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Construction of Continuous Functions with
Prescribed Local Regularity

K. Daoudi, J. Lévy Véhel, and Y. Meyer

Abstract. In this paper we investigate from both a theoretical and a practical point
of view the following problem: Lets be a function from [0; 1] to [0; 1]. Under which
conditions does there exist a continuous functionf from [0; 1] to R such that the
regularity of f at x, measured in terms of H¨older exponent, is exactlys(x), for all
x ∈ [0; 1]?

We obtain a necessary and sufficient condition ons and give three constructions of
the associated functionf . We also examine some extensions regarding, for instance,
the box or Tricot dimension or the multifractal spectrum. Finally, we present a result on
the “size” of the set of functions with prescribed local regularity.

1. Introduction

Since Riemann [1], a number of authors have been interested in constructing nowhere
differentiable continuous functions. Some use geometrical constructions, of which the
best-known examples are probably Von Koch’s [2], Peano’s and Hilbert’s [3] curves,
while others are based on analytical tools. The very well-known example in this case is
the Weierstrass function, which was shown by Weierstrass to be continuous and nowhere
differentiable [4]. This result was later greatly enhanced by Hardy [5] who showed that

f (x) =
∞∑

n=0

bn cos(anxπ)

has nowhere a finite derivative, provided that

0< b < 1, a > 1, ab≥ 1.

Hardy also analyzed the H¨older conditions satisfied byf (x). If ab > 1, let ξ < 1 be
defined byξ = log(1/b)/loga. Then, forh→ 0,

| f (x + h)− f (x)| = O(|h|ξ ) for everyx,

but

| f (x + h)− f (x)| = o(|h|ξ ) for no x.
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Another example of nowhere differentiable functions, which fits well the main ideas of
this paper, is the Takagi function [6] defined by

T(x) =
∞∑

j=0

2− j θ∗(2 j x),

whereθ∗(x) is the periodic function of period 1 defined on [0; 1] by θ∗(x) = 2x if
0≤ x ≤ 1

2 andθ∗(x) = 2− 2x if 1
2 ≤ x ≤ 1.

Indeed, we consider in the sequal three different constructions of nowhere differen-
tiable functions: one is based on a generalization of the Weierstrass function, another
on an expansion in the Schauder basis, and the last on a generalization of IFS theory.
The construction of the Takagi function bears some analogy with that of the Weierstrass
function. On the other hand, the restriction ofT to [0; 1] has the following expansion in
the Schauder basis:

T(x) =
∑
j≥0

∑
0≤k<2 j

2− j θ(2 j x − k),

whereθ(x) = θ∗(x) if x ∈ [0; 1] andθ(x) = 0 if x /∈ [0; 1]. Finally, the graph of
the restriction ofT to [0; 1] is the attractor of the IFS defined by the two functions
w1(x, y) = (x/2, (2x + y)/2) andw2(x, y) = (x/2+ 1

2, (y− 2x)/2+ 1).
Hata [7] considered the following generalization. Letg be the continuous function

defined by

g(x) =
∞∑

n=0

bnq(anxπ),

whereq is a continuous function and 0< b < 1. He showed in particular that, when
q(x) = cos(x + θ) (θ ∈ R), which leads to

g(x) =
∞∑

n=0

bn cos(anxπ + θ),

then the continuous functiong has nowhere a finite or infinite derivative if

ab≥ 1+ π2.

He also found related results when the functionq is almost periodic. His results were later
improved by Hu and Lau [8]. Mauldin and Williams [9] also considered a generalization
of the Weierstrass function, namely

Wβ(x) =
+∞∑
−∞

β−αn(ϕ(βnx + θn)− ϕ(θn)),

whereβ > 1, 0 < α < 1, eachθn is an arbitrary number, andϕ is a function which
has period one. They showed that there exists a constantC > 0 such that, ifβ is large
enough, then the Hausdorff dimension of the graph ofWβ is bounded from below by
2− α − C/logβ.

Several other techniques are now employed for constructing continuous nowhere
differentiable functions. One powerful scheme is to use wavelet decompositions. For
instance, Jaffard [10] has given a construction of a function with prescribed multifractal
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spectrum(α, f (α)). Choosing in such a constructionf (α) such thatf (α)|]−∞;0]∪[1 ;+∞[
=

−∞ leads to a nowhere differentiable continuous function.
Another method that has been investigated a lot these past years is based on Iterated

Function System (IFS). Although the study of iteration of matrices dates back to Doeblin
and Fortet [11] and Dubbins and Freedman [12], it was Hutchinson [13] who really laid
the foundations of IFS theory. Subsequently, several authors have explored this path
(see for instance [14], [15], [16], [17], and many others). Barnsley [14] showed that,
under some conditions, it is possible to construct an IFS whose attractor is the graph
of a continuous nowhere differentiable function. More precise results are now known,
concerning the almost sure H¨older exponent of such functions [17] or their multifractal
spectrum [18], [19].

We will hereafter callα f the Hölder function of f , which associates, to each pointx,
the Hölder exponent of the functionf at x. The main objective of the present work is to
solve the following problem which was raised by J. L´evy Véhel:

Let s be a function from[0; 1] to [0; 1]. Under what conditions on s does there exist a
continuous function f from[0; 1] to R such thatα f (x) = s(x) for all x in [0; 1]?

S. Jaffard proposed the Schauder basis construction that we recall in Section 4 (the
wavelet basis construction presented in [26] is an adaptation to the case where the H¨older
exponents are greater than 1). Y. Meyer realized that this construction allows us to obtain
the most general H¨older functions. K. Daoudi and J. L´evy Véhel independantly performed
two other constructions that also yield the general result and which are presented in
Sections 5 and 6.

The motivation for this investigation stems partly from applications in signal pro-
cessing. Indeed, in some cases, it is desirable to model highly irregular signals while
precisely controlling the irregularity at each point. This happens, for instance, when the
significant information lies in the singularities of the signal more than in its amplitude.
In such cases, we want to tune the value ofα f (x) everywhereand not merelyalmost
everywhere. An example in speech modeling is presented in [19] and [20].

Our main result is the following:

Theorem. Let s be a function from[0; 1] to [0; 1]. Then, the following conditions are
equivalent:

(i) s is the Ḧolder function of a continuous function f from[0; 1] to R.
(ii) There exists a sequence(sn)n≥1 of continuous functions such that:

s(x) = lim inf
n→+∞ sn(x), ∀ x ∈ [0; 1].

The proof of (i)⇒ (ii) is easy and is given in Section 3. The proof of (ii)⇒ (i) requires
more work.

For practical purposes, we are interested here in constructive proofs, i.e, we want to
derive explicit methods to construct the functionf . We present below three such proofs
which highlight different aspects of the problem. We also investigate related problems,
as for instance the evaluation of the local box dimension off at each point or the
computation of the multifractal spectrum off . Finally, for practical applications, we
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want to construct functionsf with a prescribed H¨older function that satisfies additional
constraints, as for instance interpolating a finite number of points(xi , yi ) ∈ [0; 1]× R,
i = 1, 2, . . . , N. This naturally leads to a characterization of the set of functions with a
prescribed H¨older function.

The remainder of this paper is organized as follows: in Section 2, we recall some
basic definitions about the local regularity of functions, the Hausdorff, Tricot, and box
dimension. We also prove a new relation between the local box dimension and the H¨older
exponent. In Section 4 we construct functions with prescribed local regularitys(x) at
each point using the Schauder basis. In Section 5, we give another solution based on
a generalized Weierstrass function. In Section 6, we use IFS to give a solution which
constructively allows us to interpolate a given finite set of equispaced points. In Section 7,
we propose some desirable extensions that would allow us to measure more finely the
local structure of graphs of continuous functions. Section 8 shows some implementation
results.

2. Recalls and a Result Relating the Local Box Dimension and
the Hölder Exponent

In this section we recall some basic definitions useful for the sequel. The definitions are
not given in full generality, but only in the form adapted to our problem.

2.1. Definition of the Hausdorff Dimension

Let E be a nonempty set ofR2.
Define

|E| := sup
x,y
{|x − y|; x, y ∈ E}

to be thediameterof E.
If E ⊂ ⋃i∈N Ei with 0 < |Ei | ≤ δ for eachi , then{Ei }i∈N is called a (countable)

δ-coverof E.
For δ > 0 andr ≥ 0, define

Hr
δ(E) := inf

{+∞∑
i=1

|Ei |r /{Ei }i∈Nδ-cover ofE

}
,

Hr
δ(E) is a nonincreasing function ofδ, and we note

Hr (E) := lim
δ→0
Hr
δ(E) = sup

δ>0
Hr
δ(E)

theHausdorff r -dimensional outer measureof E.
The Hausdorff dimension ofE is the unique value dimH(E) such that [21]

Hr (E) =
{+∞ if r < dimH(E),

0 if r > dimH(E).

