyshev–de Casteljau algorithm, we can derive that8(t) is a strictly convex
combination of the points50, . . . ,5k, which gives (4.37). Finally, formulas (4.38) and
(4.39) can be deduced from (4.30) by differentiating (4.36).

Of course, taking the image of both sides of equality (4.36) under any affine maph
defined on aff Im(8) proves that anyE-function F (for instance, anyF ∈ E) can be
written by means of its Chebyshev–B´ezier pointsP0, . . . , Pk as

F(t) =
k∑

i=0

Bi (t)Pi .(4.40)
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Thus, given two distinct pointsa,b ∈ I , the corresponding Chebyshev–Bernstein basis
depends only on the spaceE . Furthermore, by applying equality (4.40) to the Chebyshev–
Bernstein functionBi (0 ≤ i ≤ k), we can conclude that its Chebyshev–B´ezier points
with respect to(a,b) are all equal to 0, except the one of indexi which is equal to 1,
i.e., its blossombi satisfies

bi (a
k− j b j ) = δi j , j = 0, . . . , k.(4.41)

Finally, formulas (4.38) and (4.39) lead to the following expressions (see [26]):

(4.42)

Bi (t) = det[8′(aε), . . . , 8(i )(aε),8′(bε
′
), . . . , 8(k−i )(bε

′
)]

det[8′(aε), . . . , 8(i−1)(aε),8(b)−8(a),8′(bε′), . . . , 8(k−i )(bε′)]

×
det[8(b)−8(a),8′(aε), . . . , 8(i−1)(aε),
8(t)−8(a),8′(bε′), . . . , 8(k−i−1)(bε

′
)]

det[8(b)−8(a),8′(aε), . . . , 8(i )(aε),8′(bε′), . . . , 8(k−i−1)(bε′)]

for 1≤ i ≤ k− 1, whereas

Bk(t) =
det[8′(aε), . . . , 8(k−1)(aε),8(t)−8(a)]
det[8′(aε), . . . , 8(k−1)(aε),8(b)−8(a)] ,(4.43)

the functionB0 being obtained symmetrically by exchanginga andb.

5. Splines Based on a Piecewise Smooth Chebyshev Function

As in the previous section, we suppose that8 : I → A is a piecewise smooth Cheby-
shev function of orderk, E denoting its associated space. We shall now deal with the
correspondingE-splines associated with the knot vectorT defined in (2.26).

5.1. The Blossom of a Spline

Theorem and Definition 5.1. Consider a nondegenerateE-spline S given by(2.30)
and an admissible k-tupleT such thatT ord = (τµ1

1 . . . τ
µr
r ). Then, if D := D(T), the

affine flat
⋂r

i=1 Osck−µi SD(τi ) consists of a single point. When setting

{s(T )} :=
r⋂

i=1

Osck−µi SD(τi ),(5.1)

we define a symmetric function s on the set of all admissible k-tuples, calledthe blossom
of S. It satisfies

s(T ) = f`(T ) for all ` ∈ J (T).(5.2)

Proof. For any ` = 0, . . . ,n, F` is a nondegenerateE-function. Thus, by Theo-
rems 2.16 and 3.3,

r⋂
i=1

Osck−µi SD(τi ) = { f`(T )} for all ` ∈ J (T).
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Corollary 5.2. If S is a nondegenerateE-spline andT ∈ I µ an admissibleµ-tuple
(µ ≤ k), with T ord = (τµ1

1 . . . τ
µr
r ) and D= D(T), then

r⋂
i=1

Osck−µi SD(τi ) = aff{s(T , t1, . . . , tk−µ) | t1, . . . , tk−µ ∈ W},(5.3)

where W denotes any subset of D containing at least two distinct points.

Proof. For a given` ∈ J (T), we can apply Corollary 4.5 to the nondegenerateE-
function F`. More precisely, by taking Theorem 2.16 into account, (4.34) gives

r⋂
i=1

Osck−µi SD(τi ) = aff{ f`(T , t1, . . . , tk−µ) | t1, . . . , tk−µ ∈ W}.(5.4)

Now, for anyt1, . . . , tk−µ ∈ W, ` also belongs toJ (T , t1, . . . , tk−µ). Hence, according
to (5.2),

f`(T , t1, . . . , tk−µ) = s(T , t1, . . . , tk−µ),
which proves (5.3).

