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Blossoming: A Geometrical Approach

M.-L. Mazure

Abstract. A geometrical approach of a notion of blossom for piecewise smooth
Chebyshev functions is developed by considering convenient intersections of osculat-
ing flats. A subblossoming principle allows us to obtain all the expected properties and
leads to the notion of blossom for splines based on a given piecewise smooth Chebyshev
function.

1. Introduction

The now well-know theory of blossoming for polynomial functions and splines, first
introduced by L. Ramshaw [34], [35], permits a particularly elegant treatment of the
different tools and algorithms found in traditional CAGEb(trol points de Casteljau

and de Boor algorithmsknot insertion subdivision recurrence relations. .). Recall

that theblossomof a polynomial functionF of degree less than or equal kas the
unique functionf of k variables which is symmetric, affine with respect to each variable
and which, restricted to the diagonal B, gives F. Let us mention the following
fundamental result: two polynomial functiofg, F, of degree less than or equalko
have aC® contact § < k) ata € R iff their blossomsf,, f, coincide on anyk-tuple
containing at leastk — s) times the point [34]. This contact theorem is the key tool
for defining the blossom of a polynomial spline, which has the same properties as that
of a polynomial function, except that it is defined only for particlduples, said to be
admissiblewith respect to the corresponding knot vector [27].

Up to now, two main approaches have been developed in order to extend the theory of
blossoming beyond the strict framework of polynomial functions or splines. On the one
hand, a geometrical one, at the root of which we find a remarkable geometrical property
of polynomial blossom. To be more precise, when a polynomial fundtiaf degree
k is nondegenerate (i.e., when the affine space spanned by its image is of dimension
k), its blossom can be interpreted in geometric terms as follows. Giwdistinct real
numbersy, ..., r andr positive integersiy, . . ., ur Whose sum is equal tq consider
thek-tuple7 = (¢;" - - - ¢/""), where the notatiom” means that the point is repeated
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ui times. Then, the value &t of the blossomf of F satisfies

i=1

(1.2) {(F(T)} =) 0, F(x0),

Osg F(t) standing for the osculating flat of ordief F att. A similar interpretation
exists for nondegenerate polynomial splines [27].

The possibility of defining a blossom by considering intersections of osculating flats
as in (1.1) had first been pointed out by H.-P. Seidel [37jgiometrically continuous
polynomial splinesthen it has been adapted in the case of Q-splines [19], [27]. The
same idea has also been used by H. Pottmann [32], [33], [39] (see also M.-L. Mazure and
H. Pottmann [30], M.-L. Mazure [24], [26]) in order to develop the blossoming theory for
extended Chebyshev spawdsch, in one variable, appear like the natural generalization
of polynomial spaces. Moreover, within this new framework, the blossoming principle
provides a characterization of t&é contact between two functions belongingtie same
extended Chebyshev space, which can be stated exactly as in the case of polynomials.
Consequently, all the tools and results known for parametric polynomial splines do exist
for parametric splines based arsinglegiven extended Chebyshev space.

On the other hand, an algebraic approach can be derived from the classical formula
given by C. de Boor and G. Fix [6] for calculating the coefficients of a polynomial spline
of degreek in the B-spline basis. Actually, when the multiplicity at each kindg equal
to one, this formula leads to the following expression of the valdeat (tj 1, . . ., tj4«)
of the blossons of such a splines:

k
(1.2) S(T) =Y SV @ (-D'wE @),
i=0

wherea is an arbitrary point int], tj1k+1[ and W, stands for the unique polynomial
of degreek which vanishes o™ and satisfiest;® = (—1)%, i.e., Uz (t) = (tj+1 —
...k — t)/kl.

Recently, P. J. Barry has defined the blossom for a spline each segment of which
belongs to an arbitrary extended Chebyshev space, through an extension of the de Boor—
Fix formula, the ordinary derivatives involved in (1.2) now being replaced by differential
operators related to each section [2]. This is possible as soon as the connections (with
respect to these differential operators) are expressed by maatediyfpositivematrices,
the underlying reason being that, under a total positivity assumption, the number of zeros
of anonzero function belonging to some relatied 1)-dimensional space is bounded by
k. P. J. Barry's work is in keeping with the general context of duality between piecewise
smooth spaces investigated by M.-L. Mazure and P.-J. Laurent [28], [29] which enables
the interpretation of the blossoming principle through the notions of bilinear form and
reproducing function.

The approach of blossom that we propose here is a geometrical one: hence, osculating
flats will be our basic tools. In particular, we show in Section 2 that it is the relevant
geometrical notion to express the (possibly left or rigbit)contact betweegeometri-
cally regular functions of order kthat is to say, functions which are smooth except at
a finite number of points, their left and right derivatives up to oidér these points
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being linked by lower triangular matrices with positive diagonal elements, and for which
the k first (left or right) derivatives are everywhere linearly independent. In Section

3, such a functiond is said to bea piecewise smooth Chebyshev function of order k
when, whatever th&-tuple 7 = (¢j* - -- /") may be, the corresponding intersection
Mi_; Os&-,, @ () consists of a single point: in a natural way, this point is labelem)

andg is called the blossom @b. Section 4 is devoted to the fundamersiabblossoming
principle: for any fixeda, the functiont — ¢(at1) is a piecewise smooth Chebyshev
function of orderk — 1 with values in Osg 1®(a). This is the key tool to prove that

the blossom behaves as in the polynomial case, except that the affinity with respect to
each variable is now replaced by a pseudo-affinity property. In particular, the possibility
of characterizing the (left or right) contact through the blossom enables the definition
of blossoms for splines based on a given piecewise smooth Chebyshev function, which
is the object of Section 5. Finally, in Section 6, thanks to the result of P. J. Barry on
the number of zeros mentioned above [2], we give sufficient conditions to construct
piecewise smooth Chebyshev functions. Let us emphasize the fact that all the results
obtained in the present paper can be applied in the general case of splines whose sections
belong todifferentextended Chebyshev spaces, whereas all the previous papers based
on a similar geometrical approach considered only splines built from a single extended
Chebyshev space.

2. Splines Based on a Geometrically Regular Function

Let A be afinite-dimensional affine space, (8, . .., Ap) be an affine frame ofl, and
let | be a real interval with a nonempty interior. Consider a functionl — A. Then,
it can be expressed in a unique way as follows:

p P
(2.1) o)=Y &M A, with Y &t)=1  tel.
i=0 i=0

2.1. Nondegenerate Functions

Definition 2.1. Theorder of® is defined as the dimension of the affine space affiiin
spanned by the image df. The spac& := sparn{®o, ..., ®,) = span(l, &1, ..., dp)
will be calledthe space associated with.

We can easily verify thaf depends neither on the affine spa¢eontaining Im{®),
nor on the chosen franm@, ..., Ap) in A.

Theorem 2.2. The function® is of order k iff its associated space is of dimension
k+1.

Proof. We can prove thak + 1 real valued functionss, ..., Gx defined onl
are linearly independent iff there exish,...,Xx € | such that the determinant
det(G; (Xj))o<i, j <k IS nonzero.

Consequently, the spaé€ds of dimension greater than or equakte- 1 iff there exist

..........
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equal to¢ + 1. This condition means that thiet+ 1 points®(tp), ..., ®(t,) are affinely
independent. Hence, the condition din> ¢ + 1 is satisfied iff dingaff Im(®)) > ¢. ®

As a direct consequence, Theorem 2.2 leads to the following result:

Corollary 2.3. Consider the functio® defined in(2.1) and let€ denote its associated
space Then the following three statements are equivalent

(i) @ isoforderp
(i) Ao, ..., Apbelong toaff Im(d);
(i) (o, ..., Pp) is a basis of.

Definition 2.4. Let& be a(k + 1)-dimensional space of real valued functions defined
onl. Then, a functiorF defined onl , with values in a finite-dimensional affine spdte
will be called arE-functionif its affine coordinates in any affine frame©belong tof

(in other words, if its associated space is a subspa€ewlfiich implies in particular that
the order ofF is less than or equal tg. An £-functionF will be said to benondegenerate

if it is of orderk (i.e., if its associated space&3.

Theorem 2.5. Let& be a(k+ 1)-dimensional space of real valued functions defined on
| and let® be a nondegeneratéfunction Then a function F: I — Cis an&-function

iff there exists an affine map:haff Im(®) — C such that F= h o ®. An&-function F
defined by F= h o ® is nondegenerate iff h is one-to-one

Proof. Let(Py, ..., P be an affine frame of aff ligi), so that we can write
k k
(2.2) d(t) = Z B (t) P, Z Bij(t) =1, tel.
j=0 j=0
It follows from Corollary 2.3 tha{ By, ..., By) is a basis of. Given an affine frame
(Co, ..., Cy) of C and a functiorF : | — C, we can write

4 14
Fty=) R®C, Y RMy=1 forall tel.

i=0 i=0

If F isan&-function, each belongst&. Thenk, = Z}(:o &;iBj,i =0, ..., ¢ Hence,
k ¢
(2.3) F@) = Z B (t)ZajiCi.
i=0 i=0

On the other hand, the equal@f:0 Fi = 1implies that

k 14
(2-4) Z Za“ Bj =1
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Since (By, ..., By) is a basis of¢, comparing (2.4) ant{j}‘zo B; = 1 proves that,
for j =0,...,k, Y{_pai = 1. Consequently, setting(P,) := >/_,a;C; for j =
0,..., Kk, provides an affine map : aff Im(®) — C such thatF = h o ®. Clearly,
aff Im(F) = h(aff Im(®)). HenceF is of orderk iff h is one-to-one.

The converse part is obvious. ]

2.2. Geometrically Regular Functions

Consider a functiob : | — A. Let us recall that, ifb is C* on |, its osculating flat
of order i (0 < i < k) at a pointa € | is the affine flat going througtb (a) and the
direction of which is the linear space spannediya), ..., ®© (a). It will be denoted
by Osg ®(a). In particular, Osg®(a) = {®(a)}. Let us observe that

(2.5) Osg @ (a) C affIm(®).

Consequently, ifb is of orderk and if thek derivativesd’(a), ..., ®®(a) are linearly
independent, then Os® (a) = aff Im(P).

More generally, suppose now thatis an interior point ofl , and consider the two
intervalsl ~ :={x € | |[x < a}andl ™ := {x € | | x > a}. Suppose thab is continuous
onl andC*onl ~ andl * separately. Then, for@ i < k, itis possible to define similarly
OsG @(a) from the left derivative®’(a™), ..., 1 (a~) of ® ataand Osg @ (a) from
its right derivativesd’(a®), ..., @ (a). When Osf ®(a) = Osg" @(a), this affine
flat will be simply denoted by Os@ (a).

