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A Discrepancy Theorem on Quasiconformal Curves

V. V. Andrievskii and H.-P. Blatt

Abstract. In [7], Blatt and Mhaskar estimated the Erd˝os-Turán type discrepancy of a
signed Borel measureσ on a sufficiently smooth Jordan curve or arcL in terms of the
logarithmic potential ofσ on a curve enclosingL. We extend this result to a measure
σ on an arbitrary quasiconformal curve. As applications, estimates for the distribution
of simple zeros of monic polynomials, Fekete points, extreme points of polynomials of
best uniform approximation are obtained.

1. Introduction

Let L ⊂ C be a bounded Jordan curve or a Jordan arc. We define the discrepancy of a
signed (Borel) measureσ given onL by the quantity

D[σ ] := sup|σ(J)|,
where the supremum is taken over all subarcsJ ⊂ L.

Estimates of this discrepancyD[σ ] in terms of the logarithmic potential

U (σ, z) :=
∫

log
1

|z− ζ |dσ(ζ )

attracted the interest of several authors ([5]–[8], [10], [14], [18], [20]).
A major role in these articles is played by the mapping8 which maps the unbounded

componentÄ of C̄\L conformally and univalently onto the exterior1 := C̄\D̄ of the
unit disk D := {z: |z| < 1}, whereC̄ := C ∪ {∞} is the extented complex plane and8
is normalized by the conditions

8(∞) = ∞, 8′(∞) := lim
z→∞

8(z)

z
> 0.

For δ > 0, let us define the level curve

Lδ := {z ∈ Ä: |8(z)| = 1+ δ}
and the bound

ε(δ) := ‖U (σ, ·)‖Lδ ,
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where the symbol‖ · ‖A always denotes the supremum norm on the subsetA ⊂ C. Then
the most recent discrepancy result in terms ofε(δ) is the following:

Theorem (Blatt and Mhaskar [7]). Let L be a Jordan curve or a Jordan arc of class
C1+, σ := σ+ − σ− be a signed measure on L with positive partσ+, negative partσ−,
andσ+(L) = σ−(L) = 1. Moreover, let M > 0, 0< γ ≤ 1, be constants such that for
all subarcs J of L,

σ+(J) ≤ M

(∫
J

ds

)γ
.

Then there exists a constant c> 0 depending only on L, M , andγ such that

D[σ ] ≤ cε(δ) log

(
1

ε(δ)

)
for all δ with δ ≤ 1+ ε(δ)1+1/γ andε(δ) < 1/e.

In this article, applying the techniques of the theory of quasiconformal mappings (see
[1] and [13]), we extend the statement of the theorem above and some results of [5], [7],
and [20] (without essential change of their form) to the case whenL is a quasiconformal
curve or arc.

2. Formulation of the Main Results

In the sequel, for a bounded Jordan curveL, we denote by intL the bounded component
and by extL the unbounded component ofC̄\L. For any subsetA ⊂ C̄, let Ā be the
closure ofA in C̄. The logarithmic capacity ofL can be defined by

capL := 1

8′(∞) .

By µL we denote the equilibrium measure ofL [21]. This notion has a simple interpre-
tation using the conformal mappings8 and9 := 8−1. Namely, if L is a curve, then8
can be extended to a homeomorphism8: Ǟ→ 1̄ and, for any subarcJ ⊂ L,

µL(J) = 1

2π
length8(J).

If L is an arc, then9 can be extended continuously to a function9: 1̄ → C̄ and,
for any subarcJ ⊂ L, there exist two preimages, i.e., arcsJ ′1, J ′2 ⊂ ∂1 such that
9(J ′1) = 9(J ′2) = J andJ ′1 ∩ J ′2 consists of at most two points. In this case

µL(J) = 1

2π
(lengthJ ′1+ lengthJ ′2).

Throughout this article we suppose thatL is a quasiconformal curve or arc (see [1] and
[13]).

We recall that, by definition, aK -quasiconformal (K ≥ 1) or, briefly, a quasiconformal
curve is the image of the unit circle under someK -quasiconformal mappingF : C̄→ C̄.
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Any subarc of aK -quasiconformal curve is called aK -quasiconformal or briefly a
quasiconformal arc.

There exists a geometric characterization of quasiconformal curves [13, p. 100] and
arcs [17]. For example, for curves it can be formulated as follows:L is a quasiconformal
curve if and only if there exists a constantc > 0, depending only onL, such that for
z1, z2 ∈ L

min{diamL ′, diamL ′′} ≤ c |z1− z2|,
whereL ′ andL ′′ denote the two arcs of whichL\{z1, z2} consists.

