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A Discrepancy Theorem on Quasiconformal Curves

V. V. Andrievskii and H.-P. Blatt

Abstract. In[7], Blatt and Mhaskar estimated the BedTuin type discrepancy of a
signed Borel measure on a sufficiently smooth Jordan curve or &rin terms of the
logarithmic potential ot on a curve enclosing. We extend this result to a measure

o on an arbitrary quasiconformal curve. As applications, estimates for the distribution
of simple zeros of monic polynomials, Fekete points, extreme points of polynomials of
best uniform approximation are obtained.

1. Introduction

LetL c C be a bounded Jordan curve or a Jordan arc. We define the discrepancy of a
signed (Borel) measuke given onL by the quantity

Do] := supo (J)],

where the supremum is taken over all subalas L.
Estimates of this discrepan@{c] in terms of the logarithmic potential

U(o, 2) :=/Iog |zfg|

attracted the interest of several authors ([5]—[8], [10], [14], [18], [20]).

A major role in these articles is played by the mapping/hich maps the unbounded
component2 of C\L conformally and univalently onto the exteriar := C\D of the
unit diskD := {z: |z| < 1}, whereC := C U {oo} is the extented complex plane asd
is normalized by the conditions

do (¢)

®(00) = 00, @' (00) := lim ? > 0.

Z— 00
Fors > 0, let us define the level curve
Ls i ={ze Q: |®(2)| =1+ 45}
and the bound
(8) == U (o, )llL,»
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where the symbd| - || o always denotes the supremum norm on the sulsetC. Then
the most recent discrepancy result in terms @ is the following:

Theorem (Blatt and Mhaskar [7]) Let L be a Jordan curve or a Jordan arc of class
Cl*, 0 := ot — 0~ be asigned measure on L with positive patt, negative part—,
ando*(L) = o~ (L) = 1. Moreoverlet M > 0, 0 < y < 1, be constants such that for

all subarcs J of L.
Y
ot < M(/ds) .
J

Then there exists a constant-cO depending only on LM, andy such that

1
D[o] < ce(d)log (%>

forall § with§ < 1+ £(8)*Y/7 ande(8) < 1/e.

In this article, applying the techniques of the theory of quasiconformal mappings (see
[1] and [13]), we extend the statement of the theorem above and some results of [5], [7],
and [20] (without essential change of their form) to the case vhisra quasiconformal
curve or arc.

2. Formulation of the Main Results

In the sequel, for a bounded Jordan cuityeve denote by int the bounded component
and by extL the unbounded component Gf\L. For any subsef C C, let A be the
closure ofAin C. The logarithmic capacity df can be defined by

1
capL := (00)

By . we denote the equilibrium measurelof21]. This notion has a simple interpre-
tation using the conformal mappingsandV := ®~1. Namely, ifL is a curve, them
can be extended to a homeomorphi®m — A and, for any subard C L,

1
uL(J) = — length®(J).
21

If L is an arc, thenV can be extended continuously to a functién A — C and,
for any subarc] C L, there exist two preimages, i.e., ard§ J, C 9A such that
W (J)) = W(Jy) = J andJ; N J; consists of at most two points. In this case

1
uL(Jd) = Z(Iength\ll’ + lengthJd,).

Throughout this article we suppose thais a quasiconformal curve or arc (see [1] and
[13]).

We recall that, by definition, K -quasiconformall{ > 1) or, briefly, a quasiconformal
curve is the image of the unit circle under sokauasiconformal mapping: C — C.
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Any subarc of aK-quasiconformal curve is called la-quasiconformal or briefly a
guasiconformal arc.

There exists a geometric characterization of quasiconformal curves [13, p. 100] and
arcs [17]. For example, for curves it can be formulated as follaws:a quasiconformal
curve if and only if there exists a constant- 0, depending only o, such that for
Z1,22€ L

min{diamL’, diamL"} < c|z; — 2|,

whereL’ andL” denote the two arcs of whidh\{z;, z,} consists.

Using this criterion, we can easily verify that convex curves, curves of bounded vari-
ation without cusps, and rectifiable Jordan curves which have locally the same order of
arc length and chord length are quasiconformal. On the other hand, it is of interest to
know, that a quasiconformal curve can be everywhere nonrectifiable [4, p. 42].

