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Construction of Continuous Functions with
Prescribed Local Regularity

K. Daoudi, J. IEvy Véhel, and Y. Meyer

Abstract. In this paper we investigate from both a theoretical and a practical point
of view the following problem: Les be a function from [01] to [0; 1]. Under which
conditions does there exist a continuous functiorirom [0; 1] to R such that the
regularity of f at x, measured in terms of dider exponent, is exactlg(x), for all

x € [0; 1]?

We obtain a necessary and sufficient conditiors@md give three constructions of
the associated functiofi. We also examine some extensions regarding, for instance,
the box or Tricot dimension or the multifractal spectrum. Finally, we present a result on
the “size” of the set of functions with prescribed local regularity.

1. Introduction

Since Riemann [1], a number of authors have been interested in constructing nowhere
differentiable continuous functions. Some use geometrical constructions, of which the
best-known examples are probably Von Koch'’s [2], Peano’s and Hilbert’s [3] curves,
while others are based on analytical tools. The very well-known example in this case is
the Weierstrass function, which was shown by Weierstrass to be continuous and nowhere
differentiable [4]. This result was later greatly enhanced by Hardy [5] who showed that

f(x) = Z b" coga"xx)
n=0

has nowhere a finite derivative, provided that
O0<b<1, a>1, ab> 1.

Hardy also analyzed theditier conditions satisfied by (x). If ab > 1, let§ < 1 be
defined by¢ = log(1/b)/loga. Then, forh — 0,

| f(x+h)— f(x)| = O(h[%) for everyx,
but
[ f(x+h)— fx)| =o(h) for nox.
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Another example of nowhere differentiable functions, which fits well the main ideas of
this paper, is the Takagi function [6] defined by

Tx) =Y 2779"@2x),
j=0

wheref*(x) is the periodic function of period 1 defined on [4 by 6*(x) = 2x if
0<x<3ando*(x) =2—2xif § <x <1

Indeed, we consider in the sequal three different constructions of nowhere differen-
tiable functions: one is based on a generalization of the Weierstrass function, another
on an expansion in the Schauder basis, and the last on a generalization of IFS theory.
The construction of the Takagi function bears some analogy with that of the Weierstrass
function. On the other hand, the restrictiontofo [0; 1] has the following expansion in

the Schauder basis:
T =) Y 270@x-k),
>0 0<k<2i

wheref(x) = 6*(x) if x € [0; 1] andf(x) = O if x ¢ [0; 1]. Finally, the graph of
the restriction ofT to [0; 1] is the attractor of the IFS defined by the two functions
wi(X, y) = (X/2, (2x 4 y)/2) andwa(X, y) = (X/2+ 3. (Y — 2X)/2+ 1).

Hata [7] considered the following generalization. Igebe the continuous function
defined by

g(x) = Y _b"q@"xx),
n=0

whereq is a continuous function and @ b < 1. He showed in particular that, when
g(x) = cogx + 0) (@ € R), which leads to

g(x) = > _b"cogaxx +6),
n=0

then the continuous functiamhas nowhere a finite or infinite derivative if
ab> 1+ 72

He also found related results when the functiagsalmost periodic. His results were later
improved by Hu and Lau [8]. Mauldin and Williams [9] also considered a generalization
of the Weierstrass function, namely

+00
Ws(x) = > B~ @(B"X + ) — 9(6)),

whereg > 1, 0 < a < 1, eachy, is an arbitrary number, ang is a function which
has period one. They showed that there exists a conStantD such that, if is large
enough, then the Hausdorff dimension of the graphMgfis bounded from below by
2—a—C/logg.

Several other techniques are now employed for constructing continuous nowhere
differentiable functions. One powerful scheme is to use wavelet decompositions. For
instance, Jaffard [10] has given a construction of a function with prescribed multifractal
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spectrum(e, f(«)). Choosing in such a constructidr(«) such thatf (COIRI
—oo leads to a nowhere differentiable continuous function.

Another method that has been investigated a lot these past years is based on Iterated
Function System (IFS). Although the study of iteration of matrices dates back to Doeblin
and Fortet [11] and Dubbins and Freedman [12], it was Hutchinson [13] who really laid
the foundations of IFS theory. Subsequently, several authors have explored this path
(see for instance [14], [15], [16], [17], and many others). Barnsley [14] showed that,
under some conditions, it is possible to construct an IFS whose attractor is the graph
of a continuous nowhere differentiable function. More precise results are how known,
concerning the almost sureoldier exponent of such functions [17] or their multifractal
spectrum [18], [19].

We will hereafter cally; the Holder function off, which associates, to each poigt
the Holder exponent of the functiof atx. The main objective of the present work is to
solve the following problem which was raised by &wyVéhel:

Let s be a function frorfD; 1] to [0; 1]. Under what conditions on s does there exist a
continuous function f frorf0; 1] to R such thaty; (x) = s(x) for all x in [0; 1]?

S. Jaffard proposed the Schauder basis construction that we recall in Section 4 (the
wavelet basis construction presented in [26] is an adaptation to the case wheotdiie H”
exponents are greater than 1). Y. Meyer realized that this construction allows us to obtain
the most generalélder functions. K. Daoudi and Jel'y Vehelindependantly performed
two other constructions that also yield the general result and which are presented in
Sections 5 and 6.

The motivation for this investigation stems partly from applications in signal pro-
cessing. Indeed, in some cases, it is desirable to model highly irregular signals while
precisely controlling the irregularity at each point. This happens, for instance, when the
significant information lies in the singularities of the signal more than in its amplitude.
In such cases, we want to tune the valuexpfx) everywhereand not merelalmost
everywhereAn example in speech modeling is presented in [19] and [20].

Our main result is the following:

Theorem. Lets be a function frorf0; 1] to [0; 1]. Then the following conditions are
equivalent

(i) s is the Hblder function of a continuous function f frdidx 1] to R.
(if) There exists a sequent®),-, of continuous functions such that

s(X) = Iri1m+inf S (X), v x € [0; 1].

The proof of ()= (ii) is easy and is given in Section 3. The proof of &) (i) requires
more work.

For practical purposes, we are interested here in constructive proofs, i.e, we want to
derive explicit methods to construct the functibnWe present below three such proofs
which highlight different aspects of the problem. We also investigate related problems,
as for instance the evaluation of the local box dimensiorf @it each point or the
computation of the multifractal spectrum &f Finally, for practical applications, we
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want to construct function$ with a prescribed Kider function that satisfies additional
constraints, as for instance interpolating a finite number of pgigts/;) € [0; 1] x R,

i =1,2,..., N. This naturally leads to a characterization of the set of functions with a
prescribed tdlder function.

The remainder of this paper is organized as follows: in Section 2, we recall some
basic definitions about the local regularity of functions, the Hausdorff, Tricot, and box
dimension. We also prove a new relation between the local box dimension andlties H™
exponent. In Section 4 we construct functions with prescribed local regusirijyat
each point using the Schauder basis. In Section 5, we give another solution based on
a generalized Weierstrass function. In Section 6, we use IFS to give a solution which
constructively allows us to interpolate a given finite set of equispaced points. In Section 7,
we propose some desirable extensions that would allow us to measure more finely the
local structure of graphs of continuous functions. Section 8 shows some implementation
results.