Using this criterion, we can easily verify that convex curves, curves of bounded vari-
ation without cusps, and rectifiable Jordan curves which have locally the same order of
arc length and chord length are quasiconformal. On the other hand, it is of interest to
know, that a quasiconformal curve can be everywhere nonrectifiable [4, p. 42].

Theorem 1. Let L be a K-quasiconformal curve, let σ := σ+ − σ− be a signed
measure on L with positive partσ+, negative partσ−, and σ+(L) = σ−(L) = 1.
Moreover, let c andβ be positive constants such that, for all subarcs J⊂ L,

σ+(J) ≤ cµL(J)
β .(2.1)

Then there exists a constant c1 > 0, depending only on K, c, and β such that, for
0< δ < 1/e,

D[σ ] ≤ c1

(
ε(δ) log

(
1

δ

)
+ δ1/(2K 2) + δβ/2

)
.(2.2)

In applications the following consequence of Theorem 1 is especially useful.

Theorem 2. Let L be a quasiconformal curve or arc, and let pn be a monic polynomial
of degree n with simple zeros zj ∈ L , j = 1, . . . ,n, such that

‖pn‖L ≤ An(capL)n,

|p′n(zj )| ≥ B−1
n (capL)n,

Cn := max(An, Bn, n) ≤ en/e.

Letνn denote the measure which associates the mass1/n with each of the zeros zj . Then

D[µL − νn] ≤ c2
logCn

n
log

n

logCn
,(2.3)

where c2 > 0 is a constant depending only on L.

Theorems 1 and 2 are extensions of results in [5], [7], and [20] for sufficiently smooth
L (∈ C1+) to the case of an arbitrary quasiconformal curve or arc.

Next, we can apply the technique of [7] to investigate the distribution of Fekete
points and extreme points in best polynomial approximation. We restrict ourselves to
the formulation of the corresponding two assertions. We will not dwell on their proofs,
since they are completely analogous to [7, Theorems 3.1 and 3.2].
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Theorem 3. Let L be a quasiconformal curve or arc and, for any integer n≥ 2, let νn

denote the unit measure associated with an nth Fekete point set of L. Then

D[µL − νn] ≤ c3
(logn)2

n
,

where the constant c3 > 0 depends only on L.

Theorem 4. Suppose that L is a quasiconformal curve or arc and let

E := C\Ä =
{

L if L is an arc,
int L if L is a curve.

Let f be a function continuous on E and analytic at the interior points of E. If νn+2

denotes the unit measure that associates the mass1/(n + 2) with each point of some
(n+ 2)th Fekete point set of the extreme points

{z ∈ L: | f (z)− pn(z)| = ‖ f − pn‖L},
where pn is the best Chebyshev approximation to f with respect to the class of polyno-
mials of degree at most n, then there exist infinitely many integers n satisfying

D[µL − νn+2] ≤ c4(logn)2

n1/2

with some constant c4 > 0 depending only on L.

The following fact completes the assertion of Theorem 3. For the case of convex
curves it was proved in [11] and [12].

Theorem 5. Let the points zk = 9(ei θk), θ1 < θ2 < · · · < θn < θn+1 := θ1 + 2π ,
form a Fekete set on the K-quasiconformal curve L. Then

c5

n
≤ θj+1− θj ≤ c6

n
, j = 1, . . . ,n,(2.4)

with some positive constants c5 and c6 depending only on K.

Finally, we would like to discuss the requirement of quasiconformality in our results.
More precisely, we claim that in the case of curves and arcs with cusps, in general, a
universal estimate for the discrepancy in terms of (2.3) with some constantc2 does not
exist. We will try to explain this effect by an example to Theorem 2 for domains of the
type

E = E( f ) := {z= x + iy: 0< x < 1, 0< y < f (x)},
where f is a positive monotonically increasing function on [0,1] withf (0) = 0 and
such that there exists an inverse functiong := f −1 (with the same properties).

In the sequel, we denote byc, c1, . . . positive constants (in general, different each
time) depending only on the curve or arcL.

For a > 0 andb > 0, we use the expressiona 4 b (order inequality) ifa ≤ cb. The
expressiona ³ b means thata 4 b andb 4 a hold simultaneously.
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For n ≥ 2, we consider the Jordan arc

S= S(n) := L\(0, g(n−2)),

whereL := ∂E.
Let S2/n denote the corresponding level curve of the conformal mappingC̄\S→ 1

with standard normalization at∞. Since for anyz ∈ S2/n and forn ∈ N large enough

d(z, S) > diamS

4

(2/n)2

1+ 2/n
> n−2

(see [19, p. 181]), we conclude that

E ⊂ int S2/n,

and consequently

capS≤ capL ≤
(

1+ 2

n

)
capS.