Suppose that thieleft (or right) derivatives ofb ata are linearly independent. Then,
the existence of thk osculating flats Oseb(a),i = 1, ..., k, is guaranteed iff there is
a (unique) regular lower triangular matri of orderk such that

(2.6) Dxd(@t) = M - Dyd(a),
where, fore = — or e = +, D@ (@°) is defined by
(2.7) Dy® (@) = (¥’ (@), ..., o @)T.

However, this is not a sufficient condition farto provide a “smooth” curve. Indeed, if
®’(at) = —d’(a”), the tangent line Oseb(a) does exist, and yet, the curve defined
by ® has a cusp at the poirdt(a). In case thek derivatives at a point are linearly
independent, a rough localization of the curve near a paimbbtained by means of the
Frénet frame of ordek (i.e., the orthonormal system obtained fro@i(t), ..., @M (t))
by the Gram—Schmidt process). So, if we wénio provide a “nice” curve, we have (at
least) to require the Eriet frames e~ anda* to be identical. As a matter of fact, this
occurs iff relation (2.6) holds with the additional assumption that the diagonal elements
of M are positive. This will give sense to the definition hereunder.

Throughout this paper, we shall consider a fixed sequaneet; < --- <ty (n > 0)
of interior points ofl and the corresponding sequence of consecutive intervals

lo:={xel|x=t], Ih = {xel|[x=1t}

(2.8) li = [, tiva], i =1...,n-1,



38 M.-L. Mazure

if n > 1, with the conventiong ;=1 if n = 0. Letus set, := I\{ty, ..., ty}. In all the
formulas to come, giveh € |, the notatiort® can be replaced bywhent € I, while

it is to be read either as” ort~ whent is one of the;’s. But, of course, in casehas a
left endpointto, t§ will stand only fort", with a similar convention for a possible right
endpoint.

Definition 2.6. Suppose tha® : | — A is continuous orl andCk on each interval
lj,j =0,...,n. Then® is said to begeometrically k-regulaif the following two
properties are satisfied:

(i) forall t* € |, thek vectors®' (t?), ..., ®®(t?) are linearly independent; and
(ii) forall ¢ =1, ..., nthere exists a lower triangular matifi, = (mfj )1<i,j <k With
positive diagonal elements, such that
(2.9) Dk®(t,) = M, - Dx®@(t,).
Accordingly, if ® is geometricallyk-regular, for alli = 1,...,k and allt € I,

Osg @(t) exists and is of dimension It results from (2.5) that the order of a geo-
metrically k-regular function is greater than or equalkolf ® is of orderk and is
geometricallyk-regular, it will simply be said to ba geometrically regular function of
order k As an example, a continuous functidn: | — A, assumed to be piecewi€g
(i.e.,C! everywhere except at tHes), is a geometrically regular function of order 1 iff
it is strictly monotone on, with values in an affine line.

Remark 2.7. (i) If ® : | — A is a geometrically regular function of ordker any
basis(Uo, ..., Uy) of its associated spacesatisfies

(2.10) detU; Y (t*))o<i j<k #0  forall t*el.

Moreover, if the connections fab are expressed by (2.9), aédyfunction F = ho ®
(in particular, anyF € £) also satisfies

(2.11) DiF (") = M, - DkF(t,), £=1,....n.

Conversely, le£ be a(k+1)-dimensional subspace of piecewefunctionsF satisfy-
ing (2.11) where thd/,’s are lower triangular matrices with positive diagonal elements,
and for which (2.10) holds for a given basidy, ..., Uy). Then, any nondegenerate
E-function ® is a geometrically regular function of ordler

(i) Let ® be a geometrically regular function of ordeand let€ be its associated
space. FronF = h o @, it results that the order of afi-function F is equal to the
dimension of OscF (a), wherea is a given point inl . Accordingly, given a subinterval
J C | supposed to have a nonempty interibrand its restrictionF|; have the same
order. For instance, as soon as&function vanishes o, it vanishes on the whole
interval | .

Suppose tha® : | — A is a geometrically regular function of ordkrsatisfying
(2.9). Let us choose, once and for all, a basis in the diredtior aff Im(®) and denote
by (-, -) the inner product im\ for which this basis is an orthonormal basis, and by “det”
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the determinant with respect to this basis. Then, giverl vectorsWy, ..., Wk_1 € A,
Wi A -+ A W1 will stand for the only element of satisfying

detWy, ..., Wk_1, X) = (Wp A -+ A Wi_q, X) forall X e A.
So that, for alk® € I, ®’'(t*) A - -- A @&~ (t#) provides the orthogonal direction to the

osculating hyperplane Ogg @ (t). This direction is also given by the vectdri (t°) € A
defined by

D) A - A DR (EF)
Bopey -
(2.12) ) = det(®’(t¢), ..., d®(te)) ’

which is characterized by the followirigrelations:
(2.13) (@*(t), @V(t) =0, i=1,....k—1,  (d¥t)), oM (t*))) =1
Let us observe that relations (2.9) imply that
1 _
(2.14) (L) = — DY), ¢=1,...,n.
Mk

In other words®* can be considered as a function defined on thé.set{t,, t,", ¢ =
1, ..., n}:itwill be calledthe normal functiof ®. On the other hand, the very definition
of ®*(t%), t* € |, provides the following equivalence:

(2.15) PeOsg 1®(t) & (P—d(t), d(t%)) =0.

As soon asb is assumed to k&%~ on eacHj, its normal functiond” is C<~ on each
I;. Then, by differentiating relations (2.13) on each subinterval, a recursive argument
proves that, foralt® e |, forl <i <kand0< j <k —1,

i i 0 ifi+j<k-1,
800 (te ) 18y — )
(2.16) (@D (), d a»_{(ly it ok
This immediately implies that, for alf e |, thek vectors®?(t?), ..., ®*&D(t?) are

linearly independent. Consequently, the two linear spaceg@paf), ..., ok (te))+
(whereV+ denotes the subspace orthogonaMtpand spand®(t¢), ..., =D (te))
are both of dimensiom. Therefore, relations (2.16) eventually lead to the following
equalities:

(2.17) span®'(t®), ..., d* (%)t = span@*(t?), ..., " V(t%)), 0<i <k
Thus, a pointP belongs to Osgc; @ (t) iff it satisfies
(2.18) (P — ®(t), d*O(t%)) =0, s=0,...,i — 1

As an immediate consequence of (2.17), fortad 1,...,nand alli =0, ...,k — 1,
the two spaces spanned, respectively, kyp(t,7),..., ®* -V, 7)) and
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(P4t T), ..., ®0-D(t, 1)), are identical. Accordingly, there existregular lower tri-
angular matrices/’, ..., M§, such that

(2.19) (@), ..., *C V)T = M) (D4(t)), ..., DV, )T,
L=1,...,n.

Actually, using (2.9) and (2.16), we can verify that the diagonal of mafrixs equal to

1 1 1
Mk Mg 1 k-1 My

2.3. £-Splines

Throughout this subsection, we shall deal with a given geometrically regular function
of orderk, ® : I — A. We shall denote b\, ..., M, the corresponding connection
matrices, and by the space associateddo

Inside any tuple, we shall use a multiplicative notatishmeaning that the pointis
repeated. times. Moreover, associated with an arbitrgguple 7 € | P, we consider
the p-tuple 7° composed of the same elements7abut arranged in ascending order.
Using the multiplicative notation introduced above, tipiguple 7° will be written
709 = (¢ ... ¢"), with positive integerg andt < 7j1.

2.3.1. Osculating Flats and Contact
Fors < k, two £-functionsF,, F, will be saidto have a contact of order s ata | if
(2.21) FP@)=F"@), i=0,...s

fore = + ore = — such thab® € |. Observe that, sincé; andF, both satisfy (2.11),
if ais any interior point ofl , (2.21) holds foe = + iff it holds for e = —.

Theorem 2.8. Twoé&-functions f = h; o ® and F, = h, o ® have a contact of order
s<katae liffhy(P)=hy(P)forall P € Osg ®(a).

Proof. Let us denote by, andh, the linear maps associated whh andh;, respec-
tively. Since Osg® (a) is the affine flat going througfr (a) and the direction of which
is spanned by the linearly independent vectbi&@®), . . ., ®®(a?), h; andh, are equal
on Osg ®(a) iff

hi(®(@) = ha(®(@),  h(@V@)) =hy(@V@)), i=1...,s

Now, h; (®(a)) = F;(a) andh; (@1 (a®)) = F;V(@) for j = 1,2,i =1,...,s, which
concludes the proof. [ ]

Theorem 2.9. If two nondegeneraté-functions kr and F, have a contact of order
s<katae |, then for any p-tupleT € I ? (p < k) containing(a“~®) (i.e., in which
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the point a is repeated at least-k s time$, assuming tha ©? = (r;1 ... 7, *), we
have

(2.22) ﬂ Os&_,, Fi(t) = ﬂ Os&_,,, Fa(t) .

i=1 i=1

Proof. SinceF; and F, are nondegenerate, we can define &rfunction from F;
instead ofd. In particular,F, = ho F1, whereh denotes a one-to-one affine map defined
on affIm(F,). Sinceh is one-to-one, we have:

r r
(2.23) [(h(Os&—, Fi()) =h (ﬂ OsG_, Fl(ti)> :

i=1 i=1
Clearly, for allt € | and allj < k, Osg F»(t) = h(Osg Fi(t)). Hence, (2.23) can be
replaced by

(2.24) ﬂ 0sG_,, Fo(z) = h (ﬂ OsG_, Fl(ri)> :

i=1 i=1
On the other hand, Theorem 2.8 ensures that

(2.25) h(P)=P forall P e OsgF.(a).

Sincea appears at lea&t— stimes in7, without any loss of generality, we can suppose
thata = 11, so thatu; > k — s or, as wellLlk — u1; < s. Consequently, any in
Mi_; Os&-,, Fi(zi) belongs to OscFi(a), hence, by (2.25)P is invariant undeih.
Consequently, (2.24) proves that

r

[ 0S&-y, Fi(zi) C [ )OSGyy Fa(ri).

i=1 i=1

This finally leads to equality (2.22) by exchanging tb&es of F; and . [ ]

2.3.2. Admissible Tuples

Givenn fixed integeramng, ..., my, suchthat 0< m; < kfori = 1,...,n, we define
the corresponding knot vector by

(2.26) Ti=@™. ...

Definition 2.10. Let 7 be an element of P, p < k + 1, with 7°9 = (7} ... /).
Then,7 will said to beadmissiblevith respect to the knot vectdrif everyt; (1 <i < n)
belonging to rif, 7] is repeated at least; times in7 .