2. Recalls and a Result Relating the Local Box Dimension and
the Holder Exponent

In this section we recall some basic definitions useful for the sequel. The definitions are
not given in full generality, but only in the form adapted to our problem.

2.1. Definition of the Hausdorff Dimension
Let E be a nonempty set &t2.
Define
|[El :=suf|x —Y|; X,y € E}
Xy

to be thediameterof E.

If E C Uy Ei with 0 < |Ej| < § for eachi, then{E;};.y is called a (countable)
§-coverof E.

Fors > 0 andr > 0, define

400
HL(E) = inf{Z|Ei|r/{Ei}ieN8-coverofE ,
i=1

H(E) is a nonincreasing function éf and we note

H'(E) := lim H5(E) = supHj(E)
§—0 §>0

theHausdorff r-dimensional outer measweE.
The Hausdorff dimension dt is the unique value dig(E) such that [21]

r | H4oo ifr <dimy(E),
HE = {o ifr > dimy(E).
2.2. Definition of the Box Dimension

For anys > 0, we consider the set 6fmesh squares R? of the form 8, (i + 1)8] x
[j8, (j + D] with i, j integers. For any bounded subseof R?, we denote byN; (F)
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the number o8-mesh squares which interséetThe box dimension dof is then defined
by [22]

o) i (AN

—logs

whenever this limit exists.
When the limit exists, its value is unaffected if we change the definitid;oF ) and
take any of the following:

1. the smallest number of squares of sizbat coverF;

2. the smallest number of closed balls of diaméttrat coverF;

3. the smallest number of sets of diameit¢hat coverF; and

4. the largest number of disjoint balls of diametewith centers inF.
2.3. Definition of the Trico{Packing Dimension

Let F be a nonempty set &", wheren > 1 is an integer, and

Py (F) = sup{DBﬂ} :

ieN
where{B; }; <y is a collection of disjoint balls of radii at moétwhose centers belong .
Consider
PL(F) = {!imOPE(F),
this limit exists sinceP; (F) decreases with.
Define now the -dimensional Tricot measure [23], [22] by
o0 oo
P(F)=infi > " Py(F) :Fc| R,
i=1

i=1
then, the Tricot (or packing) dimension dinis defined as follows:
dimp F =supr : P'(F) = +oo} = inf{r : P"(F) = 0.

2.4. Definition of the Hblder Spaces and thedttler Exponent

Let| be aninterval irR, f a continuous function from to R, andg € FQ?;\N.

Definition 1.  f is said to belong to the globaldtier spaceC’ (1) iff there exists a
positive constant, such that for everyy € I, there exists a polynomidt,, of degree
less than or equal to the integer partgyfsuch that

| f(X) — Py, (X — X0)| < ¢|X — Xo|? vx e l.

Definition 2. Letty be inl. Then f is said to belong to the pointwisediier space
CP(tp) iff there exists a polynomiaP of degree less than or equal to the integer part of
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B, and a positive constantsuch that, for every in the neighborhood df, we have

[f() — Pt —to)] < clt —tol’.
Recall that if3 € N*, the space&? must be replaced by the Zygmupeclass [24].

Definition 3. A function f is said to have dider exponeng at pointty iff:
(i) foreveryrealy < g

lim [ f(to+h) — P(h)] _
h—0 |hV

0;

(i) if B < 4o0, for every realy > 8
: |fto+h) — P(h)]
limsu = )
nor I
whereP is a polynomial whose degree is less than or equal to the integer part of
B.

Wheng < +o0, this is equivalent to
fe(C/ ) but f¢l JCl ().

e>0 e>0

It is also equivalent to
B =supd >0 :feC’t)).

Notice thatf € C#(1) does notimply thag = inf¢; o (t). As an example, consider
the continuous functiori defined orR by

|t|sin(i) ifteRr:
ft) = { It| eRy
0

ift=0,
then, f € CY2(R), but f is C*™ at each point, except at 0 wherg(0) = 1.

2.5. A Relation Between the Local Box Dimension and tbh&ler Exponent

In [25], the authors investigate the relation between the global upper box dimension of
the graph of a function and its global smoothness. They give precise characterizations
of the global upper box dimension of the graph of a continuous function in terms of its
membership in Besov spaces and variation of Wiener spaces.

In this section, we are rather interested in the relation between the local box dimension
of the graph of a function and its membership in pointwisdddi spaces. We propose a
new result that links the local box dimensions of the graph of a continuous function and
its Holder exponents.

Let f be a continuous function from{Q] toR. We suppose thatx) = o (x) € [0; 1]
forall x € [0; 1]. Letx €]0; 1[, e > O suchthat} —e; x +¢[ € [0; 1] ands €]0; ¢[.

We cover the plane by &mesh, i.e., a grid of squares of the formi { (i + 1)§] x
[§8:(j + 18], with i, j integers.
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Let N5 be the number of squares thatintersgreph f, . ... We define, respectively,
the upper and lower local box dimension [22] of the grapHh @it the pointx by

—— . log N
X — )
dimg graph f = !lm0 I|m(S Séjp — l0gs
and
log Ny

- i i
dimg graph f = J:|Ln0 I|Q1_J(r)1f l0g5

When these numbers coincide, we denote bygdimaph f the local box dimension of
f atx. Fort €]0; 1] such thatB(t,e) =]t —e;t + ¢[ C [0, 1], define

C(t,e) =inf{ce R, :Yue B(t,e), |f(t) — f(u)] <clt —u®V}
and

c(t,e) =supce R% :Jue B(t, &) : |f(t) — f(u)|>ce®V).

Proposition 1. Let x be a real in0; 1[. Define the following conditions

(c1) there existg’ > 0 such that

C(x,e) = sup C(t, &) < +o0 forevery ¢ <¢’;
teB(X,e)

(c2) there existg’ > 0 such that
C(x,e) = inf c(t,e) #0 forevery ¢ < ¢'.
teB(x,e)
Then if (c;) holds we have the following inequality
dimg graph f <2 — min(lilt”n i)En‘ s(t), s(x))

and if (c;) holds we have

2— ma><<|im sups(t), s(x)) < dimj graph f.

t—x

Proof. Lete be areal suchthat@ ¢ < ¢. We denote

si = inf{s(t);t € ]x — &; X + &[},

S = sups(t);t elx —e; x + [},
Ri[tist] =  sup |f(u)— f(v)l.

ti<u<v<ty

Let m be the least integer greater than or equalg2Thus, if
li(e,8) =]x—e+ié6;x—e+ (i + DI,

then
m-—-1

Ix—eix+e[C |l
i=0
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However, sincef is continuous, the number of squares of thmesh that intersect
graph fh_(w is at leastR¢ (I; (¢, §)) /6 and at most 2+ Rs (I (¢, §))/8. Summing over
all such intervals gives

m-1 m—1
(1) 57 " Re(li(e. ) < Nj <2m+ 57> " Re(li (e, ).
i=0 i=0

Let nowu, v € ]Xx — &; X + ¢[, with u < v. Then
[f (W) — f)] <, e)lu—vPY,
thus
1f ) — )] < Cx, e)lu— vl
We deduce that
Ri[t; o] < C(x, e)|ts —to> Vit e]x —e; X +¢[,
butm < 1+ 2571, and using1) we get
NS < (1428 H(2+ C(x, e)8718%)

<
£ _
< ess2

wherec; > 0 only depends or ande and is finite.