Further, letz1, . . . , zn be the points of annth Fekete point set ofS.
According to [15], the Fekete monic polynomial

qn(z) :=
n∏

j=1

(z− zj )

satisfies

|q′n| ≥ (capS)n < (capL)n,

‖qn‖L 4 ‖qn‖S 4 n2(capS)n ≤ n2(capL)n.

Hence, the right-hand side of estimate (2.3) has the order

logCn

n
log

n

logCn
³ (logn)2

n
.

On the other hand, it is obvious that

D[µL − νn] < g(n−2).

Sinceg can tend arbitrarily slowly to zero asx → 0, it is impossible to obtain either
an estimate of the same type as in Theorem 2 or any other estimate with a universal
right-hand side.

3. Some Relevant Facts from The Theory of Quasiconformal Mappings

We begin with some simple general facts from geometric function theory.
Let d(A, B) denote the distance betweenA ⊂ C andB ⊂ C.

Lemma 1. Let f be a conformal mapping of a region G1 ⊂ C onto a region G2 ⊂ C.
Then, for each z∈ G1,

1

4

d( f (z), ∂G2)

d(z, ∂G1)
≤ | f ′(z)| ≤ 4

d( f (z), ∂G2)

d(z, ∂G1)
.(3.1)

Moreover, if |ξ − z| ≤ d(z, ∂G1)/2, then
1

16

d( f (z), ∂G2)

d(z, ∂G1)
|ξ − z| ≤ | f (ξ)− f (z)| ≤ 16

d( f (z), ∂G2)

d(z, ∂G1)
|ξ − z|.(3.2)
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Proof. Setd1 := d(z, ∂G1), d2 := d( f (z), ∂G2) and consider the function

g(ζ ) := f (z+ d1ζ ), ζ ∈ D.

An argument of [16, p. 22] shows that

| f ′(z)| d1 = |g′(0)| ≤ 4d2,

which yields the right-hand side of (3.1). The left-hand side of (3.1) follows from the
right-hand side written for the inverse functionf −1.

Further, consider the function

h(ζ ) := f (z+ d1ζ )− f (z)

f ′(z)d1
, ζ ∈ D.

An elementary argument involving [16, Theorem 1.6, p. 21] shows that, for|ζ | < 1/2,

|ζ |
4
≤ |h(ζ )| ≤ 4|ζ |.

Therefore, settingζ := (ξ − z)/d1, we obtain

| f (ξ)− f (z)| ≤ 4
|ξ − z|

d1
4d2 = 16

d2

d1
|ξ − z|,

| f (ξ)− f (z)| ≥ |ξ − z|
4d1

d2

4
= 1

16

d2

d1
|ξ − z|.

This completes the proof of the lemma.

Let G ⊂ C̄ be a Jordan domain,z ∈ G, and letl ⊂ ∂G be an arc. We denote by
ω(z,G, l ) the harmonic measure ofl at the pointz with respect toG (see [21]).

The next lemma is an immediate consequence of the Poisson and Schwarz represen-
tation formulas.

Lemma 2. Let z1 and z2 be the endpoints of an arc l⊂ ∂D. Then for any z∈ D the
inequalities

ω(z, D, l ) ≤ c1
1− |z|
d(z, l )

,(3.3)

| gradω(z, D, l )| ≤ c2/ min
j=1,2
|z− zj |(3.4)

hold with some universal constants c1, c2 ≥ 1.

It is well known that the harmonic measure is a conformal invariant. In the next lemma
we claim that it is also a quasiconformal “quasi-invariant.”

Lemma 3. Let Gj ⊂ C, j = 1, 2, be arbitrary Jordan domains, and let F be a K-
quasiconformal(K ≥ 1)mapping of G1 onto G2 extended continuously to the boundary
∂G1. Then, for each arc l⊂ ∂G1 and each point z∈ G1,

ω(z,G1, l ) ≤ 8πω(F(z),G2, F(l ))1/K .
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Proof. According to the previous remark concerning the conformal invariance of the
harmonic measure we have only to consider the caseG1 = G2 = D andz= F(z) = 0.

Notice that by a theorem of Mori [9, p. 66], for anyz1, z2 ∈ D̄,

|z1− z2| ≤ 16|F(z1)− F(z2)|1/K .(3.5)

Let z1 andz2 be the endpoints of the arcl ⊂ ∂D. The interesting case is

ω(0, D, F(l )) < (8π)−K .

Hence by virtue of (3.5),

ω(0, D, l ) <
π

2
|z1− z2| ≤ 8π |F(z1)− F(z2)|1/K ≤ 8πω(0, D, F(l ))1/K .