Theorem 1. Let L be a K-quasiconformal curyéet o := o+ — o~ be a signed
measure on L with positive past*, negative partoc~, ando*(L) = o~ (L) = 1.
Moreoverlet c andp be positive constants such thédr all subarcs JC L,

(2.1) o () < cuL(I’.

Then there exists a constant & 0, depending only on Kc, and 8 such that for
O0<dé<1l/e

2.2) Dlo] <& (8(5) log <51> 4§D 4 sﬂ/2> .

In applications the following consequence of Theorem 1 is especially useful.

Theorem 2. Let L be a quasiconformal curve or g@nd let p, be a monic polynomial
of degree n with simple zeroge L, j =1, ..., n, such that

I PnllL < An(capL)",

IPh(z))| = By (capL)™,
Cpn := max(A,, By, n) < Ve
Letv, denote the measure which associates the rhassvith each of the zerog ZThen

logC, log n

2. D[, — _
(2.3) [uL —vi] <2 - 0gC,’

where ¢ > 0is a constant depending only on L

Theorems 1 and 2 are extensions of results in [5], [7], and [20] for sufficiently smooth
L (e C**) to the case of an arbitrary quasiconformal curve or arc.

Next, we can apply the technique of [7] to investigate the distribution of Fekete
points and extreme points in best polynomial approximation. We restrict ourselves to
the formulation of the corresponding two assertions. We will not dwell on their proofs,
since they are completely analogous to [7, Theorems 3.1 and 3.2].
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Theorem 3. Let L be a quasiconformal curve or arc arfdr any integer n> 2, let vy
denote the unit measure associated with an nth Fekete point sefltieh

logn)?2
DWL—W]E%(i),

where the constangc> 0 depends only on L

Theorem 4. Suppose that L is a quasiconformal curve or arc and let

L if L is an arc,

E=C\= {int L ifLisacurve

Let f be a function continuous on E and analytic at the interior points off &
denotes the unit measure that associates the mass+ 2) with each point of some
(n + 2)th Fekete point set of the extreme points

{zeL: [f@D = @I =1If = pall},
where p is the best Chebyshev approximation to f with respect to the class of polyno-
mials of degree at most then there exist infinitely many integers n satisfying

cs(logn)?
DluL — vnt2] < Tz

with some constan,c> 0 depending only on L

The following fact completes the assertion of Theorem 3. For the case of convex
curves it was proved in [11] and [12].

Theorem 5. Let the points g = W(€%),0; < 6 < --+ < Oy < Opy1 = 61 + 27,
form a Fekete set on the K-quasiconformal curvé'hen

Cs Cs .
(2.4) F§9j+l_9jfﬁ, i=1...,n,

with some positive constants and ¢ depending only on K

Finally, we would like to discuss the requirement of quasiconformality in our results.
More precisely, we claim that in the case of curves and arcs with cusps, in general, a
universal estimate for the discrepancy in terms of (2.3) with some cortstdoes not
exist. We will try to explain this effect by an example to Theorem 2 for domains of the
type

E=E(f):={z=x+4+1y: 0<x <1, 0<y< f(X)},

where f is a positive monotonically increasing function on [0,1] witli0) = 0 and
such that there exists an inverse functgpn= f ~! (with the same properties).

In the sequel, we denote lwy cy, ... positive constants (in general, different each
time) depending only on the curve or drc

Fora > 0 andb > 0, we use the expressi@n< b (order inequality) ifa < cb. The
expressiora < b means thaa < b andb < a hold simultaneously.
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Forn > 2, we consider the Jordan arc
S= S(n) := L\(0, g(n"?)),
wherelL := 9 E. .
Let S, denote the corresponding level curve of the conformal mapPig — A
with standard normalization ab. Since for anyz € S, and forn € N large enough
diamS (2/n)? -2

>
Az9>—7—17n~

(see [19, p. 181]), we conclude that
E cCint &/n,
and consequently

2
capS < capL < (1 + ﬁ) capS.

Further, letzy, ..., z, be the points of anth Fekete point set db.
According to [15], the Fekete monic polynomial

n
W@ =]]z-2)
j=1
satisfies

lan| > (capS)" 3= (capL)",
lgnlle < llanlls < n?(capS)" < n?(capL)".