The notation rif, 8] stands for the relative interior of intervat[8], i.e., Jo, B[ when
a < B and{a} whena = B. Therefore, fop < k+1and 1<i < n, the p-tuple(tip) is
admissible iffp > m;. In particular, since the multiplicity at each krtpfs supposed to
be less than or equal tg thek-tuple (t¥) is admissible whatever the point | may be.
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Definition 2.11. If 7 is an admissiblg-tuple, p < k, its domainis defined as

(2.27) D(TM):={tel/, T)isadmissiblé.

Theorem 2.12. Let 7 be an admissible p-tuplep < k. Then D(T) is a union of
consecutive intervals Jli.e.,
(2.28) DM = {J b
ieJ(T)
where 7 (T) is a nonempty subset of consecutive integers

Proof. For simplicity, we shall assume that > O fori = 1,...,n. If not, we can
get rid of all thet;’s which do not really appear in the knot vectiorand simultaneously
join the corresponding consecutive intervals into a single oneM@t) denote the set
of all integerd, 1 <i < n, such that; appears at least; times in7". Two possibilities
have to be examined.

L) N(T) # 0.
In that case, clearly

(2.29) J(T) = {Min N(T) = 1,..., Max NV (T)}.

For example, ifl = (tip), with 1 < i < n, we haveN(T) = {i} since the admissibility
of 7 impliesp > m;. Thus,J(T) = {i — 1,i}, sothatD(T) = l;_1 U |;.

Q)N = 0.

In that case, on account of the admissibilityZgfwe can verify that there exists a unique
integer? € {0, ..., n} such thatry, ..., r € |, and thatD(T) = I, or, equivalently,
that 7(T) = {£}. [ |

2.3.3. Splines and Osculating Flats

Given the sequenac@ny, ..., My) of integers introduced in the previous subsection, for
¢=1,...,n, M, will stand for the(k — m,, k — m,) lower triangular matrix obtained
by suppressing the, last rows and columns d¥l,.

Definition 2.13. A continuous functionS : | — A is said to bean &£-spline (with
respect to the knot vectdr) if the following two properties are satisfied:

(i) there exisn + 1 £-functionsF; : | — A, j =0,...,n, such that
(2.30) S(t) = Fj () forall tel; andall j=0,...,n;

(i) Dy_m, S(t;™) = M, - Dy, S(t, ) forall £ =1, ..., n.
Moreover, theg-spline Swill be said to benondegeneraté# eachF; is a nondegenerate
E-function.

Clearly,S: | — Ais an&-spline iff it is anS-function, whereS denotes the space
of all real valued¢-splines. Due to the regularity d#, this spaceS is a(k + m + 1)-
dimensional space, whene:= >")_, m,. On account of Remark 2.7(ii), afsplineS
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given by (2.30) satisfies
(2.31) affim(S);,) = aff Im(Fy), j=0,...,n.

Let us observe in particular that any nondegeneSafienction (i.e., anye-spline such
that dim(aff Im(®)) = k + m + 1) is a nondegeneratéspline.

Lemma 2.14. Consider a nondegeneratespline S satisfying2.30), and a p-tuple
T (p < k) supposed to contait,™), for a given integert € {1,...,n}. Then if
T = (¢ ... "), we have

r

(2.32) ()OSt Fe(n) = () OSGyy, Feoa(@).

i=1 i=1

Proof. According to Theorem 2.9, sind&e_; andF, are nondegenerate, it is sufficient
to prove that they have a contact of ortter m, att,.

SinceSis an&-spline, it satisfies condition (ii) of Definition 2.14, which can also be
written

(2.33) Di-m, Fe(t;)) = My - Dyem, Fe-a(ty),

due to the fact that,_; andF, coincide withSon 1,_; andl,, respectively. On the other
hand, any¢-function being ar£-spline, we have

(2.34) Dic-m, Fe-1(t) = Me - Dicm, Fe-1(t).
Comparing (2.33) and (2.34), we obtain
(2.35) Di—m, Fe(t;") = Dy—m, Fe—1(t)),

and of course a similar equality foy . As we additionally havé(t;)) = F,_1(t;) =
S(ty), equality (2.35) means th&,_; andF, have ak — m, contact at,. [ |

Lemma 2.15. Let S be a nondegeneragespline and letZ € | P be an admissible
p-tuple(p < k) such that7®® = (¢}"* ... /). Then the affine flaf)_, OsG_,, F¢(zi)
does not depend ahe 7 (T).

Proof. As soon as7(T) contains two consecutive integets- 1 and¢, 1 < £ < n,
the pointt, appears necessarily at leasttimes in7. Consequently, equality (2.32) is
valid. This yields the desired result. ]

For¢ € {1,....,n} andi < k, Os¢ S(t,) = Osg F(t)) and Osg S(t,) =
Osg F,_1(ty). If i < k—m,, as an obvious application of (2.32) we have 5¢t,) =
Osg Fo_1(tp), i.e., Os¢ S(t;) = OsG S(t¢). In other words, OscS(t,) is well defined
foralli < k—m,. Onthe contrary, for > k—m,, we can deal only with O$cS(tg) and
Os¢ S(t;). On the other hand, Os8(t) is well defined for any € I, and anyi < k.
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Theorem 2.16. With the same assumptions as in Len®rikb,let us set D:= D(T)
and denote by $the restriction of S to DThen forall ¢ € 7(T),

(2.36) ﬂ OsG_,, Fo(t) = ﬂ OS&_,,; So ().
i=1 i=1

Proof. (1) On account of the admissibility @f, it may be the case that Qsg, S(ti)
is not defined only if > 2, more precisely in the following two situations:

Eitheri = 1,71 = t,, with 1 < £ < nandu; < m, in which caser; is the left
endpoint ofD. Then, Osg_,, Sp(r1) stands for Osc ,,, Fe(ty).

Ori =r, 7 =t,,withl < ¢ <nandu, < my, inwhich case; is the right endpoint
of D. Then, Osg_,, Sp(tr) stands for Osg ,, Fe_1(te).

(2) Taking Lemma 2.15 into account, it is sufficient to prove the existence of an integer
£ € J(T) such that

r r
(2.37) [ OS&-y, Fe(m) = [ OSG-, So(@).

i=1 i=1
The proof will be done by induction on Observe first that, whenevey, ..., t, are
all located in a union of consecutive subintervils.. ., I, such thatm;;; = --- =
mjr—1 = 0, any integef € {j, ..., j+r —1} belongs ta7(T), and, sincej = - - - =
Fj4+r—1, we have additionally Ogc,, Sp(ri) = OsG—,; Fe(r) foralli =1,...,r.

Therefore, (2.37) is trivially satisfied by any such integ¢ein particular, on account of
the admissibility of7, this occurs as soon as< 2.

So, assume that > 3 and that the result has already been proved ferl. Then
T = (1" ... 1, _1"1) is also admissible.

According to the observation above, we can also suppose that there exists at least one
knot of nonzero multiplicity in {1, 7 [. Lett, be the greatest one. The multiplicity of all
possible knots located betwegrandz, being equal to 0, we have

(2.38) OsG&—y, So(tr) = OSG—y, Fe(m).

On the other hand, the admissibility @f implies that we have eithet, ; > t, or
7.1 = ty with u;_3 > m,. In both cases, we can derive thiidielongs tq7 (T'). Hence,
the recursive hypothesis appliedZd leads to

r—1 r—1
(2.39) [ Os&, Fe(zi) =) OG-, Spr (7).
i=1 i=1

whereD’ ;= D(T’). Moreover, fori = 1,...,r — 1, 7; is not the right endpoint ob’.
Thus,

(2.40) OsG—,; Spr(ti) = OSG—,; Sp(m) for i=1...,r—1
Finally, we can write

r—1 r—1
(2.41) () Os&u, Fe(ni) = () Os&_, So(ti),
i=1 i=1

which, together with (2.38), proves that the integ¢satisfies (2.37). ]
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3. Blossom

For some particular geometrically regular functions, it will be possible to define a notion
of blossom by means of intersections of convenient osculating flats.

3.1. Piecewise Smooth Chebyshev Functions and Blossoming

Definition and Theorem 3.1. A geometrically regular function of order, kb : | —
A, will be said to be giecewise smooth Chebyshev function of ordem 1 if, for all
distinct pointszy, ..., v € | and all positive integergy, ..., ur whose sum is equal
to k, the affine flaf")_, Os&-_,, ® () consists of a single pointf so, for all k-tuple
T e 1, such that7°¥ = (7} ... ¢/"), we shall set

r

(3.1) {p(T)) =) OG-, (%)

i=1

The functionp : 1¥ — A so defined will be callethe blossom ofb. It is a symmetric
function and it satisfies

(3.2) ety =d@t) forall tel.

Proof. The symmetry o is evident. On the other hand tie |, by (3.1),{¢(t")} :=
Osg @ (t), whence (3.2). ]

Suppose tha® is a piecewise smooth Chebyshev function of oiden |, the con-
nections being still given by (2.9). Then, a b are two distinct points of, for all
i =0,...,k, the value of the blossog at thek-tuple (a“~'b') is given by

(3.3) {p@'b)} := Osg ®(a) N Osg_; P(b).

So, fora®, b® € 1, the linear system

k—i

®@)+ ) 4PO@) = @) + ) vd(b7)

s=1 s=1

has a unique solution, which implies the linear independence &fteetorsd’ (@), . . .,
oV (@), d'(b?), ..., oKD (b).
Let us consider the functioN : | — R defined fort € | by

(3.4) N(t) ;= det( @' (@), ..., d*D@), o) — d(@)).

Clearly, functionN belongs to the space associated witld, hence it satisfies (2.11).
Furthermore, for alt®’ € 1,

N'(t*) = det(®’' (@), ..., d* V@), d'(t)).

Thus, from the two propertiedl’(t¢) # 0 fort # a, and N'(t,*) = mi; N'(t, "),
¢=1,...,n,we can derive thall is strictly monotone on. Accordingly, the obvious
equalityN(a) = 0 implies thatN (t) # 0 fort | \a. Equivalently, this means that

(3.5) d(t) ¢ Osg_1 P(a) for t+#a.
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In particular, it results from (3.5) thak is one-to-one on.

Definition 3.2. Let ® be a given piecewise smooth Chebyshev function of degaind
let £ be its associated space. For any affine mma@ff Im(®) — C, the blossom of the
E-function F := h o ® will be defined by

(3.6) f:=hog.