The following result is useful in the study of metric properties of the conformal
mappings8 and9.

Lemma 4 ([2, Lemma 1]). Let w = F(ζ ) be a K-quasiconformal mapping of the
complex plane onto itself with F(∞) = ∞, ζj ∈ C, wj := F(ζj ), j = 1, 2, 3, and
|w1− w2| ≤ c1|w1− w3|. Then|ζ1− ζ2| ≤ c2|ζ1− ζ3| and, in addition,∣∣∣∣ζ1− ζ3

ζ1− ζ2

∣∣∣∣ ≤ c3

∣∣∣∣w1− w3

w1− w2

∣∣∣∣K ,
where ci = ci (c1, K ), i = 2, 3.

Corollary. Since F−1 is also a K-quasiconformal mapping it follows from the hypoth-
esis|ζ1− ζ2| ≤ c1|ζ1− ζ3| that |w1− w2| ≤ c2|w1− w3| and∣∣∣∣w1− w3

w1− w2

∣∣∣∣ ≤ c3

∣∣∣∣ζ1− ζ3

ζ1− ζ2

∣∣∣∣K .
In the following, we will often use the fact that a conformal mapping8: Ä→ 1 can

be extended to aK 2-quasiconformal mapping8: C̄→ C̄ [1, Chapter IV] if L is a K -
quasiconformal curve. The inverse mapping9 := 8−1 will also beK 2-quasiconformal
in C̄.

Applying Lemma 4 and its corollary to the functionF := 8 it is easily verified that,
for any pointsζj ∈ L , wj := 8(ζj ), j = 1, 2, the double inequality

c1|ζ1− ζ2|K 2 ≤ |w1− w2| ≤ c2|ζ1− ζ2|1/K 2

holds with some constantscj = cj (G), j = 1, 2. Hence, for any arcl ⊂ L,

c3(diaml )K
2 ≤ µL(l ) ≤ c4(diaml )1/K 2

.(3.6)

Next, we note that the same inequality is true for the case of a quasiconformal arc.
To be more precise, letL be aK -quasiconformal arc. Denote byz1 andz2 its endpoints
and, for j = 1, 2, set

wj := 8(zj ),
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11 := {w: |w| > 1; argw1 < argw < argw2},
12 := 1\11, Äj := 9(1j ).

A routine category argument shows that∂11 and∂12 are quasiconformal curves. More-
over, it was proved in [3, Lemma 1] that∂Ä1 = ∂Ä2 is quasiconformal too. Therefore, the
restriction8j of the function8 to the regionÄj can be extended to aK1-quasiconformal
mapping8j : C̄→ C̄ with a suitable constantK1 = K1(L) > 1 (see [1, Chapter IV]).
Using Lemma 4 and its corollary for the functionF := 8j , we find that, for each pair
of pointsζ1 andζ2 ∈ L,

c1|ζ1− ζ2|K1 ≤ |8j (ζ1)−8j (ζ2)| ≤ c2|ζ1− ζ2|1/K1,

whereci = ci (L), i = 1, 2. At last, recalling the definition of the equilibrium measure,
we may conclude that, for any subarcl ⊂ L, the inequalities

c3(diaml )K1 ≤ µL(l ) ≤ c4(diaml )1/K1(3.7)

are satisfied with someci = ci (L), i = 3, 4.

4. Some Auxiliary Results

Before proving our theorems, we will discuss a special construction which will be the
base of the proof of Theorem 1.

Suppose thatL is a K -quasiconformal curve and letδ > 0 be sufficiently small. Set
z0 := 9(0), a := δ + δK 2

. Denote byϕa a conformal mapping of intLa onto the unit
disk D with the normalizationϕa(z0) = 0.

Consider the functiong := ϕa ◦ 9 that maps the disk{w: |w| < 1 + a} K 2-
quasiconformally onD with g(0) = 0.

We note thatg is conformal in the annulus{w: 1 < |w| < 1+ a} and, moreover,g
can be extended to aK 2-quasiconformal mappingg: C̄→ C̄ if, for |w| > 1+a, we set

g(w) :=
[

g

(
(1+ a)2

w̄

)]−1

.

The last fact makes it possible to use Lemma 4 and its corollary withF := g.
Setu := g−1,

0 = 0(δ) := ϕa(Lδ) = {z ∈ D: |u(z)| = 1+ δ}.

Lemma 5. Let z, ζ ∈ 0 be arbitrary points and let0(z, ζ ) be the shortest component
of 0\{z, ζ }. Then the inequality

length0(z, ζ ) ≤ c|z− ζ |
holds with some constant c= c(K ) > 0.