Hence, the right-hand side of estimate (2.3) has the order

logCn g N~ (logn)?

n logC, ~ n
On the other hand, it is obvious that
DluL — vn] = g(n72).

Sinceg can tend arbitrarily slowly to zero as — 0, it is impossible to obtain either

an estimate of the same type as in Theorem 2 or any other estimate with a universal
right-hand side.

3. Some Relevant Facts from The Theory of Quasiconformal Mappings

We begin with some simple general facts from geometric function theory.
Letd(A, B) denote the distance betwednc C andB c C.

Lemmal. Let f be a conformal mapping of a region,& C onto a region G c C.

Then for each ze Gy,
1d(f(2),9Gy) d(f(2), 9Gy)

(3.1) <|f'@l <4

4 d(z,0Gy) d(z, 0G,)
Moreoverif |§ — z| < d(z, dG;1)/2,then
1d(f(2,0G d(f(2),0G
@2 —d0@9C) . ot -t <1600 2002,

16 d(z, 9Gy) d(z,9Gy)
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Proof. Setd; :=d(z, dGy), dr := d(f(2), 3G,) and consider the function
9(¢) = f(z+du?), ¢ eD.
An argument of [16, p. 22] shows that
(2| di = |g'(0)] < 40,

which yields the right-hand side of (3.1). The left-hand side of (3.1) follows from the
right-hand side written for the inverse functidrr?.
Further, consider the function

f(z4+di2)— f(2

h() = D.
©) foa " ‘°©
An elementary argument involving [16, Theorem 1.6, p. 21] shows thal; fot 1/2,
IZ1
= <1h 4z|.
7 = Ih()] < 4¢]

Therefore, setting := (¢ — z)/d;, we obtain
1§ — Z|
d

1

1fE) - f@ =4 4d2=16%|5—2|,
1

E-2d 1

&) - @] = ad, 4 1—6d—1|5—2|-

This completes the proof of the lemma. [ ]

Let G ¢ C be a Jordan domairt, € G, and letl ¢ 3G be an arc. We denote by
w(z, G, 1) the harmonic measure bht the pointz with respect tds (see [21]).

The next lemma is an immediate consequence of the Poisson and Schwarz represen-
tation formulas.

Lemma?2. Letz and 2 be the endpoints of an arcd aD. Then for any z= D the
inequalities

11z
. D, | S
(33) w(zv 9 )Scld(z’l)v
(3.4) |gradw(z, D, D] = ¢z/ min |z - zj|
=1

hold with some universal constantg ¢, > 1.

Itis well known that the harmonic measure is a conformal invariant. In the next lemma
we claim that it is also a quasiconformal “quasi-invariant.”

Lemma3. LetG c C, ] = 1,2, be arbitrary Jordan domainsand let F be a K-
qguasiconforma(K > 1) mapping of G onto G, extended continuously to the boundary
9G;. Then for each arc IC 9G; and each point = G;,

w(z,G1, 1) < 8rw(F(2), Gy, F())YK.
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Proof. According to the previous remark concerning the conformal invariance of the
harmonic measure we have only to consider the Gase G, = D andz = F(2) =
Notice that by a theorem of Mori [9, p. 66], for amy, z, € D,

(3.5) |21 — 22| < 16/F (z) — F(2)V".
Let z; andz, be the endpoints of the arac dD. The interesting case is
w(0,D, F()) < (8m)7.
Hence by virtue of (3.5),
»(0,D,1) < %|zl — 23] < 87|F(21) — F(z2)|Y¥ < 87w(0, D, F(1)¥X.
[

The following result is useful in the study of metric properties of the conformal
mappingsd andw.

Lemma 4 ([2, Lemma l]).Let w = F(¢) be a K-quasiconformal mapping of the

complex plane onto itself with (Bo) = oo, ¢j € C, wj = F(g)), ] = 1,2,3,and
lwy — we| < C1lw1 — ws|. Then|¢y — &2| < ¢2]¢1 — ¢3| and in addition

f1—-83 . ’wl_w3 )

f—§ wp —wa|

where ¢ = ¢ (¢, K),i =2, 3.
Corollary. Since Flis also a K -quasiconformal mapping it follows from the hypoth-
esis|¢1 — &o| < C1]&1 — 3] that|wy — wa| < Colwy — w3| and

C1—§3
§1—§2

‘wl—wa

w1 — w2

In the following, we will often use the fact that a conformal mappings2 — A can
be extended to & ?>-quasiconformal mapping: C — C [1, Chapter IV] ifL is aK-
quasiconformal curve. The inverse mapping= &~ will also beK 2-quasiconformal
in C.