Theorem 3.3. Let ® be a given piecewise smooth Chebyshev function of ordet k
£ be its associated spacand let F be anf-function Then F is a piecewise smooth
Chebyshev function of order k iff it is nondegener#tso, the blossom f of F satisfies

;
(3.7) {Ff . 1) =) OsGy, F(r),

i=1
for all distinct pointszy, ..., v € | and all positive integerst, ..., ur whose sum is
equal to k

Proof. On account of Remark 2.F, is a geometrically regular function of ordeiff
it is nondegenerate. Now, assume tkat= h o ® is nondegenerate, i.e., by Theorem

2.5, thath is one-to-one. Then, for all distinct points, ...,, 7 € | and all positive
integersus, ..., wr whose sum is equal

r r
(3.8) h (m Os&— cID(":i)) = Os-—,, F(7i).

i=1 i=1

This equality shows that the affine flat appearing in the right-hand side of (3.8) consists of
the single poinh(¢(7;" . .. ©")). Hence F is a Chebyshev function and, using definition
(3.6) yields (3.7). [ |

In particular, the blossom of aftfunction depends only ofi, not on the particular
function ® which define<t.

3.2. A Characterization of Piecewise Smooth Chebyshev Functions

Theorem 3.4. Let ® be a geometrically regular function of order, kupposed to
be C*~1 on each interval j, j = O,...,n, and let®* be the normal function of
®. Then & is a piecewise smooth Chebyshev function of order, Kaiffall distinct
pointsty,..., 7 € I, all & = 4+ or — such thatr” € I, and all positive integers
U1, - .., i Whose sum is equal tg ke k vectorsb®(ry), % (rf1) ..., &=V (¢f1),
D8 (1%2), ..., DE(T), ..., DFW D (g#r), are linearly independent

Proof. Let us fixr distinct pointsty, ...,y € |, andr positive integersus, ..., iur
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such tha";_, i = k. Using (2.18), forX € A, we can write

(3.9) X e[)0s& , @(r) & (X—d(n), "V (xf)) =0,
i=1

The right-hand side of (3.9) can be regarded as a linear syster of | _, ui equations
in k unknowns. This system has a unique solution iffkhvectors®* ) (zf1), 1 <i <,
0 < j < ui — 1, are linearly independent.

Hence,® is a piecewise smooth Chebyshev function of otd#f this holds for any
choice of distinct pointss, ..., . € |, and of positive integergs, ..., ur whose sum
is equal tok. ]

Corollary 3.5. Let® be a piecewise smooth Chebyshev function of ordsupposed
to be C*-1 on each interval jl. Then for all distinct pointsty, ..., % € | and all
positive integergey, ..., ur such thatZi'=l ui <Kk,

(3.10) dim (ﬂ 0sG_,, @(ri)> =k—=> .
i=1

i=1

Proof. Given anyr distinct pointsty, ..., v € | (with fi € |) and any positive
integersus, . .., ur such thatd _; ui < k, the equivalence (3.9) is still valid. By the
previous theorem@p* D (zf1), 1 <i <r,0< j < u; — 1, are linearly independent,
so that the solutions of the linear system involved in (3.9) now fortk a Z{zl Hi)-
dimensional affine flat. ]

In particular, letus fik—1 pointsxy, ..., Xx_1 € | andsupposethéts, ..., X1)%% =
(r;*...7"). Then, according to Corollary 3.5, the affine space

(3.11) D =()0sG_, ®(n),

i=1

is an affine line. Now, it follows from the definition of the blossom that, whilaries
on |, the pointp(xy, ..., X_1, t) moves along the affine linB. As a matter of fact, it
will be pointed out in the following section that functignsatisfies a pseudo-affinity
property with respect to each variable in the sensedligt, ..., xc_1, -) is always a
strictly monotone function.

4. The Subblossoming Principle

This section is devoted to the subblossoming principle, that is to say, to the possibility of
constructing piecewise smooth Chebyshev functions of lesser orders from a given one
by fixing some of the variables in its blossom.

Let® : | — A be a piecewise smooth Chebyshev function of oidekgain, we
denote byMy, ..., M, the connection matrices and Bythe space associated widh
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For simplicity, we shall assume thdt is infinitely many times differentiable on each
intervall;, although the results can be adapted in cases of lower order of differentiability
(see [26]). So, from now on, the expression “piecewise smooth” (with respecttits)he

is always to be interpreted as “piecew({s&”.

4.1. Constructing Subblossoms

Theorem 4.1. Given ac I, the functiond : | — Osg_;®(a), defined for all te |
by

(4.1) o(t) = p(at ™),

is a piecewise smooth Chebyshev function of otler 1) on I, the blossom of which
is given by

(4.2) oy, ..., tke1) =@, ty, ..., k1) forall ty,...,tk_1€el.

Proof. The proof includes several steps.
(1) Let us first show tha® is a geometrically regular function of ordier- 1.
By (4.1), we haveb(a) = ®(a) and, for each < I \{a},

(4.3) {®(t)} = Osg_;1 @ (@) N Osg D(t).

Since the values ob all belong to Osg 1 ®(a), it is in fact sufficient to prove thab
is (k — 1)-regular.

e Suppose first that € I,.
(i) Let us show thatb is C* on each interval; .
For allt € |, there exist real numbegs(t), A1(t), ..., Ak_1(t) such that
- k—1
(4.4) O(t) = O(1) + pt)HP'(t°) = (@) + sz(t)cb(s)(a),
s=1

and, on account of (3.5)(t) £ 0 fort £ a. Observe that

(4.5) nt) =

In order to prove tha® is C* on eachl;, it is sufficient to prove thaf is a C®
function on each . For this purpose, let us consider the functddn | — R introduced
in (3.4). Here,

(4.6) N(t) := det®'(@), ..., d* (@), o(t) — ¢ (@),
and, for allt® € I,
(4.7 N %) = det(®'(a), ..., P* V@), oV t%)).

Indeed, when € |, we can get rid ot everywhere. In particular, fdr= a, (4.6) and
(4.7) lead to

N@ = N'@ =---=N&D@) =0,
A = N®(a) = detd'(a), ..., PM(a)) #£ 0.

Moreover, it results from Section 3 thilt (t°) =£ 0 for allt € I \{a}.

(4.8)
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On the other hand, from (4.4) we can deduce that

k—1
O(t) — D@ = —u(tHP'(t*) + Y AP (@),
s=1

which proves that

0 if t=a,
(4.9) wté) = N(t) .
— f .
N () if t£a
Givenj € {0,...,n}, if a ¢ Ij, u is clearlyC* on I;. Actually, the lemma which

follows will prove thatu is C* on |j even ifa € |; and that, additionally,
(4.10) w@ =—1/k.

Lemma4.2. Let J be areal interval containing.&uppose that f J — Ris C* on
J and satisfies fa) = f'(a) = --- = f& V@ =0, f®¥(@) % 0,and f(t) # 0 for
allt € J\{a}. Then the function g defined on J by

f(t)
f/(t)

(4.11) git) = if t£0, g(a =0,

isC®on Jandd@) = 1/k.

Proof. The assumptiorf (a) = f'(a) = --- = f*&D(a) = 0 implies the existence
of a function f; which isC> on J and which satisfies (see [26])

f(t)=t—ak ft) forall telJ.

Consequentlyf’(t) = (t —a)* Y[k f(t) + (t —a) f{'(1)], and the assumptiof/ (t) # 0
forallt € J\{a} implies thatkf;(t) + (t —a) f;'(t) # 0 fort # a. Therefore, we have

fi(t)
kfi(t) + (t —a)fi/(t)

gty =(t—-a forall te J\{a}.

As a matter of fact, sincg(a) = 0 and fy(a) = f®(a)/k! # 0, this expression is still
valid fort = a, which proves thaty is C* on the whole intervall. Moreover,

'(a) = lim fu®) _1
9@ =M ko rt—afi® Kk

(i) Let us study the connectionstat . . ., t,. According to part (i), we can differentiate
(4.4) up to order (i < k — 1) on each,, which gives

(4.12) V") = ptHOIV () + A+in/ )V () + Gi(t),
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where G; (t?) is a linear combination ofp’(t¢), ..., ®01-D(t?). In particular, since
u@) =0, fort = a, (4.12) reduces to

(4.13) V(@ = 1L+ix' @)V @ + Gi@).

Observe that the coefficie(t + i ' (a)) does not vanish far < k — 1, due to equality
(4.10). So, we eventually obtain

(4.14) OsG d(a) = Osg ®@), i=0,....,k—1.

On the contrary, fot # a, relations (4.12), together with the left equality in (4.4), can
be summarized as follows:

(4.15) (@) — d(t), D'(t°), ..., d* V") = R(t*) - D@ (t°),

where R(t¢) stands for a lower triangular matrix of orderall the diagonal elements
of which are equal t:.(t%). Fort # a, on account of (3.5) and (4.4),(t?) # 0, and
(4.15) proves the linear independence of kheectors involved in its left-hand side. In
particular, forali < k—1, Os¢ ®(t) is of dimension. Moreover, relation (4.12) clearly
implies that for allt # a,

(4.16)  OsC¢ ®(t) C 0sG, 1P (t) N Osg_1 D(a), i=0,....,k—1

By Corollary 3.5, the right-hand side of (4.16) has dimensjore., the same dimension
as Osf @ (t). Thus, we obtain the equality

(4.17) Os¢ ®(t) = OsG41 P(t) N Osg_1 P(@)  forall t#a.

Consequently, fof = 1,...,n, (4.17) proves that Ogcb(t,) = Osg ®(t,) for all

i =0,...,k—1. This proves the existencewfegular lower triangular matricdd, of
orderk — 1 such that
(4.18) Dk_1®(t™) = My - D1 ®(t 7).

Moreover, on account of (4.15) and (4.5), the diagonal element; afre

~ u(te™) M1 :
4.19 L= 0 It = L i=1....k—=1,
( ) i pL(tz_) i+1i+1 mil
hence they are positive.
e Suppose now that = t,,, £o € {1, ..., n}.
Fort # a, we can write
- k—1
(4.20) D(t) = d(1) + )P () = @ + Y _ AP (@),
s=1

whereu (t?) is defined as in (4.9), but now with

N(t) ;= det®'(@"),..., d*D@"), o) — d(@)).
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Again, it appears clearly that is C* on eachl;, hence so isb. Moreover, formulas
(4.12) and (4.17) are still valid far # a. In particular, the connections at the points
te, £ # Lo, are still given by (4.18) and (4.19). On the other hand, (4.13) must now be
replaced by

(4.21) V@t =@ +ip@HneP@h) + Gi@, i=1..,k—1
Here,u'(a™) = —1/k. Therefore, relations (4.21) can be summarized by
(4.22) Di-1®(@") = R, - D_1®(@h),

whereR, is alower triangular matrix of ordér— 1, with (1—i /K)i—1._ k-1 asits diagonal
elements. Starting from the left derivatives®dfat a instead of its right derivatives in
(4.20) would symmetrically give

(4.23) Di_1®(@”) = R_ - D1 @ (@),

where the lower triangular matriR_ has the same diagonal element&asTaking into
account the equalitPpy®(at) = My, - Dx®(a™), (4.22) and (4.23) eventually lead to
the following relation:

Dkfl&s(téo-‘_) = Meo . Dk71$(tzo_),

with M, := R, - M, - R™%, the matrixM,, being obtained by suppressing the last
row and column oMy,. Hence the diagonal elementsidf, are(my, ..., mﬁilqkfl).
Again, they are positive.