Let us select a particular nondegenerateS-function6 (i.e., anE-spline6 such that
dim(aff Im(6)) = k + m+ 1); such a spline6 plays the same rˆole as the universal
spline introduced by H.-P. Seidel [37]. Since it is a nondegenerateE-spline, its blossom
σ can be defined as in (5.1). Now, anyE-splineScan be written asS= h ◦6, h being
an affine map defined on the affine space aff Im(6). If the splineS is nondegenerate, for
any admissiblek-tupleT , (5.1) leads to

{s(T )} =
r⋂

i=1

h(Osck−µi 6D(τi )) ⊃ h

(
r⋂

i=1

Osck−µi 6D(τi )

)
= {h(σ (T ))},

which means thats= h◦σ . More generally, the blossoms of any (possibly degenerate)
E-splineS= h ◦6 will be defined as

s := h ◦ σ,(5.5)

If 8` is the nondegenerateE-function which coincides with6 on I`, by (5.2), for
all admissiblek-tuplesT and all ` ∈ J (T), σ(T ) = ϕ`(T ). Thus, we also have
h ◦ σ(T ) = h ◦ ϕ`(T ), which means that

s(T ) = f`(T ) for all ` ∈ J (T),
where F` is the E-function which coincides withS on I`. This shows that equality
(5.2) is still valid even if the splineS is degenerate. As a matter of fact, due to the
contact theorem 4.6, equality (5.2) could directly have been taken as the definition of the
blossom of anyE-splineS, whether this spline is nondegenerate or degenerate. However,
although different piecewise smooth Chebyshev functions8may lead to the same space
S of splines, Definition 5.1 proves that they all provide the same notion of blossom forS.
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5.2. A de Boor-Type Algorithm

We shall rewrite the knot vectorT = (tm1
1 , . . . , tmn

n ) as follows:

T = (x1, . . . , xm).(5.6)

In particular, ifm=∑n
i=1 mi > 0,x1 is the firstt` of nonzero multiplicity, andxm the last

one. Let us choose 2(k+1)additional pointsx−k, . . . , x0 ∈ I0 andxm+1, . . . , xm+k+1 ∈ In

with x−k ≤ x−k+1 ≤ · · · ≤ x0 < t1 andtn < xm+1 ≤ · · · ≤ xm+k ≤ xm+k+1, so as to
obtain

T ′ = (x−k, x−k+1, . . . , xm+k, xm+k+1).(5.7)

Consider the followingk-tuples composed ofk consecutive points of the knot vectorT ′:

Xj = (xj+1, . . . , xj+k), j = −k, . . . ,m.(5.8)

These(m+k+1) k-tuples are clearly admissible. This remark gives sense to the definition
hereunder.

Definition 5.3. If s denotes the blossom of anE-splineS, thek+m+ 1 points

Qj := s(Xj ), j = −k, . . . ,m,(5.9)

are called thepoles of Swith respect to the knot vectorT ′.

The following algorithm, which we shall refer to asthe Chebyshev–de Boor algorithm
with respect to the knot vector T′, will allow us to compute each pointS(t), t ∈ I , in k
steps from the poles ofS.

Lemma 5.4. Given i = 0, . . . ,n, let us set ji := ∑i
`=1 m` (so that, j0 = 0 and

jn = m). Then, for j = −k, . . . ,m, i ∈ J (Xj ) iff j i − k ≤ j ≤ ji .

Proof. Observe that for 0< i < n, ji is the unique integers such thatIi ⊂ [xs, xs+1],
this inclusion being strict iff one (at least) of the two multiplicitiesmi andmi+1 is equal
to 0.

We can verify that for anyi = 0, . . . ,n, and anyj = −k, . . . ,m,

i ∈ J (Xj ) ⇔ [xji , xji+1] ⊂ D(Xj ).(5.10)

On the other hand, we have clearly

[xj , xj+k+1] ⊂ D(Xj ), j = −k, . . . ,m,(5.11)

and actually,D(Xj ) = [xj , xj+k+1] for 0 < j < m − k. SinceD(Xj ) is a union of
consecutive subintervals, as soon as it contains one of the pointsx−k, . . . , x0, it also
containsI0. Thus, for j ≤ 0, I0 ⊂ D(Xj ). Similarly, for j ≥ m− k, In ⊂ D(Xj ).