2.2. Definition of the Box Dimension

For anyδ > 0, we consider the set ofδ-mesh squaresin R2 of the form [i δ, (i + 1)δ] ×
[ j δ, ( j + 1)δ] with i, j integers. For any bounded subsetF of R2, we denote byNδ(F)
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the number ofδ-mesh squares which intersectF . The box dimension ofF is then defined
by [22]

dimB(F) = lim
δ→0

(
log Nδ(F)

− logδ

)
,

whenever this limit exists.
When the limit exists, its value is unaffected if we change the definition ofNδ(F) and

take any of the following:

1. the smallest number of squares of sizeδ that coverF ;
2. the smallest number of closed balls of diameterδ that coverF ;
3. the smallest number of sets of diameterδ that coverF ; and
4. the largest number of disjoint balls of diameterδ with centers inF .

2.3. Definition of the Tricot(Packing) Dimension

Let F be a nonempty set ofRn, wheren ≥ 1 is an integer, and

Pr
δ (F) = sup

{∑
i∈N

|Bi |r
}
,

where{Bi }i∈N is a collection of disjoint balls of radii at mostδ whose centers belong toF .
Consider

Pr
0(F) = lim

δ→0
Pr
δ (F),

this limit exists sincePr
δ (F) decreases withδ.

Define now ther -dimensional Tricot measure [23], [22]Pr by

Pr (F) = inf

{ ∞∑
i=1

Pr
0(Fi ) : F ⊂

∞⋃
i=1

Fi

}
,

then, the Tricot (or packing) dimension dimP is defined as follows:

dimP F = sup{r : Pr (F) = +∞} = inf{r : Pr (F) = 0}.

2.4. Definition of the Ḧolder Spaces and the Ḧolder Exponent

Let I be an interval inR, f a continuous function fromI to R, andβ ∈ R̄∗+\N.

Definition 1. f is said to belong to the global H¨older spaceCβ(I ) iff there exists a
positive constantc, such that for everyx0 ∈ I , there exists a polynomialPx0 of degree
less than or equal to the integer part ofβ, such that

| f (x)− Px0(x − x0)| ≤ c|x − x0|β ∀x ∈ I .

Definition 2. Let t0 be in I . Then f is said to belong to the pointwise H¨older space
Cβ(t0) iff there exists a polynomialP of degree less than or equal to the integer part of
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β, and a positive constantc such that, for everyt in the neighborhood oft0, we have

| f (t)− P(t − t0)| ≤ c|t − t0|β.

Recall that ifβ ∈ N∗, the spaceCβ must be replaced by the Zygmundβ-class [24].

Definition 3. A function f is said to have H¨older exponentβ at pointt0 iff:

(i) for every realγ < β

lim
h→0

| f (t0+ h)− P(h)|
|h|γ = 0;

(ii) if β < +∞, for every realγ > β

lim sup
h→0

| f (t0+ h)− P(h)|
|h|γ = +∞,

whereP is a polynomial whose degree is less than or equal to the integer part of
β.

Whenβ < +∞, this is equivalent to

f ∈
⋂
ε>0

Cβ−ε(t0) but f /∈
⋃
ε>0

Cβ+ε(t0).

It is also equivalent to

β = sup{θ > 0 : f ∈ Cθ (t0)}.

Notice that f ∈ Cβ(I ) does not imply thatβ = inft∈I α f (t). As an example, consider
the continuous functionf defined onR by

f (t) =
|t | sin

(
1

|t |
)

if t ∈ R∗,

0 if t = 0,

then, f ∈ C1/2(R), but f is C∞ at each point, except at 0 whereα f (0) = 1.

2.5. A Relation Between the Local Box Dimension and the Hölder Exponent

In [25], the authors investigate the relation between the global upper box dimension of
the graph of a function and its global smoothness. They give precise characterizations
of the global upper box dimension of the graph of a continuous function in terms of its
membership in Besov spaces and variation of Wiener spaces.

In this section, we are rather interested in the relation between the local box dimension
of the graph of a function and its membership in pointwise H¨older spaces. We propose a
new result that links the local box dimensions of the graph of a continuous function and
its Hölder exponents.

Let f be a continuous function from [0; 1] toR. We suppose thats(x) = α f (x) ∈ [0; 1]
for all x ∈ [0; 1]. Let x ∈ ]0; 1[, ε > 0 such that ]x− ε ; x+ ε[ ⊂ [0; 1] andδ ∈ ]0 ; ε[.

We cover the plane by aδ-mesh, i.e., a grid of squares of the form [i δ ; (i + 1)δ] ×
[ j δ ; ( j + 1)δ], with i, j integers.
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Let Nε
δ be the number of squares that intersectgraph f|]x−ε ;x+ε[ . We define, respectively,

the upper and lower local box dimension [22] of the graph off at the pointx by

dimx
B graph f = lim

ε→0
lim sup
δ→0

− log Nε
δ

logδ

and

dimx
B graph f = lim

ε→0
lim inf
δ→0

− log Nε
δ

logδ
.

When these numbers coincide, we denote by dimx
B graph f the local box dimension of

f at x. For t ∈ ]0; 1[ such thatB(t, ε) = ]t − ε ; t + ε[ ⊂ [0, 1], define

c̄(t, ε) = inf{c ∈ R∗+ : ∀u ∈ B(t, ε) , | f (t)− f (u)| ≤ c|t − u|s(t)}
and

c(t, ε) = sup{c ∈ R∗+ : ∃u ∈ B(t, ε) : | f (t)− f (u)| ≥ cεs(t)}.

Proposition 1. Let x be a real in]0; 1[. Define the following conditions:

(c1) there existsε′ > 0 such that

C̄(x, ε) = sup
t∈B(x,ε)

c̄(t, ε) < +∞ for every ε < ε′;

(c2) there existsε′ > 0 such that

C(x, ε) = inf
t∈B(x,ε)

c(t, ε) 6= 0 for every ε < ε′.

Then, if (c1) holds, we have the following inequality

dimx
B graph f ≤ 2−min

(
lim inf

t→x
s(t), s(x)

)
and, if (c2) holds, we have

2−max

(
lim sup

t→x
s(t), s(x)

)
≤ dimx

B graph f.

Proof. Let ε be a real such that 0< ε < ε′. We denote

sεx = inf{s(t); t ∈ ]x − ε; x + ε[},
sεx = sup{s(t); t ∈ ]x − ε; x + ε[},

Rf [t1; t2] = sup
t1<u<v<t2

| f (u)− f (v)|.

Let m be the least integer greater than or equal to 2ε/δ. Thus, if

Ii (ε, δ) = ]x − ε + i δ; x − ε + (i + 1)δ[,

then

]x − ε; x + ε[ ⊂
m−1⋃
i=0

Ii (ε, δ).
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However, sincef is continuous, the number of squares of theδ-mesh that intersect
graph f|Ii (ε,δ) is at leastRf (Ii (ε, δ))/δ and at most 2+ Rf (Ii (ε, δ))/δ. Summing over
all such intervals gives

δ−1
m−1∑
i=0

Rf (Ii (ε, δ)) ≤ Nε
δ ≤ 2m+ δ−1

m−1∑
i=0

Rf (Ii (ε, δ)).(1)

Let nowu, v ∈ ]x − ε; x + ε[, with u < v. Then

| f (u)− f (v)| ≤ c̄(u, ε)|u− v|s(u),
thus

| f (u)− f (v)| ≤ C̄(x, ε)|u− v|sεx .
We deduce that

Rf [t1; t2] ≤ C̄(x, ε)|t1− t2|sεx ∀t1, t2 ∈ ]x − ε; x + ε[,
butm≤ 1+ 2εδ−1, and using(1) we get

Nε
δ ≤ (1+ 2εδ−1)(2+ C̄(x, ε)δ−1δsεx )

≤ c1εδ
sεx−2,

wherec1 > 0 only depends onx andε and is finite.
We deduce

− log Nε
δ

logδ
≤ 2− sεx − h(δ),

where

h(δ) = logc1

logδ
+ logε

logδ
.

Since limδ→0 h(δ) = 0, we obtain

lim sup
δ→0

− log Nε
δ

logδ
≤ 2− sεx,

which implies

lim
ε→0

lim sup
δ→0

− log Nε
δ

logδ
≤ 2− lim

ε→0
sεx,

but

lim
ε→0

sεx = min
(
lim inf

t→x
s(t), s(x)

)
,

and finally

dimx
B graph f ≤ 2−min

(
lim inf

t→x
s(t), s(x)

)
.