Applying Lemma 4 and its corollary to the functiéh:= it is easily verified that,
for any pointsgj € L, w; := ®(¢j), j = 1, 2, the double inequality

c1le1 — 52" < w1 — wal < calty — oYX
holds with some constants = ¢;(G), j = 1, 2. Hence, forany arcC L,
(3.6) ca(diamh¥® <y (1) < ca(diamhV/K?,

Next, we note that the same inequality is true for the case of a quasiconformal arc.
To be more precise, lét be aK -quasiconformal arc. Denote lzy andz; its endpoints
and, forj = 1, 2, set

wj = CD(Z]'),
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Ay ={w: |lw| > 1;argw; < argw < argw,},

Ay = A\Aq, Qj 1= W(A)).
A routine category argument shows that; andd A, are quasiconformal curves. More-
over, itwas provedin[3, Lemma 1] tha®, = 9Q,is quasiconformaltoo. Therefore, the
restriction®; of the functiond to the regior2; can be extended tok -quasiconformal
mapping®;: C — C with a suitable constari{; = K1(L) > 1 (see [1, Chapter IV]).
Using Lemma 4 and its corollary for the functién:= &;, we find that, for each pair
of points¢; and¢; € L,

ciltr — &It <19 (6) — @5 (&) < Caltr — &5,

wherec; = ¢ (L), i = 1, 2. At last, recalling the definition of the equilibrium measure,
we may conclude that, for any subdrc L, the inequalities

(3.7) ca(diamh Xt < 1 (1) < ca(diaml)V/Ks

are satisfied with somg = ¢ (L), i = 3,4.

4. Some Auxiliary Results

Before proving our theorems, we will discuss a special construction which will be the
base of the proof of Theorem 1.

Suppose thakt is a K-quasiconformal curve and l&t> 0 be sufficiently small. Set
Z:=W¥(0),a:=68+ sK%. Denote byp, a conformal mapping of irt, onto the unit
disk D with the normalizatiorp,(zo) = O.

Consider the functiorg := ¢, o ¥ that maps the diskw: |w| < 1+ a} K?-
quasiconformally orD with g(0) = 0.

We note thag is conformal in the annulugw: 1 < |w| < 1+ a} and, moreovery
can be extended tol&?-quasiconformal mapping: C — C if, for |w| > 1+ a, we set

S ——
1 2
g(w) = [g<( +a) )] .
w

The last fact makes it possible to use Lemma 4 and its corollaryRvitk g.
Setu:=g7},

I' =T(@) ;= ¢a(Ls) ={ze D: [u®@| =1+5§}.
Lemmab5. Letz ¢ eI be arbitrary points and lef'(z, ¢) be the shortest component
of I'\{z, ¢}. Then the inequality
lengthl'(z, ¢) < clz—¢

holds with some constant ¢(K) > O.

Proof. Setw :=u(2), t := u(),

IM(w, 1) == ul(z 7)), E:={teD:1<|u®)|<1l+al.
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By virtue of Lemma 4 and its corollary we hadéz, 0E) < 1 — |z|.
Suppose first thdw — 7| < 8"2/32. According to (3.2),

id(z,aE)| o) < [z |<d(z,aE)
16 gx Towlslz=t=—7—
Since by the same reasoning
E
IZ—élfw forany & eT'(z ),

we obtain by Lemma 1 that, for atye I''(w, 1),

/ ’ 1- |Z|
g < [gw)| = K

Therefore,
/ 1- |Z|
lengthl" (z, §)=/ |9(t)||dt|XW|W—T|< lz—¢|.

I'(w,7)

Now, let|w — 7| > 8"2/32. We divide the ar€’(w, t) by pointst; (= w, ..., tmy1 =1
in such a way that

K2 K2
— < |t —t < —, k=12 ....,m
64_|k k+1|_32
Set
S R = gt
& = k1+8, k= 9(S), Nk = g(lk).