(2) In any case, we have proved tiiats a regular function of ordée— 1 and that its
osculating flats at a pointare obtained by (4.14) or (4.17) depending on whethera
or not. The proof of Theorem 4.1 will be carried out by verifying that

(4.24) [ 0SG-1-4 B(1) = (pl@n ... ")),
i=1

for any distinctry, ..., 7 € | and any positive integeysy, . . ., ur suchthad |, ui =
k — 1. Suppose first that ¢ {zy, ..., 7/ }. Then, equality (4.17) implies

r r
[)0SG-1-s @) =) OS&-, P(7i) N OSG-1 (@) .

i=1 i=1
from which (4.24) results by definition (3.1).
Suppose now tha € {t1, ..., r;}, for instancea = t;. Then, we can derive from

(4.17) and (4.14) that

[ OSG-1-, (1) = ﬂ OSG—;; (1) NO0SG-1 ®(@)) N OSG-1-,, ()
i=1

»a»—\

= ﬂOsq(_M, () N OSG_(, +1) D(@)
i=1

— {(p(‘L’M . ,ur 1a,ur+l}

which, in this case, is the exact equality (4.24). ]
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4.2. A de Casteljau-Type Algorithm

The construction ofubblossomsan be iterated: this eventually leads to the pseudo-
affinity property of the blossom.

Corollary 4.3. Let x, ..., X1 be any fixed points in.IThen given a b € |, with
a < b, there exists a strictly increasing continuous function | — R such that for
all £&-functions F and for all te 1,

(4.25) f(Xg, ..., %10 =[1—a®]fX,..., X1, +a®)f(Xg,...,X_1,b),

with «(a) = 0 anda(b) = 1. Moreover this functione is C* on each interval jl.

Proof. Step by step, it follows from Theorem 4.1 that the functidolefined onl by
(4.26) D) = (X1, ..., X1, 1), tel,

is a piecewise smooth Chebyshev function of order 1 @rith values in the affine line
D = () _; OSG_,, @ (i), where(xy, ..., X-1)°% = (rj*...7/"). As already noticed

in Section 3, such a function is one-to-onelgrhence strictly monotone. Thus, it can
be written as

(4.27)  o(Xg, ..., X1, ) =[1 —a®)]eX1, ..., Xk-1, @) + ¢ (t)p(Xq, ..., Xk-1, D),

with the required properties far. Given any&-function F, equality (4.25) is obtained
by taking the image of (4.27) under the affine newhich satisfied= = h o . ]

Setting7 = (Xg,..., Xk-1), Corollary 4.3 may be summarized by the following
diagram:
f(7T,a) f(7,b)
(4.28) AW v
f(7T,t)

in which the two arrows stand for the affine combination involved in (4.25). Then, starting
fromthe(n+ 1) points f (@“~'b'),i =0, ..., k, for agivent € |, we can computé (t)
in k steps as follows:

first iteration: computef (@~ ~'b't),i =0,....k—1;
second iteration: computk(a—2-b't?),i =0, ...,k — 2;
and so forth up to:

next to last iteration: computé(at<—1), f (btk-1);
last iteration: computd (t5) = F(t).

Each computation is obtained by means of an affine combination the coefficients of
which do not depend oR and are positive as soon belongs to &, b[.

This algorithm will be calledhe Chebyshev—de Casteljau algorithm with respect to
(a, b).
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Definition and Theorem 4.4. Let a b be two distinct points of.IThen for any &-
function F, the k+ 1 points B := f (@ 'b'),i =0, ..., k, are called theChebyshev—
Bézier points ofF with respect tqa, b). They satisfy

(4.29) affim(F) = aff(P,, ..., P

(in particular, F is nondegenerate iff its Chebysheezizr points are affinely indepen-
den), and foralli =0,...,k,

(4.30) Osg F(a) = aff(Py, ..., R), Osq F(b) = aff(Pc_i, ..., Po.

Proof. Let us denote byly, ..., Ik, the Chebyshev-&ier points ofb with respect
to(a, b), i.e.,IT; = @ 'b"),i =0,..., k. By the Chebyshev—de Casteljau algorithm,
each®(t), t € I, can be obtained by means of an affine combinatioflgf. . ., IT.
Hence, Int®) C aff(Iy, ..., I1y). Since aff ImM®) is of dimensiork, it follows that:

(4.31) affIm(®) = aff (I, . . ., Iy),
and thatlly, . .., I are affinely independent.
As a matter of fact[Iy, ..., I1x are defined by
(4.32) {ITj} = Osg ®(a) N Osqg_j ®(b), O0<i<k.

So that, in particular, the + 1 pointsIIy, ..., I[1; belong to Osc®(a). Their affine
independence and the fact that O®&¢a) is of dimension proves that

(4.33) Osg ®(a) = aff(Ilo, ..., ITj).

Now, if F =ho @, foralli =0,...,k, B = h(II;). Formula (4.29) and the first part
of (4.30) are obtained by taking the images of (4.31) and (4.33) umd&he second
equality in (4.30) can be obtained by exchanganandb. ]

Corollary 4.5. Lett,,..., 7 be any distinct points of | and lets, ..., ur be any
positive integers such that := Y /_, ui < k. Then for any nondegeneratg-function
Fl

)
(4.34) (Os&,, F(m) =aff{f(rf" ... ¢/t .t ) [t ..ty € W)
i=1

where W denotes any subset of | containing at least two distinct points

Proof. Applying Theorem 3.3 and Corollary 3.5 to functiénproves that the affine
flat)_; OS&-,, F (%) is of dimensiork — 1. Furthermore, each point

fo™ ottty

clearly belongs t¢ ) _; OS&-,, F (7).
On the other hand, iterating Theorem 4.1 shows that the fungtidefined by

W(t) = f(rf*. . gthm,
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is a piecewise smooth Chebyshev function of oideru on |, the blossom of which is
given by

Ut .t = F(o* gt te,)  forall (ty, ..., t,) € 1K

Hence, by Theorem 4.4, tike- 1 + 1 Chebyshev—BZier points off with respect to any
two distinct elements AV are affinely independent; they belong®_, Osg_,, F (zi),
which proves equality (4.34). ]

Theorem 4.6. Two E-functions i and F, have a contact of order < k at a point
ac |iff f1(7) = f,(7) forall T € 1% containing(ak—s).

Proof. As a particular case of Corollary 4.5, we obtain

(4.35) Osg ®(a) = afffp@ Sty...ts) [t1,....ts € |}

Hence, ifF; = hy o ®, F, = h, 0 ®, Theorem 2.8 ensures theg andF, have a contact
of orders ata iff hi(p(@*Sty...t5)) = ha(p@St;...t)) forallty, ... . ts € 1, i.e,
by (3.6), iff f1(7) = fo(T) for all T € I containing(a*~%). =

According to Theorem 4.4, the Chebysheezir points(I, ..., 1) of ® with
respect tqa, b) form an affine frame of aff If@b). So, we can express as follows:

k k
(4.36) () =Y BiMOI, Y Bty=1 tel.
i=0 i=0
Theorem and Definition 4.7. The functiongB, . . ., Bx) form a basis of, called the

Chebyshev—-Bernstein bagit with respect tqa, b). They satisfy

(4.37) 0<Bi(t) <1 forallt e]a,b[andforalli=0,...,K,
(4.38) BY@)=0 forj<i, BPb)=0 forj<k—i,

det[®’ (&%), ..., dV(a®), &' (b, ..., D& (b)]
det[d’(a®), ..., d01-D(as),d(b)—d(a),d'(b), ..., & ()]’

(4.39) B @) =

Proof. The fact that(By, ..., Bx) is a basis of results from Corollary 2.3. When

t € ]Ja, b[, as a straightforward consequence of the positivity of all the coefficients
of the Chebyshev—-de Casteljau algorithm, we can deriveditBtis a strictly convex
combination of the point§ly, .. ., [Tk, which gives (4.37). Finally, formulas (4.38) and
(4.39) can be deduced from (4.30) by differentiating (4.36). ]

Of course, taking the image of both sides of equality (4.36) under any affinehmap
defined on aff Inid) proves that any¥-function F (for instance, anyr € £) can be
written by means of its ChebysheveBér pointsP,, ..., P« as

k
(4.40) Fty=>Y Bi®PR.
i=0
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Thus, given two distinct points, b € |, the corresponding Chebyshev—Bernstein basis
depends only on the spa€eFurthermore, by applying equality (4.40) to the Chebyshev—
Bernstein functior3; (0 < i < k), we can conclude that its Chebysheezir points
with respect taa, b) are all equal to 0, except the one of indewhich is equal to 1,
i.e., its blossonip; satisfies

(4.41) bi @b =5, i=0,...,k
Finally, formulas (4.38) and (4.39) lead to the following expressions (see [26]):

(4.42)
det[@' (@), ..., PV (@), &'(b%), ..., D& (b*)]
det[®’(a®), .. ., o0-D (@), d(b) — d(a), (b9, ..., O k=) (be")]
det[®(b) — ®(a), d'(@), ..., o0-D (@),
O(t) — d(a), D'(b%), ..., d*T-D (b))
x det[®(b) — ®(a), (@), ..., o (as), d'(b?), ..., O k=1-1)(pe")]
forl<i <k-—1, whereas
det[®’ (&), ..., o*-D@), o(t) — d(@]
det[®’(a), .. ., k=D (@), d(b) — d(a)]’
the functioni3y being obtained symmetrically by exchangimgndb.

Bi(t) =

(4.43) Bi(t) =

5. Splines Based on a Piecewise Smooth Chebyshev Function

As in the previous section, we suppose tthat | — A is a piecewise smooth Cheby-
shev function of ordek, £ denoting its associated space. We shall now deal with the
corresponding-splines associated with the knot veciodefined in (2.26).