Due to (5.10) and (5.11), the condition [xji , xji+1] ⊂ [xj , xj+k+1] is sufficient to ensure
that i ∈ J (Xj ). In other words,

ji − k ≤ j ≤ ji ⇒ i ∈ J (Xj ).
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In order to prove the converse property, just observe thatxji is the right endpoint of
D(Xji−k−1) (for ji > 0, hencei > 0) and thatxji+1 is the left endpoint ofD(Xji+1) (for
ji < m, hencei < n).

Equality (5.2) being valid for anyE-splineS defined by (2.30), the previous lemma
shows that, among thek+m+1 polesQj = s(Xj ), j = −k, . . . ,m, exactlyk+1 ones
can be labeled by means of the blossomfi , namely

Qj = fi (Xj ), j = ji − k, . . . , ji .(5.12)

For a giveni ∈ {0, . . . ,n} and a givenν ∈ {0, . . . , k}, we now introduce the following
k− ν + 1 points depending ont ∈ I :

Qν
j (t) := fi (xj+1, . . . , xj+k−ν, tν), j = ji − k+ ν, . . . , ji .(5.13)

In particularQ0
j (t) = Qj for all j = ji − k, . . . , ji , andQk

ji
(t) = Fi (t), which gives

Qk
ji
(t) = S(t) whent ∈ Ii .

For ν ≥ 1, Corollary 4.3 may be applied to functionfi (xj+1, . . . , xj+k−ν, tν−1, ·).
Now, for j = ji − k+ ν, . . . , ji ,

xj ≤ xji < xji+1 ≤ xj+k−ν+1.(5.14)

Therefore, sinceQν
j (t) = fi (xj+1, . . . , xj+k−ν, tν−1, t), there exists a real numberανj (t),

independent ofS, such that

Qν
j (t) = [1− ανj (t)] fi (xj+1, . . . , xj+k−ν, tν−1, xj )

+ ανj (t) fi (xj+1, . . . , xj+k−ν, tν−1, xj+k−ν+1),

that is to say,

Qν
j (t) = [1− ανj (t)]Qν−1

j−1(t)+ ανj (t)Qν−1
j (t).(5.15)

Finally, at the last step of the algorithm described in (5.15), for allt ∈ I , we obtain
Qk

ji
(t) = Fi (t) as an affine combination of thek+ 1 polesQj , j = ji − k, . . . , ji . More

precisely, we can state the following result:

Theorem 5.5. Let Qj , j = −k, . . . ,m, be the poles of a givenE-spline S. Then, for all
i = 0, . . . ,n, and for all t ∈ [xji , xji+1] (resp., t ∈ ]xji , xji+1[), S(t) is a convex(resp.,
strictly convex) combination of Qji−k, . . . , Qji .

Proof. Taking (5.14) into account, Corollary 4.3 proves that whent ∈ ]xji , xji+1[,
all the real numbersανj (t), ν = 0, . . . , k, j = ji − k + ν, . . . , ji , involved in the
Chebyshev–de Boor algorithm belong to ]0,1[. Thus, for allt ∈ ]xji , xji+1[, Fi (t) is
a strictly convex combination of the polesQji−k, . . . , Qji . Now, S(t) = Fi (t) for all
t ∈ [xji , xji+1]. Indeed, as soon as there exists` ∈ {1, . . . ,n} such thatt` ∈ ]xji , xji+1[,
the corresponding multiplicitym` is equal to zero, which impliesF`−1 = F` = Fi .
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Corollary 5.6. The spline S is nondegenerate iff for all i= 0, . . . ,n, its k+ 1 con-
secutive poles(Qji−k, . . . , Qji ) are affinely independent, whereas it is a nondegenerate
S-function iff all its poles are affinely independent.