Now we establish the other inequality.
For allv ∈ ]x − ε; x + ε[, there existsu such that

| f (u)− f (v)| ≥ c(v, ε)εs(v),
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thus

| f (u)− f (v)| ≥ C(x, ε)εsεx .

We deduce

Rf [t1; t2] ≥ C(x, ε)|t1− t2|s
ε
x ∀t1, t2 ∈ ]x − ε; x + ε[,

butm≥ 2εδ−1, and using(1) we get

Nε
δ ≥ 2C(x, ε)εδ−1δ−1δsεx

= 2C(x, ε)εδsεx−2.

Thus

− log Nε
δ

logδ
≥ 2− sεx − h(δ),

where

h(δ) = log 2C(x, ε)ε

logδ
.

Since limδ→0 h(δ) = 0, we get

lim inf
δ→0
− log Nε

δ

logδ
≥ 2− sεx,

but

lim
ε→0

sεx = max

(
lim sup

t→x
s(t), s(x)

)
and finally

dimx
B graph f ≥ 2−max

(
lim sup

t→x
s(t), s(x)

)
.

This result shows in particular that:

Corollary 1. Whenever s is continuous at point x and conditions(c1) and (c2) hold,
the local box dimension of f at x exists and is equal to2− s(x).

Note that the converse is not true: the existence of the local box dimension off at x
does not tell anything about the continuity ofs at x.

Besides, whens is not continuous atx, s(x) and dimx
B graph f can greatly differ (take,

for instance,f (x) = √|x| at x = 0). Another consequence is that we can think of the
local box dimension as a more “local” quantity, and of the H¨older exponent as a more
“pointwise” quantity: in the case off (x) = √|x|, the local box dimension, which is
equal to 1, is dominated by the local behavior off around 0, as the H¨older exponent,12,
reflects the behavior off solely at 0.

Let us give an example which shows the necessity of condition(c1). Consider the
continuous functionf defined by

f (x) =
{

xu cos(x−v) if x 6= 0,
0 if x = 0,
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where 0< u < v. This function does not verify condition(c1). Now, we can prove that,
for x = 0,α f (x) = u and that [24, p. 126]

dimx
B graph f = dimx

B graph f = 2− u+ 1

v + 1
.

Hence, whenv < 1/u, the second inequality in the proposition above does not hold.

2.6. A Relation Between the Tricot Dimension and the Local Hölder Exponent

Let f be a continuous function on [0; 1], and define, forx ∈ [0; 1] andε > 0

Vε(x) = sup{| f (x′)− f (x′′)| : |x − x′| ≤ ε, |x − x′′| ≤ ε},
Vε(x) is called the localε-oscillation of f at x.

Define now the conditions(p1) and(p2) by

(p1) ∃s1 > 0/∀x ∈ [0; 1], ∃a1(x) > 0/Vε ≤ a1(x)ε
s1,

(p2) ∃s2 > 0/∀x ∈ [0; 1], ∃a2(x) > 0/Vε ≥ a2(x)ε
s2.

Condition(p1) implies that

lim inf
ε→0

logVε(x)

logε
≥ s1,

which means thatα f (x) ≥ s1 for everyx ∈ [0; 1].
In the same way, condition(p2) implies that

lim inf
ε→0

logVε(x)

logε
≤ s2,

which means thatα f (x) ≤ s2 for everyx ∈ [0; 1].
Then we have the following result, due to Claude Tricot:

Proposition 2. If condition(p1) holds, then

dimP graph f ≤ max(1, 2− s1).

This result remains true when condition(p1) holds for every x∈ [0; 1] except on a set
E such thatdimP(E) = 0.

If condition(p2) holds, then

dimP graph f ≥ 2− s2.

This result remains true when condition(p2) holds for every x∈ [0; 1] except on a set
of Lebesgue measure zero.

3. Characterization of the Set of Hölder Functions of Continuous Function

Theorem 1. Let f be a nowhere differentiable continuous function from[0; 1] to R.
Then, there exists a sequence{sn}n∈N of continuous functions such that

α f (x) = lim inf
n→∞ sn(x) ∀x ∈ [0; 1].
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Conversely, let s be a function from[0; 1] to [0; 1] such that s(x) = lim infn→∞ sn(x),
where the sn’s are continuous functions. Then there exists a continuous function f from
[0; 1] to R such that

α f (x) = s(x).

The first part of the theorem is easy to prove. Indeed, take

sn(x) = inf
2−n≤|h|<2−n+1

{
log(| f (x + h)− f (x)| + 2−n2

)

log |h|

}
.

Thensn is continuous for every integern ≥ 1 , and since

α f (x) = lim inf
h→0

log | f (x + h)− f (x)|
log |h| ,

it is easy to see that

α f (x) = lim inf
n→∞ sn(x) ∀x ∈ [0; 1].

In the following sections, we will give three constructive proofs of the second part of
the theorem. We will denote byH the set of all functions, defined from [0; 1] to [0; 1],
which are the lower limit of a sequence of continuous functions.

4. Construction Using the Schauder Basis

This construction is due to S. Jaffard [26], and is based on the well-known relation
between the pointwise regularity of a function and the coefficients of its expansion in
the Schauder basis.

4.1. Recalls on the Schauder Basis

Consider the functionθ(x) from R to R defined by

θ(x) =
{

1− |2x − 1| if x ∈ [0; 1],
0 if x 6∈ [0; 1].

It is well known that if f is a continuous function from [0; 1] toR, and if f (0) = f (1) =
0, then

f (x) =
∑
j≥0

∑
0≤k<2 j

c( j, k)θj,k(x),

where

θj,k(x) = θ(2 j x − k)

and

c( j, k) = f ((k+ 1
2)2
− j )− 1

2( f (k2− j )+ f ((k+ 1)2− j )).

We have the following results:



360 K. Daoudi, J. L´evy Véhel, and Y. Meyer

Proposition 3. If f ∈ Cs(x0) for some x0 ∈ [0; 1] and s > 0, then there exists a
constant C such that

|c( j, k)| ≤ C(2− j + |k2− j − x0|)s.

The proof of this proposition is straightforward.

Proposition 4. Suppose that there exists a constant C such that for every x∈ [0; 1]
we have

| f (x + h)− f (x)| ≤ Cω(h) when h→ 0,(2)

whereω is a strictly increasing function from[0; 1] to R, which verifies

w(0) = 0 and w(h) = O(| logh|−N) ∀N ≥ 1.

Suppose also that for some x0 ∈ [0; 1] and s> 0, there exists a constant C such that

|c( j, k)| ≤ C(2− j + |k2− j + |2− j − x0|)s.
Then

f ∈ Cs−ε(x0) ∀ε > 0.

Proof. Let x1 be a real in the neighborhood ofx0, and let j0 be the integer such that

2− j0 ≤ |x1− x0| < 2−( j0−1).

We define the integerj1 such thatw(2− j1) = 2−s j0. Then

| f (x1)− f (x0)| ≤ W + X + Y + Z,

where

W =
∑

0≤ j≤ j0

∑
0≤k<2 j

|c( j, k)(θj,k(x1)− θj,k(x0))|,

X =
∑
j> j0

∑
0≤k<2 j

|c( j, k)|θj,k(x0),

Y =
∑

j0< j≤ j1

∑
0≤k<2 j

|c( j, k)|θj,k(x1),

Z =
∣∣∣∣∣∑
j> j1

∑
0≤k<2 j

c( j, k)θj,k(x1)

∣∣∣∣∣ .
For j < j0−1,θj,k(x0) 6= 0 impliesθj,k(x1) 6= 0. Furthermore, for eachj , there exists a
uniquek such thatθj,k(x0) 6= 0 orθj,k(x1) 6= 0. In this case, we have|k2− j − x0| ≤ 2− j .
Finally, remark that|θj,k(x1)− θj,k(x0)| ≤ 2 j |x1− x0|. Hence, we have

W ≤
∑

0≤ j≤ j0

2 j (1−s)|x1− x0| ≤ C|x1− x0|s.

It is easy to prove thatX ≤ C2− j0s, which leads to

X ≤ C|x1− x0|s.
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Whenθj,k(x1) 6= 0, we have|k2− j − x1| ≤ 2− j , and if j > j0, this implies that

|c( j, k)| ≤ C|x1− x0|s,
hence,

Y ≤ C( j1− j0)|x1− x0|s.
For every integerN ≥ 1, there exists a constantCN such thatω(2− j1) ≤ CN j1−N .
Hence,

j1 ≤ CN
1/N2 j0(s/N),

sinceω(2− j1) = 2− j0s. This implies that, for everyε > 0, there exists a constantCε such
that

j1− j0 ≤ Cε|x1− x0|−ε.
Finding an upper bound forZ requires the following results:

Lemma 1. Denote

Sq( f )(x) =
∑

0≤ j≤q

∑
0≤k<2 j

c( j, k)θj,k(x),

then Sq( f ) is the continuous piecewise affine function which satisfies

Sq( f )(k2−q) = f (k2−q) ∀k = 0, . . . ,2q.