5.1. The Blossom of a Spline

Theorem and Definition 5.1. Consider a nondegeneratespline S given by2.30)
and an admissible k-tupl& such that7°¥ = (z}* ... /). Thenif D := D(T), the
affine fIatﬁir=1 OsG-,; Sp(ti) consists of a single poin¥hen setting

(5.1) [S(T)} := () Os&-,, So(x),
i=1

we define a symmetric function s on the set of all admissible k-{ualbsdthe blossom
of S. It satisfies

(5.2) s(T) = f,(7) forall ¢e J(T).

Proof. For any?¢ = 0,...,n, F, is a nondegeneraté-function. Thus, by Theo-
rems 2.16 and 3.3,

(105G So(ni) = (f(T))  forall e J(T). n
i=1
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Corollary 5.2. If S is a nondegeneraté-spline and7 < |# an admissibleu-tuple
(n < K), with 7°9 = (z4* ... /) and D= D(T), then

r
(53) m OSQ‘(_M SD(":i) = aff{s(T, tl’ e tk—/l.) | tla ceey tk—/l, € W}v

i=1

where W denotes any subset of D containing at least two distinct points

Proof. For a givent¢ € J(T), we can apply Corollary 4.5 to the nondegene&te
function F,. More precisely, by taking Theorem 2.16 into account, (4.34) gives

r
(5.4) [ OS&, So(m) =aff{ fu(T . tr, ... . tp) [t ... by € W)

i=1

Now, for anyts, ..., t—, € W, £ also belongs t¢/ (7, 3, . . ., t—,). Hence, according
to (5.2),

fo(T, 1, .. ) =S(T, g, o k),
which proves (5.3). [ ]

Let us select a particular nondegenerdteunction T (i.e., an&-spline ¥ such that
dim(affIm(X)) = k + m + 1); such a spline plays the sameoté as the universal
spline introduced by H.-P. Seidel [37]. Since it is a nondegenérsidine, its blossom
o can be defined as in (5.1). Now, afiyspline S can be written a§ = h o X, h being
an affine map defined on the affine space affim If the splineSis nondegenerate, for
any admissibl&-tuple 7, (5.1) leads to

i=1 i=1

(S(T)} = [ h(OS&-, To(@)) > h (ﬂ 0sG, sz)) = (N (T)).

which means that = h o 0. More generally, the blossosof any (possibly degenerate)
E-splineS = h o T will be defined as

(5.5) s:=hoo,

If ®, is the nondegeneraté-function which coincides withz on |,, by (5.2), for
all admissiblek-tuples7 and all¢ € J(T), o(7) = ¢,(7). Thus, we also have
hoo(7) =ho (7)), which means that

s(7T) = f,(7) forall ¢e J(T),

where F; is the £-function which coincides witts on |,. This shows that equality
(5.2) is still valid even if the splineS is degenerate. As a matter of fact, due to the
contact theorem 4.6, equality (5.2) could directly have been taken as the definition of the
blossom of an¢-splineS, whether this spline is nondegenerate or degenerate. However,
although different piecewise smooth Chebyshev functibmsay lead to the same space

S of splines, Definition 5.1 proves that they all provide the same notion of blossash for
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5.2. A de Boor-Type Algorithm
We shall rewrite the knot vectdr = (t{”l, ..., tf™) as follows:
(5.6) T =X, ..., %m).

In particular, ifm = Zi”:l m; > 0, X isthe firstt, of nonzero multiplicity, and, the last
one. Letus choosgR+1) additional point_, ..., Xo € lpandXmy1, . . ., Xmyks1 € In
With X g < X_gy1 < -+ < Xo < g andty < Xmp1 < --- < Xmyk < Xmik+1, SO @S t0
obtain

(5.7) T = (Xoks Xkt s - - 5 Xmoks Xmekg1)-

Consider the followind-tuples composed &f consecutive points of the knot vecfot:
(5.8) Xj =(Xj+1,...,Xj+k), j =—k,...,m.

Thesgm-+k+1) k-tuples are clearly admissible. This remark gives sense to the definition
hereunder.

Definition 5.3. If s denotes the blossom of &aspline S, thek + m + 1 points
(5.9 Q; = s(X)), j=-Kk ...,m,
are called thepoles of Swith respect to the knot vectdr'.

The following algorithm, which we shall refer to e Chebyshev—de Boor algorithm
with respect to the knot vector' ;Twill allow us to compute each poir8(t),t € I, ink
steps from the poles @.

Lemma5.4. Giveni = 0,...,n, let us setj := Zie:lmg (so that jo = 0 and
jn=m).Thenfor j = —k,...,m,i e J(X)) iff ji —k <] < ji.

Proof. Observe that for < i < n, j; is the unique integes such thatl; C [Xs, Xs+1],
this inclusion being strict iff one (at least) of the two multiplicitias andm; . ; is equal
to 0.

We can verify that forany =0, ...,n, and anyj = —k,..., m,

(510) i € j(X,) < [in, in+1] C D(X])
On the other hand, we have clearly
(5.11) [Xj s Xj+k+1] - D(Xj), j=-k ...,m,

and actuallyD(X;) = [Xj, Xj+k+1] for 0 < j < m — k. SinceD(X;) is a union of
consecutive subintervals, as soon as it contains one of the paigts. ., X, it also
containslg. Thus, forj <0, lp C D(X;). Similarly, for j > m -k, In C D(X)).

Dueto (5.10) and (5.11), the conditiax) [ X; +1] C [X;, Xj+k+1] is sufficient to ensure
thati € 7(X;). In other words,

ji—k=j<ij = ieJXp.
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In order to prove the converse property, just observe xhas the right endpoint of
D(Xj—k-1) (for ji > 0, hencd > 0) and thak; ;1 is the left endpoint oD (X, +1) (for
ji <m, hence < n). ]

Equality (5.2) being valid for ang-spline S defined by (2.30), the previous lemma
shows that, among the+ m+ 1 polesQ; = s(Xj), j = —k, ..., m, exactlyk + 1 ones
can be labeled by means of the blossfnmamely

(5.12) Q; = fi(X)), ==k ..., ji

Foragiven € {0,...,n}and agivern € {0, ..., k}, we now introduce the following
k — v + 1 points depending ohe 1 :

(5.13) Qj(®) = fi(Xj41, .-y Xjk—v, 1Y), i=Ji—k+v,..., ]

In particularQ?(t) =Qforal j=j—k...,j, ande-‘i (t) = F(t), which gives
QK (t) = S(t) whent € I;.

Forv > 1, Corollary 4.3 may be applied to functiof(Xj 1, . . ., Xj kv, t"71, -).
Now, forj = ji — k4 v, ..., ji,

(514) Xj = Xji < Xji+1 = Xj4k—v+1-

Therefore, sianj“ ®) = fi(Xj41, -+ s Xjk—v, t'=1 1), there exists a real numbejr‘(t),
independent o8, such that

QM) = [1—af®O]fi (11, Xjpkovs 771 X))

+ o ) fi (X1, - -y Xjrkovs L X kovt1)s
that is to say,

(5.15) QM) =[1 — o OIQ[ZF() + o 1)Q) (1),

Finally, at the last step of the algorithm described in (5.15), fot &lll, we obtain
Qj‘ (t) = F(t) as an affine combination of the+ 1 polesQ;, j = ji — K, ..., ji. More
precisely, we can state the following result:

Theorem 5.5. LetQ;, j = —k, ..., m, be the poles of a givefrspline S Then for all
i =0,...,n,andforall t € [x;, Xj+1] (resp, t € 1x;, X;+1[), S(t) is a convexresp,
strictly conve) combination of Q_y, ..., Q.

Proof. Taking (5.14) into account, Corollary 4.3 proves that whea ]x;;, X; +1[,
all the real numbers;'(t), v = 0,....k, j = ji —k+v,..., j, involved in the
Chebyshev—de Boor algorithm belong ta 10. Thus, for allt € ]x;, X;+1[, Fi(t) is
a strictly convex combination of the pol€g; _x, ..., Q;. Now, S(t) = F(t) for all
t e [X;, X;+1]. Indeed, as soon as there exiéts {1, ..., n} such that, € ]x;, Xj +1[,
the corresponding multiplicityn, is equal to zero, which implieg,_; = F, = F. =
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Corollary 5.6. The spline S is nondegenerate iff foralH 0, .. ., n, its k 4+ 1 con-
secutive polesQ; i, . .., Q;;) are affinely independenwhereas it is a nondegenerate
S-function iff all its poles are affinely independent

Proof. Let us first observe thak{, t;] C [Xo, X1]. According to Remark 2.7(ii), we
know that aff I{(S,) = aff Im(S;x, t,1), hence aff IniS,,) C aff Im(Sx, x,1). Similarly,
we have affIn{S,,) C affIm(Sx,, x.,..)- Moreover, for O< i < n, Ij C [X;, Xj+1].
Thus, the previous theorem implies that

(5.16) affIm(S,,) C aff(Qj k. ..., Qj) forall i=0,...,n.
Applying (5.16) to the nondegeneraiefunction = previously selected, we can deduce
in particular that aff Inix) C aff{o (Xj)|j = —k, ..., m}, whereo is the blossom of
3. Since aff IMX) is of dimensiork + m + 1, we have
(5.17) affiIm(x) = afffe(Xj) | j = -k, ..., m)},
which proves the linear independence of khe m + 1 poleso (Xj), j = —K, ..., m.
On the other hand, we know that is also a nhondegeneragespline, so that, for
i =0,...,n,dim(@ffiIm(x|,)) = k. Hence, (5.16) leads to
(5.18) affim(z|,,) = afffo(X)) | j = ji — K, ..., jil.

Now, for any splineS = h o X, taking the images of (5.19) and (5.20) under the affine
maph gives

(5.19) affiIm(S) = aff(Q_x, ..., Qm),
(5.20) affim(s,,) = aff(Qj—«, ..., Qj) forall i=0,...,n,
which completes the proof. ]

The linear independence of the polessbfllows us to write in a unique way

(5.21) T =) NMboXp, Y MO =1

=k j=—k

Definition and Theorem 5.7. The k+m+1functionsVj, j = —k, ..., m, are called
the Chebyshev B-splinethey form a basis of, called theChebyshev B-basid-or
j = —k,...,m,\j is the element af the blossom pof which satisfies

(5.22) nj(Xi)z&j, i =—k,...,m.

Moreoverthe support ofV; is given by

(5.23) SuppN; = D(X;).
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Proof. The fact that the Chebyshev B-splines form a basis of the sfasea direct
consequence of Corollary 2.3.