Proof. Let us first observe that [x0, t1] ⊂ [x0, x1]. According to Remark 2.7(ii), we
know that aff Im(S|I0) = aff Im(S|[x0,t1]), hence aff Im(S|I0) ⊂ aff Im(S|[x0,x1]). Similarly,
we have aff Im(S|In) ⊂ aff Im(S|[xm,xm+1]). Moreover, for 0< i < n, Ii ⊂ [xji , xji+1].
Thus, the previous theorem implies that

aff Im(S|Ii ) ⊂ aff(Qji−k, . . . , Qji ) for all i = 0, . . . ,n.(5.16)

Applying (5.16) to the nondegenerateS-function6 previously selected, we can deduce
in particular that aff Im(6) ⊂ aff{σ(Xj ) | j = −k, . . . ,m}, whereσ is the blossom of
6. Since aff Im(6) is of dimensionk+m+ 1, we have

aff Im(6) = aff{σ(Xj ) | j = −k, . . . ,m)},(5.17)

which proves the linear independence of thek+m+ 1 polesσ(Xj ), j = −k, . . . ,m.
On the other hand, we know that6 is also a nondegenerateE-spline, so that, for

i = 0, . . . ,n, dim(aff Im(6|Ii )) = k. Hence, (5.16) leads to

aff Im(6|Ii ) = aff{σ(Xj ) | j = ji − k, . . . , ji }.(5.18)

Now, for any splineS= h ◦ 6, taking the images of (5.19) and (5.20) under the affine
maph gives

aff Im(S) = aff(Q−k, . . . , Qm),(5.19)

aff Im(S|Ii ) = aff(Qji−k, . . . , Qji ) for all i = 0, . . . ,n,(5.20)

which completes the proof.

The linear independence of the poles of6 allows us to write in a unique way

6(t) =
m∑

j=−k

Nj (t)σ (Xj ),

m∑
j=−k

Nj (t) = 1.(5.21)

Definition and Theorem 5.7. The k+m+1 functionsNj , j = −k, . . . ,m, are called
the Chebyshev B-splines:they form a basis ofS, called theChebyshev B-basis.For
j = −k, . . . ,m,Nj is the element ofS the blossom nj of which satisfies

nj (Xi ) = δi j , i = −k, . . . ,m.(5.22)

Moreover, the support ofNj is given by

SuppNj = D(Xj ).(5.23)
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Proof. The fact that the Chebyshev B-splines form a basis of the spaceS is a direct
consequence of Corollary 2.3.

When applying Theorem 5.5 to6 (the poles of which are affinely independent), we
obtain

0< Nj (t) < 1 for all t ∈ ]xji , xji+1[ and all j = ji − k, . . . , ji .(5.24)

On the other hand, according to Remark 2.7(ii), we have

[x0, t1] ⊂ SuppNj ⇔ I0 ⊂ SuppNj ,(5.25)

and a similar property for [tn, xm+1]. Consequently, on account of (5.25), for a given
j ∈ {−k, . . . ,m}, relations (5.24) prove that

i ∈ J (Xj ) ⇒ Ii ⊂ Supp(Nj ).(5.26)

Now, for a given integeri , 0≤ i ≤ n, comparing (5.20) and (5.21) shows that

Nj (t) = 0 for all t ∈ Ii and all j /∈ { ji − k, . . . , ji }.(5.27)

Therefore, by (5.26) and (5.27), the support ofNj is the union of all the intervalsIi ,
i ∈ J (Xj ), i.e., (5.23).

Taking the image of equality (5.21) under affine maps proves that anyE-splineS (in
particular, anyS∈ S) can be written as

S(t) ≡
m∑

j=−k

Nj (t)s(Xj ).(5.28)

Applied to the Chebyshev B-splineNj , (5.28) proves (5.22).

6. How to Build Piecewise Smooth Chebyshev Functions

Let 8 be a geometrically regular function of orderk, E its associated space, and8]

its normal function. Given a basis(D̄1, . . . , D̄k) in the direction1 of the affine space
spanned by the image of8, let us write

8](tε) =
k∑

i=1

8
]

i (t
ε)D̄i for all tε ∈ I .(6.1)

Although8](tε) essentially depends on the inner product which has been chosen in1,
the spaceE] spanned by its coordinates functions(8]

1, . . . , 8
]

k) depends only on the
spaceE . On the other hand,E] is also independent of the regular function definingE . It
is ak-dimensional space which will be equally calledthe normal spaceof 8 or of E .