Proof. Setw := u(z), τ := u(ζ ),

0′(w, τ) := u(0(z, ζ )), E := {t ∈ D: 1< |u(t)| < 1+ a}.
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By virtue of Lemma 4 and its corollary we haved(z, ∂E) ³ 1− |z|.
Suppose first that|w − τ | ≤ δK 2

/32. According to (3.2),

1

16

d(z, ∂E)

δK 2 |τ − w| ≤ |z− ζ | ≤ d(z, ∂E)

2
.

Since by the same reasoning

|z− ξ | ≤ d(z, ∂E)

2
for any ξ ∈ 0(z, ζ ),

we obtain by Lemma 1 that, for anyt ∈ 0′(w, τ),

|g′(t)| ³ |g′(w)| ³ 1− |z|
δK 2 .

Therefore,

length0(z, ζ ) =
∫
0′(w,τ)

|g′(t)||dt| ³ 1− |z|
δK 2 |w − τ | 4 |z− ζ |.

Now, let|w− τ | > δK 2
/32. We divide the arc0′(w, τ) by pointst1 := w, . . . , tm+1 := τ

in such a way that

δK 2

64
≤ |tk − tk+1| ≤ δ

K 2

32
, k = 1, 2, . . . ,m.

Set

sk := tk
1+ a

1+ δ , ξk := g(sk), ηk := g(tk).

Using the previous result and Lemma 4, we find that

length0(ηk, ηk+1) 4 |ηk − ηk+1| ³ |ηk − ξk| ³ |ξk+1− ξk|.
Hence,

length0(z, ζ ) =
m∑

k=1

length0(ηk, ηk+1)

4
m∑

k=1

|ξk − ξk+1| 4 |ξ1− ξm+1| ³ |z− ζ |.

Now, let l ⊂ L be an arbitrary arc,

γ := 8(l ) = {ei θ : θ1 ≤ θ ≤ θ2}.
For simplicity, we always assume that

θ2− θ1 6
3

π
and 0< δ < min{θ2− θ1, 1/2}.(4.1)

For r > 0, set

γr := {(1+ r )ei θ : θ1 6 θ 6 θ2}, lr := 9(γr );
hl ,a(z) := ω(z, int La, la), z ∈ int La.
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Lemma 6. For an arbitrary signed measureσ on L and sufficiently smallδ (satisfying
(4.1)),the inequality ∣∣∣∣∫

L
hl ,a(z) dσ(z)

∣∣∣∣ 6 cε

(
δ

2

)
log

(
1

δ

)
(4.2)

holds with some constant c= c(K ) > 0.

Proof. Defining

ωl (z) := ω(z, Ä, l ), z ∈ Ä,
and applying the Green formula, we may write, forz ∈ L,

hl ,a(z) = ωl (∞)+ 1

2π

∫
Lδ

[(
∂ωl (ζ )

∂n
− ∂hl ,a(ζ )

∂n

)
log |ζ − z|

+ (hl ,a(ζ )− ωl (ζ ))
∂

∂n
log |ζ − z|

]
|dζ |,

where∂/∂n is the operator of differentiation with respect to the outward normal to the
curveLδ at the pointζ .

Integrating the last relation we get∫
L

hl ,a(z) dσ(z) = 1

2π

∫
Lδ

U (σ, ζ )

(
∂hl ,a(ζ )

∂n
− ∂ωl (ζ )

∂n

)
|dζ |(4.3)

+ 1

2π

∫
Lδ

(ωl (ζ )− hl ,a(ζ ))
∂

∂n
U (σ, ζ )|dζ |.

This formula will be the base of our next reasoning.
First, we will try to estimate the first integral on the right-hand side of (4.3) from

above. A routine category argument shows that for our purpose it suffices to establish
the inequalities ∫

Lδ

∣∣∣∣ ∂∂n
hl ,a(ζ )

∣∣∣∣ |dζ | 4 log

(
1

δ

)
,(4.4) ∫

Lδ

∣∣∣∣ ∂∂n
ωl (ζ )

∣∣∣∣ |dζ | 4 log

(
1

δ

)
.(4.5)

The estimate (4.5) is a simple consequence of Lemma 2. In fact, since the harmonic
measure is a conformal invariant we obtain∫

Lδ

∣∣∣∣ ∂∂n
ωl (ζ )

∣∣∣∣ |dζ | ≤ ∫
|w|=1+δ

| gradω(w,1, γ )||dw|

4
2∑

j=1

∫
|w|=1+δ

|dw|
|w − wj | 4 log

(
1

δ

)
,

wherew1 andw2 are the endpoints of the arcγ := 8(l ).
In order to prove (4.4) we consider the conformal mappingϕa defined as above. Let

τ1 andτ2 be endpoints of the arcϕa(la). Using (3.4), we find that, forτ ∈ D,

| gradω(τ, D, ϕa(la))| 4 1

|τ − τ1| +
1

|τ − τ2| .
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Denote byµj (δ), where j = 1, 2 and 0< δ < 2, the length of the portion of0 lying in
the open disk with center atτj and radiusδ. According to Lemma 5 we haveµj (δ) 4 δ.