We deduce
log N?
~29 25 —ho),
logs
where
I I
hes) = 3% | 098
logé  logs
Since lim_,o h(8) = 0, we obtain
N&
lim sup— 9% _ 2—-5s,
§—0 |Og(3
which implies
log N¢
lim lim sup——9% < 2 _ [im s,
e=>0 5.0 logé e—0
but
lanogx = mm(llr&l)rgf s(t), s(x)) ,
and finally

dimg graph f <2 — min(lirtn ipf s(t), s(x)) .

Now we establish the other inequality.
For allv € ]x — ¢; X + ¢[, there existaI such that

W) — f)] = cv, )&,
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thus
[F W) — f)] = C(x, )e™.
We deduce
Ri[tiito] = C(X. &)ty — o[> ¥ty tp €] — &1 X + ],
butm > 2¢6~1, and using 1) we get
Ni > 2C(X, £)es 15 16%
= 2C(X, £)es> 2.

Thus
log Ny =
—— % >2-% —h
logo > Sy (),
where
log2C(x, ¢)&
h@) = %T

Since lim_,o h(§) = 0, we get
0g N >2-5;

liminf !
5-0  logs — X
but
lims; = ma><<|im sups(t), s(x))
0 t—x
and finally
dim§ graph f > 2 — max(lim sups(t), s(x)) . [ |
- t—X

This result shows in particular that:

Corollary 1. Whenever s is continuous at point x and conditigm3 and (c;) hold,
the local box dimension of f at x exists and is equ&l te s(x).

Note that the converse is not true: the existence of the local box dimensibatof
does not tell anything about the continuitysoét x.

Besides, whesis not continuous at, s(x) and dinf, graph f can greatly differ (take,
for instance,f (x) = /x| atx = 0). Another consequence is that we can think of the
local box dimension as a more “local” quantity, and of theld¢i exponent as a more
“pointwise” quantity: in the case of (x) = 4/[X], the local box dimension, which is
equal to 1, is dominated by the local behaviorfafiround 0, as the dlder exponents,
reflects the behavior of solely at 0.

Let us give an example which shows the necessity of conditgn Consider the
continuous functiorf defined by

_xYcogx™") if x #0,
f(x)_{o if x = 0,
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where 0< u < v. This function does not verify conditiafe; ). Now, we can prove that,
for x = 0, a7 (X) = u and that [24, p. 126]

u+1

v+ 1

Hence, when < 1/u, the second inequality in the proposition above does not hold.

dimg graph f = dim§ graph f =2 —

2.6. A Relation Between the Tricot Dimension and the Loaddlddr Exponent
Let f be a continuous function on;[@], and define, fox € [0; 1] ande > 0
Ve(x) = sug| f(X) — F(X)] 1 IX =X <&, [x = X"| <&},

V. (X) is called the locat-oscillation of f atx.
Define now the condition&;) and(py) by

(p1) 3s1 > 0/vx € [0; 1], Jay(x) > 0/V, < a1(x)e™,

(p2) I > 0/vx €[0; 1], Jap(X) > 0/V, > ax(x)e®.
Condition(p;) implies that
logVe () _

ol ’

liminf
e—0 |098

which means that¢ (x) > s, for everyx € [0; 1].
In the same way, conditiofp,) implies that

logV: () _

= ’

liminf

e—0 |Og&‘
which means that; (X) < s, for everyx < [0; 1].
Then we have the following result, due to Claude Tricot:
Proposition 2. If condition(p;) holds then
dimp graph f < max(1,2 — ).

This result remains true when conditigp,) holds for every xe [0; 1] except on a set
E such thadimp(E) = 0.
If condition (pz) holds then

dimp graph f > 2 — s,.

This result remains true when conditigp,) holds for every xe [0; 1] except on a set
of Lebesgue measure zero

3. Characterization of the Set of Hblder Functions of Continuous Function

Theorem 1. Let f be a nowhere differentiable continuous function fij@ml] to R.
Then there exists a sequen¢g } .y Of continuous functions such that

af(X) = Iign inf s,(x) vx € [0; 1].
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Converselylet s be a function fronf0; 1] to [0; 1] such that $x) = liminf,_ o, Sy (X),
where the g's are continuous function3 hen there exists a continuous function f from
[0; 1] to R such that

a (X) = S(X).

The first part of the theorem is easy to prove. Indeed, take

log(| f h) — f 2"

S (X) = inf og(| f(x + h) )] + ) .
2-N<|h|<2-M+1 log |h|

Thens, is continuous for every integer> 1, and since

log| f(X+h) — f(X)|
log|hl

af (X) = I|rhn_)|Qf ,
it is easy to see that
af(X) = Iigninfsn(x) vx € [0; 1].

In the following sections, we will give three constructive proofs of the second part of
the theorem. We will denote I3 the set of all functions, defined from;[@] to [0; 1],
which are the lower limit of a sequence of continuous functions.

4. Construction Using the Schauder Basis

This construction is due to S. Jaffard [26], and is based on the well-known relation
between the pointwise regularity of a function and the coefficients of its expansion in
the Schauder basis.

4.1. Recalls on the Schauder Basis

Consider the functiofi(x) from R to R defined by

_J1-J2x—=1] ifxe]0;1],

“”—{o if x & [0: 1].
Itis well known thatif f is a continuous function from [A]toR, and if f (0) = f (1) =
0, then

foo=>" " cli, ko),
=0 0<k<2i
where
6 k(X) =62 x — k)

and

c(j, k) = f(k+ 527 — J(F k2 + f(k+ D27,
We have the following results:
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Proposition 3. If f € C3(xg) for some ¥ < [0; 1] and s > 0, then there exists a
constant C such that

lc(j, k)l < €7 + k27 = xq])°,
The proof of this proposition is straightforward.

Proposition 4. Suppose that there exists a constant C such that for everyjs 1]
we have

2 [f(x+h)— f(X)] < Cw(h) when h— 0,
wherew is a strictly increasing function frorf®; 1] to R, which verifies
w@ =0 and w(h) =O0(logh™) VN=>1
Suppose also that for somg & [0; 1] and s> 0, there exists a constant C such that
le(j, k) < C@7T + k27 + 127 = x])°.
Then
f € C5%(Xp) Ve > 0.

Proof. Letx; be arealin the neighborhood xf, and letjo be the integer such that
2700 < xg — X < 277D,
We define the integef, such thatw(2-11) = 25k, Then
[f(x) — fX) =W+ X+Y+2Z,
where

W= > > e, K6 xx) — 6 k(o))

0<j<jo O<k<2i

X =3 > leti, K6 x(xo),

j>jo 0<k<2i

Y= ) > el kibkx,

jo<j<j10<k<2i

YD el k)]

j>J10<k<2i

z

Forj < jo—1,6;k(Xo) # Oimpliesd; «(x1) # 0. Furthermore, for each there exists a
uniquek such that) x(xo) # 0 or6; k(x1) # 0. In this case, we hay&2™! —xo| < 27/.
Finally, remark that6; k (x1) — 6; k(Xo)| < 2!|xy — Xo|. Hence, we have

W< Y 289 — x| < Clxa — Xol*.