Any elementU ] ∈ E] can be considered as a real valued function defined onI∗ ∪
{t−` , t+` , ` = 1, . . . ,n} and its restriction to eachI j is C∞ on I j . Moreover, due to (2.19),
U ] satisfies

(U ](t+` ), . . . ,U
](k−1)(t+` ))

T = M]

` · (U ](t−` ), . . . ,U
](k−1)(t−` ))

T ,(6.2)

` = 1 . . . ,n.
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Since matrixM]

` is lower triangular and regular,t+` is a zero of orderi ≤ k of U ] iff t−`
is. In such a case,t` will simply said to be azero of order iof U ]. Furthermore, the linear
independence of thek vectors8](tε), . . . , 8](k−1)(tε) for all t ∈ I implies that, ifU ]

is nonzero, each zero ofU ] in I is of order less than or equal tok − 1. These remarks
give sense to considering the upper bound of the numbers of zeros onI (counted with
multiplicities) of all nonzero elements ofE], this number being possibly infinite. It will
be denoted byZI (E]).

Actually, Theorem 3.4 states that8 is a piecewise smooth Chebyshev function iff, for
all distinct pointsτ1, . . . , τr ∈ I and all positive integersµ1, . . . , µr summing tok,∣∣∣∣∣∣∣∣∣

8
]

1(τ1
ε1) . . . 8

]

1

(µ1−1)
(τ1
ε1) . . . 8

]

1(τr
εr ) . . . 8

]

1

(µr−1)
(τr
εr )

8
]

2(τ1
ε1) . . . 8

]

2

(µ1−1)
(τ1
ε1) . . . 8

]

2(τr
εr ) . . . 8

]

2

(µr−1)
(τr
εr )

...
. . .

...
. . .

...
. . .

...

8
]

k(τ1
ε1) . . . 8

]

k

(µ1−1)
(τ1
ε1) . . . 8

]

k(τr
εr ) . . . 8

]

k

(µr−1)
(τr
εr )

∣∣∣∣∣∣∣∣∣ 6= 0,(6.3)

whatever theεi ’s may be, provided thatτi
εi ∈ I . Clearly, this result can also be stated as

follows:

Theorem 6.1. The geometrically regular function8 of order k is a piecewise smooth
Chebyshev function of order k iff its normal spaceE] satisfies ZI (E]) ≤ k− 1.

6.1. Chebyshev Spaces

In this subsection, we shall give a compact presentation of the necessary tools on Cheby-
shev spaces. For the proofs and more details, see, for instance, [15], [25], and [36].

Definition 6.2. Given a real intervalJ, ak-dimensional spaceU contained inC∞(J)
is said to be anextended Chebyshev space(EC space) onJ if any nonzero element of
U has at mostk− 1 zeros (counted with multiplicities) inJ (i.e., if ZJ(U) ≤ k− 1). It
is said to be acomplete extended Chebyshev space(ECC space) onJ if there exists a
nested sequence

U1 ⊂ U2 ⊂ · · · ⊂ Uk−1 ⊂ Uk = U,(6.4)

where, fori = 1, . . . , k, Ui is ani -dimensional EC space onJ.

Theorem 6.3. A given k-dimensional subspaceU of C∞(J) is an ECC space on J iff
there exist k positive functionsw1, . . . , wk ∈ C∞(J) (called weight functions associated
with U) such thatU = Ker D ◦ Lk, where D stands for the ordinary differentiation and,
for L1, . . . , Lk, for the differential operators defined on C∞(J) by

L1U := 1

w1
U, Li U := 1

wi
(Li−1U )

′, i = 2, . . . , k.(6.5)

Proof. Any k nonvanishing functionsw1, . . . , wk ∈ C∞(J)generate a nested sequence
similar to (6.4) by means of the corresponding operators, namely

Ui := Ker Li+1, i = 1, . . . , k− 1, U := Ker DLk.(6.6)
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We can prove that each space involved in (6.6) is in fact an EC space. For the converse
part we refer to [15] and [25].

Let us observe that different systems of weight functions may lead to the same ECC
space. From the previous theorem, we can easily deduce the following result:

Corollary 6.4. LetU be a(k+1)-dimensional subspace of C∞(I ) containing the con-
stant functions. Then, DU is an ECC space with associated weight functionsw1, . . . , wk,
iff U is an ECC space with associated weight functions1, w1, . . . , wk.