Corollary 2.

|| f − Sq( f )||∞ ≤ ω(2−q).

The proofs of the lemma and the corollary are easy.
We remark thatZ ≤ || f − Sj1( f )||∞, and since

ω(2− j1) = 2− j0s ≤ |x1− x0|s,
the proof of the proposition is completed.

4.2. Construction of the Desired Function

The following result will be used in the proof of the theorem.

Lemma 2. Let s∈ H. Then there exists a sequence{Qn}n≥1 of polynomials such that{
s(t) = lim inf

n→+∞ Qn(t) ∀t ∈ [0; 1],

||Q′n||∞ ≤ n ∀n ≥ 1,
(3)

where Q′n is the derivative of Qn.
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Proof. Sinces ∈ H∗, there exists a sequence{sk}k∈N∗ of continuous functions such
that

s(t) = lim inf
k→+∞

sk(t) ∀t ∈ [0; 1].

Thus there exists a sequence{Pk} of polynomials such that

s(t) = lim inf
k→+∞

Pk(t) ∀t ∈ [0; 1].

Let {qk}k∈N∗ be a sequence of integers such that

q1 ≥ M1

and

qk ≥ max(Mk,qk−1) for k ≥ 2,

where

Mk = ||P′k||∞.
Define the sequence{Qj }j≥1 by

Qj (t) = 0 if 1 ≤ j < q1

and

Qj (t) = Pk(t) if qk ≤ j < qk+1 for k ≥ 1.

Of course,s(t) = lim inf j→+∞ Qj (t) ∀t ∈ [0; 1]. On the other hand,

|Q′j (t)| = |P′k(t)| if qk ≤ j < qk+1,

and

|P′k(t)| ≤ Mk ≤ qk ∀t ∈ [0; 1]

hence

|Qj
′(t)| ≤ j ∀ j ≥ 1 and ∀t ∈ [0; 1].

Proposition 5. Let s∈ H and let(Qn)n≥1 be the associated sequence of polynomials
verifying(3).

Consider the continuous function f defined on[0; 1] by

f (x) =
∑
j≥0

∑
0≤k<2 j

c( j, k)θj,k(x),

where

c( j, k) = inf(2− j/log j , 2− j Qj (k2− j )).

Then

α f (x) = s(x) ∀x ∈ [0; 1].
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Proof. We first prove thatα f (x0) ≤ s(x0) for everyx0 ∈ [0; 1].
Let j ≥ 1 be an integer, and letk be the integer such thatx0 ∈ [k2− j ; (k + 1)2− j [.

Hence,|Qj (k2− j )− Qj (x0)| ≤ j 2− j . This implies that for everyε > 0 there exists an
integer j0, such thatc( j, k) > 2− j (s(x0)+ε) for every j > j0. Using Proposition 3, we
conclude thatα f (x0) ≤ s(x0).

Let us now show thatα f (x0) ≥ s(x0)− ε for everyε > 0. Remark that there existsjε
such that

s(x0)− ε < Qj (k2− j )

for every j ≥ jε, andk such thatx0 ∈ [k02− j ; (k+ 1)2− j [. This implies that

c( j, k) ≤ 2− j (s(x0)−ε).

Furthermore, sincec( j, k) ≤ 2− j/log j , it is easy to see that condition(2) holds. Hence,
we conclude using Proposition 4 thatα f (x0) ≥ s(x0)− ε.

5. Use of Weierstrass-Type Functions

In this section, we show that a simple generalization of the Weierstrass function allows
us to control the regularity at each point. For a related result, see [24, p. 282].

We first recall some properties of the Weierstrass function, which is defined by

W(t) =
+∞∑
k=1

λ−ks sin(λkt),

whereλ > 1 ands ∈ ]0; 1[.
It is well known [27] thatαW(t) = s for all t and that dimB graph W = 2 − s.

However the value of dimH graph W is not yet known. Of course, dimH graph W ≤
dimB graph W, and using mass distribution methods depending on estimates for the
Lebesgue measure of the set{t/(t,W(t)) ∈ D} whereD is a disk, it can be shown [9]
that there exists a constantc > 0 such that dimH graph W≥ s− c/logλ.

As mentioned in the Introduction, several authors have considered generalizations of
the Weierstrass function, by replacing the sinus with other types of function. Here we
consider another type of generalization.

Proposition 6. Let s(t) be a function from[0; 1] to [a; b] ⊂ ]0; 1[, which is the lower
limit of a sequence of continuous functions. Let a′ and b′ be two reals such that0< a′ <
a < b < b′ < 1, and consider the sequenceL = (lp)p≥1 defined byl1 = 1,

l p+1 =
[

1− a′

1− b′
l p

]
+ 1,

(4)

where[.] denotes the integer part. Then:

• There exists a sequence{Qn}n≥1 of polynomials such that{
s(t) = lim inf

n→+∞
n∈L

Qn(t) ∀t ∈ [0; 1],

||Q′n||∞ ≤ n ∀n ≥ 1,
(5)

where Q′n is the derivative of Qn.



364 K. Daoudi, J. L´evy Véhel, and Y. Meyer

• Define

f (t) =
∑
k∈L

λ−kQk(t) sin(λkt).

Then, provided thatλ is an even integer large enough, we have

α f (t) = s(t) ∀t ∈ [0; 1].

Proof. The proof of the first item is similar to that of Lemma 2; the only difference is
that we now define the sequenceqk by

qk ≥ max

(
Mk,

1− a′

1− b′
qk−1+ 1

)
for k > 1.

Now, we give the proof of the second item. Lett be fixed and letε be a positive real such
thats(t)+ ε < b′ ands(t)− ε > a′ . We begin by proving thatf ∈ Cs(t)−ε(t).

There exists an integerk0 such thatQk(t) > s(t) − ε, for everyk > k0. Let h be a
real such that 0< |h| < λ−k0. Then we have

| f (t + h)− f (t)| =
∣∣∣∣∣∑

k∈L

(λ−kQk(t+h) sin(λk(t + h))− λ−kQk(t) sin(λkt))

∣∣∣∣∣
≤ A+ A′k0

+ A′,

where

A =
+∞∑
k=1

|(λ−kQk(t+h) − λ−kQk(t)) sin(λk(t + h))|,

A′k0
=

k0∑
k=1

λ−kQk(t)| sin(λk(t + h))− sin(λkt)|,

and

A′ =
+∞∑

k=k0+1

λ−kQk(t)| sin(λk(t + h))− sin(λkt)|.

Let us give an upper bound forA. We have

A ≤
+∞∑
k=1

|λ−kQk(t+h) − λ−kQk(t)|

but

λ−kQk(t+h) − λ−kQk(t) = −(logλ)× [Qk(t + h)− Qk(t)] × (kλ−kτ ),

whereτ ∈ [min(Qk(t), Qk(t + h));max(Qk(t), Qk(t + h))].
Thus

A ≤ (logλ)
+∞∑
k=1

kλ−kτ |Qk(t + h)− Qk(t)|.

Since

|Qk(t + h)− Qk(t)| ≤ k|h|,
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we have

|A| ≤ c1|h| ≤ c1|h|s(t)−ε,
with c1 = logλ

∑+∞
k=1 k2λ−ka.

Let us now give an upper bound forA′. For this purpose, we consider the integerN
such that

λ−(N+1) ≤ |h| ≤ λ−N .

We have, using the mean value theorem,

A′ ≤ |h|X + 2Y,

where

X =
N∑

k=1

λ−k(s(t)−ε−1)

and

Y =
+∞∑

k=N+1

λ−k(s(t)−ε),

but

X ≤ 1

1− λs(t)−1
|h|s(t)−ε−1,

Y ≤ 1

1− λ−s(t)
|h|s(t)−ε.

Sinces(t) is bounded, there exists a constantc2 > 0 depending only ont andε such that

A′ ≤ c2|h|s(t)−ε.
Finally, it easy to see that there exists a positive constantc3, which depends only ont
andε such that

|A′k0
| ≤ c3|h| ≤ c3|h|s(t)−ε.

Hence, ifc = 3 max(c1, c2, c3), we have

| f (t + h)− f (t)| ≤ c|h|s(t)−ε.
Now we will prove thatα f (t) ≤ s(t).