0<j<jo
It is easy to prove thaX < C2~ 1S, which leads to

X < Clx1 — Xol®.
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Whenb; «(x1) # 0, we havek2™1 — x;| <27, andifj > jo, this implies that
|c(j, K| = Clx1 — Xol®,
hence,
Y < C(j1— jo) X1 — Xol.

For every integeN > 1, there exists a consta@y such thatw(2-11) < Cle‘N.
Hence,

j1 < CyYN2Iots/N),

sincew (2-11) = 215, This implies that, for every > 0, there exists a consta@t such
that

j1— jo < CelXy — Xo| %,

Finding an upper bound faZ requires the following results:

Lemmal. Denote

SHO= Y Y . ko),

0<j=q0<k<2l
then Q(f) is the continuous piecewise affine function which satisfies
S(Hk2H=fk29 vk=0,...,2%
Corollary 2.
1 = S(Dll < 0@,

The proofs of the lemma and the corollary are easy.
We remark thaZ < || f — §,(f)I|_,, and since

®(271) = 279 < % — %o,
the proof of the proposition is completed. ]

4.2. Construction of the Desired Function

The following result will be used in the proof of the theorem.

Lemma 2. Letse H. Then there exists a sequer(€@,},-, of polynomials such that

- {s(t) = liminf Qn(t) ¥t € [0:1].
Qnlle =N Vn=>1,

where @, is the derivative of Q.
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Proof. Sinces € H*, there exists a sequen¢g},n- Of continuous functions such
that
s(t) = liminf s (t) vt € [0; 1].
k—+o00
Thus there exists a sequer{é&} of polynomials such that

s(t) = liminf Pe(t) Vvt € [0; 1].
k—+o0

Let {0k }en+ DE @ sequence of integers such that
1> M
and
Ok > max(Mg, gk-1)  for k=2,
where
My = 1Pl -
Define the sequend®); }J.Zl by
Q=0 if 1<j<m

and

QM) =Pkt if k=<j<0g for k>1
Of courses(t) = liminf;_ . Qj(t) Vt € [0; 1]. On the other hand,

QI =[R®I if O <] <Okt
and
POl < Mc =g Vtel0:1]

hence

Q'] < j Vj>1 and Vvte][0;1]. ]

Proposition 5. Letse H and let(Qn),-; be the associated sequence of polynomials

verifying (3).
Consider the continuous function f defined[Onl] by

fFoo=Y" > ci, ko),

j>0 0<k<2i
where
c(j, k) = inf(z—j/logi , 2—1’Qi(k2”))'
Then
a(X) = s(X) vx € [0; 1].
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Proof. We first prove thatvs (Xg) < S(Xo) for everyxg € [0; 1].

Let j > 1 be an integer, and l&tbe the integer such thap € [k2-1; (k + 1)27 1.
Hence,|Q;(k27)) — Qj(xo)| < j27J. This implies that for every > 0 there exists an
integer jo, such thatc(j, k) > 271600)+8) for every j > jo. Using Proposition 3, we
conclude thats (Xg) < S(Xg).

Let us now show thats (Xg) > s(Xo) — ¢ for everye > 0. Remark that there exisfs
such that

(o) — & < Qj(k27))
for everyj > j,, andk such thaty € [ko2~ ; (k + 1)271[. This implies that
c(j. k) < 2~ i(s(x0)—#)

Furthermore, since(j, k) < 271/99] it is easy to see that conditiq)) holds. Hence,
we conclude using Proposition 4 that(xg) > s(Xg) — €. [ |

5. Use of Weierstrass-Type Functions

In this section, we show that a simple generalization of the Weierstrass function allows
us to control the regularity at each point. For a related result, see [24, p. 282].
We first recall some properties of the Weierstrass function, which is defined by

+00
W(t) = Z Ak sin(Akt),
k=1

wherex > 1 ands € ]0; 1[.

It is well known [27] thatayw(t) = s for all t and that dimg graph W= 2 — s
However the value of diggraph W is not yet known. Of course, digngraph W <
dimg graph W, and using mass distribution methods depending on estimates for the
Lebesgue measure of the $et(t, W(t)) € D} whereD is a disk, it can be shown [9]
that there exists a constamt- 0 such that dim graph W> s — c/log .

As mentioned in the Introduction, several authors have considered generalizations of
the Weierstrass function, by replacing the sinus with other types of function. Here we
consider another type of generalization.

Proposition 6. Let 5(t) be a function fronjO; 1] to [a; b] < ]0O; 1[, which is the lower
limit of a sequence of continuous functiobst & and I be two reals such tht < a’ <

a < b < b < 1,and consider the sequente= (I,D)pzl defined by
1 =1,

4) _[1-
|p+l— 1_b/|p +1’

where[.] denotes the integer paffhen
e There exists a sequen{@n},..; of polynomials such that
s(t) = liminf Qn(t) Vt € [0; 1],
(5) iy
IQnlle =N Vn>1,
where @, is the derivative of Q.
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e Define

f(t) = Z A7KXO sin(Akt).
kelL

Then provided thats is an even integer large enouglie have

af(t) =st) Vvt el0;1].

Proof. The proof of the first item is similar to that of Lemma 2; the only difference is
that we now define the sequengeby

/

1-—
Ok > max(Mk, 1—2,qk_1 + 1) for k> 1.
Now, we give the proof of the second item. ltdte fixed and let be a positive real such
thats(t) + ¢ < b’ ands(t) — ¢ > a . We begin by proving thaf e C3®—(t).
There exists an integég such thatQy(t) > s(t) — ¢, for everyk > ky. Leth be a

real such that G< |h| < A~%. Then we have

[f+h) - fO = | G XM sinGXt + hy) — 274*O sinkt)
kel

< A+ A +A,
where
+o00
A =) (KO kW) sin(K(t + hy),
k=1
Ko
A, = Y AOsin(k(t + hy) — sin(kt)],
k=1
and
+00
A= " A0 sin(kt + hy) — sin(k)].
k=Ko-+1

Let us give an upper bound f&. We have

+00
A< Z |A*ka(t+h) _ );ka(t)|

k=1
but
JKQUEEM 7KW = —(loga) x [Qi(t + h) — Qu(®] x (kA ™),
wheret € [Min(Qk(t), Qk(t + h)); max(Qk(t), Q«(t + h))].
Thus
+oo
A < (logh) D k™K |Qu(t + h) — Qu(b)l.

k=1

Since

|Qk(t +h) — Q)| < KIhl,
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we have
|Al < ci|h| < ca|h]PV7,
with ¢ = loga Y 727 k2aa,

Let us now give an upper bound fé¥. For this purpose, we consider the integer
such that

A~ (NFD < by < AN,
We have, using the mean value theorem,
A < |h X +2Y,

where

N
X = Z)L—k(s(t)—a—l)
k=1

and

+00
— —k(s(t)—¢)
Y = A ,

k=N+1
but
1 S
(t)—e—1
X = 1_)\S(t)71|h| El
1

s(t)—e

Sinces(t) is bounded, there exists a constent- 0 depending only ohande such that

A < colhSO7

Finally, it easy to see that there exists a positive congtgrnwhich depends only oh

ande such that
|A| < cslh| < calhS0".