Remark 6.5. Using Definition 6.2, it is straighforward to check that, whenDU is an
EC space,U is an EC space containing the constant functions. Contrary to the case of
ECC spaces, the converse property does not hold, except if the intervalI is supposed to
be closed and bounded. This can be obtained through the crucial result stated hereunder.

Theorem 6.6([32] and [25]). Over a closed bounded interval I= [a,b], an EC space
is an ECC space.

SupposeU is ak-dimensional EC space onJ, and choose a basis(U1, . . . ,Uk) of U .
Then, for anyt ∈ J, the linear system

k∑
j=1

Uj
(i )(t)U ∗j (t) = δk−1,i , i = 0, . . . , k− 1,(6.7)

has a unique solution. This providesk functionsU ∗1 , . . . ,U
∗
k which areC∞ on J. The

spaceU∗ spanned by(U ∗1 , . . . ,U
∗
k ) depends only onU , not on the basis(U1, . . . ,Uk):U∗

is calledthe dual space ofU while (U ∗1 , . . . ,U
∗
k ) is calledthe dual basisof (U1, . . . ,Uk).

Theorem 6.7. If U is a k-dimensional ECC space on J, with weight functions
(w1, . . . , wk), then its dual spaceU∗ is the ECC space associated with the weight
functions

ŵ1 := 1∏k
i=1wi

, ŵ2 := wk, . . . , ŵk := w2.(6.8)

Moreover, a given basis(U1, . . . ,Uk) of U and its dual basis(U ∗1 , . . . ,U
∗
k ) satisfy:

L(U1, . . . ,Uk)(t)
T · L̂(U ∗1 , . . . ,U ∗k )(t) = R for all t ∈ J.(6.9)

Here, L(U1, . . . ,Uk)(t) andL̂(U ∗1 , . . . ,U ∗k )(t) are the(k, k) matrices defined by

L(U1, . . . ,Uk)(t)i, j := L j Ui (t),(6.10)

L̂(U ∗1 , . . . ,U ∗k )(t)i, j := L̂ j U
∗
i (t), i, j = 1, . . . , k,

L̂1, . . . , L̂k standing for the differential operators defined from the weight functions
ŵ1, . . . , ŵk, similarly to (6.5), andR standing for the antidiagonal matrix such that
Rk+1− j, j = (−1) j−1, j = 1, . . . , k.
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Proof. Setting EU := (U1, . . . ,Uk)
T and EU ∗ := (U ∗1 , . . . ,U ∗k )T , the dual basis satisfies

EU ∗(t) =
EU (t) ∧ · · · ∧ EU (k−2)(t)

det( EU (t), . . . , EU (k−1)(t))
for all t ∈ J.(6.11)

Since there exist real numbersai ` such thatLi EU = 1/w1 . . . wi EU (i−1) +∑i−2
`=0 ai ` EU (`)

for 1≤ i ≤ k, we can check that (6.11) leads to

L1 EU (t) ∧ · · · ∧ Lk−1 EU (t) = δ(t)L̂1 EU ∗(t),(6.12)

whereδ(t) := det(L1 EU (t), . . . , Lk EU (t)). Now, from (6.5) andU = Ker DLk, we can
derive that

DLi EU = wi+1Li+1 EU , i = 1, . . . , k− 1, DLk EU = 0.(6.13)

Relations (6.13) imply in particular thatDδ(t) = 0 for all t ∈ J, henceδ is a constant
function on J. A simple recursive argument starting from (6.12) and based on (6.13)
proves that

δ L̂ i EU ∗(t) = L1 EU (t) ∧ · · · ∧ Lk−i EU (t)(6.14)

∧ Lk−i+2 EU (t) ∧ · · · ∧ Lk EU (t), i = 1, . . . , k.

On the other hand, it is straightforward to verify that, for allt ∈ J,

〈 L j EU (t), L1 EU (t) ∧ · · · ∧ Lk−i EU (t) ∧ Lk−i+2 EU (t) ∧ · · · ∧ Lk EU (t)〉
=
{

0 if j 6= k− i + 1 ,
(−1)i−1 δ if j = k− i + 1 .