Further, recalling the definition of the functiong from the proof of Lemma 5 and
applying to it Lemma 4, we obtain

d(0, ∂D) < δK 4
.

Therefore, integration by parts yields∫
Lδ

∣∣∣∣ ∂∂n
hl ,a(ζ )

∣∣∣∣ |dζ | 6 ∫
0

| gradω(τ, D, ϕa(la))||dτ |

4
2∑

j=1

∫ 2

cδK4

dµj (x)

x
=

2∑
j=1

(
µj (2)

2
+
∫ 2

cδK4

µj (x)

x2
dx

)
4 log

(
1

δ

)
,

which is the assertion of (4.4).
In order to estimate the second integral on the right-hand side of (4.3) we set

Ũ (w) := U (σ,9(w)), |w| > 1;
h̃(w) := hl ,a(9(w)), |w| > 1;
ω̃(w) := ωl (9(w)), |w| > 1;
χ̃(w) :=

{
1 if w ∈ γδ,
0 if w /∈ γδ.

For |w| = 1+ δ, by Schwarz’s formula,

| gradŨ (w)| ≤ 1

π

∫
|τ−w|=δ/2

|Ũ (τ )|
|τ − w|2 |dτ | ≤

4ε(δ/2)

δ
.

Since∫
Lδ

|ωl (ζ )− hl ,a(ζ )|
∣∣∣∣ ∂∂n

U (σ, ζ )

∣∣∣∣ |dζ | ≤ ∫|w|=1+δ
|ω̃(w)− h̃(w)|| gradŨ (w)||dw|,

it is sufficient, in order to establish an appropriate estimate, to show that∫
|w|=1+δ

|ω̃(w)− χ̃(w)||dw| 4 δ log
1

δ
(4.6)

and ∫
|w|=1+δ

|h̃(w)− χ̃(w)||dw| 4 δ log
1

δ
.(4.7)

Now, it follows from (3.3), rewritten for the exterior of the unit disk, that

|ω̃(w)− χ̃(w)| 4 δ
(

1

|w − w1| +
1

|w − w2|
)
,(4.8)

where|w| = 1+ δ, andw1 andw2 are the endpoints of the arcγ .
Thus, (4.6) is a simple consequence of (4.8).
In order to establish (4.7) we suppose that|w| = 1 + δ, and lett1 and t2 be the

endpoints of the arcγa. Applying Lemma 3 to the restriction of the mapping8 on intLa

and Lemma 2, we have

|h̃(w)− χ̃(w)| 4
(

δK 2

minj=1,2 |w − tj |
)K−2

≤ δ(|w − t1|−K−2 + |w − t2|−K−2
).

By integrating the last inequality we get (4.7).
Combining (4.3)–(4.7), we obtain (4.2).
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5. Proof of the Main Results

Proof of Theorem 1. To see thatD[σ ] is appropriately estimated, we have only to
consider an arbitrary arcJ ⊂ L and, for sufficiently smallδ, say δ < (π/4)2, to
establish the inequality

σ(J) ≥ −c1

[
ε

(
δ

2

)
log

(
1

δ

)
+ δ1/(2K 2) + δβ/2

]
.(5.1)

Moreover, if

J ′ := 8(J) = {ei θ : a 6 θ 6 b},
we only need to study the caseb− a ≤ π .

Set

γ := {ei θ : a− δ1/2 ≤ θ ≤ b+ δ1/2}, l :=9(γ );
γ1 := {ei θ : a− 2δ1/2 ≤ θ ≤ b+ 2δ1/2}, l1 :=9(γ1).

With this choice we get from Lemma 6 that the functionhl ,a(z) satisfies∫
L

hl ,a(z) dσ(z) > c2ε

(
δ

2

)
logδ.(5.2)

On the other hand,∫
L

hl ,a(z) dσ(z) ≤ σ(J)+
∫

J
[1− hl ,a(z)] dσ−(z)+ σ+(l1\J)

+
∫

L\l1
hl ,a(z) dσ+(z).(5.3)

Let us estimate each of the integrals on the right-hand side of (5.3) from above.
Using (3.3) and Lemma 3, we find

1− hl ,a(z) 4 δ1/(2K 2), z ∈ J,

hl ,a(z) 4 δ1/(2K 2), z ∈ L\l1.
Therefore, ∫

J
[1− hl ,a(z)] dσ−(z)+

∫
L\l1

hl ,a(z) dσ+(z) 4 δ1/(2K 2).(5.4)

Furthermore, by our assumption (2.1),

σ+(l1\J) 4 δβ/2,
which, in view of (5.2)–(5.4), yields (5.1).