Hence, ifc = 3maxcy, ¢, C3), we have
| f(t+h)— f(t) <clhs®,

Now we will prove thatx; (t) < s(t).

There exists an infinite s&t = I'(t, &) C L such thak(t) — ¢ < Qk(t) < s(t) + &,
for everyk € T'. Let N be an integer il such thatN > ko. Leth = [7/c(N)]A~N,
wherec(N) is chosen in the sgtt:1, +2} so that

1

sin (ANt + ﬁ) — sin(aNt)

Hence, ifA is an even integer, we have

[ft+h) — ft) — 2N NOEnaN @+ hy) —sina Nt < A+ AL+ AT+ A7,
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where
A = > 7KO sinGK(t 4 hy) — sin(akt)),
k>

kelL\I'

A" = 3727 A0 SinGK(E + hy) — sinGED).

k<N
kel

SinceQk(t) > s(t) + ¢ if k € L\I" andk > kg, we have

A’ < Y KO sin(K(t + hy) — sin(akt)),
keN

thus there exists a positive constapsuch that
A" < cahSOF
Let N, be the highest integer i less tharN. Then

N
A7 < Y ATKE0-9 sinak(t + hy) — sin(akt)
k=0

N
| h | Z )Lk(l—(s(t)—s))
k=0

AN A= (sth—e)
PESCORDNE

IA

< |h|

Using the factthat + s(t) + ¢ <1—a and 1— s(t) — e > 1 — b, we get
ANA-st)—e)
A= -1
Thus there exists a positive constagsuch that
A" < C5|h|s(t)+£.

We can choose large enough so that the constaoiscs, ¢4, andcs are less tharg%.
Hence we end up with

[ft+h) — ft)] > EhsOF. []
In the case whergis a continous function, we have the following result:

Proposition 7. Let s be a continuous function frdi®; 1] to[a; b] c ]0; 1] such that
S(X) < as(X) vx € [0; 1].
Assume also that there exsits a constant-Nd such that
Is(t) —s(u)| < M|t —u[®=®  v(t,u) €[0; 1] x [0; 1].
Then the function ) = Y, .\ A %% sin(A¥x) is such that
2 — dim§ graph f = af (x) = s(x).

Proof. See Appendix.
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6. Construction Using an Iterated Function System (IFS)

The third construction of a continuous function with a prescribeldier function is based

upon a generalization of the notion of IFS. This construction bears some analogy with
the first one, but here we directly manipulate the contraction ratios of affine functions
instead of working on the coefficients of the expansion in the Schauder basis. To begin
with, we recall some basic facts about IFS. More details can be found in [13], [28], [16],
[17], [15], and [29] and others.

6.1. Recalls

Let K be a compact metric space whose distance is denoteldXyy) for x, y € K.
Let H be the set of all nonempty closed subsetKofrhenH is a compact metric space
with the Hausdorff metric [13]

h(A, B) = max{supinf d(x, y), supinf d(x, y)} ,
xcAYEB xeB YEA
which is defined whenevek andB are subsets df .
Letw,: K — Kforne {1, 2,..., N} beN continuous functions. TheiK, w,: n =

1,2,..., N}is called an iterated function system (IFS). Defile H — H by
N
W(A) = U wn(A)  for AeH.
n=1

Any setG € H such that

W(G) =G
is called an attractor of the IRK, w, :n=1,2,..., N}. AnIFS always admits at least
one attractor. Indeed, start with aBy= H, then the closure of the set of all accumulation
points of{(W°™(S)}>_,, with Wo™(S) = W(W°M-1(S)) is an attractor of the IFS.

m=1’
If for somes € [0, 1[and alln € {1, ..., N}

d(wn(X), wa(y)) < sd(x,y) V(x,y) € K x K,

then the IFS is termed hyperbolic. In this caskis a contraction mapping, hence it
admits a unique fixed point which is the unique attractor of the IFS.

When the attractoG of an IFS is unique, it may be obtained as follows [14]: let
p = (p1,..., pn) be a probability vector with each, > 0 and)_,, p, = 1. Start
from the fixed pointxg of w; and define a sequendg,) by choosing successively
Xm € {w1(Xm-1), ..., wn(Xm-1)} form € {1, 2, 3, ...}, where probabilityp, is attached
to the evenky, = wp(Xm-1). Then the orbi{Xy} .y iS dense irG. The p,'s allow us to
generate a unique probability measpren K which is stationary for the discrete-time
Markov process defined as follows.

The probability of transfer ok € K to a Borel subseB of K is

p(X9 B) = Z pn(San(X)(B)a
n

where
_J1 ifyeB,
dy(B) = {o if y¢B.
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We will not develop here this aspect of IFS theory, and will now focus on the use of the
IFS for constructing graphs of continuous functions [14].

Given a set of point§(x,, yn) € [0; 1] x [u; v],n =0, 1, ..., N}, with (u, v) € R?,
considerthe IFS given by thé contractionsv, (n =1, ..., N)defined on [0 1] x[u; v],
by

wn(X, y) = (La(X); Fa(X, y)),

whereL,, is a contraction that maps;[Q@] to [Xn_1; Xn] @and F,: [0; 1] x [u; v] — [u; v]
is a function, contractive with respect to the second variable, such that
(6) Fn(X0, Yo) = ¥n-1; Fn(XN, YN) = Yn.

The attractor of this IFS is the graph of a continuous functiomhich interpolates the
points (Xn, Yn) [14].
If the L,’s are affineLn(X) = a,x + hy,, and if, for eachh € {1, ..., N},

thd(X, y) < d(wn(X), wa(y)) < sd(x,y)  forall x,yeK,
where O< t, < s, < 1, then
min(2, 1) < dimy graph f < u,
wherel andu are the positive solutions of

N N
doth=1 and ) si=1
n=1

n=1

and where the lower bound holds when

N 2/l
tity < min(al,aN)<Ztr'1) )

n=1
Concerning the box dimension, if eaél is affine with contraction ratio equal t,
and if the interpolation points are equally spaced, then it is a classical result that [22]
log(ci + -+ -+ ¢cN)
logN '

dimg graph f=1+

6.2. Local Behavior of Self-Affine Functions

Under some conditions on tH&,’s, the functionf defined above is nowhere differen-
tiable. But here we want more, namely to control the regularity at each point.

In this section we obtain the localditler exponent of at each poink € [0; 1] in the
case where thg,’'s are affine functions, and the interpolation points are equally spaced.
We also derive the multifractal spectrum bfand recover the classical formula for the
box dimension of the graph of. Related results concerning the almost-sumdddi’
exponent off have already been obtained in [17]. Results concerning the multifractal
spectrum were independently obtained in [18] and [19].