Taking this latter equality into account, (6.14) eventually gives (6.9). Moreover, due
to (6.13), (6.14) also impliesDL̂k EU ∗ = 0, i.e.,U∗ = Ker DL̂k, which carries out the
proof.

Corollary 6.8. If U is a k-dimensional EC space on J, its dual spaceU∗ is also a
k-dimensional EC space on J andU∗∗ = U .

Proof. Being an EC space onJ is clearly equivalent to being an EC (hence, due
to Theorem 6.6, an ECC) on any closed bounded interval contained inJ. Therefore,
Corollary 6.8 is a direct consequence of Theorem 6.7.

6.2. A Sufficient Condition for Piecewise Smooth Chebyshev Functions

Denote byEi (resp.,E]i ) the space obtained by restricting the elements ofE (resp.,E])
to Ii , i = 0, . . . ,n, so thatEi andE]i are subspaces ofC∞(Ii ) (of dimensionk + 1 and
k, respectively).

Let us first give a necessary condition:
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Theorem 6.9. If 8 is a piecewise smooth Chebyshev function of order k, then, for all
i = 0, . . . ,n, DEi is a k-dimensional EC space on Ii .

Proof. ConditionZI (E]) ≤ k− 1 clearly implies that, for alli = 0, . . . ,n, ZIi (E
]

i ) ≤
k − 1, which means thatE]i is a k-dimensional EC-space onIi . Moreover, comparing
(2.13) and (6.7) shows thatDEi is the dual space ofE]i . Thus, by Corollary 6.8,DEi is
also an EC space onIi .

Remark 6.10. (i) Suppose for a while thatn = 0, so thatE andE] are contained in
C∞(I ). Then, the converse property is also true. Indeed, ifDE is ak-dimensional EC
space onI , by Corollary 6.8, so is its dual spaceE]. Thus,ZI (E]) ≤ k− 1.

(ii) On the contrary, whenn > 0, the necessary condition stated in Theorem 6.9 is no
longer sufficient, as proved by considering theC∞ spaceE spanned by the four functions
(1, x, cosx, sinx) on I = ]−2π,2π [. Let E0 andE1 stand for the restrictions ofE to
I0 = ]−2π,0] and I1 = [0,2π [, respectively. Here, the connection matrixM1 at t1 = 0
is the identity matrixI3. The spaceDE is spanned by the three functions(1, cos, sin)
defined onI and we can verify that, fori = 0,1, DEi is a three-dimensional EC space on
Ii . Moreover, in that case, we haveE] = DE . Hence, the conditionZ(E) ≤ 2 does not
hold: for example, function sin vanishes at three distinct points ofI , namely−π,0, π .

(iii) Suppose that8 is a piecewise smooth Chebyshev function of orderk on I . Then,
through Theorem 6.6, the necessary condition stated in Theorem 6.9 proves that, for
a giveni = 1, . . . ,n − 1, DEi is a k-dimensional ECC space onIi . Thus, thanks to
Theorem 6.3 and Corollary 6.4, we can find positive weight functionswi

1, . . . , w
i
k ∈

C∞(Ii ) such thatEi is the ECC space associated with(1, wi
1, . . . , w

i
k). As forE0 andEn,

without any additional assumption on the two end subintervals, we can only say that both
are(k+1)-dimensional EC spaces onI0 andIn, respectively, conditionZIi (DEi ) ≤ k−1
clearly implyingZIi (Ei ) ≤ k.

We are now searching for conditions sufficient to ensure thatZ(E]) ≤ k−1. Suppose
that, fori = 0, . . . ,n,Ei is an ECC space onIi , with (1, wi

1, . . . , w
i
k) as weight functions,

and denote byLi
j , j = 1, . . . , k, the differential operators defined onC∞(Ii ) by

Li
1U =

1

wi
1

U, Li
j U =

1

wi
j

(Li
j−1U )

′, j = 2, . . . , k.(6.15)

Without any loss of generality, we can assume that

w`−1
j (t`) = w`j (t`) j = 0, . . . ,n, ` = 1, . . . ,q.(6.16)

Instead of expressing the connections by means of the ordinary derivatives as in (2.9),
we can now use the previous operators. ForF ∈ C∞(Ii ) andt ∈ Ii , let us set

3i
k F(tε) := (Li

1F ′(tε), . . . , Li
k F ′(tε)

)T
.(6.17)

It is straightforward to verify that

3i
k F(tε) = Ci

k(t
ε) · Dk F(tε),(6.18)
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whereCi
k(t

ε) is a regular lower triangular matrix with diagonal elements(
1

wi
1(t)

,
1

wi
1(t)w

i
2(t)

, . . . ,
1

wi
1(t) . . . w

i
k(t)

)
.