There exists an infinite set0 = 0(t, ε) ⊂ L such thats(t)− ε < Qk(t) < s(t)+ ε,
for everyk ∈ 0. Let N be an integer in0 such thatN À k0. Let h = [π/c(N)]λ−N ,
wherec(N) is chosen in the set{±1,±2} so that∣∣∣∣sin

(
λNt + π

c(N)

)
− sin(λNt)

∣∣∣∣ > 1
10.

Hence, ifλ is an even integer, we have

| f (t + h)− f (t)− λ−N QN (t)(sin(λN(t + h))− sin(λNt))| ≤ A+ A′k0
+ A′′ + A′′′,
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where

A′′ =
∑
k>k0

k∈L\0

λ−kQk(t)| sin(λk(t + h))− sin(λkt)|,

A′′′ =
∑
k<N
k∈0

λ−kQk(t)| sin(λk(t + h))− sin(λkt)|.

SinceQk(t) ≥ s(t)+ ε if k ∈ L\0 andk > k0, we have

A′′ ≤
∑
k∈N

λ−k(s(t)+ε)| sin(λk(t + h))− sin(λkt)|,

thus there exists a positive constantc4 such that

A′′ ≤ c4|h|s(t)+ε.
Let Nl be the highest integer in0 less thanN. Then

A′′′ ≤
Nl∑

k=0

λ−k(s(t)−ε)| sin(λk(t + h))− sin(λkt)|

≤ |h|
Nl∑

k=0

λk(1−(s(t)−ε))

≤ |h| λ
Nl (1−(s(t)−ε))

λ1−(s(t)−ε) − 1
.

Using the fact that 1− s(t)+ ε < 1− a′ and 1− s(t)− ε > 1− b′, we get

A′′′ ≤ |h| λ
N(1−s(t)−ε)

λ1−(s(t)−ε) − 1
.

Thus there exists a positive constantc5 such that

A′′′ ≤ c5|h|s(t)+ε.
We can chooseλ large enough so that the constantsc1, c3, c4, andc5 are less than1

80.
Hence we end up with

| f (t + h)− f (t)| > 1
20|h|s(t)+ε.

In the case wheres is a continous function, we have the following result:

Proposition 7. Let s be a continuous function from[0; 1] to [a; b] ⊂ ]0; 1[ such that

s(x) < αs(x) ∀x ∈ [0; 1].

Assume also that there exsits a constant M> 0 such that

|s(t)− s(u)| ≤ M |t − u|αs(t) ∀(t, u) ∈ [0; 1]× [0; 1].

Then the function f(x) =∑k∈N λ
−ks(x) sin(λkx) is such that

2− dimx
B graph f = α f (x) = s(x).

Proof. See Appendix.
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6. Construction Using an Iterated Function System (IFS)

The third construction of a continuous function with a prescribed H¨older function is based
upon a generalization of the notion of IFS. This construction bears some analogy with
the first one, but here we directly manipulate the contraction ratios of affine functions
instead of working on the coefficients of the expansion in the Schauder basis. To begin
with, we recall some basic facts about IFS. More details can be found in [13], [28], [16],
[17], [15], and [29] and others.

6.1. Recalls

Let K be a compact metric space whose distance is denoted byd(x, y) for x, y ∈ K .
Let H be the set of all nonempty closed subsets ofK . ThenH is a compact metric space
with the Hausdorff metric [13]

h(A, B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
x∈B

inf
y∈A

d(x, y)

}
,

which is defined wheneverA andB are subsets ofK .
Letwn: K → K for n ∈ {1, 2, . . . , N} beN continuous functions. Then{K , wn: n =

1, 2, . . . , N} is called an iterated function system (IFS). DefineW: H → H by

W(A) =
N⋃

n=1

wn(A) for A ∈ H.

Any setG ∈ H such that

W(G) = G

is called an attractor of the IFS{K , wn : n = 1, 2, . . . , N}. An IFS always admits at least
one attractor. Indeed, start with anyS∈ H , then the closure of the set of all accumulation
points of{Wom(S)}∞m=1, with Wom(S) = W(Wo(m−1)(S)) is an attractor of the IFS.

If for somes ∈ [0, 1[ and alln ∈ {1, . . . , N}
d(wn(x), wn(y)) ≤ sd(x, y) ∀(x, y) ∈ K × K ,

then the IFS is termed hyperbolic. In this caseW is a contraction mapping, hence it
admits a unique fixed point which is the unique attractor of the IFS.

When the attractorG of an IFS is unique, it may be obtained as follows [14]: let
p = (p1, . . . , pN) be a probability vector with eachpn > 0 and

∑
n pn = 1. Start

from the fixed pointx0 of w1 and define a sequence(xm) by choosing successively
xm ∈ {w1(xm−1), . . . , wN(xm−1)} for m ∈ {1, 2, 3, . . .}, where probabilitypn is attached
to the eventxm = wn(xm−1). Then the orbit{xm}m∈N is dense inG. The pn’s allow us to
generate a unique probability measureµ on K which is stationary for the discrete-time
Markov process defined as follows.

The probability of transfer ofx ∈ K to a Borel subsetB of K is

p(x, B) =
∑

n

pnδwn(x)(B),

where

δy(B) =
{

1 if y ∈ B,
0 if y /∈ B.
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We will not develop here this aspect of IFS theory, and will now focus on the use of the
IFS for constructing graphs of continuous functions [14].

Given a set of points{(xn, yn) ∈ [0; 1]× [u; v], n = 0, 1, . . . , N}, with (u, v) ∈ R2,
consider the IFS given by theN contractionswn (n = 1, . . . , N)defined on [0; 1]×[u; v],
by

wn(x, y) = (Ln(x); Fn(x, y)),

whereLn is a contraction that maps [0; 1] to [xn−1; xn] andFn: [0; 1]× [u; v] → [u ; v]
is a function, contractive with respect to the second variable, such that

Fn(x0, y0) = yn−1; Fn(xN, yN) = yn.(6)

The attractor of this IFS is the graph of a continuous functionf which interpolates the
points(xn, yn) [14].

If the Ln’s are affine,Ln(x) = anx + hn, and if, for eachn ∈ {1, . . . , N},
tnd(x, y) ≤ d(wn(x), wn(y)) ≤ snd(x, y) for all x, y ∈ K ,

where 0< tn ≤ sn < 1, then

min(2, l ) ≤ dimH graph f ≤ u,

wherel andu are the positive solutions of

N∑
n=1

t l
n = 1 and

N∑
n=1

su
n = 1,

and where the lower bound holds when

t1tN ≤ min(a1,aN)

(
N∑

n=1

t l
n

)2/ l

.

Concerning the box dimension, if eachFn is affine with contraction ratio equal tocn,
and if the interpolation points are equally spaced, then it is a classical result that [22]

dimB graph f = 1+ log(c1+ · · · + cN)

log N
.

6.2. Local Behavior of Self-Affine Functions

Under some conditions on theFn’s, the function f defined above is nowhere differen-
tiable. But here we want more, namely to control the regularity off at each point.

In this section we obtain the local H¨older exponent off at each pointx ∈ [0; 1] in the
case where theFn’s are affine functions, and the interpolation points are equally spaced.
We also derive the multifractal spectrum off and recover the classical formula for the
box dimension of the graph off . Related results concerning the almost-sure H¨older
exponent off have already been obtained in [17]. Results concerning the multifractal
spectrum were independently obtained in [18] and [19].

It is convenient to rewrite our setting in the following form: LetSi (0 ≤ i < m) be
affine transformations represented in matrix notation by

Si

(
t
x

)
=
(

1/m 0
ai ci

)(
t
x

)
+
(

i /m
bi

)
.
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We suppose 0≤ t ≤ 1 and 1/m < ci < 1. Let f be the function whose graph is the
attractorG of the IFS defined by theSi ’s (with conditions onai andbi corresponding to
(6) to ensure the continuity off ). Our result concerning the local regularity off is the
following one:

Proposition 8. Let 0.i1 . . . i k . . . be the terminating base-m expansion of a real t∈
[0; 1). Then the Ḧolder exponentα of f at point t is

α = min

(
lim inf
k→+∞

log(ci1 . . . cik)

log(m−k)
, lim inf

k→+∞
log(cj1 . . . cjk)

log(m−k)
, lim inf

k→+∞
log(cl1 . . . clk)

log(m−k)

)
,

where, for any positive integer k, the k-tuples( j1, . . . , jk) and(l1, . . . , lk) of nonnegative
integers strictly smaller than m, are uniquely determined by

tk = m−k[mkt ],

if tk +m−k < 1, then t+k = tk +m−k =
k∑

p=1

jpm−p else t+k = tk,

if tk −m−k > 0, then t−k = tk −m−k =
k∑

p=1

l pm−p else t−k = tk.