It is convenient to rewrite our setting in the following form: L8t(0 < i < m) be
affine transformations represented in matrix notation by

3= (3" )+ ()
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We suppose &t < 1and ¥m < ¢ < 1. Let f be the function whose graph is the
attractorG of the IFS defined by th§'s (with conditions org; andb; corresponding to
(6) to ensure the continuity of ). Our result concerning the local regularity bfis the
following one:

Proposition 8. Let0.i;...ik... be the terminating base-m expansion of a rea t
[0; 1). Then the Hblder exponen& of f at pointt is
oy min(lim inf log(ci, - ..cik)7 imint log(c;, . ..cjk)’ iminf log(a, . ..C|k)> ’
ks+oo log(m=*) " kst log(mK) k-t log(m=k)
where for any positive integer khe k-tuplegji, ..., jx) and(l, ..., ly) of nonnegative
integers strictly smaller than pare uniquely determined by

te = m ¥ [m“t],

if tc+m*<1, then {f=t+m¥* jomP else { =t,

if tc—m* >0 then f=tk-—m*=>I,mP else [ =t.

k
K
Proof. The proof is an adaptation of the classical computation of the box dimension

of the graph of self-affine curves [22].

Let k be a positive integer and Ighy, ..., ny) be ak-tuple of integers such that
0<np <mforeveryp=1,..., k. Letl, n be theinterval of reals in [Ql) whose
basem expansion begins with; . . . n,. Thengraph ﬁlnl___nk = §,0---05,(G), which
is a translation off,, o - -- o T,, (G), whereT; is the linear part ofy. It is easily seen
that the matrix representiriy, o --- o Ty, is

( ')
m*~Kan, + m? e, @y, + -+ +Cn,Cn, ... Cn 180, CnyCnyp---Cn)
Notea = max|a;|, ¢ = min(g), r = a/[c(1 — (Mo ~1)]. We have
Im~*a,, + m? e, @, 4+ - - 4 Cn,Cny - - . Gy 8n, | < TChy - .. Cnpo

so that ifs is the height of the rectangle containig thengraph fhnl...nk is contained
in the rectangle whose height@s+ S)c, . . . Cn,.

Consider now a reghb < «; there exists a positive integkg such that, for every
integerk > ko, we have

B(ix) > B, B > B and Bl > B,

where log( )
0g(Cp, - - - Cn,
n) = ——~
BN log(m—)
Let h be a real small enough so that the integedefined bym=*-1 < |h| < m™,
verifiesk > ko. Then either (i), (ii), or (iii) is true:

@ ¢, t+h)Cli i
(i) ¢, t+h cli ;U liyjio
(i) t,t+h)cC Iil...ik U ||1~~~|k'

Denoter; =r +s
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Case(i).
We have
[ft+h) — f®)] <rgc,...c,.

Case(ii).
Since f is continuous, we have
[f(t+h)— f(t)] <riG,...Cy +r1Cj ...Cj.

Case(iii).
Using again the continuity of , we have
[ft+h)— f@®) <riG,...c, +r1G,...GQ,.
Hence, we always have
|f(t+h) — f®) <2rilhl”.
This implies thatf € C*~¢(t) for everye > 0.
On the other hand, consider now a reat «. Assume without loss of generality that
o = fiminf 29 -G
k—+co  log(m%)
(the other cases are treated by simply changitmi orl).
Then there exists a subsequend&) such that, for everi, we have
log(c;, ... Cj, )
log(m—®)
If g1, g, andgsz are three noncollinear points @, then§, o - -- o §_, (G) contains the
points(Xn, f(Xn)) = §,0---0§, (@) (N = 1,2, 3). The heightd, «, of the triangle
with these vertices is at leadt;, ...c; , whered is the vertical distance frorg; to
[01; gz]. Thus, for everyk, there exists a redi, such thath,| < 2m=°® and

d
[f@t+h)— f@)] > Ec,-l...cjﬂk),
which implies that
d
[ft+ho— fM®)] = §|hk|y-

This shows thaff ¢ C**(t) for everys > 0, and the proof is complete. ]

Using this proposition, it is easy to deduce the specttunt («)) of the singularity
of f. The proofis analogous to the one for multinomial measures.

Corollary 3. With the same notations as abpaad assuming that the proportign(t)
of (i — 1)’s in the base-m expansion of t exists for eaclwé have

m—1 m—1

m—1
art) ==Y @i®)log,c; F@) =-)Y glogne; (@) =—log,» G
i=0 i—0 i—0

(for definition of F andr, see for instance [30].)
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Remark 1. Using the relation dirpgraph f = 1 — (1) we recover the classical
result [22]
m—1

dimg graph f =1+ log,, Y " c.
i=0

Itis now clear that, with this construction, we cannot hope to control the local regularity
at each point, since almost all points have the sawidét'@xponent (because the almost-
sure value ofy; (t) with respect to the Lebesgue measure/imlL We thus need to use
some generalization, which will be presented in the next section.

6.3. Recursive Construction

We set up here another way to construct fractals recursively, originally due to Anders-
son [29]. We consider a collection of s¢&*)ycn- , where eachFX is a nonempty finite

set of contractionsk inKfori =0,..., N\—1,Nx > 1, being an integer which denotes
the cardinal ofF¥. We denote byck the contraction ratio o§ fori =0,..., Ny — 1
andk e N*.

Forn e N*, let 3}, be the set of sequences of lengtidefined as follows
Sy ={o=(01,....00) 01 €{0,...., N = 1}, i € N},
and
SN =10 =(01,02,...) 10i €{0,..., Ny = 1}, i e N*}.

Define the operato*: H — H by
Nk

WK(A) = U S(A)  for AeH,
n=1

whereNy is the cardinal of. Define the conditions:

n
(© lim  sup {J[ckt =0
"= (o1 omed] | k=1
00 i
/ ; j+1 k _
() lim sup _X:d(sl,ﬁlx,x)l_[cﬂk = 0.
(01,02, )& | j=n k=1

The proof of the following proposition can be found in [29].

Proposition 9. If the conditiongc) and(c’) hold, then there exists a unique compact
G such that

lim W o ..o WY(A) =G  forevery Ac H.

k— 00

We call G the attractor of the IFEK, {F¥},cn)-

We will use this generalized result to obtain more flexibility in the construction of our
functions.
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Let F¥ be the set of affine transformatio&$(0 < i < m) represented in matrix

notation by
()= (" &) )+ ()

We suppose & t < 1and ¥m < c¢ < 1. We also assume that conditiofs and(c)

hold to ensure that we have a unique and compact attractor. Therajf¢hend theb’s

satisfy some relations, analogous to those proposed in Subsection 6.1, one can prove,
using the same techniques as in [14], that the attractor of th€KES$F*}, ) is the

graph of a continuous functiofi. We then have the following result;

Proposition 10. LetOQ.i;. . be the base-m expansion of a reat {0; 1). Then

cl...ck log(ct ...c! log(ct ...
at (t) = min{ liminf M lim inf M lim inf M ,
k>+oo  log(mK) " k>+co log(m=%) " k-+oo log(m=k)

where for any integer k if we denoteg = m~K[m*t], the k-tuples(js, ..., j«) and
(I, ..., lx) are given by

th = te+m K=

=~
Il

k
X:Wp’
k

tc = tc—m Z:mp
Proof. The proof uses the same techniques as in Proposition 8.

Although this generalization allows more flexibility in the choiceveft), it is still too
much constrained. Indeed, it is easy to see that if two reals differ only at a finite number
of ranks in their basea expansion, then they will have the sameltEr exponent. Hence
we cannot control the regularity independently at each point.