When applying Theorem 5.5 1B (the poles of which are affinely independent), we
obtain

(5.24) 0<Nj(H) <1 forall te ]x;,x;+[ andall j=ji—k, ..., ji.
On the other hand, according to Remark 2.7(ii), we have

(5.25) [Xo0. t1] C SuppV; <& 1o C Supph;.

and a similar property fort], xn.1]. Consequently, on account of (5.25), for a given
j € {=k, ..., m}, relations (5.24) prove that

(5.26) i e J(X)) = | CSupgh\)).
Now, for a given integer, 0 < i < n, comparing (5.20) and (5.21) shows that
(5.27) N;t)=0 forall tel; andall j¢{ji—Kk,...,j}

Therefore, by (5.26) and (5.27), the support\gfis the union of all the interval$,
i e J(Xj),ie., (5.23).

Taking the image of equality (5.21) under affine maps proves thafaspline S (in
particular, anyS € §) can be written as

(5.28) S(t) = Z N (©s(X)).

="k

Applied to the Chebyshev B-splin, (5.28) proves (5.22). ]

6. How to Build Piecewise Smooth Chebyshev Functions

Let @ be a geometrically regular function of orderé its associated space, add
its normal function. Given a bas{®s, ..., Dy) in the directionA of the affine space
spanned by the image df, let us write

k
(6.1) O (t°) = Zcb?(tf)f)i forall t°el.
i=1

Although ®F(t?) essentially depends on the inner product which has been choggn in
the spacee® spanned by its coordinates functioﬂbnl, cees d)ﬁ) depends only on the
spacet. On the other hand;* is also independent of the regular function definfhdt
is ak-dimensional space which will be equally calldd normal spacef ® or of £.

Any elementU? € £* can be considered as a real valued function definet, an
{t,;.t/,¢=1,...,n}and its restriction to each is C* on|;. Moreover, due to (2.19),
U* satisfies

(6.2)  (Ui(th),.... Utk DenT = MI. (UAY)), ..., Uk D, )T,
e=1...,n.



Blossoming: A Geometrical Approach 61

Since matrixM; is lower triangular and regulat; is a zero of order < k of U iff t;”
is. In such a casé;, will simply said to be a@ero of order iof U*. Furthermore, the linear
independence of thie vectors®*(t?), ..., ®*&-D(t?) for all t € | implies that, ifU*
is nonzero, each zero &ff in | is of order less than or equal ko— 1. These remarks
give sense to considering the upper bound of the numbers of zerogoomnted with
multiplicities) of all nonzero elements &F, this number being possibly infinite. It will
be denoted by, (£7).

Actually, Theorem 3.4 states thdtis a piecewise smooth Chebyshev function iff, for

all distinct pointsry, ..., ir € | and all positive integergy, ..., uy summing tok,
(n1—1) (ur—1)
Diefy ... LT () ... i) ... @ (7¥)
(n1—1) (ur—1)
6.3) DL(rfr) ... LU U(ef) ... D) ... L (%) 40
. o —:l T . ,—:1
ity ... o Ty L el ... ol Vg

whatever the;’s may be, provided that < |. Clearly, this result can also be stated as
follows:

Theorem 6.1. The geometrically regular functiod® of order k is a piecewise smooth
Chebyshev function of order k iff its normal spaesatisfies 2(£%) < k — 1.

6.1. Chebyshev Spaces

In this subsection, we shall give a compact presentation of the necessary tools on Cheby-
shev spaces. For the proofs and more details, see, for instance, [15], [25], and [36].

Definition 6.2. Given a real intervall, ak-dimensional spack contained inC*(J)
is said to be amxtended Chebyshev spd&&C space) ord if any nonzero element of
U has at mosk — 1 zeros (counted with multiplicities) ia (i.e., if Z; ) <k —1). 1t
is said to be a@omplete extended Chebyshev sp@fEC space) on if there exists a
nested sequence

(6.4) UhcCclyC---Clk1 ClUk=U,

where, fori = 1, ..., k, 4 is ani-dimensional EC space ah

Theorem 6.3. A given k-dimensional subspalzeof C*°(J) is an ECC space on J iff
there existk positive functions, . . ., wx € C*°(J) (called weight functions associated
with 2/) such that/ = Ker D o Ly, where D stands for the ordinary differentiation and
for L4, ..., L, for the differential operators defined or?¢J) by

1 1 .
(6.5) L,U:=—U, LiU = —(Lj_1U), i=2,...,k
w1 Wi
Proof. Anyknonvanishing functions1, ..., wx € C*(J) generate anested sequence

similar to (6.4) by means of the corresponding operators, namely

(6.6) U =KerLj, i=1,...,k—1, U = KerDLy.
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We can prove that each space involved in (6.6) is in fact an EC space. For the converse
part we refer to [15] and [25]. ]

Let us observe that different systems of weight functions may lead to the same ECC
space. From the previous theorem, we can easily deduce the following result:

Corollary 6.4. LetUd be a(k+ 1)-dimensional subspace of&1) containing the con-
stant functionsThen D/ is an ECC space with associated weight functions. . ., w,
iff U is an ECC space with associated weight functibnss, . . ., wg.

Remark 6.5. Using Definition 6.2, it is straighforward to check that, whetY is an

EC spacel/ is an EC space containing the constant functions. Contrary to the case of
ECC spaces, the converse property does not hold, except if the intasvalipposed to

be closed and bounded. This can be obtained through the crucial result stated hereunder.

Theorem 6.6([32] and [25]). Over a closed bounded interval= [a, b], an EC space
is an ECC space

Supposé/ is ak-dimensional EC space ah and choose a basi¥, ..., Uy) of .
Then, for anyt € J, the linear system

=

(6.7) DU OMUFM) = 8. i=0,....,k—1,
j=1

has a unigque solution. This providedgunctionsU7, ..., UZ which areC* on J. The
spacé(* spanned byU;, ..., U;) depends only o, noton the basi@Uy, . .., Uy): U*
is calledthe dual space a¥ while (U7, ..., Uy) is calledthe dual basisf (U, . . ., Uy).

Theorem 6.7. If U is a k-dimensional ECC space on, With weight functions

(wy, ..., wg), then its dual spacé/* is the ECC space associated with the weight
functions
~ 1 ~ .
(6.8) Wy = ——, W =Wk, ..., Wk .= Wy.
[licy wi

Moreovera given basigUs, ..., Uy) of U and its dual basigU;, ..., U) satisfy
(6.9) LUy, ....Up®T- LU ... .UHt =R forall ted
Here L(U4, ..., U() andZ(U*, ..., UH () are the(k, k) matrices defined by

(6.10) ,C(Ul,...,Uk)(t)i’j = LjUi ),

LUF, ..., UHMi; = LU, i,j=1...,k,
L, ..., Lk standing for the differential operators defined from the weight functions
w1, ..., Wk, similarly to (6.5), and R standing for the antidiagonal matrix such that

'Rk+1,j’j = (—1)j_1, j =1....k
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Proof. Settingd := (Uy, ..., U T andJ* := (Uf, ..., UHT, the dual basis satisfies

U@)A---AUKD ()

6.11 U*(t) = —= =
(6.11) O= a0, .0

forall te J.

Since there exist real numbeas such that_ ;iU = 1/wq...w UG 43 24,0®
for 1 <i <k, we can check that (6.11) leads to

(6.12) LiU@®) A--- A LeaUt) = 8L 0% (1),

wheres(t) = det(Llﬂ ®,..., kaJ(t)). Now, from (6.5) and/ = KerDLy, we can
derive that

(6.13) DLiU = wiqLiU, i=1,....,k—1, DL U = 0.

Relations (6.13) imply in particular th&s(t) = O for allt € J, hences is a constant
function onJ. A simple recursive argument starting from (6.12) and based on (6.13)
proves that

6.14)  SLU*®t) = LiU®) A+ A LU
/\Lk,iJrzL-j(t)/\u-/\LkU(t), i=1...,k

On the other hand, it is straightforward to verify that, fortadl J,

(LU, LiUm A - A LU A LU @) A A LU 1))
o if j#£k—i+1,
Tl =Dits if j=k—i+1.

Taking this latter equality into account, (6.14) eventually gives (6.9). Moreover, due
to (6.13), (6.14) also implie® LkU* =0, ie.,U* = KerDLk, which carries out the
proof. ]

Corollary 6.8. If U is a k-dimensional EC space on ils dual spacd/* is also a
k-dimensional EC space on J abtd* = U.

Proof. Being an EC space od is clearly equivalent to being an EC (hence, due
to Theorem 6.6, an ECC) on any closed bounded interval containdd Tmerefore,
Corollary 6.8 is a direct consequence of Theorem 6.7. ]

6.2. A Sufficient Condition for Piecewise Smooth Chebyshev Functions

Denote by (resp.,£’) the space obtained by restricting the element§ (fesp..£%)
tolj,i =0,...,n,so thatf andSi’j are subspaces @ (l;) (of dimensiork + 1 and
k, respectively).

Let us first give a necessary condition:



64 M.-L. Mazure

Theorem 6.9. If ® is a piecewise smooth Chebyshev function of ordénédn for all
i =0,...,n, D& is ak-dimensional EC space on |

Proof. ConditionZ, (£%) < k — 1 clearly implies that, forail = 0, ..., n, Z,, (Ein) <
k — 1, which means thaﬂ:’itI is ak-dimensional EC-space dn. Moreover, comparing

(2.13) and (6.7) shows th&&; is the dual space cﬂi’j. Thus, by Corollary 6.8D¢; is
also an EC space dn. [ |

Remark 6.10. (i) Suppose for a while that = 0, so that€ and&* are contained in
C®(l). Then, the converse property is also true. Indee@4fis ak-dimensional EC
space orl, by Corollary 6.8, so is its dual spa€é. Thus,Z, (%) < k — 1.

(i) On the contrary, when > 0, the necessary condition stated in Theorem 6.9 is no
longer sufficient, as proved by considering €f& spacef spanned by the four functions
(1, x, cosx, sinx) on | = ]-2m, 27[. Let & and &, stand for the restrictions & to
lo =]-2r,0]andl;, = [0, 27|, respectively. Here, the connection mathil att; = 0
is the identity matrixZs;. The spaceD& is spanned by the three functiofs cos sin)
defined onl and we can verify that, far= 0, 1, D¢ is a three-dimensional EC space on
li. Moreover, in that case, we hagé = DE. Hence, the conditioZ (£) < 2 does not
hold: for example, function sin vanishes at three distinct points aBmely—x, O, 7.

(i) Suppose thatb is a piecewise smooth Chebyshev function of ofden | . Then,
through Theorem 6.6, the necessary condition stated in Theorem 6.9 proves that, for
agiveni = 1,...,n—1, D& is ak-dimensional ECC space dn. Thus, thanks to
Theorem 6.3 and Corollary 6.4, we can find positive weight funct'mhs ey wL €
C>(lj) such that is the ECC space associated withw!, . .., w}). As for & and&,,
without any additional assumption on the two end subintervals, we can only say that both
are(k+1)-dimensional EC spaces ¢fiandl,, respectively, conditioZ;, (D&) < k—1
clearly implyingZ,, (&) < k.