Proof. The proof is an adaptation of the classical computation of the box dimension
of the graph of self-affine curves [22].

Let k be a positive integer and let(n1, . . . ,nk) be ak-tuple of integers such that
0 ≤ np < m for every p = 1, . . . , k. Let In1...nk be the interval of reals in [0; 1) whose
base-m expansion begins withn1 . . .nk. Thengraph f| In1...nk

= Sn1 ◦ · · ·◦Snk(G), which
is a translation ofTn1 ◦ · · · ◦ Tnk(G), whereTi is the linear part ofSi . It is easily seen
that the matrix representingTn1 ◦ · · · ◦ Tnk is(

m−k 0
m1−kan1 +m2−kcn1an2 + · · · + cn1cn2 . . . cnk−1ank cn1cn2 . . . cnk

)
.

Notea = max|ai |, c = min(ci ), r = a/[c(1− (mc)−1)]. We have

|m1−kan1 +m2−kcn1an2 + · · · + cn1cn2 . . . cnk−1ank | ≤ rcn1 . . . cnk ,

so that ifs is the height of the rectangle containingG, thengraph f|In1...nk
is contained

in the rectangle whose height is(r + s)cn1 . . . cnk .
Consider now a realβ < α; there exists a positive integerk0 such that, for every

integerk > k0, we have

β(i k) > β, β( jk) > β and β(lk) > β,

where

β(nk) = log(cn1 . . . cnk)

log(m−k)
.

Let h be a real small enough so that the integerk, defined bym−k−1 ≤ |h| < m−k,
verifiesk > k0. Then either (i), (ii), or (iii) is true:

(i) (t, t + h) ⊂ Ii1...i k ;
(ii) (t, t + h) ⊂ Ii1...i k ∪ I j1... jk ;

(iii) (t, t + h) ⊂ Ii1...i k ∪ Il1...lk .

Denoter1 = r + s



370 K. Daoudi, J. L´evy Véhel, and Y. Meyer

Case(i).

We have

| f (t + h)− f (t)| ≤ r1ci1 . . . cik .

Case(ii).

Since f is continuous, we have

| f (t + h)− f (t)| ≤ r1ci1 . . . cik + r1cj1 . . . cjk .

Case(iii).

Using again the continuity off , we have

| f (t + h)− f (t)| ≤ r1ci1 . . . cik + r1cl1 . . . clk .

Hence, we always have

| f (t + h)− f (t)| ≤ 2r1|h|β.
This implies thatf ∈ Cα−ε(t) for everyε > 0.

On the other hand, consider now a realγ > α. Assume without loss of generality that

α = lim inf
k→+∞

log(cj1 . . . cjk)

log(m−k)

(the other cases are treated by simply changingj to i or l ).
Then there exists a subsequenceσ(k) such that, for everyk, we have

log(cj1 . . . cjσ(k) )

log(m−σ(k))
< γ.

If q1, q2, andq3 are three noncollinear points inG, thenSj1 ◦ · · · ◦ Sjσ(k) (G) contains the
points(xn, f (xn)) = Sj1 ◦ · · · ◦ Sjσ(k) (qn) (n = 1, 2, 3). The heightdσ(k) of the triangle
with these vertices is at leastdcj1 . . . cjσ(k) whered is the vertical distance fromq2 to
[q1;q3]. Thus, for everyk, there exists a realhk such that|hk| < 2m−σ(k) and

| f (t + hk)− f (t)| ≥ d

2
cj1 . . . cjσ(k) ,

which implies that

| f (t + hk)− f (t)| ≥ d

2
|hk|γ .

This shows thatf /∈ Cα+ε(t) for everyε > 0, and the proof is complete.

Using this proposition, it is easy to deduce the spectrum(α, F(α)) of the singularity
of f . The proof is analogous to the one for multinomial measures.

Corollary 3. With the same notations as above, and assuming that the proportionϕi (t)
of (i − 1)’s in the base-m expansion of t exists for each i, we have

α f (t) = −
m−1∑
i=0

ϕi (t) logm ci ; F(α) = −
m−1∑
i=0

ϕi logm ϕi ; τ(q) = − logm

m−1∑
i=0

ci
q,

(for definition of F andτ , see, for instance, [30].)
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Remark 1. Using the relation dimB graph f = 1 − τ(1) we recover the classical
result [22]

dimB graph f = 1+ logm

m−1∑
i=0

ci .

It is now clear that, with this construction, we cannot hope to control the local regularity
at each point, since almost all points have the same H¨older exponent (because the almost-
sure value ofϕi (t) with respect to the Lebesgue measure is 1/m). We thus need to use
some generalization, which will be presented in the next section.

6.3. Recursive Construction

We set up here another way to construct fractals recursively, originally due to Anders-
son [29]. We consider a collection of sets(Fk)k∈N∗ , where eachFk is a nonempty finite
set of contractionsSk

i in K for i = 0, . . . , Nk−1, Nk ≥ 1, being an integer which denotes
the cardinal ofFk. We denote byck

i the contraction ratio ofSk
i for i = 0, . . . , Nk − 1

andk ∈ N∗.
For n ∈ N∗, let=n

NI
be the set of sequences of lengthn, defined as follows

=n
Ni
= {σ = (σ1, . . . , σn) : σi ∈ {0, . . . , Ni − 1}, i ∈ N∗},

and

=∞Ni
= {σ = (σ1, σ2, . . .) : σi ∈ {0, . . . , Ni − 1}, i ∈ N∗}.

Define the operatorWk: H → H by

Wk(A) =
Nk⋃

n=1

Sk
n(A) for A ∈ H,

whereNk is the cardinal ofFk. Define the conditions:

(c) lim
n→∞ sup

(σ1,...,σn)∈=n
Ni

{
n∏

k=1

ck
σk

}
= 0,

(c′) lim
n→∞ sup

(σ1,σ2,...)∈=∞Ni

{ ∞∑
j=n

d(Sj+1
σj+1

x, x)
j∏

k=1

ck
σk

}
= 0.

The proof of the following proposition can be found in [29].

Proposition 9. If the conditions(c) and(c′) hold, then there exists a unique compact
G such that

lim
k→∞

Wk ◦ · · · ◦W1(A) = G for every A∈ H.

We call G the attractor of the IFS(K , {Fk}k∈N∗).

We will use this generalized result to obtain more flexibility in the construction of our
functions.
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Let Fk be the set of affine transformationsSk
i (0 ≤ i < m) represented in matrix

notation by

Sk
i

(
t
x

)
=
(

1/m 0
ak

i ck
i

)(
t
x

)
+
(

i /m
bk

i

)
.

We suppose 0≤ t ≤ 1 and 1/m < ck
i < 1. We also assume that conditions(c) and(c′)

hold to ensure that we have a unique and compact attractor. Then if theak
i ’s and thebk

i ’s
satisfy some relations, analogous to those proposed in Subsection 6.1, one can prove,
using the same techniques as in [14], that the attractor of the IFS(K , {Fk}k∈N) is the
graph of a continuous functionf . We then have the following result:

Proposition 10. Let0.i1 . . . i k . . . be the base-m expansion of a real t∈ [0; 1). Then

α f (t) = min

(
lim inf
k→+∞

log(c1
i1
. . . ck

ik
)

log(m−k)
, lim inf

k→+∞
log(c1

j1
. . . ck

jk
)

log(m−k)
, lim inf

k→+∞
log(c1

l1
. . . ck

lk
)

log(m−k)

)
,

where, for any integer k, if we denote tk = m−k[mkt ], the k-tuples( j1, . . . , jk) and
(l1, . . . , lk) are given by

t+k = tk +m−k =
k∑

p=1

jpm−p,

t−k = tk −m−k =
k∑

p=1

l pm−p.

Proof. The proof uses the same techniques as in Proposition 8.
Although this generalization allows more flexibility in the choice ofα f (t), it is still too

much constrained. Indeed, it is easy to see that if two reals differ only at a finite number
of ranks in their base-mexpansion, then they will have the same H¨older exponent. Hence
we cannot control the regularity independently at each point.

To do so, now letFk be defined as the set of affine transformationsSk
i (0 ≤ i ≤

mk − 1), eachSk
i operating only on [[i /m]m−k+1; ([i /m] + 1)m−k+1] and maps to

[im−k; (i + 1)m−k]. Suppose, also, that we want to interpolate the points(i /m, yi ) for
i = 0, . . . ,m, m ≥ 2, andyi ∈ R. Let the compactK be a rectangle containing the
(xi , yi )’s and write

Sk
i

(
t
x

)
=
(

1/m 0
ak

i ck
i

)(
t
x

)
+
(

i /mk

bk
i

)
.