Using the previous result and Lemma 4, we find that

lengthl” (nx, nk+1) < 1Mk — ksl < Ik — &kl =< 1Eke1 — &kl
Hence,
m
length'(z. ¢) = ) lengthl (7. nr1)
k=1
m
<Y Mk — ol < €1 — Empal < 2= 2. n

k=1
Now, letl C L be an arbitrary arc,
y =) ={€’ 6, <6 <6,).
For simplicity, we always assume that
4.1) 6, — 091 < ; and 0< 8 < min{6, — 6,,1/2}.
Forr > 0, set

v o= {A+1)€% 01 <0 <6, I = W(n);
h a(2) = w(z,intLa la), zeintl,.
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Lemma 6. For an arbitrary signed measuke on L and sufficiently smadl (satisfying

(4.1)),the inequality
(4.2) <ce (%) log (%)

f ha(2 do(2)
L

holds with some constant€ ¢(K) > 0.

Proof. Defining
w (2) = w(z, 2,1, zeQ,
and applying the Green formula, we may write, fog L,

B 1 dw (¢)  oha(?)
hl,a<z>_w.<oo>+Z/L5[( 1(©) o )Iog|c—z|

a
+ (M a(6) — wl(())a—n logls — Zl} dz],

whered/an is the operator of differentiation with respect to the outward normal to the
curvel; at the pointz.
Integrating the last relation we get

1
(4.3) /tha(z) do(2) = o

ah 4 a
U(o,§)< 1a@) wl(€)>|d§|

Ls on an

1 d
+ o /(U)I ) — hl,a({))a—nU(U, o)ldeg|.
Ls

This formula will be the base of our next reasoning.

First, we will try to estimate the first integral on the right-hand side of (4.3) from
above. A routine category argument shows that for our purpose it suffices to establish
the inequalities

1
(4. [ |nmaco| el < tog ().
Ls
0 1
(4.5) /I:& an |d¢| < log (§>

The estimate (4.5) is a simple consequence of Lemma 2. In fact, since the harmonic
measure is a conformal invariant we obtain

f de| < f | gradw(w, A, )||dw|
Ls lw|=148

2
d 1
42/ (Gl 4log<—),
= Jiwi=14s [0 — wj] )

wherew; andw; are the endpoints of the agc:= ®(1).
In order to prove (4.4) we consider the conformal mappipgefined as above. Let
71 andt, be endpoints of the arg, (15). Using (3.4), we find that, for € D,
1

+ .
[t —ul |t -1

a
an

@ (¢)

0
a—nwl )

|gradw(t, D, ga(la))| <
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Denote by (8), wherej = 1,2 and O< § < 2, the length of the portion df lying in
the open disk with center at and radius. According to Lemma 5 we have; (§) < é.

Further, recalling the definition of the functianfrom the proof of Lemma 5 and
applying to it Lemma 4, we obtain

d(T, 9D) 5= s¥°.
Therefore, integration by parts yields

0
/L 9 ha@]1de] < f|gradw<r, D, ¢a(la)ldr]
5 r

an
202 dui0) &K@ [ pi0 1
< —L= = (‘—+/ ) dx)slo (—)
;\/;gK“ X Z 2 05K4 X2 g (S

=1

which is the assertion of (4.4).
In order to estimate the second integral on the right-hand side of (4.3) we set

Uw) := U(o, ¥(w)), lw| > 1;
h(w) = h (¥ (w)), lw| > 1
o(w) = o (V(w)), lw| > 1;

~ o 1 fwe Vs,
x(w) = {0 if wé¢ ys.
For|w| = 1+ 8, by Schwarz’s formula,

1/ U (v)] 4e(8/2)
|

|gradU (w)| < = ld7| <
T )

c—wj=s/2 |T — wl?
Since
/ lwi (2) — hya(2)] [dz] Sf |&(w) — h(w)|| gradU (w)||dw],
Ls |w|=148

it is sufficient, in order to establish an appropriate estimate, to show that

a

- - 1
(4.6) | ot - iwidul < 510g
Jw|=146
and L
@) [ R = zalidul < 5 log 5.
|w|=1+8
Now, it follows from (3.3), rewritten for the exterior of the unit disk, that
- - 1 1
(4.8) lo(w) — x(w)] <8 < + ) ,
lw—wi|  |w—wyl

where|lw| = 1+ §, andw; andw; are the endpoints of the ajc

Thus, (4.6) is a simple consequence of (4.8).