To do so, now letF be defined as the set of affine transformati®igo < i <
m* — 1), eachS operating only on ji/mlm=%+%; ([i/m] + 1)m~**!] and maps to
[im~k; (i + 1)mK]. Suppose, also, that we want to interpolate the paints, y;) for
i =0,....,mym > 2, andy; € R. Let the compacK be a rectangle containing the

(X, y.)s and write
H K
() = (4" &) G+ (%)

We call(K, (F¥)) ageneralized affine IF®efine the following conditions, which allow
the attractor to be the graph of a continuous functfoffor the sake of simplicity we
will give conditions whermrm = 2, the general case being handled similarly): start with
the graph of any nonaffine continuous functipand denote

9(0) =u, (1) =v.

Then choose the contractions (or, more preciselyai‘mand bik) so that they verify the
following conditions:
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fori =0, 1:

i i+1
Sl(o’ U) = <Ia5 yl) 5 Sl(lv U) = (IT’ Yi+1> B
S0.¥0) = 0, y0): FG.y»)=S0,¥0); SG.y) =Gy,
S1/2.y) = .y SAy) =S1/2y1); S y) = (L yo).
fork > 2andfori =0, ..., 2% —1:

if i is even, then:
if i < 2k-1:

S oSz oSz oo K aa00 = S5l o§z 00 § a0,
§og5to S[szzz] o 0 pa(3y) = S0 ik 0 S[k<i_+21>/221
0+ 204 (0. Yo,
if i > 2«1
S8R oSmo oGy = S5 0§ a0 0K g G ),
oS8R oS z o oK gLy = Sao Sitn2© Siiaz

2 1
0--+0 %(i-&-l)/Zk’z](i’ YI),

if i is odd, then:
if i < 2k-1:
S< (e] #:721] o %7222] O-+--0 %%/Zk_z](%’ yl) = %72:5 o #:7222] O-+++-0 %Zi/zk_g](%, Y1),
if | > 21

So #,721] o %7222] o--+0 %zi/zqu(la Yo) = ﬁf?z"l] o #:7222] 0---0 %%/2k—2](17 Y2).

Our main result is the following:

373

Proposition 11. Suppose that condition&) and (¢') hold. Then the attractor of the

IFS defined above is the graph of a continuous function f such that

i .
f(ﬁ>:yi Vi =0,...,m,

and
af (t) = min(ey, oz, as3),
where
k 2 1
. |Og(ka71i1+mk72i2+___+mikil+ik - Chipti, Giy)
ap = liminf = ’
koo log(m=)
l0g(C i o o cz. .. ch
o - ki i Cii
(7 oz = liminf M Ja Mo+ +mlkk1+1k itiz
k— 00 ) log(m—k)
1
L IOg(ka*1I1+mk*2I2+---+mlk,1+|k o Cm|1+|ZC|1)
a3 = liminf — ’
koo log(m=)

and where theg's, j,’s, and |,’s are defined as in PropositioB.
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Proof. Letl,,. n betheinterval of reals whose baseexpansion begins withy . . . ng.
Define GX to be the set obtained aftkriterations in the process of generation of the
attractorG, i.e.,

Gk =WKo...o WHG).

Then, it easy to see that

k _ 2 1
G lngme — S:;k*1n1+mk*2ng+~-+mm_1+nk -0 Snnﬁnz ° Sn(G)-

Using the same techniques as in the proof of proposition 8, the announced result follows.
[ |

Remark 2. Givenmrealsry, ..., rm € ]1/m; 1|, define, for every integeéd > 1 and
for everyi € {0, ..., m* — 1}, thec’s as follows:

Cik = lit1-mfi/m]-

Then, we recover the original construction considered in Proposition 8.

The following corollary allows us to control the local singularity at each point, while
interpolating the pointsi /m, y;) fori =0, ..., m. We first need to state the following
refinement of Lemma 2.

Lemma 3. Letse H. Then there exists a sequerid®},., of piecewise polynomials
such that

s(t) = L@j@j Ra(t) Vtel0;1],
(8) IR Il <M IR Il <n Vn=1,

[|Rnllo > 1/l0gn,

where R* and R, are, respectivelythe right and left derivative of R
Proof. Let Qg be defined as in Lemma 2 and define

1
9) R = maX(Qk, m) .

Corollary 4. Let g(t) be a function fronfO; 1] to [0; 1], which is the lower limit of a
sequence of continuous functions

Then there exists a generalized affine IFS whose attractor is the graph of a continuous
function f which verifies

ar (t) = s(t).

Proof. Because of the continuity constraints, finding the generalized affine IFS amounts
to determining the double sequer(o#é)i‘k.

Let{R,},>1 be a sequence of piecewise polynomials that verifies (8) avid(Ibe the
set ofm-adic points of [0 1].
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Consider now the sequenfig}-, of functions fromM to R defined as follows. For

teM,t=3Y2, imP, let

rit) = Ri(iim™),

k—1
re(t) = kRe(t) — (k= DR¢_1 (Zipm”> for k=2 ... ko,
p=1
and
Me(t) = kRe(t) — (k — D Re_1(t) for k> ko.
Now, foreachk > 1 andi =0, ..., m* — 1, set

im—k
C|k — m_rk(|m ).

Using (9), we verify that condition&) and(c’) are fulfilled.
Using Proposition 11, we get

k k k
2T >ornh 2o
ar ) = min| liminf =2 fiminf = Jliminf =2
k— +o00 k— 400 k k— 400
Since
k k k

2 rp) >rH 2
i1 i—1 i=1
‘ — = Rt i—r—=&@x 1—r—=&qx

af(t) = min (Iiminf Rk (to), liminf Rk(tlj), liminf Rk(tk‘)) .
k—+00 k—+o00 k— 400
Using (8), we have
liminf Re(t) = liminf R(t) = liminf Re(t)) = liminf Re(t,).
k—+o00 k—+o00 k—+o00 k—+o00
We end up with
af (t) = s(t). [

7. Concluding Remarks

7.1. Nonuniqueness of f

It is easy to see that, given a set of poifitsi, i)}i_o. N Wherex, = i/N, and a
functions € H, there is an infinite number of continuous functions that interpolate the
(X, ¥i)'s and whose ldIder function iss. Indeed, take the functioi constructed in
Subsection 8 and consider the functiag), defined by

f(X) + APL(X)

0.(x) = 112

b
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whereP, (x) is the Legendre polynomial defined by

N
N H(x—xj)
PLOO = ) Y.
=0 T — %))

J#

anda is a real different from-1. Then, sincéd®. € C*(R), it is clear thaty;, = s and,
of course, the function, interpolates thé&x;, y;)'s for everys € R\{—1}.

7.2. Size of E
Lets € ‘H and define

Es = {w € C%([0; 1]) /e, (X) = s(x) VX € [0; 1]}.
Proposition 12. Es is dense in &([0; 1]) for the uniform convergence nort || .

Proof. Let P be the set of polynomials defined ory [J. It is well known thatP is
dense inC°([0; 1)) for the uniform convergence norm. Fére C°([0; 1]), let (Py)nen
be a sequence such tHat € P for everyn € N and

[[1Ph— flloo = O when n — cc.

Now letw be a function inEg, and consider the sequenck) .- defined by
fn=Py+ % for every n e N*.