We call(K , (Fk)) ageneralized affine IFS. Define the following conditions, which allow
the attractor to be the graph of a continuous functionf (for the sake of simplicity we
will give conditions whenm = 2, the general case being handled similarly): start with
the graph of any nonaffine continuous functionϕ and denote

ϕ(0) = u, ϕ(1) = v.
Then choose the contractions (or, more precisely, theak

i andbk
i ) so that they verify the

following conditions:
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for i = 0, 1:

S1
i (0, u) =

(
i

m
, yi

)
; S1

i (1, v) =
(

i + 1

m
, yi+1

)
,

S2
0(0, y0) = (0, y0); S2

0(
1
2, y1) = S2

1(0, y0); S2
1(

1
2, y1) = ( 1

2, y1),

S2
2(1/2, y1) = ( 1

2, y1); S2
2(1, y2) = S2

3(1/2, y1); S2
3(1, y2) = (1, y2).

for k > 2 and fori = 0, . . . ,2k − 1:
if i is even, then:

if i < 2k−1:

Sk
i ◦ Sk−1

i /2 ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](0, y0) = Sk−1
i /2 ◦ Sk−2

[i /22] ◦ · · · ◦ S2
[i /2k−2](0, y0),

Sk
i ◦ Sk−1

i /2 ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](
1
2, y1) = Sk

i+1 ◦ Sk−1
[(i+1)/2] ◦ Sk−2

[(i+1)/22]

◦ · · · ◦ S2
[(i+1)/2k−2](0, y0),

if i ≥ 2k−1:

Sk
i ◦ Sk−1

i /2 ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](
1
2, y1) = Sk−1

i /2 ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](
1
2, y1),

Sk
i ◦ Sk−1

i /2 ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](1, y2) = Sk
i+1 ◦ Sk−1

[(i+1)/2] ◦ Sk−2
[(i+1)/22]

◦ · · · ◦ S2
[(i+1)/2k−2](

1
2, y1),

if i is odd, then:
if i < 2k−1:

Sk
i ◦ Sk−1

[i /2] ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](
1
2, y1) = Sk−1

[i /2] ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](
1
2, y1),

if i ≥ 2k−1:

Sk
i ◦ Sk−1

[i /2] ◦ Sk−2
[i /22] ◦ · · · ◦ S2

[i /2k−2](1, y2) = Sk−1
[i /2] ◦ Sk−2

[i /22] ◦ · · · ◦ S2
[i /2k−2](1, y2).

Our main result is the following:

Proposition 11. Suppose that conditions(c) and (c′) hold. Then the attractor of the
IFS defined above is the graph of a continuous function f such that

f

(
i

m

)
= yi ∀i = 0, . . . ,m,

and

α f (t) = min(α1, α2, α3),

where 

α1 = lim inf
k→+∞

log(ck
mk−1i1+mk−2i2+···+mik−1+i k

. . . c2
mi1+i2

c1
i1
)

log(m−k)
,

α2 = lim inf
k→+∞

log(ck
mk−1 j1+mk−2 j2+···+mjk−1+ jk

. . . c2
mj1+ j2

c1
j1
)

log(m−k)
,

α3 = lim inf
k→+∞

log(ck
mk−1l1+mk−2l2+···+mlk−1+lk

. . . c2
ml1+l2

c1
l1
)

log(m−k)
,

(7)

and where the ip’s, jp’s, and lp’s are defined as in Proposition8.
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Proof. Let In1...nk be the interval of reals whose base-mexpansion begins withn1 . . .nk.
DefineGk to be the set obtained afterk iterations in the process of generation of the
attractorG, i.e.,

Gk = Wk ◦ · · · ◦W1(G).

Then, it easy to see that

Gk|In1...nk
= Sk

mk−1n1+mk−2n2+···+mnk−1+nk
◦ · · · ◦ S2

mn1+n2
◦ S1

n1
(G).

Using the same techniques as in the proof of proposition 8, the announced result follows.

Remark 2. Givenm realsr1, . . . , rm ∈ ]1/m ; 1[, define, for every integerk ≥ 1 and
for everyi ∈ {0, . . . ,mk − 1}, theck

i ’s as follows:

ck
i = ri+1−m[i /m] .

Then, we recover the original construction considered in Proposition 8.

The following corollary allows us to control the local singularity at each point, while
interpolating the points(i /m, yi ) for i = 0, . . . ,m. We first need to state the following
refinement of Lemma 2.

Lemma 3. Let s∈ H. Then there exists a sequence{Rn}n≥1 of piecewise polynomials
such that 

s(t) = lim inf
n→+∞ Rn(t) ∀ t ∈ [0; 1],

||R′n+||∞ ≤ n; ||R′n−||∞ ≤ n ∀ n ≥ 1,
||Rn||∞ ≥ 1/logn,

(8)

where R′n
+ and R′n

− are, respectively, the right and left derivative of Rn.

Proof. Let Qk be defined as in Lemma 2 and define

Rk = max

(
Qk,

1

logk

)
.(9)

Corollary 4. Let s(t) be a function from[0; 1] to [0; 1], which is the lower limit of a
sequence of continuous functions.

Then there exists a generalized affine IFS whose attractor is the graph of a continuous
function f which verifies

α f (t) = s(t).

Proof. Because of the continuity constraints, finding the generalized affine IFS amounts
to determining the double sequence(ck

i )i,k.
Let {Rn}n≥1 be a sequence of piecewise polynomials that verifies (8) and letM be the

set ofm-adic points of [0; 1].
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Consider now the sequence{rk}k≥1 of functions fromM to R defined as follows. For
t ∈M, t =∑k0

p=1 i pm−p, let

r1(t) = R1(i1m−1),

rk(t) = k Rk(t)− (k− 1)Rk−1

(
k−1∑
p=1

i pm−p

)
for k = 2, . . . , k0,

and

rk(t) = k Rk(t)− (k− 1)Rk−1(t) for k > k0.

Now, for eachk ≥ 1 andi = 0, . . . ,mk − 1, set

ck
i = m−rk(im−k).

Using (9), we verify that conditions(c) and(c′) are fulfilled.
Using Proposition 11, we get

α f (t) = min

lim inf
k→+∞

k∑
j=1

r j (tj )

k
, lim inf

k→+∞

k∑
j=1

r j (t
+
j )

k
, lim inf

k→+∞

k∑
j=1

r j (t
−
j )

k

 .
Since

k∑
j=1

r j (tj )

k
= Rk(tk) ;

k∑
j=1

r j (t
+
j )

k
= Rk(t

+
k ) ;

k∑
j=1

r j (t
−
j )

k
= Rk(t

−
k ),

α f (t) = min

(
lim inf
k→+∞

Rk(tk), lim inf
k→+∞

Rk(t
+
k ), lim inf

k→+∞
Rk(t

−
k )

)
.

Using(8), we have

lim inf
k→+∞

Rk(t) = lim inf
k→+∞

Rk(tk) = lim inf
k→+∞

Rk(t
+
k ) = lim inf

k→+∞
Rk(t

−
k ).

We end up with

α f (t) = s(t).

7. Concluding Remarks

7.1. Nonuniqueness of f

It is easy to see that, given a set of points{(xi , yi )}i=0,...,N wherexi = i /N, and a
functions ∈ H, there is an infinite number of continuous functions that interpolate the
(xi , yi )’s and whose H¨older function iss. Indeed, take the functionf constructed in
Subsection 6.3 and consider the functiongλ defined by

gλ(x) = f (x)+ λPL(x)

1+ λ ,
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wherePL(x) is the Legendre polynomial defined by

PL(x) =
N∑

i=0

yi

N∏
j 6=i
(x − xj )

N∏
j 6=i
(xi − xj )

,

andλ is a real different from−1. Then, sincePL ∈ C∞(R), it is clear thatαgλ = s and,
of course, the functiongλ interpolates the(xi , yi )’s for everyλ ∈ R\{−1}.

7.2. Size of Es

Let s ∈ H and define

Es = {w ∈ C0([0; 1])/αw(x) = s(x) ∀x ∈ [0; 1]}.

Proposition 12. Es is dense in C0([0; 1]) for the uniform convergence norm|| · ||∞.

Proof. Let P be the set of polynomials defined on [0; 1]. It is well known thatP is
dense inC0([0; 1]) for the uniform convergence norm. Forf ∈ C0([0; 1]), let (Pn)n∈N
be a sequence such thatPn ∈ P for everyn ∈ N and

||Pn − f ||∞ → 0 when n→∞.
Now letw be a function inEs, and consider the sequence( fn)n∈N∗ defined by

fn = Pn + w
n

for every n ∈ N∗.