Proof of Theorem 2. The idea of the following discussion is originated in [5] and [7].
We give a sketch of the proof to show how the arguments of Blatt and Mhaskar can be
modified to obtain the result.

First, suppose thatL is a curve and consider the signed measureσ := µL − νn. Its
positive partµL satisfies (2.1) withc = β = 1.
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Set

δ = δ(n) :=
(

logCn

n

)2K 2

.

The same arguments as in the proof of [7, Theorem 2.2] (see also [5]) lead to

ε(δ) 4 logCn

n
.

Hence, inequality (2.3) follows immediately from estimate (2.2).
Now, suppose thatL is an arc. Consider aK -quasiconformal curve0 ⊃ L and define

a signed measureσ on0 as follows:

σ(J) := µL(J ∩ L)− νn(J) for all J ⊂ 0.
According to (3.6) and (3.7), the positive part of this measure satisfies inequality (2.1)
with some constantsc andβ depending onL (not only onK !).

Set

δ = δ(n) :=
(

logCn

n

)2(K 2+1/β)

.

Then, as above,

ε(δ) := ‖U (σ, ·)‖0δ ≤ ‖U (σ, ·)‖Lδ 4
logCn

n
,

from which (2.3) directly follows.
Hence, our proof is complete.

6. Proof of Theorem 5

We apply the technique of [11] and some constructions from approximation theory in
the complex plane, which can be found in [9].

In what follows we will often use Lemma 4 and its corollary (sometimes without
special reference to them) for suitable, each time naturally defined, triplets of points in
Ä and1.

To see thatθj+1 − θj is appropriately bounded from below, we consider the funda-
mental polynomials

qj (z) = qj (zj , z) :=
∏
k 6= j

z− zk

zj − zk
,

associated with the system of points{zj }n1.
Since‖qj ‖L ≤ 1 , by the Bernstein–Walsh theorem we obtain, forζ such that|ζ−zj | ≤

d(zj , L1/n) =: dj , the estimate

|qj (ζ )| ≤ e.

Consequently, if|ζ − zj | ≤ dj /2, then

|q′j (ζ )| ≤
1

2π

∫
|ζ−ξ |=dj /2

|qj (ξ)|
|ξ − ζ |2 |dξ | ≤

2e

dj
.
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We claim that

|zj+1− zj | < dj ³ |zj − z̃j |,(6.1)

wherez̃j := 9[(1+ 1/n)8(zj )].
Indeed, we have only to verify the inequality if|zj+1 − zj | ≤ 1

2dj . In this case, we
have

1= |qj (zj+1)− qj (zj )| ≤
∫

[zj ,zj+1]
|q′j (z)| |dz| 4 |zj+1− zj |

dj
.

Then, by (6.1) via Lemma 4 we get the left-hand side of (2.4).
In order to prove the right-hand inequality in (2.4), we use the Jackson-type kernel

Jk,m(t) := 1

γk,m

(
sin(mt)/(2)

sin(t)/(2)

)2k

,

wherek,m ∈ N and

γk,m := 1

2π

∫ π

−π

(
sin(mt)/(2)

sin(t)/(2)

)2k

dt.

In what followsk will be a fixed number (large enough).
The following properties ofJk,m are well known (see [9, Chapter II]):

1

2π

∫ π

−π
Jk,m(t) dt = 1;(6.2)

Jk,m(t) =
k(m−1)∑

j=−k(m−1)

a| j |ei j t ,

where theaj are real numbers;∫ π

−π
Jk,m(t)|t |c dt 4 m−c, 0≤ c ≤ 2k− 4.(6.3)

For ζ ∈ Ä andt real, we setw := 8(ζ) andζt := 9(we−i t ).

Since, forz ∈ L,

1

ζt − z
= 1

9(we−i t )− z
=
∞∑

j=1

5j (z)

w j
ei j t ,

where5j (z), j ∈ N, denote the appropriate generalized Faber polynomials, the function

πk,m(z) = πk,m(ζ, z) := 1

2π

∫ π

−π
Jk,m(t)

dt

ζt − z
=

k(m−1)∑
j=1

aj

w j
5j (z)

is a polynomial inz of degree at mostk(m− 1).