SinceP, € C*°([0; 1]) for everyn € N andw € Eg, itis clear thatf, is in Es for every
n € N*. We have
[lw]]oo

I1fh = flle = IPh = flloo +

w IS a continuous function on a compact set, and there exists a co@statsuch that
llw|ls < C, hence

[[fo — flloc = O when n — oo. [ |

7.3. More Refined Ways of Characterizing the Local Regularity

The local regularity of the graphs of the functions constructed with the three methods
we have presented above appears, in some cases, strikingly different (see Section 8).
Several improvements may be proposed in order to describe these discrepancies:

e A well-known method to measure more precisely the local structure would be to
use finer scales of functions, as for instance functions of the form

1\ A 1\ % 1\ %
g(x) = X (Iog;) (Ioglog;) ...(Ioglog...log;) ,

the Holder exponent at a poixt would then be a vectdiy, 81, B2, ..., Bn)-
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e Another possibility is to characterize algebraic oscillations instead of taking the
absolute values, i.e., consider the two limits

lim supgf(h) and lim supg+—(h),
h—0 v hso hv

where
g(x) = f(Xo+h) — f(X0), g+(X) =maxg(x),0), g-(x)=min(g(x),0).

o Finally, especially for practical purposes, the speed of convergence to the local
Holder exponent atg is of crucial importance. For instance, it is easy to show that,
for the Schauder-type function considered in Section 4, if we $ékg= X, then,
for xo > 0 and for some sequenbg — 0, the best possible lower bound is

[ f (X0 + hn) — f(X0)| > cy|hy o CelMl,

wherec; andc, are constants. But for the Weierstrass-like functions of Section 3,
and also withs(x) = x, the best possible lower bound is

[ f (X0 + hn) — f(x0)| = c'hy,
wherec’ is a constant.

When working with discrete data, this first-order differencehitan make a big
difference (see figures in the next section).

8. Examples

The following figures are graphs of continuous functions with prescribed local regularity.
We have implemented the constructions described in Sections 4, 5, 6, and for each case,
we show an example with(t) = t ands(t) = |sin(5zt)|. In the IFS construction
examples, the set of interpolation points is

{00; 3. D:;ED:ED:ED;A 0}

Appendix

Proof of Proposition 7. Recall thatrs is the Hilder function o6. We begin by proving
thatas (t) > s(t). Lett be fixed,s, be a real such that & ¢, « 1, and leth be a real
such that O< |h| < &,. Then we have

+00
ft+h) — f©) = > AW sin( (e + hy) — 27 sin(akt))
k=1

= A+ A,
where

+00
A=) (K 5 7kSO) sin(ak(t + hy),
k=1
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0 1 | | | ! 1 I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Fig. 1. Construction using the Schauder basis witt) = t.

and

+0o0
A = 27K (sin(ak(t + hy) — sin(A D).
k=1

Let us give an upper bound fpA|. We have
+00
|A| E Z |)\‘—k5(t+h) _ )\‘—kS('[)L
k=1

but
)Lka(t+h) _ )Lfks(t) — _(|ng) x [S(t + h) _ S(t)] x (k)\fkr)’
wheret € [min(s(t), s(t + h)); max(s(t), s(t + h))].
Thus
+00
|Al < (log)|s(t + h) — s(t)] > ka ™.
k=1

LetC = Z:j‘i kr~k* (0 < C < +o0o because this series converges), then since there
exists a constaritl > O such that

Is(t + h) — s(t)| < M|h|*®,
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S

O 1 1 1 1 ! 1 1

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 2. Construction using the Schauder basis with) = |sin(5xt)]|.

we have
|A] < ci|h|*® < ¢q]h[5Y,
where

¢t =CMlogx.

Let us now give an upper bound fpi'|. For this purpose, we consider the intedér

such that
A~(NFD < h) < AN,

We have, using the main value theorem,

|A'] < [h| X +2Y,
where
i ’
X = 3 KE®-1)
k=1
and

+00
Y: Z )L—ks(t),
k=N-+1

379
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8 T T T T T T T T T
g
6 4
4 4
o U \; !
1
0 HE#E .
2 H i
-4 H 4
6 H 4
-8 H i
_10 i Il 1 1 1 ] 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 3. Construction using the Weierstrass-type function it = t.
but
X < 1 |h|S(t)—1
- 11— psH-1 ’
i
T 10 '

Sinces(t) is bounded, there exists a constent- 0 such that
|A| < colh*0.
Finally, if c = ¢; + ¢, we have
[fE+h) — fOl <chP®,

which gives

[fe+h—fol _

0.
Ihf”

(v <st) = lm

Now we will prove thatx; (t) < s(t).
Lett be areal in [01] and lets be a real in ]0&;[. Then consider the integét such
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12 T T T J T

4 L | 1 1 ! 1 I 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Construction using the Weierstrass-type function wsith = |sin(5xt)|.

thata~N*+D < § < A~N, and leth be a real such that-N*Y < |h| < 5. We have
X = [ft+h) — ft) =2 NOinaN (¢ + h) — sin(ANt))|

+00
B+2) a7FU A
k=N

IA

whereB = Y0t AKSO | sin(k(t + h) — sin(Akt)].
We have
As®-1
B<a N0 _—
= 1_ ) 6O-D°
Since we have seen that

|A] < c|hP® < ga NSO,

then
X < 27N (¢ + ¢g),
with
)LS(I)—]- )»_S(t)
G =1 60D T2] ;0

Provided that is large enough, we may choosgandcs such that

1 1
C1< 2 and C3 < 755
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Fig. 5. Construction using generalized affine IFS wstth) = t.

thus
X < ZaNsO,
but
X > [1ft+h)y— f@t) —1"NOsinANt + h)) — sinANt)||
and
Tt 4+h) — f@®)>2"VOsinANt + h)) — sin(xNt)| — X.

There exists a sequence [22},), with A~N+D < |h,| < § < A~N for everyn, such
that

|sinAN(t + ho)) —sinGND| = & vn,

because A < |hy|AN < 1vn.
We deduce

[t +hn) = O] = 550N > 25850 > Lijh, 50

which gives

(y >st) = Iimsup”(t +h — 1O =
h—0 |h|)/
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-3 | L 1 1
0 02 0.4 0.6 0.8 1

Fig. 6. Construction using generalized affine IFS wsth) = |sin(5xt)|.

Let us now check thaf verifies conditiongc;) and(c,) of Proposition 1.
Letx be areal in [01] and lete be a real such that & ¢ < min(ey, &2). For every
8 < ¢ andt € B(x, 8), we have seen that

2 S
_ (t)
1— )\s(t)fl + 1— )‘S(t)i| |t U|

forevery u e B(t, ),

[f@)— fu| < [c(t)MIogAJr

where
ct) = ki ¥ with 7 e [min(s(t). s(u)); maxs(t), s(u))].
k=1

This implies that
Ct, ) <AM+B forevery te[0;1] and § <,

where

1 2
Y

oo
A=logr) ki *® and B
k=1

383
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Hence
C(x,8) <400 V8 <e,

and condition(c;) holds.
Condition(c,) is easy to verify. Indeed, we have seen that there existsa re@(t, §)
such that

MOER I
hence
ot.8) =5  Vi<e,
which implies that
C(x,&) #0.

Now, sincesis continuous, and conditioris; ) and(c,) hold, we get, using Proposition 1,

2 — dimj} graph f = s(x) for every x € [0; 1]. [ |
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