In order to establish (4.7) we suppose that = 1 + §, and lett; andt, be the
endpoints of the arg,. Applying Lemma 3 to the restriction of the mappiggn intL ,
and Lemma 2, we have
KZ

K-2

. -2 -2

Ih(w) — x (w)| = <—> <8(lw =t w =t 7).
minj—z 2 lw — tj|

By integrating the last inequality we get (4.7).
Combining (4.3)—(4.7), we obtain (4.2). ]
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5. Proof of the Main Results

Proof of Theorem 1. To see thatD[o] is appropriately estimated, we have only to
consider an arbitrary ard c L and, for sufficiently smalb, says < (r/4) to
establish the inequality

(5.1) c(J) > —¢ [e (%) log (%) + 8M@KH 4 af’/z} :

Moreover, if
J:=d) ={% a<6<b},

we only need to study the cabe- a < .
Set

y i={€% a8 <0 <b+s%?, | :==W(y);
yi=1{€%:a—28Y? <9 <b+25%2), l1:=W().

With this choice we get from Lemma 6 that the function (z) satisfies
(5.2) /tha(z) do(2) > coe (g) logs.
On the other hand,

[ Me@do@ = o)+ [[L-ha@]de @ +o )
(5.3) + hi a(2) do*(2).

L\ly

Let us estimate each of the integrals on the right-hand side of (5.3) from above.
Using (3.3) and Lemma 3, we find

1-ha@ < Y& z¢,
ha@ < 8Y29 ze L\l
Therefore,
(5.4) [[1 —ha(@]do~(2) +/ hi a(2) dot(2) < 6%,
J L\lg

Furthermore, by our assumption (2.1),
ot (11\J) < 872,

which, in view of (5.2)—(5.4), yields (5.1). ]

Proof of Theorem 2. The idea of the following discussion is originated in [5] and [7].
We give a sketch of the proof to show how the arguments of Blatt and Mhaskar can be
modified to obtain the result.

First, suppose thdt is a curve and consider the signed measure= w_ — vy. Its
positive partu, satisfies (2.1) witlt = g = 1.
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Set

logCn \ >
§=9§ = .
= (2
The same arguments as in the proof of [7, Theorem 2.2] (see also [5]) lead to

logC,
< .
e(d) = .

Hence, inequality (2.3) follows immediately from estimate (2.2).
Now, suppose thdt is an arc. Consider K -quasiconformal curv€ > L and define
a signed measuke onI" as follows:

o(J)=pu (INL)—vy(J) forall JcT.

According to (3.6) and (3.7), the positive part of this measure satisfies inequality (2.1)
with some constantsandg depending orL (not only onK!).

Set
10 C.. \ 2K*+1/8)
8:3(n):=<0g ") .
n
Then, as above,
logC
€(d) == U(o, )lr, = U (o, ), < i A3

from which (2.3) directly follows.

Hence, our proof is complete. [ |

6. Proof of Theorem 5

We apply the technique of [11] and some constructions from approximation theory in
the complex plane, which can be found in [9].

In what follows we will often use Lemma 4 and its corollary (sometimes without
special reference to them) for suitable, each time naturally defined, triplets of points in
Q andA.

To see thabtj 1 — 6 is appropriately bounded from below, we consider the funda-
mental polynomials
Z— Zx
Zj — Z ’

6@ =0(z,2:=]]
k]
associated with the system of poirts}}.
Sincel|g;|l. < 1, by the Bernstein—Walsh theorem we obtain¢feuch thaiz —z;| <
d(z;, Lin) =: d;, the estimate
lg; ()| < e
Consequently, ifc — z| < dj/2, then

, 1 1a;j (5)I 2e
! < — dé| < —.
G©)l = Zn/m:dj/z = g




376 V. V. Andrievskii and H.-P. Blatt

We claim that
(6.1) 1Zj+1 — 7| = dj < |7 — 7],
wherez; ;= W[(1+ 1/n)®(z)].