Lemma 7. There exist constants c> 1 and k0 ∈ N depending only on K and such
that, for m> 2c, k ≥ k0, 2≥ |w| ≥ (1− c/m)−1, and z∈ L,

1

2|ζ − z| ≤ |πk,m(z)| ≤ 3

2|ζ − z| .(6.4)
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Proof. Let z ∈ L be arbitrary. From (6.2) we see that∣∣∣∣ 1

ζ − z
− πk,m(z)

∣∣∣∣
= 1

2π

∣∣∣∣∫ π

−π
Jk,m(t)

(
1

ζ − z
− 1

ζt − z

)
dt

∣∣∣∣ ≤ 1

2π |ζ − z|
∫ π

−π
Jk,m(t)

∣∣∣∣ζt − ζ
ζt − z

∣∣∣∣ dt.

Setξt := 9((w)/(|w|)e−i t ).
Lemma 4 implies the following relations:

|ζt − z| < |ζt − ξt |,∣∣∣∣ ζt − ζ
ζt − ξt

∣∣∣∣ 4 ∣∣∣∣ wt

|w| − 1

∣∣∣∣K−2

+
∣∣∣∣ wt

|w| − 1

∣∣∣∣K 2

.

By (6.3), fork ≥ [K 2+ 2] =: k0, we have∣∣∣∣ 1

ζ − z
− πk,m(z)

∣∣∣∣ ≤ c1

|ζ − z|
∫ π

−π
Jk,m(t)

(∣∣∣∣ wt

|w| − 1

∣∣∣∣K−2

+
∣∣∣∣ wt

|w| − 1

∣∣∣∣K 2)
dt

≤ c2

|ζ − z|

(∣∣∣∣ w

(|w| − 1)m

∣∣∣∣K−2

+
∣∣∣∣ w

(|w| − 1)m

∣∣∣∣K 2)
,

from which (6.4) immediately follows, if we choosec := 1+ (4c2)
K 2

.

To continue the proof of Theorem 5 letζ be chosen such that

|w| =
(
1− c

m

)−1
,

wherec is a constant as in Lemma 7. Further, lets ∈ N, s ≥ 2K 2, be fixed. Define the
function

ps,k,m(z) = ps,k,m(ζ, z) := πk,m(ζ, z)
s(ζ − ζL)

s,

whereζL := 9(w/|w|). Thenps,k,m(z) is a polynomial inzof degree at mostsk(m−1),
and, by Lemma 7,

|ps,k,m(ζL)| ≥ 2−s.(6.5)

In addition, by Lemma 4, for anyz ∈ L andt := 8(z), we have

|ps,k,m(z)| 4
∣∣∣∣ζ − ζL

ζ − z

∣∣∣∣s 4 (m|w − t |)−s/K 2 4 (m|w − t |)−2.(6.6)

Now, we are ready to establish the right-hand side of (2.4).
Setδ = δj := 1

2(θj+1 − θj ), θ0 = θ0, j := 1
2(θj+1 + θj ). We rename the points{θj }n1

by {θ ′j }ν1 and{θ ′′j }n−ν1 in such a way that

θ0 < θ ′1 < · · · < θ ′ν ≤ π + θ0,

θ0− π < θ ′′n−ν < · · · < θ ′′1 < θ0.
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By the left-hand side inequality in (2.4), we obtain

θ ′j − θ0 ≥ c1 j

n
+ δ, j = 1, . . . , ν,

θ0− θ ′′j ≥
c1 j

n
+ δ, j = 1, . . . ,n− ν.

Setw := (1+ c2/m)ei θ0, ζ := 9(w), m := [(n− 1)/sk], where the constantsc2 > 0,
s, andk ∈ N are chosen in such a way that, for the polynomialp(z) := ps,k,m(ζ, z) (of
degree at mostn− 1), the relations (6.5) and (6.6) are fulfilled.

Since by Lagrange’s interpolation formula

p(z) =
ν∑

j=1

p(ζ ′j )q(z
′
j , z)+

n−ν∑
j=1

p(z′′j )q(z
′′
j , z),

wherez′j := 9(ei θ ′j ) andz′′j := 9(ei θ ′′j ), the quantityδ can easily be estimated from
above by the following reasoning:

2−s ≤ |p(9(ei θ0))| ≤
ν∑

j=1

|p(z′j )| +
n−ν∑
j=1

|p(z′′j )|

4 n−2

(
ν∑

j=1

(
δ + c1 j

n

)−2

+
n−ν∑
j=1

(
δ + c1 j

n

)−2
)

≤ 2
∞∑

j=1

(δn+ c1 j )−2

≤ 2
∫ ∞

0

dx

(δn+ c1x)2
= 2

c1δn
.
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