Thus, the spaceE can now be described as the space of all continuous functionsF :
I → R such thatF |Ii ∈ Ei , i = 0, . . . ,n, and

3`
k F(t+` ) = N` ·3`−1

k F(t−` ), ` = 1, . . . ,n,(6.19)

whereN` is defined by

N` := C`
k(t
+
` ) · M` · C`−1

k (t−` )
−1.(6.20)

The following theorem is a straightforward extension of a fundamental result due to
P. J. Barry [2]:

Theorem 6.11. Suppose that, for ` = 1, . . . ,n, N` is totally positive (i.e., each minor
of N` is nonnegative). Then, ZI (E]) ≤ k − 1 (i.e.,8 is a piecewise smooth Chebyshev
function of order k).

Proof. SinceE]i is the dual space ofDEi , it follows from Corollary 6.4 and Theorem 6.7
that it is thek-dimensional ECC space associated with the weight functions

ŵi
1 := 1∏k

j=1w
i
j

, ŵi
j := wi

k+2− j , j = 2, . . . , k.(6.21)

Let us denote bŷLi
1, . . . , L̂ i

k, the corresponding differential operators onC∞(Ii ). Ap-
plying formula (6.9) to each ECC spaceDEi , we can prove that the connections in the
spaceE] are the following ones:

(6.22)(
L`1U

](t+` ), . . . , L`kU
](t+` )

)T = N̂`·
(
L̂`−1

1 U ](t−` ), . . . , L̂`−1
k U ](t−` )

)T
, ` = 1, . . . ,n,

where

N̂` := RT · N`−T ·R.(6.23)

It follows from [2, Theorem 5] thatN` is totally positive iff N̂` is. Although matrices
N̂` are not exactly of the same type as the connection matrices used by P. J. Barry, the
argument he gives in the proof of [2, Theorem 8] can easily be adapted. So, it allows us
to conclude that, as soon as eachN̂` is totally positive, any nonzero element ofE] has at
mostk− 1 zeros inI .
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However, the sufficient condition stated in the previous theorem is not necessary as
pointed out in the following example. LetE denote the four-dimensional space spanned
by functions(1, t, cosht, sinht). It is an ECC space onI = R. Then,DE is a three-
dimensional ECC onI , which implies thatE] satisfies the required conditionZI (E]) ≤ 2.
On the other hand, the ECC spaceE can be defined from two different systems of weight
functions(1, wi

1, w
i
2, w

i
3), i = 0,1, namely,

w0
1(t) = 1, w0

2(t) = cosht, w0
3(t) =

1

cosh2 t
,

w1
1(t) = cosht, w1

2(t) =
1

cosh2 t
, w1

3(t) = cosht.

The corresponding matricesC0
3 andC1

3 introduced in (6.18) are the following ones:

(6.24)

C0
3(t) =

(1 0 0
0 1/ cosht 0
0 −sinht cosht

)
, C1

3(t) =
(1/ cosht 0 0
−sinht cosht 0
−1 0 1

)
, t ∈ R.

Now, let us denote byEi the restriction of the spaceE to each intervalIi , i = 0,1, with
I0 := ]−∞,0] and I1 := [0,+∞[. Using (6.20) and (6.24), the spaceE can also be
described as the space of all continuous functionsF : I −→ R such thatF |Ii ∈ Ei ,
i = 0,1, and which satisfy the connection condition31

3(0
+) = N ·30

3(0
−), whereN is

the following nontotally positive matrix:

N :=
( 1 0 0

0 1 0
−1 0 1

)
.

Open Question. It may be possible to prove that, if the conditionZI (E]) ≤ k −
1 is satisfied, then, in each interval, there exists a convenient choice of the weight
functionswi

j , j = 1, . . . , k, ensuring that the corresponding connection matrices are
totally positive.
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