Indeed, we have only to verify the inequality|# .., — zj| < 1d;. In this case, we
have

’ 1Zj+1 — 7|
1= 10(zj40) — G (Z)] < / g @11dz < 2=l
(7,2 41] dJ
Then, by (6.1) via Lemma 4 we get the left-hand side of (2.4).
In order to prove the right-hand inequality in (2.4), we use the Jackson-type kernel

1 <sin(mt)/(2))2k

Jm(t) = Yem \sint)/(2)

.1 (7 (sinmt)/(2) det
Mem - = Z/_( sin(t)/(2) )

In what followsk will be a fixed number (large enough).
The following properties ofl ,, are well known (see [9, Chapter I1]):

wherek, m € N and

1 g
(6.2) — Jm)dt=1;

2 J_,

k(m—1)
Jk,m(t) = Z a‘ ‘e”t
j=—k(m-1)
where theg; are real numbers;
/g

(6.3) / Jem®]t€dt < m™¢, O0<c<2k—4

For¢ e Q andt real, we sei := ®(¢) andg, = W(we ™).
Since, forze L,

1 > I1; (z) dit,
Gi—2 \IJ(we—”)—z Z

wherell; (2), j € N, denote the appropriate generalized Faber polynomials, the function
1 dt =~ @V a
Tem(2) = Tem(8. 2) = —— kaa)—z =) e

21 J . =

is a polynomial inz of degree at mot(m — 1).

Lemma 7. There exist constants & 1 and k € N depending only on K and such
that, form > 2c, k > kg, 2> |w| > (1 —¢/m)~%, and ze L,

(6.4)

L n@l = =
¢ —z - M=o
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Proof. Letz e L be arbitrary. From (6.2) we see that

‘— — m(2)
1 G—-¢
Jkm(t dt| < dt.
V_ﬂ km()( ~z ct—2> ’ 2rlc — 7| ’
Seté == W((w)/(lwhe™™).
Lemma 4 implies the following relations:
& — 2| = & — &l
G- - ‘ wt <7 ‘ wt <
— & lwl -1 lw] -1
By (6.3), fork > [K? + 2] =: ko, we have
(o T wt <7 wt <
— — Jm(t —_— —_— dt
‘ e I k’”‘“('|w|—1 T wi—1 )
C ‘ w <7 ‘ K
< +|l— ).
[ =zl \|(lw]—1m (Jwl —Dm
from which (6.4) immediately follows, if we chooge= 1+ (4cp)*°. ]

To continue the proof of Theorem 5 letbe chosen such that

c\—1
wi=(1-2) .
m

wherec is a constant as in Lemma 7. Further,det N, s > 2K?2, be fixed. Define the
function

ps,k,m(z) = ps,k,m(fs Z) = mkm(<, Z)s(g - fL)s,

whereg| = W(w/|w|). Thenpsk m(2) is a polynomial ire of degree at mostk(m— 1),
and, by Lemma 7,

(6.5) |Pskm(¢L)| = 275,
In addition, by Lemma 4, for ang € L andt := ®(z), we have

=0 ° —s/K? -2
(6.6) [Pskm@| < | — | < (mlw —t]) < (mlw —t))~2

Now, we are ready to establish the right-hand side of (2.4).
Seté = §j = %(GJ_H —6)), 6o = 6o = 3(6j+1 + 6;). We rename the point®; };
by {9{}; and{ej”}qf” in such a way that
Op <0 <-- <0 <m+0bp,

Op—m <6, <---<06] <bp.
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By the left-hand side inequality in (2.4), we obtain

, C1) .
QJ_QOZT+8’ J=1,...,V,

C1j .
eo—ej//_lTJJr(s, i=1....n—v.

\

Setw := (1+ c;/m)e®, ¢ := W(w), m:= [(n — 1)/skK], where the constants > 0,
s, andk € N are chosen in such a way that, for the polynonpié) := psx.m(¢, 2) (of
degree at most — 1), the relations (6.5) and (6.6) are fulfilled.

Since by Lagrange’s interpolation formula

P =) pEHaE. 2+ pE)aE. 2.

=1 =1

wherez = \Il(e”’i’) andz := \I/(eigi”), the quantitys can easily be estimated from
above by the following reasoning:

S

10.
11.
12.
13.

A

2 < [pwE™)| = Y 1pE)I+ Y 1pE)
j=1 j=1
n,z v 5 Clj -2 n—v 5 C]_j -2
2 +) R

22(5n+c1j)*2

i=1

R

IA

/“’0 dx 2
< 2 = .
~ Jo (n+cx)2 cén
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