We are now searching for conditions sufficient to ensureZii&t) < k — 1. Suppose
that,fori =0, ..., n,& isan ECC space o, with (1, wy, ..., wy) asweightfunctions,
and denote by}, j =1, ...,k the differential operators defined @3°(l;) by

. _ 1. ) .
(6.15) LiU = w—ilu, Lu="iau),. j=2..k
J

Without any loss of generality, we can assume that
(6.16) w M) =wt) j=0,....n £=1...4q.

Instead of expressing the connections by means of the ordinary derivatives as in (2.9),
we can now use the previous operators. Foz C*°(l;) andt € I;, let us set

(6.17) AF (@) = (LIF't9), ..., LEF' ).
It is straightforward to verify that

(6.18) AGF(t°) = Ci(t) - DkF(t9),
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whereCL(ta) is a regular lower triangular matrix with diagonal elements

( 1 1 1 )
wi ) wi®Owh®) T wi®) . wl )]

Thus, the spacé can now be described as the space of all continuous funckons
| - Rsuchthat|, € &,i =0,...,n,and

(6.19) ALFS) =N - AF@),  €=1,...,n,
whereN; is defined by
(6.20) N == Cit,)) - My - Co )%

The following theorem is a straightforward extension of a fundamental result due to
P. J. Barry [2]:

Theorem 6.11. Suppose thafor ¢ =1, ..., n, N, istotally positive (.e., each minor
of N, is nonnegativi Then Z, (£%) < k — 1 (i.e., ® is a piecewise smooth Chebyshev
function of order K.

Proof. Sinceﬁit is the dual space d¥¢&;, it follows from Corollary 6.4 and Theorem 6.7
that it is thek-dimensional ECC space associated with the weight functions

_ 1 . . .
(6.21) W)= W} = Wiyp i=2...k
l'lj:1 w;
Let us denote by |, ..., L}, the corresponding differential operators ©f(l;). Ap-

plying formula (6.9) to each ECC spa€&¥;, we can prove that the connections in the
spacet® are the following ones:

(6.22)

(LEUR@E)), ..., LiUfh)" = Np-(C sy, ..., L)', e=1,...,n,

where
(6.23) N, =RT-N~ T R.

It follows from [2, Theorem 5] thalN, is totally positive iff N, is. Although matrices

N, are not exactly of the same type as the connection matrices used by P. J. Barry, the
argument he gives in the proof of [2, Theorem 8] can easily be adapted. So, it allows us
to conclude that, as soon as eathis totally positive, any nonzero element&fhas at

mostk — 1 zeros inl . ]
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However, the sufficient condition stated in the previous theorem is not necessary as
pointed out in the following example. Létdenote the four-dimensional space spanned
by functions(1, t, cosht, sinht). It is an ECC space oh = R. Then,D¢ is a three-
dimensional ECC oh, which implies that* satisfies the required conditiah (£%) < 2.

On the other hand, the ECC spédtean be defined from two different systems of weight
functions(L, w}, wh, wk), i = 0, 1, namely,

wd(t) = 1, wd(t) = cosht, wi(t) = osht

wi(t) = cosht, wit) = wi(t) = cosht.

1
costt’
The corresponding matricé§ andC% introduced in (6.18) are the following ones:

(6.24)

1 0 0 l/cost 0 0
Ct) = (0 1/cosht O ) , Cit) = ( —sinht  cosht O) , teR.
0 -—sinht cosht -1 0 1

Now, let us denote by; the restriction of the spac&to each interval;, i = 0, 1, with
lop := ]—00,0] and|; := [0, +o0[. Using (6.20) and (6.24), the spa€ecan also be
described as the space of all continuous functibns| — R such thatF|, € &,

i = 0, 1, and which satisfy the connection conditiag§(0*) = N - A3(07), whereN is
the following nontotally positive matrix:

1 00
N::( 0 1 0).
-1 0 1

Open Question. It may be possible to prove that, if the conditidh (£%) < k —

1 is satisfied, then, in each interval, there exists a convenient choice of the weight
functionSw}, j = 1,...,k, ensuring that the corresponding connection matrices are
totally positive.

References

1. P.J. BRRY(1990):de Boor-Fix functionals and polar formS8omput. Aided Geom. Desigi;425-430.

2. P.J. BRRY (1996):de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves
Constr. Approx.,12:385-408.

3. P.J. BRRY, N. DYN, R. N. GoLDMAN, C. A. MICCHELLI (1991):ldentities for piecewise polynomials
spaces determined by connection matridesquationes Math42:123-136.

4. P. J. BRRY, R. N. GOLDMAN, C. A. MICCHELLI (1993): Knot insertion algorithms for piecewise
polynomial spaces determined by connection matrides. in Comput. Math.1:139-171.

5. P.J.BRRY, D. QU (1995):Extending B-spline tools and algorithms to geometrically continuous splines
A study of similarities and differenceS8omput. Aided Geom. Desigh2:581-600.

6. C.DEBOOR, G. Fx (1973):Spline approximation by quasi-interpolangs Approx. Theory8:19-45.

7. N.DvN, A. EDELMAN, C. A. MICCHELLI (1987):0n locally supported basis functions for the represen-
tation of geometrically continuous curvesnalysis,7:313-341.



Blossoming: A Geometrical Approach 67

10.

11.

12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
20.
30.
31.
32.
33.
34.
35.

36.
37.

N. DrN, C. A. MICCHELLI (1988): Piecewise polynomial spaces and geometric continuity of curves
Numer. Math.54:319-337.

N. DvN, A. RoN (1988):Recurrence relations for Tchebycheffian B-splidef\nalyse Math.51:118—
138.

N. DvN, A. RoN (1990):Cardinal translation invariant Tchebycheffian B-splindgprox. Theory Appl.,
6:21-12.

R. N. ®LDMAN (1990):Blossoming and knot insertion algorithms for B-spline cur@smput. Aided
Geom. Design7:69-81.

R. N. GLDMAN (1994):Dual polynomial bases). Approx. Theory79:311-346.

D. G@NsorR M. NEamTu (1996): Null spaces of differential operatarpolar forms and splinesJ.
Approx. Theory86:81-107.

S. KARLIN (1968): Total Positivity. Stanford: Stanford University Press.

S. KarLIN, W. J. SUDDEN (1966). Tchebycheff Systems. New York: Wiley Interscience.

S. KARLIN, Z. ZIEGLER (1966):Chebyshevian spline functiarSIAM J. Numer. Anal.3:514-543.

P. E. KOCH, T. LyCHE (1989):Exponential B-splines in tensiom: Approximation Theory. New York:
Academic Press, pp. 361-364.

P. E. KocH, T. LycHE (1991): Construction of exponential tension B-splines of arbitrary ordar
Curves and Surfaces. Boston: Academic Press, pp. 255-258.

R. KULKARNI, P. J. LAURENT, M.-L. MAZURE (1992):Non affine blossoms and subdivision for Q-splines
In: Mathematical Methods in CAGD and Image Processing. New York: Academic Press, pp. 367—-380.
P. J. laURENT, M.-L. MAZURE, G. MORIN (1997):Shape effects with polynomial Chebyshev splilres
Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, Nashville, pp. 255-262.
E. T. Y. LEE (1996):Marsden’s identityComput. Aided Geom. Desigh3:287—-305.

T. LycHE (1985):A recurrence relation for Chebyshevian B-splin€snstr. Approx.,1:155-173.

M. J. MARSDEN(1970):An identity for spline functions with applications to variation-diminishing spline
approximation J. Approx. Theory3:7—-49.

M.-L. MAzZURE (1995): Blossoming of Chebyshev splinés. Mathematical Methods for Curves and
Surfaces. Vanderbilt University Press, Nashville, pp. 355-364.

M.-L. MAZURE (1996):Chebyshev spaceRR 952M IMAG. Universi€ Joseph Fourier, Grenoble.

M.-L. MAZURE (1996):Chebyshev blossomingR 953M IMAG. Universi€ Joseph Fourier, Grenoble.
M.-L. MAZURE, P. J. LAURENT (1993): Affine and non affine blossomma: Computational Geometry.
Singapore: World Scientific, pp. 201-230.

M.-L. MAZURE, P. J. lAURENT (1996):Marsden identitiesBlossoming and de Boor—Fix formulbn:
Advanced Topics in Multivariate Approximation. Singapore: World Scientific, pp. 227-242.

M.-L. MAZURE, P. J. LAURENT (to appear)Piecewise smooth spaces in dualapplication to blossom-
ing. RR 969M IMAG. Universi€ Joseph Fourier, Grenoble, January 1996. J. Approx. Theory.

M.-L. MAZURE, H. POTTMANN (1996): Tchebycheff curvedn: Total Positivity and its Applications.
Amsterdam: Kluwer Academic, pp. 187-218.

C. A. MCcCHELLI (1995): Mathematical Aspects of Geometric Modeling. CBMS-NSF Regional Con-
ference Series in Applied Math., vol. 65. Philadelphia: SIAM.

H. FoTTMANN (1993):The geometry of Tchebycheffian splin@esmput. Aided Geom. Desigh(:181—
210.

H. POTTMANN, M. G. WAGNER (1994): Helix splines as an example of affine Tchebycheffian splines
Adv. Comput. Math.2:123-142.

L. RamsHAW (1987):Blossominga connect-the dots approach to splindschn. Report. Palo Alto,
CA: Digital Systems Research Center.

L. RamsHAW (1989)Blossoms are polar form€omput. Aided Geom. Desigf;323-358.

L. L. SCHUMAKER (1981): Spline Functions. New York: Wiley Interscience.

H.-P. &IDEL (1992):New algorithms and techniques for computing with geometrically continuous spline
curves of arbitrary degreeMath. Modelling Numer. Anal.26:149-176.



68

38.

39.

40.
41.

M.-L. Mazure

Y. STEFANUS, R. N. GOLDMAN (1992):Blossoming Marsden’s identit¢omput. Aided Geom. Design,
9:73-84.

M. G. WAGNER, H. POTTMANN (1994): Symmetric Tchebycheffian B-splines schernme€urves and
Surfaces in Geometric Design. New York: A. K. Peters, pp. 483-490.

J. HANG (1996):C-curves an extension of cubic curveSomput. Aided Geom. Desigh3:199-217.
Z. ZEGLER (1966):Generalized convexity cond2acific J. Math.17:561-580.

M.-L. Mazure

Universi& Joseph Fourier
LMC-IMAG, BP 53
38041 Grenoble, cedex 9
France

mazure@imag.fr