SincePn ∈ C∞([0; 1]) for everyn ∈ N andw ∈ Es, it is clear thatfn is in Es for every
n ∈ N∗. We have

|| fn − f ||∞ ≤ ||Pn − f ||∞ + ||w||∞
n

.

w is a continuous function on a compact set, and there exists a constantC > 0 such that
||w||∞ ≤ C, hence

|| fn − f ||∞ → 0 when n→∞.

7.3. More Refined Ways of Characterizing the Local Regularity

The local regularity of the graphs of the functions constructed with the three methods
we have presented above appears, in some cases, strikingly different (see Section 8).
Several improvements may be proposed in order to describe these discrepancies:

• A well-known method to measure more precisely the local structure would be to
use finer scales of functions, as for instance functions of the form

g(x) = xα
(

log
1

x

)β1
(

log log
1

x

)β2

. . .

(
log log. . . log

1

x

)βn

,

the Hölder exponent at a pointx0 would then be a vector(α, β1, β2, . . . , βn).
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• Another possibility is to characterize algebraic oscillations instead of taking the
absolute values, i.e., consider the two limits

lim sup
h→0

g−(h)
hγ

and lim sup
h→0

g+(h)
hγ

,

where

g(x) = f (x0+ h)− f (x0), g+(x) = max(g(x), 0), g−(x) = min(g(x), 0).

• Finally, especially for practical purposes, the speed of convergence to the local
Hölder exponent atx0 is of crucial importance. For instance, it is easy to show that,
for the Schauder-type function considered in Section 4, if we takes(x) = x, then,
for x0 > 0 and for some sequencehn→ 0, the best possible lower bound is

| f (x0+ hn)− f (x0)| ≥ c1|hn|x0−c2|hn|,

wherec1 andc2 are constants. But for the Weierstrass-like functions of Section 3,
and also withs(x) = x, the best possible lower bound is

| f (x0+ hn)− f (x0)| ≥ c′hx0
n ,

wherec′ is a constant.

When working with discrete data, this first-order difference inh can make a big
difference (see figures in the next section).

8. Examples

The following figures are graphs of continuous functions with prescribed local regularity.
We have implemented the constructions described in Sections 4, 5, 6, and for each case,
we show an example withs(t) = t and s(t) = | sin(5π t)|. In the IFS construction
examples, the set of interpolation points is{

(0, 0) ; ( 1
5, 1) ; ( 2

5, 1) ; ( 3
5, 1) ; ( 4

5, 1) ; (1, 0)
}
.

Appendix

Proof of Proposition 7. Recall thatαs is the Hölder function ofs. We begin by proving
thatα f (t) ≥ s(t). Let t be fixed,ε2 be a real such that 0< ε2 ¿ 1, and leth be a real
such that 0< |h| < ε2. Then we have

f (t + h)− f (t) =
+∞∑
k=1

(λ−ks(t+h) sin(λk(t + h))− λ−ks(t) sin(λkt))

= A+ A′,

where

A =
+∞∑
k=1

(λ−ks(t+h) − λ−ks(t)) sin(λk(t + h)),
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Fig. 1. Construction using the Schauder basis withs(t) = t .

and

A′ =
+∞∑
k=1

λ−ks(t)(sin(λk(t + h))− sin(λkt)).

Let us give an upper bound for|A|. We have

|A| ≤
+∞∑
k=1

|λ−ks(t+h) − λ−ks(t)|,

but

λ−ks(t+h) − λ−ks(t) = −(logλ)× [s(t + h)− s(t)] × (kλ−kτ ),

whereτ ∈ [min(s(t), s(t + h));max(s(t), s(t + h))].
Thus

|A| ≤ (logλ)|s(t + h)− s(t)|
+∞∑
k=1

kλ−kτ .

Let C = ∑+∞k=1 kλ−kτ (0 < C < +∞ because this series converges), then since there
exists a constantM > 0 such that

|s(t + h)− s(t)| ≤ M |h|αs(t),
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Fig. 2. Construction using the Schauder basis withs(t) = |sin(5π t)|.

we have

|A| ≤ c1|h|αs(t) ≤ c1|h|s(t),
where

c1 = C M logλ.

Let us now give an upper bound for|A′|. For this purpose, we consider the integerN
such that

λ−(N+1) ≤ |h| ≤ λ−N .

We have, using the main value theorem,

|A′| ≤ |h|X + 2Y,

where

X =
N∑

k=1

λ−k(s(t)−1)

and

Y =
+∞∑

k=N+1

λ−ks(t),
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Fig. 3. Construction using the Weierstrass-type function withs(t) = t .

but

X ≤ 1

1− λs(t)−1
|h|s(t)−1,

Y ≤ 1

1− λ−s(t)
|h|s(t).

Sinces(t) is bounded, there exists a constantc2 > 0 such that

|A′| ≤ c2|h|s(t).

Finally, if c = c1+ c2, we have

| f (t + h)− f (t)| ≤ c|h|s(t),

which gives

(γ < s(t)) ⇒ lim
h→0

| f (t + h)− f (t)|
|h|γ = 0.

Now we will prove thatα f (t) ≤ s(t).
Let t be a real in [0; 1] and letδ be a real in ]0; ε2[. Then consider the integerN such
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Fig. 4. Construction using the Weierstrass-type function withs(t) = |sin(5π t)|.

thatλ−(N+1) < δ ≤ λ−N , and leth be a real such thatλ−(N+1) < |h| ≤ δ. We have

X = | f (t + h)− f (t)− λ−Ns(t)(sin(λN(t + h)− sin(λNt))|

≤ B+ 2
+∞∑
k=N

λ−ks(t) + |A|,

whereB =∑N−1
k=1 λ

−ks(t)| sin(λk(t + h)− sin(λkt)|.
We have

B ≤ λ−Ns(t) λs(t)−1

1− λ(s(t)−1)
.

Since we have seen that

|A| ≤ c1|h|s(t) ≤ c1λ
−Ns(t),

then

X ≤ λ−Ns(t)(c1+ c3),

with

c3 = λs(t)−1

1− λ(s(t)−1)
+ 2

λ−s(t)

1− λ−s(t)
.

Provided thatλ is large enough, we may choosec1 andc3 such that

c1 ≤ 1
40 and c3 ≤ 1

40,
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Fig. 5. Construction using generalized affine IFS withs(t) = t .

thus

X ≤ 1
20λ
−Ns(t),

but

X ≥ || f (t + h)− f (t)| − λ−Ns(t)|sin(λN(t + h))− sin(λNt)||
and

| f (t + h)− f (t)| ≥ λ−Ns(t)|sin(λN(t + h))− sin(λNt)| − X.

There exists a sequence [22](hn), with λ−(N+1) < |hn| ≤ δ ≤ λ−N for everyn, such
that

| sin(λN(t + hn))− sin(λNt)| ≥ 1
10 ∀n,

because 1/λ ≤ |hn|λN ≤ 1 ∀n.
We deduce

| f (t + hn)− f (t)| ≥ 1
20λ
−Ns(t) ≥ 1

20δ
s(t) ≥ 1

20|hn|s(t)

which gives

(γ > s(t)) ⇒ lim sup
h→0

| f (t + h)− f (t)|
|h|γ = +∞.
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Fig. 6. Construction using generalized affine IFS withs(t) = |sin(5π t)|.

Let us now check thatf verifies conditions(c1) and(c2) of Proposition 1.
Let x be a real in [0; 1] and letε be a real such that 0< ε < min(ε1, ε2). For every

δ < ε andt ∈ B(x, δ), we have seen that

| f (t)− f (u)| ≤
[
c(t)M logλ+ 1

1− λs(t)−1
+ 2

1− λ−s(t)

]
|t − u|s(t)

for every u ∈ B(t, δ),

where

c(t) =
∞∑

k=1

kλ−kτ with τ ∈ [min(s(t), s(u));max(s(t), s(u))].

This implies that

c̄(t, δ) ≤ AM + B for every t ∈ [0; 1] and δ < ε,

where

A = logλ
∞∑

k=1

kλ−ka and B = 1

1− λb−1
+ 2

1− λ−b
.
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Hence

C̄(x, δ) < +∞ ∀δ < ε,

and condition(c1) holds.
Condition(c2) is easy to verify. Indeed, we have seen that there exists a realu ∈ B(t, δ)

such that

| f (t)− f (u)| ≥ 1
20δ

s(t),

hence

c(t, δ) ≥ 1
20 ∀δ < ε,

which implies that

C(x, ε) 6= 0.

Now, sinces is continuous, and conditions(c1)and(c2)hold, we get, using Proposition 1,

2− dimx
B graph f = s(x) for every x ∈ [0; 1].
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